Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
[deliverable/linux.git] / arch / x86 / include / asm / uv / uv_hub.h
CommitLineData
952cf6d7
JS
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * SGI UV architectural definitions
7 *
9f5314fb 8 * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
952cf6d7
JS
9 */
10
05e4d316
PA
11#ifndef _ASM_X86_UV_UV_HUB_H
12#define _ASM_X86_UV_UV_HUB_H
952cf6d7
JS
13
14#include <linux/numa.h>
15#include <linux/percpu.h>
c08b6acc 16#include <linux/timer.h>
952cf6d7
JS
17#include <asm/types.h>
18#include <asm/percpu.h>
19
20
21/*
22 * Addressing Terminology
23 *
9f5314fb
JS
24 * M - The low M bits of a physical address represent the offset
25 * into the blade local memory. RAM memory on a blade is physically
26 * contiguous (although various IO spaces may punch holes in
27 * it)..
952cf6d7 28 *
9f5314fb
JS
29 * N - Number of bits in the node portion of a socket physical
30 * address.
31 *
32 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
33 * routers always have low bit of 1, C/MBricks have low bit
34 * equal to 0. Most addressing macros that target UV hub chips
35 * right shift the NASID by 1 to exclude the always-zero bit.
36 * NASIDs contain up to 15 bits.
37 *
38 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
39 * of nasids.
40 *
41 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
42 * of the nasid for socket usage.
43 *
44 *
45 * NumaLink Global Physical Address Format:
46 * +--------------------------------+---------------------+
47 * |00..000| GNODE | NodeOffset |
48 * +--------------------------------+---------------------+
49 * |<-------53 - M bits --->|<--------M bits ----->
50 *
51 * M - number of node offset bits (35 .. 40)
952cf6d7
JS
52 *
53 *
54 * Memory/UV-HUB Processor Socket Address Format:
9f5314fb
JS
55 * +----------------+---------------+---------------------+
56 * |00..000000000000| PNODE | NodeOffset |
57 * +----------------+---------------+---------------------+
58 * <--- N bits --->|<--------M bits ----->
952cf6d7 59 *
9f5314fb
JS
60 * M - number of node offset bits (35 .. 40)
61 * N - number of PNODE bits (0 .. 10)
952cf6d7
JS
62 *
63 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
64 * The actual values are configuration dependent and are set at
9f5314fb
JS
65 * boot time. M & N values are set by the hardware/BIOS at boot.
66 *
952cf6d7
JS
67 *
68 * APICID format
69 * NOTE!!!!!! This is the current format of the APICID. However, code
70 * should assume that this will change in the future. Use functions
71 * in this file for all APICID bit manipulations and conversion.
72 *
73 * 1111110000000000
74 * 5432109876543210
9f5314fb 75 * pppppppppplc0cch
952cf6d7
JS
76 * sssssssssss
77 *
9f5314fb 78 * p = pnode bits
952cf6d7
JS
79 * l = socket number on board
80 * c = core
81 * h = hyperthread
9f5314fb 82 * s = bits that are in the SOCKET_ID CSR
952cf6d7
JS
83 *
84 * Note: Processor only supports 12 bits in the APICID register. The ACPI
85 * tables hold all 16 bits. Software needs to be aware of this.
86 *
87 * Unless otherwise specified, all references to APICID refer to
88 * the FULL value contained in ACPI tables, not the subset in the
89 * processor APICID register.
90 */
91
92
93/*
94 * Maximum number of bricks in all partitions and in all coherency domains.
95 * This is the total number of bricks accessible in the numalink fabric. It
96 * includes all C & M bricks. Routers are NOT included.
97 *
98 * This value is also the value of the maximum number of non-router NASIDs
99 * in the numalink fabric.
100 *
9f5314fb 101 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
952cf6d7
JS
102 */
103#define UV_MAX_NUMALINK_BLADES 16384
104
105/*
106 * Maximum number of C/Mbricks within a software SSI (hardware may support
107 * more).
108 */
109#define UV_MAX_SSI_BLADES 256
110
111/*
112 * The largest possible NASID of a C or M brick (+ 2)
113 */
114#define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_NODES * 2)
115
116/*
117 * The following defines attributes of the HUB chip. These attributes are
118 * frequently referenced and are kept in the per-cpu data areas of each cpu.
119 * They are kept together in a struct to minimize cache misses.
120 */
121struct uv_hub_info_s {
122 unsigned long global_mmr_base;
9f5314fb
JS
123 unsigned long gpa_mask;
124 unsigned long gnode_upper;
125 unsigned long lowmem_remap_top;
126 unsigned long lowmem_remap_base;
127 unsigned short pnode;
128 unsigned short pnode_mask;
952cf6d7
JS
129 unsigned short coherency_domain_number;
130 unsigned short numa_blade_id;
131 unsigned char blade_processor_id;
132 unsigned char m_val;
133 unsigned char n_val;
134};
135DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
136#define uv_hub_info (&__get_cpu_var(__uv_hub_info))
137#define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
138
139/*
140 * Local & Global MMR space macros.
141 * Note: macros are intended to be used ONLY by inline functions
142 * in this file - not by other kernel code.
9f5314fb
JS
143 * n - NASID (full 15-bit global nasid)
144 * g - GNODE (full 15-bit global nasid, right shifted 1)
145 * p - PNODE (local part of nsids, right shifted 1)
952cf6d7 146 */
9f5314fb
JS
147#define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
148#define UV_PNODE_TO_NASID(p) (((p) << 1) | uv_hub_info->gnode_upper)
952cf6d7
JS
149
150#define UV_LOCAL_MMR_BASE 0xf4000000UL
151#define UV_GLOBAL_MMR32_BASE 0xf8000000UL
152#define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
83f5d894
JS
153#define UV_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
154#define UV_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
952cf6d7 155
9f5314fb
JS
156#define UV_GLOBAL_MMR32_PNODE_SHIFT 15
157#define UV_GLOBAL_MMR64_PNODE_SHIFT 26
952cf6d7 158
9f5314fb 159#define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
952cf6d7 160
9f5314fb
JS
161#define UV_GLOBAL_MMR64_PNODE_BITS(p) \
162 ((unsigned long)(p) << UV_GLOBAL_MMR64_PNODE_SHIFT)
163
164#define UV_APIC_PNODE_SHIFT 6
165
166/*
167 * Macros for converting between kernel virtual addresses, socket local physical
168 * addresses, and UV global physical addresses.
169 * Note: use the standard __pa() & __va() macros for converting
170 * between socket virtual and socket physical addresses.
171 */
172
173/* socket phys RAM --> UV global physical address */
174static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
175{
176 if (paddr < uv_hub_info->lowmem_remap_top)
177 paddr += uv_hub_info->lowmem_remap_base;
178 return paddr | uv_hub_info->gnode_upper;
179}
180
181
182/* socket virtual --> UV global physical address */
183static inline unsigned long uv_gpa(void *v)
184{
185 return __pa(v) | uv_hub_info->gnode_upper;
186}
187
188/* socket virtual --> UV global physical address */
189static inline void *uv_vgpa(void *v)
190{
191 return (void *)uv_gpa(v);
192}
193
194/* UV global physical address --> socket virtual */
195static inline void *uv_va(unsigned long gpa)
196{
197 return __va(gpa & uv_hub_info->gpa_mask);
198}
199
200/* pnode, offset --> socket virtual */
201static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
202{
203 return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
204}
952cf6d7 205
952cf6d7
JS
206
207/*
9f5314fb 208 * Extract a PNODE from an APICID (full apicid, not processor subset)
952cf6d7 209 */
9f5314fb 210static inline int uv_apicid_to_pnode(int apicid)
952cf6d7 211{
9f5314fb 212 return (apicid >> UV_APIC_PNODE_SHIFT);
952cf6d7
JS
213}
214
215/*
216 * Access global MMRs using the low memory MMR32 space. This region supports
217 * faster MMR access but not all MMRs are accessible in this space.
218 */
9f5314fb 219static inline unsigned long *uv_global_mmr32_address(int pnode,
952cf6d7
JS
220 unsigned long offset)
221{
222 return __va(UV_GLOBAL_MMR32_BASE |
9f5314fb 223 UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
952cf6d7
JS
224}
225
9f5314fb 226static inline void uv_write_global_mmr32(int pnode, unsigned long offset,
952cf6d7
JS
227 unsigned long val)
228{
9f5314fb 229 *uv_global_mmr32_address(pnode, offset) = val;
952cf6d7
JS
230}
231
9f5314fb 232static inline unsigned long uv_read_global_mmr32(int pnode,
952cf6d7
JS
233 unsigned long offset)
234{
9f5314fb 235 return *uv_global_mmr32_address(pnode, offset);
952cf6d7
JS
236}
237
238/*
239 * Access Global MMR space using the MMR space located at the top of physical
240 * memory.
241 */
9f5314fb 242static inline unsigned long *uv_global_mmr64_address(int pnode,
952cf6d7
JS
243 unsigned long offset)
244{
245 return __va(UV_GLOBAL_MMR64_BASE |
9f5314fb 246 UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
952cf6d7
JS
247}
248
9f5314fb 249static inline void uv_write_global_mmr64(int pnode, unsigned long offset,
952cf6d7
JS
250 unsigned long val)
251{
9f5314fb 252 *uv_global_mmr64_address(pnode, offset) = val;
952cf6d7
JS
253}
254
9f5314fb 255static inline unsigned long uv_read_global_mmr64(int pnode,
952cf6d7
JS
256 unsigned long offset)
257{
9f5314fb 258 return *uv_global_mmr64_address(pnode, offset);
952cf6d7
JS
259}
260
261/*
9f5314fb 262 * Access hub local MMRs. Faster than using global space but only local MMRs
952cf6d7
JS
263 * are accessible.
264 */
265static inline unsigned long *uv_local_mmr_address(unsigned long offset)
266{
267 return __va(UV_LOCAL_MMR_BASE | offset);
268}
269
270static inline unsigned long uv_read_local_mmr(unsigned long offset)
271{
272 return *uv_local_mmr_address(offset);
273}
274
275static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
276{
277 *uv_local_mmr_address(offset) = val;
278}
279
8400def8 280/*
9f5314fb 281 * Structures and definitions for converting between cpu, node, pnode, and blade
8400def8
JS
282 * numbers.
283 */
284struct uv_blade_info {
9f5314fb 285 unsigned short nr_possible_cpus;
8400def8 286 unsigned short nr_online_cpus;
9f5314fb 287 unsigned short pnode;
8400def8 288};
9f5314fb 289extern struct uv_blade_info *uv_blade_info;
8400def8
JS
290extern short *uv_node_to_blade;
291extern short *uv_cpu_to_blade;
292extern short uv_possible_blades;
293
294/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
295static inline int uv_blade_processor_id(void)
296{
297 return uv_hub_info->blade_processor_id;
298}
299
300/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
301static inline int uv_numa_blade_id(void)
302{
303 return uv_hub_info->numa_blade_id;
304}
305
306/* Convert a cpu number to the the UV blade number */
307static inline int uv_cpu_to_blade_id(int cpu)
308{
309 return uv_cpu_to_blade[cpu];
310}
311
312/* Convert linux node number to the UV blade number */
313static inline int uv_node_to_blade_id(int nid)
314{
315 return uv_node_to_blade[nid];
316}
317
9f5314fb
JS
318/* Convert a blade id to the PNODE of the blade */
319static inline int uv_blade_to_pnode(int bid)
8400def8 320{
9f5314fb 321 return uv_blade_info[bid].pnode;
8400def8
JS
322}
323
324/* Determine the number of possible cpus on a blade */
325static inline int uv_blade_nr_possible_cpus(int bid)
326{
9f5314fb 327 return uv_blade_info[bid].nr_possible_cpus;
8400def8
JS
328}
329
330/* Determine the number of online cpus on a blade */
331static inline int uv_blade_nr_online_cpus(int bid)
332{
333 return uv_blade_info[bid].nr_online_cpus;
334}
335
9f5314fb
JS
336/* Convert a cpu id to the PNODE of the blade containing the cpu */
337static inline int uv_cpu_to_pnode(int cpu)
8400def8 338{
9f5314fb 339 return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
8400def8
JS
340}
341
9f5314fb
JS
342/* Convert a linux node number to the PNODE of the blade */
343static inline int uv_node_to_pnode(int nid)
8400def8 344{
9f5314fb 345 return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
8400def8
JS
346}
347
348/* Maximum possible number of blades */
349static inline int uv_num_possible_blades(void)
350{
351 return uv_possible_blades;
352}
353
05e4d316 354#endif /* _ASM_X86_UV_UV_HUB_H */
952cf6d7 355
This page took 0.119581 seconds and 5 git commands to generate.