AMD IOMMU: add device reference counting for protection domains
[deliverable/linux.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715
JR
1/*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/gfp.h>
22#include <linux/bitops.h>
23#include <linux/scatterlist.h>
24#include <linux/iommu-helper.h>
25#include <asm/proto.h>
46a7fa27 26#include <asm/iommu.h>
1d9b16d1 27#include <asm/gart.h>
b6c02715 28#include <asm/amd_iommu_types.h>
c6da992e 29#include <asm/amd_iommu.h>
b6c02715
JR
30
31#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
32
136f78a1
JR
33#define EXIT_LOOP_COUNT 10000000
34
b6c02715
JR
35static DEFINE_RWLOCK(amd_iommu_devtable_lock);
36
bd60b735
JR
37/* A list of preallocated protection domains */
38static LIST_HEAD(iommu_pd_list);
39static DEFINE_SPINLOCK(iommu_pd_list_lock);
40
431b2a20
JR
41/*
42 * general struct to manage commands send to an IOMMU
43 */
d6449536 44struct iommu_cmd {
b6c02715
JR
45 u32 data[4];
46};
47
bd0e5211
JR
48static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
49 struct unity_map_entry *e);
50
431b2a20 51/* returns !0 if the IOMMU is caching non-present entries in its TLB */
4da70b9e
JR
52static int iommu_has_npcache(struct amd_iommu *iommu)
53{
ae9b9403 54 return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
4da70b9e
JR
55}
56
a80dc3e0
JR
57/****************************************************************************
58 *
59 * Interrupt handling functions
60 *
61 ****************************************************************************/
62
90008ee4
JR
63static void iommu_print_event(void *__evt)
64{
65 u32 *event = __evt;
66 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
67 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
68 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
69 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
70 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
71
72 printk(KERN_ERR "AMD IOMMU: Event logged [");
73
74 switch (type) {
75 case EVENT_TYPE_ILL_DEV:
76 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
77 "address=0x%016llx flags=0x%04x]\n",
78 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
79 address, flags);
80 break;
81 case EVENT_TYPE_IO_FAULT:
82 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
83 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
84 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
85 domid, address, flags);
86 break;
87 case EVENT_TYPE_DEV_TAB_ERR:
88 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
89 "address=0x%016llx flags=0x%04x]\n",
90 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
91 address, flags);
92 break;
93 case EVENT_TYPE_PAGE_TAB_ERR:
94 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
95 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
96 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
97 domid, address, flags);
98 break;
99 case EVENT_TYPE_ILL_CMD:
100 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
101 break;
102 case EVENT_TYPE_CMD_HARD_ERR:
103 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
104 "flags=0x%04x]\n", address, flags);
105 break;
106 case EVENT_TYPE_IOTLB_INV_TO:
107 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
108 "address=0x%016llx]\n",
109 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
110 address);
111 break;
112 case EVENT_TYPE_INV_DEV_REQ:
113 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
114 "address=0x%016llx flags=0x%04x]\n",
115 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
116 address, flags);
117 break;
118 default:
119 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
120 }
121}
122
123static void iommu_poll_events(struct amd_iommu *iommu)
124{
125 u32 head, tail;
126 unsigned long flags;
127
128 spin_lock_irqsave(&iommu->lock, flags);
129
130 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
131 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
132
133 while (head != tail) {
134 iommu_print_event(iommu->evt_buf + head);
135 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
136 }
137
138 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
139
140 spin_unlock_irqrestore(&iommu->lock, flags);
141}
142
a80dc3e0
JR
143irqreturn_t amd_iommu_int_handler(int irq, void *data)
144{
90008ee4
JR
145 struct amd_iommu *iommu;
146
147 list_for_each_entry(iommu, &amd_iommu_list, list)
148 iommu_poll_events(iommu);
149
150 return IRQ_HANDLED;
a80dc3e0
JR
151}
152
431b2a20
JR
153/****************************************************************************
154 *
155 * IOMMU command queuing functions
156 *
157 ****************************************************************************/
158
159/*
160 * Writes the command to the IOMMUs command buffer and informs the
161 * hardware about the new command. Must be called with iommu->lock held.
162 */
d6449536 163static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
164{
165 u32 tail, head;
166 u8 *target;
167
168 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
8a7c5ef3 169 target = iommu->cmd_buf + tail;
a19ae1ec
JR
170 memcpy_toio(target, cmd, sizeof(*cmd));
171 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
172 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
173 if (tail == head)
174 return -ENOMEM;
175 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
176
177 return 0;
178}
179
431b2a20
JR
180/*
181 * General queuing function for commands. Takes iommu->lock and calls
182 * __iommu_queue_command().
183 */
d6449536 184static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
185{
186 unsigned long flags;
187 int ret;
188
189 spin_lock_irqsave(&iommu->lock, flags);
190 ret = __iommu_queue_command(iommu, cmd);
09ee17eb
JR
191 if (!ret)
192 iommu->need_sync = 1;
a19ae1ec
JR
193 spin_unlock_irqrestore(&iommu->lock, flags);
194
195 return ret;
196}
197
8d201968
JR
198/*
199 * This function waits until an IOMMU has completed a completion
200 * wait command
201 */
202static void __iommu_wait_for_completion(struct amd_iommu *iommu)
203{
204 int ready = 0;
205 unsigned status = 0;
206 unsigned long i = 0;
207
208 while (!ready && (i < EXIT_LOOP_COUNT)) {
209 ++i;
210 /* wait for the bit to become one */
211 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
212 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
213 }
214
215 /* set bit back to zero */
216 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
217 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
218
219 if (unlikely(i == EXIT_LOOP_COUNT))
220 panic("AMD IOMMU: Completion wait loop failed\n");
221}
222
223/*
224 * This function queues a completion wait command into the command
225 * buffer of an IOMMU
226 */
227static int __iommu_completion_wait(struct amd_iommu *iommu)
228{
229 struct iommu_cmd cmd;
230
231 memset(&cmd, 0, sizeof(cmd));
232 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
233 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
234
235 return __iommu_queue_command(iommu, &cmd);
236}
237
431b2a20
JR
238/*
239 * This function is called whenever we need to ensure that the IOMMU has
240 * completed execution of all commands we sent. It sends a
241 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
242 * us about that by writing a value to a physical address we pass with
243 * the command.
244 */
a19ae1ec
JR
245static int iommu_completion_wait(struct amd_iommu *iommu)
246{
8d201968
JR
247 int ret = 0;
248 unsigned long flags;
a19ae1ec 249
7e4f88da
JR
250 spin_lock_irqsave(&iommu->lock, flags);
251
09ee17eb
JR
252 if (!iommu->need_sync)
253 goto out;
254
8d201968 255 ret = __iommu_completion_wait(iommu);
09ee17eb 256
8d201968 257 iommu->need_sync = 0;
a19ae1ec
JR
258
259 if (ret)
7e4f88da 260 goto out;
a19ae1ec 261
8d201968 262 __iommu_wait_for_completion(iommu);
84df8175 263
7e4f88da
JR
264out:
265 spin_unlock_irqrestore(&iommu->lock, flags);
a19ae1ec
JR
266
267 return 0;
268}
269
431b2a20
JR
270/*
271 * Command send function for invalidating a device table entry
272 */
a19ae1ec
JR
273static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
274{
d6449536 275 struct iommu_cmd cmd;
ee2fa743 276 int ret;
a19ae1ec
JR
277
278 BUG_ON(iommu == NULL);
279
280 memset(&cmd, 0, sizeof(cmd));
281 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
282 cmd.data[0] = devid;
283
ee2fa743
JR
284 ret = iommu_queue_command(iommu, &cmd);
285
ee2fa743 286 return ret;
a19ae1ec
JR
287}
288
237b6f33
JR
289static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
290 u16 domid, int pde, int s)
291{
292 memset(cmd, 0, sizeof(*cmd));
293 address &= PAGE_MASK;
294 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
295 cmd->data[1] |= domid;
296 cmd->data[2] = lower_32_bits(address);
297 cmd->data[3] = upper_32_bits(address);
298 if (s) /* size bit - we flush more than one 4kb page */
299 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
300 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
301 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
302}
303
431b2a20
JR
304/*
305 * Generic command send function for invalidaing TLB entries
306 */
a19ae1ec
JR
307static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
308 u64 address, u16 domid, int pde, int s)
309{
d6449536 310 struct iommu_cmd cmd;
ee2fa743 311 int ret;
a19ae1ec 312
237b6f33 313 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
a19ae1ec 314
ee2fa743
JR
315 ret = iommu_queue_command(iommu, &cmd);
316
ee2fa743 317 return ret;
a19ae1ec
JR
318}
319
431b2a20
JR
320/*
321 * TLB invalidation function which is called from the mapping functions.
322 * It invalidates a single PTE if the range to flush is within a single
323 * page. Otherwise it flushes the whole TLB of the IOMMU.
324 */
a19ae1ec
JR
325static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
326 u64 address, size_t size)
327{
999ba417 328 int s = 0;
e3c449f5 329 unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
a19ae1ec
JR
330
331 address &= PAGE_MASK;
332
999ba417
JR
333 if (pages > 1) {
334 /*
335 * If we have to flush more than one page, flush all
336 * TLB entries for this domain
337 */
338 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
339 s = 1;
a19ae1ec
JR
340 }
341
999ba417
JR
342 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);
343
a19ae1ec
JR
344 return 0;
345}
b6c02715 346
1c655773
JR
347/* Flush the whole IO/TLB for a given protection domain */
348static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
349{
350 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
351
352 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
353}
354
43f49609
JR
355#ifdef CONFIG_IOMMU_API
356/*
357 * This function is used to flush the IO/TLB for a given protection domain
358 * on every IOMMU in the system
359 */
360static void iommu_flush_domain(u16 domid)
361{
362 unsigned long flags;
363 struct amd_iommu *iommu;
364 struct iommu_cmd cmd;
365
366 __iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
367 domid, 1, 1);
368
369 list_for_each_entry(iommu, &amd_iommu_list, list) {
370 spin_lock_irqsave(&iommu->lock, flags);
371 __iommu_queue_command(iommu, &cmd);
372 __iommu_completion_wait(iommu);
373 __iommu_wait_for_completion(iommu);
374 spin_unlock_irqrestore(&iommu->lock, flags);
375 }
376}
377#endif
378
431b2a20
JR
379/****************************************************************************
380 *
381 * The functions below are used the create the page table mappings for
382 * unity mapped regions.
383 *
384 ****************************************************************************/
385
386/*
387 * Generic mapping functions. It maps a physical address into a DMA
388 * address space. It allocates the page table pages if necessary.
389 * In the future it can be extended to a generic mapping function
390 * supporting all features of AMD IOMMU page tables like level skipping
391 * and full 64 bit address spaces.
392 */
38e817fe
JR
393static int iommu_map_page(struct protection_domain *dom,
394 unsigned long bus_addr,
395 unsigned long phys_addr,
396 int prot)
bd0e5211
JR
397{
398 u64 __pte, *pte, *page;
399
400 bus_addr = PAGE_ALIGN(bus_addr);
bb9d4ff8 401 phys_addr = PAGE_ALIGN(phys_addr);
bd0e5211
JR
402
403 /* only support 512GB address spaces for now */
404 if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
405 return -EINVAL;
406
407 pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];
408
409 if (!IOMMU_PTE_PRESENT(*pte)) {
410 page = (u64 *)get_zeroed_page(GFP_KERNEL);
411 if (!page)
412 return -ENOMEM;
413 *pte = IOMMU_L2_PDE(virt_to_phys(page));
414 }
415
416 pte = IOMMU_PTE_PAGE(*pte);
417 pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
418
419 if (!IOMMU_PTE_PRESENT(*pte)) {
420 page = (u64 *)get_zeroed_page(GFP_KERNEL);
421 if (!page)
422 return -ENOMEM;
423 *pte = IOMMU_L1_PDE(virt_to_phys(page));
424 }
425
426 pte = IOMMU_PTE_PAGE(*pte);
427 pte = &pte[IOMMU_PTE_L0_INDEX(bus_addr)];
428
429 if (IOMMU_PTE_PRESENT(*pte))
430 return -EBUSY;
431
432 __pte = phys_addr | IOMMU_PTE_P;
433 if (prot & IOMMU_PROT_IR)
434 __pte |= IOMMU_PTE_IR;
435 if (prot & IOMMU_PROT_IW)
436 __pte |= IOMMU_PTE_IW;
437
438 *pte = __pte;
439
440 return 0;
441}
442
431b2a20
JR
443/*
444 * This function checks if a specific unity mapping entry is needed for
445 * this specific IOMMU.
446 */
bd0e5211
JR
447static int iommu_for_unity_map(struct amd_iommu *iommu,
448 struct unity_map_entry *entry)
449{
450 u16 bdf, i;
451
452 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
453 bdf = amd_iommu_alias_table[i];
454 if (amd_iommu_rlookup_table[bdf] == iommu)
455 return 1;
456 }
457
458 return 0;
459}
460
431b2a20
JR
461/*
462 * Init the unity mappings for a specific IOMMU in the system
463 *
464 * Basically iterates over all unity mapping entries and applies them to
465 * the default domain DMA of that IOMMU if necessary.
466 */
bd0e5211
JR
467static int iommu_init_unity_mappings(struct amd_iommu *iommu)
468{
469 struct unity_map_entry *entry;
470 int ret;
471
472 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
473 if (!iommu_for_unity_map(iommu, entry))
474 continue;
475 ret = dma_ops_unity_map(iommu->default_dom, entry);
476 if (ret)
477 return ret;
478 }
479
480 return 0;
481}
482
431b2a20
JR
483/*
484 * This function actually applies the mapping to the page table of the
485 * dma_ops domain.
486 */
bd0e5211
JR
487static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
488 struct unity_map_entry *e)
489{
490 u64 addr;
491 int ret;
492
493 for (addr = e->address_start; addr < e->address_end;
494 addr += PAGE_SIZE) {
38e817fe 495 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
bd0e5211
JR
496 if (ret)
497 return ret;
498 /*
499 * if unity mapping is in aperture range mark the page
500 * as allocated in the aperture
501 */
502 if (addr < dma_dom->aperture_size)
503 __set_bit(addr >> PAGE_SHIFT, dma_dom->bitmap);
504 }
505
506 return 0;
507}
508
431b2a20
JR
509/*
510 * Inits the unity mappings required for a specific device
511 */
bd0e5211
JR
512static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
513 u16 devid)
514{
515 struct unity_map_entry *e;
516 int ret;
517
518 list_for_each_entry(e, &amd_iommu_unity_map, list) {
519 if (!(devid >= e->devid_start && devid <= e->devid_end))
520 continue;
521 ret = dma_ops_unity_map(dma_dom, e);
522 if (ret)
523 return ret;
524 }
525
526 return 0;
527}
528
431b2a20
JR
529/****************************************************************************
530 *
531 * The next functions belong to the address allocator for the dma_ops
532 * interface functions. They work like the allocators in the other IOMMU
533 * drivers. Its basically a bitmap which marks the allocated pages in
534 * the aperture. Maybe it could be enhanced in the future to a more
535 * efficient allocator.
536 *
537 ****************************************************************************/
d3086444 538
431b2a20
JR
539/*
540 * The address allocator core function.
541 *
542 * called with domain->lock held
543 */
d3086444
JR
544static unsigned long dma_ops_alloc_addresses(struct device *dev,
545 struct dma_ops_domain *dom,
6d4f343f 546 unsigned int pages,
832a90c3
JR
547 unsigned long align_mask,
548 u64 dma_mask)
d3086444 549{
40becd8d 550 unsigned long limit;
d3086444 551 unsigned long address;
d3086444
JR
552 unsigned long boundary_size;
553
554 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
555 PAGE_SIZE) >> PAGE_SHIFT;
40becd8d
FT
556 limit = iommu_device_max_index(dom->aperture_size >> PAGE_SHIFT, 0,
557 dma_mask >> PAGE_SHIFT);
d3086444 558
1c655773 559 if (dom->next_bit >= limit) {
d3086444 560 dom->next_bit = 0;
1c655773
JR
561 dom->need_flush = true;
562 }
d3086444
JR
563
564 address = iommu_area_alloc(dom->bitmap, limit, dom->next_bit, pages,
6d4f343f 565 0 , boundary_size, align_mask);
1c655773 566 if (address == -1) {
d3086444 567 address = iommu_area_alloc(dom->bitmap, limit, 0, pages,
6d4f343f 568 0, boundary_size, align_mask);
1c655773
JR
569 dom->need_flush = true;
570 }
d3086444
JR
571
572 if (likely(address != -1)) {
d3086444
JR
573 dom->next_bit = address + pages;
574 address <<= PAGE_SHIFT;
575 } else
576 address = bad_dma_address;
577
578 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
579
580 return address;
581}
582
431b2a20
JR
583/*
584 * The address free function.
585 *
586 * called with domain->lock held
587 */
d3086444
JR
588static void dma_ops_free_addresses(struct dma_ops_domain *dom,
589 unsigned long address,
590 unsigned int pages)
591{
592 address >>= PAGE_SHIFT;
593 iommu_area_free(dom->bitmap, address, pages);
80be308d 594
8501c45c 595 if (address >= dom->next_bit)
80be308d 596 dom->need_flush = true;
d3086444
JR
597}
598
431b2a20
JR
599/****************************************************************************
600 *
601 * The next functions belong to the domain allocation. A domain is
602 * allocated for every IOMMU as the default domain. If device isolation
603 * is enabled, every device get its own domain. The most important thing
604 * about domains is the page table mapping the DMA address space they
605 * contain.
606 *
607 ****************************************************************************/
608
ec487d1a
JR
609static u16 domain_id_alloc(void)
610{
611 unsigned long flags;
612 int id;
613
614 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
615 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
616 BUG_ON(id == 0);
617 if (id > 0 && id < MAX_DOMAIN_ID)
618 __set_bit(id, amd_iommu_pd_alloc_bitmap);
619 else
620 id = 0;
621 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
622
623 return id;
624}
625
a2acfb75
JR
626#ifdef CONFIG_IOMMU_API
627static void domain_id_free(int id)
628{
629 unsigned long flags;
630
631 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
632 if (id > 0 && id < MAX_DOMAIN_ID)
633 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
634 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
635}
636#endif
637
431b2a20
JR
638/*
639 * Used to reserve address ranges in the aperture (e.g. for exclusion
640 * ranges.
641 */
ec487d1a
JR
642static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
643 unsigned long start_page,
644 unsigned int pages)
645{
646 unsigned int last_page = dom->aperture_size >> PAGE_SHIFT;
647
648 if (start_page + pages > last_page)
649 pages = last_page - start_page;
650
d26dbc5c 651 iommu_area_reserve(dom->bitmap, start_page, pages);
ec487d1a
JR
652}
653
86db2e5d 654static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
655{
656 int i, j;
657 u64 *p1, *p2, *p3;
658
86db2e5d 659 p1 = domain->pt_root;
ec487d1a
JR
660
661 if (!p1)
662 return;
663
664 for (i = 0; i < 512; ++i) {
665 if (!IOMMU_PTE_PRESENT(p1[i]))
666 continue;
667
668 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 669 for (j = 0; j < 512; ++j) {
ec487d1a
JR
670 if (!IOMMU_PTE_PRESENT(p2[j]))
671 continue;
672 p3 = IOMMU_PTE_PAGE(p2[j]);
673 free_page((unsigned long)p3);
674 }
675
676 free_page((unsigned long)p2);
677 }
678
679 free_page((unsigned long)p1);
86db2e5d
JR
680
681 domain->pt_root = NULL;
ec487d1a
JR
682}
683
431b2a20
JR
684/*
685 * Free a domain, only used if something went wrong in the
686 * allocation path and we need to free an already allocated page table
687 */
ec487d1a
JR
688static void dma_ops_domain_free(struct dma_ops_domain *dom)
689{
690 if (!dom)
691 return;
692
86db2e5d 693 free_pagetable(&dom->domain);
ec487d1a
JR
694
695 kfree(dom->pte_pages);
696
697 kfree(dom->bitmap);
698
699 kfree(dom);
700}
701
431b2a20
JR
702/*
703 * Allocates a new protection domain usable for the dma_ops functions.
704 * It also intializes the page table and the address allocator data
705 * structures required for the dma_ops interface
706 */
ec487d1a
JR
707static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
708 unsigned order)
709{
710 struct dma_ops_domain *dma_dom;
711 unsigned i, num_pte_pages;
712 u64 *l2_pde;
713 u64 address;
714
715 /*
716 * Currently the DMA aperture must be between 32 MB and 1GB in size
717 */
718 if ((order < 25) || (order > 30))
719 return NULL;
720
721 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
722 if (!dma_dom)
723 return NULL;
724
725 spin_lock_init(&dma_dom->domain.lock);
726
727 dma_dom->domain.id = domain_id_alloc();
728 if (dma_dom->domain.id == 0)
729 goto free_dma_dom;
730 dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
731 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 732 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
733 dma_dom->domain.priv = dma_dom;
734 if (!dma_dom->domain.pt_root)
735 goto free_dma_dom;
736 dma_dom->aperture_size = (1ULL << order);
737 dma_dom->bitmap = kzalloc(dma_dom->aperture_size / (PAGE_SIZE * 8),
738 GFP_KERNEL);
739 if (!dma_dom->bitmap)
740 goto free_dma_dom;
741 /*
742 * mark the first page as allocated so we never return 0 as
743 * a valid dma-address. So we can use 0 as error value
744 */
745 dma_dom->bitmap[0] = 1;
746 dma_dom->next_bit = 0;
747
1c655773 748 dma_dom->need_flush = false;
bd60b735 749 dma_dom->target_dev = 0xffff;
1c655773 750
431b2a20 751 /* Intialize the exclusion range if necessary */
ec487d1a
JR
752 if (iommu->exclusion_start &&
753 iommu->exclusion_start < dma_dom->aperture_size) {
754 unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
e3c449f5
JR
755 int pages = iommu_num_pages(iommu->exclusion_start,
756 iommu->exclusion_length,
757 PAGE_SIZE);
ec487d1a
JR
758 dma_ops_reserve_addresses(dma_dom, startpage, pages);
759 }
760
431b2a20
JR
761 /*
762 * At the last step, build the page tables so we don't need to
763 * allocate page table pages in the dma_ops mapping/unmapping
764 * path.
765 */
ec487d1a
JR
766 num_pte_pages = dma_dom->aperture_size / (PAGE_SIZE * 512);
767 dma_dom->pte_pages = kzalloc(num_pte_pages * sizeof(void *),
768 GFP_KERNEL);
769 if (!dma_dom->pte_pages)
770 goto free_dma_dom;
771
772 l2_pde = (u64 *)get_zeroed_page(GFP_KERNEL);
773 if (l2_pde == NULL)
774 goto free_dma_dom;
775
776 dma_dom->domain.pt_root[0] = IOMMU_L2_PDE(virt_to_phys(l2_pde));
777
778 for (i = 0; i < num_pte_pages; ++i) {
779 dma_dom->pte_pages[i] = (u64 *)get_zeroed_page(GFP_KERNEL);
780 if (!dma_dom->pte_pages[i])
781 goto free_dma_dom;
782 address = virt_to_phys(dma_dom->pte_pages[i]);
783 l2_pde[i] = IOMMU_L1_PDE(address);
784 }
785
786 return dma_dom;
787
788free_dma_dom:
789 dma_ops_domain_free(dma_dom);
790
791 return NULL;
792}
793
5b28df6f
JR
794/*
795 * little helper function to check whether a given protection domain is a
796 * dma_ops domain
797 */
798static bool dma_ops_domain(struct protection_domain *domain)
799{
800 return domain->flags & PD_DMA_OPS_MASK;
801}
802
431b2a20
JR
803/*
804 * Find out the protection domain structure for a given PCI device. This
805 * will give us the pointer to the page table root for example.
806 */
b20ac0d4
JR
807static struct protection_domain *domain_for_device(u16 devid)
808{
809 struct protection_domain *dom;
810 unsigned long flags;
811
812 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
813 dom = amd_iommu_pd_table[devid];
814 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
815
816 return dom;
817}
818
431b2a20
JR
819/*
820 * If a device is not yet associated with a domain, this function does
821 * assigns it visible for the hardware
822 */
b20ac0d4
JR
823static void set_device_domain(struct amd_iommu *iommu,
824 struct protection_domain *domain,
825 u16 devid)
826{
827 unsigned long flags;
b20ac0d4
JR
828 u64 pte_root = virt_to_phys(domain->pt_root);
829
863c74eb
JR
830 domain->dev_cnt += 1;
831
38ddf41b
JR
832 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
833 << DEV_ENTRY_MODE_SHIFT;
834 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4
JR
835
836 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
38ddf41b
JR
837 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
838 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
b20ac0d4
JR
839 amd_iommu_dev_table[devid].data[2] = domain->id;
840
841 amd_iommu_pd_table[devid] = domain;
842 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
843
844 iommu_queue_inv_dev_entry(iommu, devid);
b20ac0d4
JR
845}
846
431b2a20
JR
847/*****************************************************************************
848 *
849 * The next functions belong to the dma_ops mapping/unmapping code.
850 *
851 *****************************************************************************/
852
dbcc112e
JR
853/*
854 * This function checks if the driver got a valid device from the caller to
855 * avoid dereferencing invalid pointers.
856 */
857static bool check_device(struct device *dev)
858{
859 if (!dev || !dev->dma_mask)
860 return false;
861
862 return true;
863}
864
bd60b735
JR
865/*
866 * In this function the list of preallocated protection domains is traversed to
867 * find the domain for a specific device
868 */
869static struct dma_ops_domain *find_protection_domain(u16 devid)
870{
871 struct dma_ops_domain *entry, *ret = NULL;
872 unsigned long flags;
873
874 if (list_empty(&iommu_pd_list))
875 return NULL;
876
877 spin_lock_irqsave(&iommu_pd_list_lock, flags);
878
879 list_for_each_entry(entry, &iommu_pd_list, list) {
880 if (entry->target_dev == devid) {
881 ret = entry;
bd60b735
JR
882 break;
883 }
884 }
885
886 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
887
888 return ret;
889}
890
431b2a20
JR
891/*
892 * In the dma_ops path we only have the struct device. This function
893 * finds the corresponding IOMMU, the protection domain and the
894 * requestor id for a given device.
895 * If the device is not yet associated with a domain this is also done
896 * in this function.
897 */
b20ac0d4
JR
898static int get_device_resources(struct device *dev,
899 struct amd_iommu **iommu,
900 struct protection_domain **domain,
901 u16 *bdf)
902{
903 struct dma_ops_domain *dma_dom;
904 struct pci_dev *pcidev;
905 u16 _bdf;
906
dbcc112e
JR
907 *iommu = NULL;
908 *domain = NULL;
909 *bdf = 0xffff;
910
911 if (dev->bus != &pci_bus_type)
912 return 0;
b20ac0d4
JR
913
914 pcidev = to_pci_dev(dev);
d591b0a3 915 _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
b20ac0d4 916
431b2a20 917 /* device not translated by any IOMMU in the system? */
dbcc112e 918 if (_bdf > amd_iommu_last_bdf)
b20ac0d4 919 return 0;
b20ac0d4
JR
920
921 *bdf = amd_iommu_alias_table[_bdf];
922
923 *iommu = amd_iommu_rlookup_table[*bdf];
924 if (*iommu == NULL)
925 return 0;
b20ac0d4
JR
926 *domain = domain_for_device(*bdf);
927 if (*domain == NULL) {
bd60b735
JR
928 dma_dom = find_protection_domain(*bdf);
929 if (!dma_dom)
930 dma_dom = (*iommu)->default_dom;
b20ac0d4
JR
931 *domain = &dma_dom->domain;
932 set_device_domain(*iommu, *domain, *bdf);
933 printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
934 "device ", (*domain)->id);
935 print_devid(_bdf, 1);
936 }
937
f91ba190
JR
938 if (domain_for_device(_bdf) == NULL)
939 set_device_domain(*iommu, *domain, _bdf);
940
b20ac0d4
JR
941 return 1;
942}
943
431b2a20
JR
944/*
945 * This is the generic map function. It maps one 4kb page at paddr to
946 * the given address in the DMA address space for the domain.
947 */
cb76c322
JR
948static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
949 struct dma_ops_domain *dom,
950 unsigned long address,
951 phys_addr_t paddr,
952 int direction)
953{
954 u64 *pte, __pte;
955
956 WARN_ON(address > dom->aperture_size);
957
958 paddr &= PAGE_MASK;
959
960 pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
961 pte += IOMMU_PTE_L0_INDEX(address);
962
963 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
964
965 if (direction == DMA_TO_DEVICE)
966 __pte |= IOMMU_PTE_IR;
967 else if (direction == DMA_FROM_DEVICE)
968 __pte |= IOMMU_PTE_IW;
969 else if (direction == DMA_BIDIRECTIONAL)
970 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
971
972 WARN_ON(*pte);
973
974 *pte = __pte;
975
976 return (dma_addr_t)address;
977}
978
431b2a20
JR
979/*
980 * The generic unmapping function for on page in the DMA address space.
981 */
cb76c322
JR
982static void dma_ops_domain_unmap(struct amd_iommu *iommu,
983 struct dma_ops_domain *dom,
984 unsigned long address)
985{
986 u64 *pte;
987
988 if (address >= dom->aperture_size)
989 return;
990
8ad909c4 991 WARN_ON(address & ~PAGE_MASK || address >= dom->aperture_size);
cb76c322
JR
992
993 pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
994 pte += IOMMU_PTE_L0_INDEX(address);
995
996 WARN_ON(!*pte);
997
998 *pte = 0ULL;
999}
1000
431b2a20
JR
1001/*
1002 * This function contains common code for mapping of a physically
24f81160
JR
1003 * contiguous memory region into DMA address space. It is used by all
1004 * mapping functions provided with this IOMMU driver.
431b2a20
JR
1005 * Must be called with the domain lock held.
1006 */
cb76c322
JR
1007static dma_addr_t __map_single(struct device *dev,
1008 struct amd_iommu *iommu,
1009 struct dma_ops_domain *dma_dom,
1010 phys_addr_t paddr,
1011 size_t size,
6d4f343f 1012 int dir,
832a90c3
JR
1013 bool align,
1014 u64 dma_mask)
cb76c322
JR
1015{
1016 dma_addr_t offset = paddr & ~PAGE_MASK;
1017 dma_addr_t address, start;
1018 unsigned int pages;
6d4f343f 1019 unsigned long align_mask = 0;
cb76c322
JR
1020 int i;
1021
e3c449f5 1022 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
1023 paddr &= PAGE_MASK;
1024
6d4f343f
JR
1025 if (align)
1026 align_mask = (1UL << get_order(size)) - 1;
1027
832a90c3
JR
1028 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1029 dma_mask);
cb76c322
JR
1030 if (unlikely(address == bad_dma_address))
1031 goto out;
1032
1033 start = address;
1034 for (i = 0; i < pages; ++i) {
1035 dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
1036 paddr += PAGE_SIZE;
1037 start += PAGE_SIZE;
1038 }
1039 address += offset;
1040
afa9fdc2 1041 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1c655773
JR
1042 iommu_flush_tlb(iommu, dma_dom->domain.id);
1043 dma_dom->need_flush = false;
1044 } else if (unlikely(iommu_has_npcache(iommu)))
270cab24
JR
1045 iommu_flush_pages(iommu, dma_dom->domain.id, address, size);
1046
cb76c322
JR
1047out:
1048 return address;
1049}
1050
431b2a20
JR
1051/*
1052 * Does the reverse of the __map_single function. Must be called with
1053 * the domain lock held too
1054 */
cb76c322
JR
1055static void __unmap_single(struct amd_iommu *iommu,
1056 struct dma_ops_domain *dma_dom,
1057 dma_addr_t dma_addr,
1058 size_t size,
1059 int dir)
1060{
1061 dma_addr_t i, start;
1062 unsigned int pages;
1063
b8d9905d
JR
1064 if ((dma_addr == bad_dma_address) ||
1065 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
1066 return;
1067
e3c449f5 1068 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
1069 dma_addr &= PAGE_MASK;
1070 start = dma_addr;
1071
1072 for (i = 0; i < pages; ++i) {
1073 dma_ops_domain_unmap(iommu, dma_dom, start);
1074 start += PAGE_SIZE;
1075 }
1076
1077 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 1078
80be308d 1079 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1c655773 1080 iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
80be308d
JR
1081 dma_dom->need_flush = false;
1082 }
cb76c322
JR
1083}
1084
431b2a20
JR
1085/*
1086 * The exported map_single function for dma_ops.
1087 */
4da70b9e
JR
1088static dma_addr_t map_single(struct device *dev, phys_addr_t paddr,
1089 size_t size, int dir)
1090{
1091 unsigned long flags;
1092 struct amd_iommu *iommu;
1093 struct protection_domain *domain;
1094 u16 devid;
1095 dma_addr_t addr;
832a90c3 1096 u64 dma_mask;
4da70b9e 1097
dbcc112e
JR
1098 if (!check_device(dev))
1099 return bad_dma_address;
1100
832a90c3 1101 dma_mask = *dev->dma_mask;
4da70b9e
JR
1102
1103 get_device_resources(dev, &iommu, &domain, &devid);
1104
1105 if (iommu == NULL || domain == NULL)
431b2a20 1106 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1107 return (dma_addr_t)paddr;
1108
5b28df6f
JR
1109 if (!dma_ops_domain(domain))
1110 return bad_dma_address;
1111
4da70b9e 1112 spin_lock_irqsave(&domain->lock, flags);
832a90c3
JR
1113 addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
1114 dma_mask);
4da70b9e
JR
1115 if (addr == bad_dma_address)
1116 goto out;
1117
09ee17eb 1118 iommu_completion_wait(iommu);
4da70b9e
JR
1119
1120out:
1121 spin_unlock_irqrestore(&domain->lock, flags);
1122
1123 return addr;
1124}
1125
431b2a20
JR
1126/*
1127 * The exported unmap_single function for dma_ops.
1128 */
4da70b9e
JR
1129static void unmap_single(struct device *dev, dma_addr_t dma_addr,
1130 size_t size, int dir)
1131{
1132 unsigned long flags;
1133 struct amd_iommu *iommu;
1134 struct protection_domain *domain;
1135 u16 devid;
1136
dbcc112e
JR
1137 if (!check_device(dev) ||
1138 !get_device_resources(dev, &iommu, &domain, &devid))
431b2a20 1139 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1140 return;
1141
5b28df6f
JR
1142 if (!dma_ops_domain(domain))
1143 return;
1144
4da70b9e
JR
1145 spin_lock_irqsave(&domain->lock, flags);
1146
1147 __unmap_single(iommu, domain->priv, dma_addr, size, dir);
1148
09ee17eb 1149 iommu_completion_wait(iommu);
4da70b9e
JR
1150
1151 spin_unlock_irqrestore(&domain->lock, flags);
1152}
1153
431b2a20
JR
1154/*
1155 * This is a special map_sg function which is used if we should map a
1156 * device which is not handled by an AMD IOMMU in the system.
1157 */
65b050ad
JR
1158static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1159 int nelems, int dir)
1160{
1161 struct scatterlist *s;
1162 int i;
1163
1164 for_each_sg(sglist, s, nelems, i) {
1165 s->dma_address = (dma_addr_t)sg_phys(s);
1166 s->dma_length = s->length;
1167 }
1168
1169 return nelems;
1170}
1171
431b2a20
JR
1172/*
1173 * The exported map_sg function for dma_ops (handles scatter-gather
1174 * lists).
1175 */
65b050ad
JR
1176static int map_sg(struct device *dev, struct scatterlist *sglist,
1177 int nelems, int dir)
1178{
1179 unsigned long flags;
1180 struct amd_iommu *iommu;
1181 struct protection_domain *domain;
1182 u16 devid;
1183 int i;
1184 struct scatterlist *s;
1185 phys_addr_t paddr;
1186 int mapped_elems = 0;
832a90c3 1187 u64 dma_mask;
65b050ad 1188
dbcc112e
JR
1189 if (!check_device(dev))
1190 return 0;
1191
832a90c3 1192 dma_mask = *dev->dma_mask;
65b050ad
JR
1193
1194 get_device_resources(dev, &iommu, &domain, &devid);
1195
1196 if (!iommu || !domain)
1197 return map_sg_no_iommu(dev, sglist, nelems, dir);
1198
5b28df6f
JR
1199 if (!dma_ops_domain(domain))
1200 return 0;
1201
65b050ad
JR
1202 spin_lock_irqsave(&domain->lock, flags);
1203
1204 for_each_sg(sglist, s, nelems, i) {
1205 paddr = sg_phys(s);
1206
1207 s->dma_address = __map_single(dev, iommu, domain->priv,
832a90c3
JR
1208 paddr, s->length, dir, false,
1209 dma_mask);
65b050ad
JR
1210
1211 if (s->dma_address) {
1212 s->dma_length = s->length;
1213 mapped_elems++;
1214 } else
1215 goto unmap;
65b050ad
JR
1216 }
1217
09ee17eb 1218 iommu_completion_wait(iommu);
65b050ad
JR
1219
1220out:
1221 spin_unlock_irqrestore(&domain->lock, flags);
1222
1223 return mapped_elems;
1224unmap:
1225 for_each_sg(sglist, s, mapped_elems, i) {
1226 if (s->dma_address)
1227 __unmap_single(iommu, domain->priv, s->dma_address,
1228 s->dma_length, dir);
1229 s->dma_address = s->dma_length = 0;
1230 }
1231
1232 mapped_elems = 0;
1233
1234 goto out;
1235}
1236
431b2a20
JR
1237/*
1238 * The exported map_sg function for dma_ops (handles scatter-gather
1239 * lists).
1240 */
65b050ad
JR
1241static void unmap_sg(struct device *dev, struct scatterlist *sglist,
1242 int nelems, int dir)
1243{
1244 unsigned long flags;
1245 struct amd_iommu *iommu;
1246 struct protection_domain *domain;
1247 struct scatterlist *s;
1248 u16 devid;
1249 int i;
1250
dbcc112e
JR
1251 if (!check_device(dev) ||
1252 !get_device_resources(dev, &iommu, &domain, &devid))
65b050ad
JR
1253 return;
1254
5b28df6f
JR
1255 if (!dma_ops_domain(domain))
1256 return;
1257
65b050ad
JR
1258 spin_lock_irqsave(&domain->lock, flags);
1259
1260 for_each_sg(sglist, s, nelems, i) {
1261 __unmap_single(iommu, domain->priv, s->dma_address,
1262 s->dma_length, dir);
65b050ad
JR
1263 s->dma_address = s->dma_length = 0;
1264 }
1265
09ee17eb 1266 iommu_completion_wait(iommu);
65b050ad
JR
1267
1268 spin_unlock_irqrestore(&domain->lock, flags);
1269}
1270
431b2a20
JR
1271/*
1272 * The exported alloc_coherent function for dma_ops.
1273 */
5d8b53cf
JR
1274static void *alloc_coherent(struct device *dev, size_t size,
1275 dma_addr_t *dma_addr, gfp_t flag)
1276{
1277 unsigned long flags;
1278 void *virt_addr;
1279 struct amd_iommu *iommu;
1280 struct protection_domain *domain;
1281 u16 devid;
1282 phys_addr_t paddr;
832a90c3 1283 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 1284
dbcc112e
JR
1285 if (!check_device(dev))
1286 return NULL;
5d8b53cf 1287
13d9fead
FT
1288 if (!get_device_resources(dev, &iommu, &domain, &devid))
1289 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
5d8b53cf 1290
c97ac535 1291 flag |= __GFP_ZERO;
5d8b53cf
JR
1292 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1293 if (!virt_addr)
1294 return 0;
1295
5d8b53cf
JR
1296 paddr = virt_to_phys(virt_addr);
1297
5d8b53cf
JR
1298 if (!iommu || !domain) {
1299 *dma_addr = (dma_addr_t)paddr;
1300 return virt_addr;
1301 }
1302
5b28df6f
JR
1303 if (!dma_ops_domain(domain))
1304 goto out_free;
1305
832a90c3
JR
1306 if (!dma_mask)
1307 dma_mask = *dev->dma_mask;
1308
5d8b53cf
JR
1309 spin_lock_irqsave(&domain->lock, flags);
1310
1311 *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
832a90c3 1312 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 1313
5b28df6f
JR
1314 if (*dma_addr == bad_dma_address)
1315 goto out_free;
5d8b53cf 1316
09ee17eb 1317 iommu_completion_wait(iommu);
5d8b53cf 1318
5d8b53cf
JR
1319 spin_unlock_irqrestore(&domain->lock, flags);
1320
1321 return virt_addr;
5b28df6f
JR
1322
1323out_free:
1324
1325 free_pages((unsigned long)virt_addr, get_order(size));
1326
1327 return NULL;
5d8b53cf
JR
1328}
1329
431b2a20
JR
1330/*
1331 * The exported free_coherent function for dma_ops.
431b2a20 1332 */
5d8b53cf
JR
1333static void free_coherent(struct device *dev, size_t size,
1334 void *virt_addr, dma_addr_t dma_addr)
1335{
1336 unsigned long flags;
1337 struct amd_iommu *iommu;
1338 struct protection_domain *domain;
1339 u16 devid;
1340
dbcc112e
JR
1341 if (!check_device(dev))
1342 return;
1343
5d8b53cf
JR
1344 get_device_resources(dev, &iommu, &domain, &devid);
1345
1346 if (!iommu || !domain)
1347 goto free_mem;
1348
5b28df6f
JR
1349 if (!dma_ops_domain(domain))
1350 goto free_mem;
1351
5d8b53cf
JR
1352 spin_lock_irqsave(&domain->lock, flags);
1353
1354 __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 1355
09ee17eb 1356 iommu_completion_wait(iommu);
5d8b53cf
JR
1357
1358 spin_unlock_irqrestore(&domain->lock, flags);
1359
1360free_mem:
1361 free_pages((unsigned long)virt_addr, get_order(size));
1362}
1363
b39ba6ad
JR
1364/*
1365 * This function is called by the DMA layer to find out if we can handle a
1366 * particular device. It is part of the dma_ops.
1367 */
1368static int amd_iommu_dma_supported(struct device *dev, u64 mask)
1369{
1370 u16 bdf;
1371 struct pci_dev *pcidev;
1372
1373 /* No device or no PCI device */
1374 if (!dev || dev->bus != &pci_bus_type)
1375 return 0;
1376
1377 pcidev = to_pci_dev(dev);
1378
1379 bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1380
1381 /* Out of our scope? */
1382 if (bdf > amd_iommu_last_bdf)
1383 return 0;
1384
1385 return 1;
1386}
1387
c432f3df 1388/*
431b2a20
JR
1389 * The function for pre-allocating protection domains.
1390 *
c432f3df
JR
1391 * If the driver core informs the DMA layer if a driver grabs a device
1392 * we don't need to preallocate the protection domains anymore.
1393 * For now we have to.
1394 */
1395void prealloc_protection_domains(void)
1396{
1397 struct pci_dev *dev = NULL;
1398 struct dma_ops_domain *dma_dom;
1399 struct amd_iommu *iommu;
1400 int order = amd_iommu_aperture_order;
1401 u16 devid;
1402
1403 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1404 devid = (dev->bus->number << 8) | dev->devfn;
3a61ec38 1405 if (devid > amd_iommu_last_bdf)
c432f3df
JR
1406 continue;
1407 devid = amd_iommu_alias_table[devid];
1408 if (domain_for_device(devid))
1409 continue;
1410 iommu = amd_iommu_rlookup_table[devid];
1411 if (!iommu)
1412 continue;
1413 dma_dom = dma_ops_domain_alloc(iommu, order);
1414 if (!dma_dom)
1415 continue;
1416 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
1417 dma_dom->target_dev = devid;
1418
1419 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
1420 }
1421}
1422
6631ee9d
JR
1423static struct dma_mapping_ops amd_iommu_dma_ops = {
1424 .alloc_coherent = alloc_coherent,
1425 .free_coherent = free_coherent,
1426 .map_single = map_single,
1427 .unmap_single = unmap_single,
1428 .map_sg = map_sg,
1429 .unmap_sg = unmap_sg,
b39ba6ad 1430 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
1431};
1432
431b2a20
JR
1433/*
1434 * The function which clues the AMD IOMMU driver into dma_ops.
1435 */
6631ee9d
JR
1436int __init amd_iommu_init_dma_ops(void)
1437{
1438 struct amd_iommu *iommu;
1439 int order = amd_iommu_aperture_order;
1440 int ret;
1441
431b2a20
JR
1442 /*
1443 * first allocate a default protection domain for every IOMMU we
1444 * found in the system. Devices not assigned to any other
1445 * protection domain will be assigned to the default one.
1446 */
6631ee9d
JR
1447 list_for_each_entry(iommu, &amd_iommu_list, list) {
1448 iommu->default_dom = dma_ops_domain_alloc(iommu, order);
1449 if (iommu->default_dom == NULL)
1450 return -ENOMEM;
1451 ret = iommu_init_unity_mappings(iommu);
1452 if (ret)
1453 goto free_domains;
1454 }
1455
431b2a20
JR
1456 /*
1457 * If device isolation is enabled, pre-allocate the protection
1458 * domains for each device.
1459 */
6631ee9d
JR
1460 if (amd_iommu_isolate)
1461 prealloc_protection_domains();
1462
1463 iommu_detected = 1;
1464 force_iommu = 1;
1465 bad_dma_address = 0;
92af4e29 1466#ifdef CONFIG_GART_IOMMU
6631ee9d
JR
1467 gart_iommu_aperture_disabled = 1;
1468 gart_iommu_aperture = 0;
92af4e29 1469#endif
6631ee9d 1470
431b2a20 1471 /* Make the driver finally visible to the drivers */
6631ee9d
JR
1472 dma_ops = &amd_iommu_dma_ops;
1473
1474 return 0;
1475
1476free_domains:
1477
1478 list_for_each_entry(iommu, &amd_iommu_list, list) {
1479 if (iommu->default_dom)
1480 dma_ops_domain_free(iommu->default_dom);
1481 }
1482
1483 return ret;
1484}
This page took 0.230938 seconds and 5 git commands to generate.