Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6
[deliverable/linux.git] / arch / x86 / include / asm / uv / uv_hub.h
CommitLineData
952cf6d7
JS
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * SGI UV architectural definitions
7 *
9f5314fb 8 * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
952cf6d7
JS
9 */
10
05e4d316
PA
11#ifndef _ASM_X86_UV_UV_HUB_H
12#define _ASM_X86_UV_UV_HUB_H
952cf6d7 13
bc5d9940 14#ifdef CONFIG_X86_64
952cf6d7
JS
15#include <linux/numa.h>
16#include <linux/percpu.h>
c08b6acc 17#include <linux/timer.h>
952cf6d7
JS
18#include <asm/types.h>
19#include <asm/percpu.h>
66666e50 20#include <asm/uv/uv_mmrs.h>
952cf6d7
JS
21
22
23/*
24 * Addressing Terminology
25 *
9f5314fb
JS
26 * M - The low M bits of a physical address represent the offset
27 * into the blade local memory. RAM memory on a blade is physically
28 * contiguous (although various IO spaces may punch holes in
29 * it)..
952cf6d7 30 *
9f5314fb
JS
31 * N - Number of bits in the node portion of a socket physical
32 * address.
33 *
34 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
35 * routers always have low bit of 1, C/MBricks have low bit
36 * equal to 0. Most addressing macros that target UV hub chips
37 * right shift the NASID by 1 to exclude the always-zero bit.
38 * NASIDs contain up to 15 bits.
39 *
40 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
41 * of nasids.
42 *
43 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
44 * of the nasid for socket usage.
45 *
46 *
47 * NumaLink Global Physical Address Format:
48 * +--------------------------------+---------------------+
49 * |00..000| GNODE | NodeOffset |
50 * +--------------------------------+---------------------+
51 * |<-------53 - M bits --->|<--------M bits ----->
52 *
53 * M - number of node offset bits (35 .. 40)
952cf6d7
JS
54 *
55 *
56 * Memory/UV-HUB Processor Socket Address Format:
9f5314fb
JS
57 * +----------------+---------------+---------------------+
58 * |00..000000000000| PNODE | NodeOffset |
59 * +----------------+---------------+---------------------+
60 * <--- N bits --->|<--------M bits ----->
952cf6d7 61 *
9f5314fb
JS
62 * M - number of node offset bits (35 .. 40)
63 * N - number of PNODE bits (0 .. 10)
952cf6d7
JS
64 *
65 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
66 * The actual values are configuration dependent and are set at
9f5314fb
JS
67 * boot time. M & N values are set by the hardware/BIOS at boot.
68 *
952cf6d7
JS
69 *
70 * APICID format
71 * NOTE!!!!!! This is the current format of the APICID. However, code
72 * should assume that this will change in the future. Use functions
73 * in this file for all APICID bit manipulations and conversion.
74 *
75 * 1111110000000000
76 * 5432109876543210
9f5314fb 77 * pppppppppplc0cch
952cf6d7
JS
78 * sssssssssss
79 *
9f5314fb 80 * p = pnode bits
952cf6d7
JS
81 * l = socket number on board
82 * c = core
83 * h = hyperthread
9f5314fb 84 * s = bits that are in the SOCKET_ID CSR
952cf6d7
JS
85 *
86 * Note: Processor only supports 12 bits in the APICID register. The ACPI
87 * tables hold all 16 bits. Software needs to be aware of this.
88 *
89 * Unless otherwise specified, all references to APICID refer to
90 * the FULL value contained in ACPI tables, not the subset in the
91 * processor APICID register.
92 */
93
94
95/*
96 * Maximum number of bricks in all partitions and in all coherency domains.
97 * This is the total number of bricks accessible in the numalink fabric. It
98 * includes all C & M bricks. Routers are NOT included.
99 *
100 * This value is also the value of the maximum number of non-router NASIDs
101 * in the numalink fabric.
102 *
9f5314fb 103 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
952cf6d7
JS
104 */
105#define UV_MAX_NUMALINK_BLADES 16384
106
107/*
108 * Maximum number of C/Mbricks within a software SSI (hardware may support
109 * more).
110 */
111#define UV_MAX_SSI_BLADES 256
112
113/*
114 * The largest possible NASID of a C or M brick (+ 2)
115 */
116#define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_NODES * 2)
117
7f1baa06
MT
118struct uv_scir_s {
119 struct timer_list timer;
120 unsigned long offset;
121 unsigned long last;
122 unsigned long idle_on;
123 unsigned long idle_off;
124 unsigned char state;
125 unsigned char enabled;
126};
127
952cf6d7
JS
128/*
129 * The following defines attributes of the HUB chip. These attributes are
130 * frequently referenced and are kept in the per-cpu data areas of each cpu.
131 * They are kept together in a struct to minimize cache misses.
132 */
133struct uv_hub_info_s {
69a72a0e
MT
134 unsigned long global_mmr_base;
135 unsigned long gpa_mask;
136 unsigned long gnode_upper;
137 unsigned long lowmem_remap_top;
138 unsigned long lowmem_remap_base;
139 unsigned short pnode;
140 unsigned short pnode_mask;
141 unsigned short coherency_domain_number;
142 unsigned short numa_blade_id;
143 unsigned char blade_processor_id;
144 unsigned char m_val;
145 unsigned char n_val;
146 struct uv_scir_s scir;
952cf6d7 147};
7f1baa06 148
952cf6d7
JS
149DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
150#define uv_hub_info (&__get_cpu_var(__uv_hub_info))
151#define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
152
153/*
154 * Local & Global MMR space macros.
155 * Note: macros are intended to be used ONLY by inline functions
156 * in this file - not by other kernel code.
9f5314fb
JS
157 * n - NASID (full 15-bit global nasid)
158 * g - GNODE (full 15-bit global nasid, right shifted 1)
159 * p - PNODE (local part of nsids, right shifted 1)
952cf6d7 160 */
9f5314fb
JS
161#define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
162#define UV_PNODE_TO_NASID(p) (((p) << 1) | uv_hub_info->gnode_upper)
952cf6d7
JS
163
164#define UV_LOCAL_MMR_BASE 0xf4000000UL
165#define UV_GLOBAL_MMR32_BASE 0xf8000000UL
166#define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
83f5d894
JS
167#define UV_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
168#define UV_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
952cf6d7 169
9f5314fb
JS
170#define UV_GLOBAL_MMR32_PNODE_SHIFT 15
171#define UV_GLOBAL_MMR64_PNODE_SHIFT 26
952cf6d7 172
9f5314fb 173#define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
952cf6d7 174
9f5314fb
JS
175#define UV_GLOBAL_MMR64_PNODE_BITS(p) \
176 ((unsigned long)(p) << UV_GLOBAL_MMR64_PNODE_SHIFT)
177
178#define UV_APIC_PNODE_SHIFT 6
179
7f1baa06
MT
180/* Local Bus from cpu's perspective */
181#define LOCAL_BUS_BASE 0x1c00000
182#define LOCAL_BUS_SIZE (4 * 1024 * 1024)
183
184/*
185 * System Controller Interface Reg
186 *
187 * Note there are NO leds on a UV system. This register is only
188 * used by the system controller to monitor system-wide operation.
189 * There are 64 regs per node. With Nahelem cpus (2 cores per node,
190 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
191 * a node.
192 *
193 * The window is located at top of ACPI MMR space
194 */
195#define SCIR_WINDOW_COUNT 64
196#define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \
197 LOCAL_BUS_SIZE - \
198 SCIR_WINDOW_COUNT)
199
200#define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */
201#define SCIR_CPU_ACTIVITY 0x02 /* not idle */
202#define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */
203
8661984f
DS
204/* Loop through all installed blades */
205#define for_each_possible_blade(bid) \
206 for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
207
9f5314fb
JS
208/*
209 * Macros for converting between kernel virtual addresses, socket local physical
210 * addresses, and UV global physical addresses.
211 * Note: use the standard __pa() & __va() macros for converting
212 * between socket virtual and socket physical addresses.
213 */
214
215/* socket phys RAM --> UV global physical address */
216static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
217{
218 if (paddr < uv_hub_info->lowmem_remap_top)
189f67c4 219 paddr |= uv_hub_info->lowmem_remap_base;
9f5314fb
JS
220 return paddr | uv_hub_info->gnode_upper;
221}
222
223
224/* socket virtual --> UV global physical address */
225static inline unsigned long uv_gpa(void *v)
226{
189f67c4 227 return uv_soc_phys_ram_to_gpa(__pa(v));
9f5314fb
JS
228}
229
230/* pnode, offset --> socket virtual */
231static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
232{
233 return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
234}
952cf6d7 235
952cf6d7
JS
236
237/*
9f5314fb 238 * Extract a PNODE from an APICID (full apicid, not processor subset)
952cf6d7 239 */
9f5314fb 240static inline int uv_apicid_to_pnode(int apicid)
952cf6d7 241{
9f5314fb 242 return (apicid >> UV_APIC_PNODE_SHIFT);
952cf6d7
JS
243}
244
245/*
246 * Access global MMRs using the low memory MMR32 space. This region supports
247 * faster MMR access but not all MMRs are accessible in this space.
248 */
9f5314fb 249static inline unsigned long *uv_global_mmr32_address(int pnode,
952cf6d7
JS
250 unsigned long offset)
251{
252 return __va(UV_GLOBAL_MMR32_BASE |
9f5314fb 253 UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
952cf6d7
JS
254}
255
9f5314fb 256static inline void uv_write_global_mmr32(int pnode, unsigned long offset,
952cf6d7
JS
257 unsigned long val)
258{
9f5314fb 259 *uv_global_mmr32_address(pnode, offset) = val;
952cf6d7
JS
260}
261
9f5314fb 262static inline unsigned long uv_read_global_mmr32(int pnode,
952cf6d7
JS
263 unsigned long offset)
264{
9f5314fb 265 return *uv_global_mmr32_address(pnode, offset);
952cf6d7
JS
266}
267
268/*
269 * Access Global MMR space using the MMR space located at the top of physical
270 * memory.
271 */
9f5314fb 272static inline unsigned long *uv_global_mmr64_address(int pnode,
952cf6d7
JS
273 unsigned long offset)
274{
275 return __va(UV_GLOBAL_MMR64_BASE |
9f5314fb 276 UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
952cf6d7
JS
277}
278
9f5314fb 279static inline void uv_write_global_mmr64(int pnode, unsigned long offset,
952cf6d7
JS
280 unsigned long val)
281{
9f5314fb 282 *uv_global_mmr64_address(pnode, offset) = val;
952cf6d7
JS
283}
284
9f5314fb 285static inline unsigned long uv_read_global_mmr64(int pnode,
952cf6d7
JS
286 unsigned long offset)
287{
9f5314fb 288 return *uv_global_mmr64_address(pnode, offset);
952cf6d7
JS
289}
290
291/*
9f5314fb 292 * Access hub local MMRs. Faster than using global space but only local MMRs
952cf6d7
JS
293 * are accessible.
294 */
295static inline unsigned long *uv_local_mmr_address(unsigned long offset)
296{
297 return __va(UV_LOCAL_MMR_BASE | offset);
298}
299
300static inline unsigned long uv_read_local_mmr(unsigned long offset)
301{
302 return *uv_local_mmr_address(offset);
303}
304
305static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
306{
307 *uv_local_mmr_address(offset) = val;
308}
309
7f1baa06
MT
310static inline unsigned char uv_read_local_mmr8(unsigned long offset)
311{
312 return *((unsigned char *)uv_local_mmr_address(offset));
313}
314
315static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
316{
317 *((unsigned char *)uv_local_mmr_address(offset)) = val;
318}
319
8400def8 320/*
9f5314fb 321 * Structures and definitions for converting between cpu, node, pnode, and blade
8400def8
JS
322 * numbers.
323 */
324struct uv_blade_info {
9f5314fb 325 unsigned short nr_possible_cpus;
8400def8 326 unsigned short nr_online_cpus;
9f5314fb 327 unsigned short pnode;
8400def8 328};
9f5314fb 329extern struct uv_blade_info *uv_blade_info;
8400def8
JS
330extern short *uv_node_to_blade;
331extern short *uv_cpu_to_blade;
332extern short uv_possible_blades;
333
334/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
335static inline int uv_blade_processor_id(void)
336{
337 return uv_hub_info->blade_processor_id;
338}
339
340/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
341static inline int uv_numa_blade_id(void)
342{
343 return uv_hub_info->numa_blade_id;
344}
345
346/* Convert a cpu number to the the UV blade number */
347static inline int uv_cpu_to_blade_id(int cpu)
348{
349 return uv_cpu_to_blade[cpu];
350}
351
352/* Convert linux node number to the UV blade number */
353static inline int uv_node_to_blade_id(int nid)
354{
355 return uv_node_to_blade[nid];
356}
357
9f5314fb
JS
358/* Convert a blade id to the PNODE of the blade */
359static inline int uv_blade_to_pnode(int bid)
8400def8 360{
9f5314fb 361 return uv_blade_info[bid].pnode;
8400def8
JS
362}
363
364/* Determine the number of possible cpus on a blade */
365static inline int uv_blade_nr_possible_cpus(int bid)
366{
9f5314fb 367 return uv_blade_info[bid].nr_possible_cpus;
8400def8
JS
368}
369
370/* Determine the number of online cpus on a blade */
371static inline int uv_blade_nr_online_cpus(int bid)
372{
373 return uv_blade_info[bid].nr_online_cpus;
374}
375
9f5314fb
JS
376/* Convert a cpu id to the PNODE of the blade containing the cpu */
377static inline int uv_cpu_to_pnode(int cpu)
8400def8 378{
9f5314fb 379 return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
8400def8
JS
380}
381
9f5314fb
JS
382/* Convert a linux node number to the PNODE of the blade */
383static inline int uv_node_to_pnode(int nid)
8400def8 384{
9f5314fb 385 return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
8400def8
JS
386}
387
388/* Maximum possible number of blades */
389static inline int uv_num_possible_blades(void)
390{
391 return uv_possible_blades;
392}
393
7f1baa06
MT
394/* Update SCIR state */
395static inline void uv_set_scir_bits(unsigned char value)
396{
397 if (uv_hub_info->scir.state != value) {
398 uv_hub_info->scir.state = value;
399 uv_write_local_mmr8(uv_hub_info->scir.offset, value);
400 }
401}
66666e50 402
7f1baa06
MT
403static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
404{
405 if (uv_cpu_hub_info(cpu)->scir.state != value) {
406 uv_cpu_hub_info(cpu)->scir.state = value;
407 uv_write_local_mmr8(uv_cpu_hub_info(cpu)->scir.offset, value);
408 }
409}
952cf6d7 410
66666e50
JS
411static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
412{
413 unsigned long val;
414
415 val = (1UL << UVH_IPI_INT_SEND_SHFT) |
416 ((apicid & 0x3f) << UVH_IPI_INT_APIC_ID_SHFT) |
417 (vector << UVH_IPI_INT_VECTOR_SHFT);
418 uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
419}
420
bc5d9940 421#endif /* CONFIG_X86_64 */
7f1baa06 422#endif /* _ASM_X86_UV_UV_HUB_H */
This page took 0.195005 seconds and 5 git commands to generate.