x86/amd-iommu: Implement protection domain list
[deliverable/linux.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715 1/*
bf3118c1 2 * Copyright (C) 2007-2009 Advanced Micro Devices, Inc.
b6c02715
JR
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/gfp.h>
22#include <linux/bitops.h>
7f26508b 23#include <linux/debugfs.h>
b6c02715 24#include <linux/scatterlist.h>
51491367 25#include <linux/dma-mapping.h>
b6c02715 26#include <linux/iommu-helper.h>
c156e347 27#include <linux/iommu.h>
b6c02715 28#include <asm/proto.h>
46a7fa27 29#include <asm/iommu.h>
1d9b16d1 30#include <asm/gart.h>
6a9401a7 31#include <asm/amd_iommu_proto.h>
b6c02715 32#include <asm/amd_iommu_types.h>
c6da992e 33#include <asm/amd_iommu.h>
b6c02715
JR
34
35#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
36
136f78a1
JR
37#define EXIT_LOOP_COUNT 10000000
38
b6c02715
JR
39static DEFINE_RWLOCK(amd_iommu_devtable_lock);
40
bd60b735
JR
41/* A list of preallocated protection domains */
42static LIST_HEAD(iommu_pd_list);
43static DEFINE_SPINLOCK(iommu_pd_list_lock);
44
0feae533
JR
45/*
46 * Domain for untranslated devices - only allocated
47 * if iommu=pt passed on kernel cmd line.
48 */
49static struct protection_domain *pt_domain;
50
26961efe 51static struct iommu_ops amd_iommu_ops;
26961efe 52
431b2a20
JR
53/*
54 * general struct to manage commands send to an IOMMU
55 */
d6449536 56struct iommu_cmd {
b6c02715
JR
57 u32 data[4];
58};
59
bd0e5211
JR
60static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
61 struct unity_map_entry *e);
e275a2a0 62static struct dma_ops_domain *find_protection_domain(u16 devid);
8bc3e127 63static u64 *alloc_pte(struct protection_domain *domain,
abdc5eb3
JR
64 unsigned long address, int end_lvl,
65 u64 **pte_page, gfp_t gfp);
00cd122a
JR
66static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
67 unsigned long start_page,
68 unsigned int pages);
a345b23b 69static void reset_iommu_command_buffer(struct amd_iommu *iommu);
9355a081 70static u64 *fetch_pte(struct protection_domain *domain,
a6b256b4 71 unsigned long address, int map_size);
04bfdd84 72static void update_domain(struct protection_domain *domain);
c1eee67b 73
7f26508b
JR
74#ifdef CONFIG_AMD_IOMMU_STATS
75
76/*
77 * Initialization code for statistics collection
78 */
79
da49f6df 80DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 81DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 82DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 83DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 84DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 85DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 86DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 87DECLARE_STATS_COUNTER(cross_page);
f57d98ae 88DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 89DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 90DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 91DECLARE_STATS_COUNTER(total_map_requests);
da49f6df 92
7f26508b
JR
93static struct dentry *stats_dir;
94static struct dentry *de_isolate;
95static struct dentry *de_fflush;
96
97static void amd_iommu_stats_add(struct __iommu_counter *cnt)
98{
99 if (stats_dir == NULL)
100 return;
101
102 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
103 &cnt->value);
104}
105
106static void amd_iommu_stats_init(void)
107{
108 stats_dir = debugfs_create_dir("amd-iommu", NULL);
109 if (stats_dir == NULL)
110 return;
111
112 de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
113 (u32 *)&amd_iommu_isolate);
114
115 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
116 (u32 *)&amd_iommu_unmap_flush);
da49f6df
JR
117
118 amd_iommu_stats_add(&compl_wait);
0f2a86f2 119 amd_iommu_stats_add(&cnt_map_single);
146a6917 120 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 121 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 122 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 123 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 124 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 125 amd_iommu_stats_add(&cross_page);
f57d98ae 126 amd_iommu_stats_add(&domain_flush_single);
18811f55 127 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 128 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 129 amd_iommu_stats_add(&total_map_requests);
7f26508b
JR
130}
131
132#endif
133
431b2a20 134/* returns !0 if the IOMMU is caching non-present entries in its TLB */
4da70b9e
JR
135static int iommu_has_npcache(struct amd_iommu *iommu)
136{
ae9b9403 137 return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
4da70b9e
JR
138}
139
a80dc3e0
JR
140/****************************************************************************
141 *
142 * Interrupt handling functions
143 *
144 ****************************************************************************/
145
e3e59876
JR
146static void dump_dte_entry(u16 devid)
147{
148 int i;
149
150 for (i = 0; i < 8; ++i)
151 pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
152 amd_iommu_dev_table[devid].data[i]);
153}
154
945b4ac4
JR
155static void dump_command(unsigned long phys_addr)
156{
157 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
158 int i;
159
160 for (i = 0; i < 4; ++i)
161 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
162}
163
a345b23b 164static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4
JR
165{
166 u32 *event = __evt;
167 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
168 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
169 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
170 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
171 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
172
4c6f40d4 173 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
174
175 switch (type) {
176 case EVENT_TYPE_ILL_DEV:
177 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
178 "address=0x%016llx flags=0x%04x]\n",
179 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
180 address, flags);
e3e59876 181 dump_dte_entry(devid);
90008ee4
JR
182 break;
183 case EVENT_TYPE_IO_FAULT:
184 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
185 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
186 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
187 domid, address, flags);
188 break;
189 case EVENT_TYPE_DEV_TAB_ERR:
190 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
191 "address=0x%016llx flags=0x%04x]\n",
192 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
193 address, flags);
194 break;
195 case EVENT_TYPE_PAGE_TAB_ERR:
196 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
197 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
198 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
199 domid, address, flags);
200 break;
201 case EVENT_TYPE_ILL_CMD:
202 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
a345b23b 203 reset_iommu_command_buffer(iommu);
945b4ac4 204 dump_command(address);
90008ee4
JR
205 break;
206 case EVENT_TYPE_CMD_HARD_ERR:
207 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
208 "flags=0x%04x]\n", address, flags);
209 break;
210 case EVENT_TYPE_IOTLB_INV_TO:
211 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
212 "address=0x%016llx]\n",
213 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
214 address);
215 break;
216 case EVENT_TYPE_INV_DEV_REQ:
217 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
218 "address=0x%016llx flags=0x%04x]\n",
219 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
220 address, flags);
221 break;
222 default:
223 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
224 }
225}
226
227static void iommu_poll_events(struct amd_iommu *iommu)
228{
229 u32 head, tail;
230 unsigned long flags;
231
232 spin_lock_irqsave(&iommu->lock, flags);
233
234 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
235 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
236
237 while (head != tail) {
a345b23b 238 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
239 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
240 }
241
242 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
243
244 spin_unlock_irqrestore(&iommu->lock, flags);
245}
246
a80dc3e0
JR
247irqreturn_t amd_iommu_int_handler(int irq, void *data)
248{
90008ee4
JR
249 struct amd_iommu *iommu;
250
3bd22172 251 for_each_iommu(iommu)
90008ee4
JR
252 iommu_poll_events(iommu);
253
254 return IRQ_HANDLED;
a80dc3e0
JR
255}
256
431b2a20
JR
257/****************************************************************************
258 *
259 * IOMMU command queuing functions
260 *
261 ****************************************************************************/
262
263/*
264 * Writes the command to the IOMMUs command buffer and informs the
265 * hardware about the new command. Must be called with iommu->lock held.
266 */
d6449536 267static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
268{
269 u32 tail, head;
270 u8 *target;
271
272 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
8a7c5ef3 273 target = iommu->cmd_buf + tail;
a19ae1ec
JR
274 memcpy_toio(target, cmd, sizeof(*cmd));
275 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
276 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
277 if (tail == head)
278 return -ENOMEM;
279 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
280
281 return 0;
282}
283
431b2a20
JR
284/*
285 * General queuing function for commands. Takes iommu->lock and calls
286 * __iommu_queue_command().
287 */
d6449536 288static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
289{
290 unsigned long flags;
291 int ret;
292
293 spin_lock_irqsave(&iommu->lock, flags);
294 ret = __iommu_queue_command(iommu, cmd);
09ee17eb 295 if (!ret)
0cfd7aa9 296 iommu->need_sync = true;
a19ae1ec
JR
297 spin_unlock_irqrestore(&iommu->lock, flags);
298
299 return ret;
300}
301
8d201968
JR
302/*
303 * This function waits until an IOMMU has completed a completion
304 * wait command
305 */
306static void __iommu_wait_for_completion(struct amd_iommu *iommu)
307{
308 int ready = 0;
309 unsigned status = 0;
310 unsigned long i = 0;
311
da49f6df
JR
312 INC_STATS_COUNTER(compl_wait);
313
8d201968
JR
314 while (!ready && (i < EXIT_LOOP_COUNT)) {
315 ++i;
316 /* wait for the bit to become one */
317 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
318 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
319 }
320
321 /* set bit back to zero */
322 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
323 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
324
6a1eddd2
JR
325 if (unlikely(i == EXIT_LOOP_COUNT)) {
326 spin_unlock(&iommu->lock);
327 reset_iommu_command_buffer(iommu);
328 spin_lock(&iommu->lock);
329 }
8d201968
JR
330}
331
332/*
333 * This function queues a completion wait command into the command
334 * buffer of an IOMMU
335 */
336static int __iommu_completion_wait(struct amd_iommu *iommu)
337{
338 struct iommu_cmd cmd;
339
340 memset(&cmd, 0, sizeof(cmd));
341 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
342 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
343
344 return __iommu_queue_command(iommu, &cmd);
345}
346
431b2a20
JR
347/*
348 * This function is called whenever we need to ensure that the IOMMU has
349 * completed execution of all commands we sent. It sends a
350 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
351 * us about that by writing a value to a physical address we pass with
352 * the command.
353 */
a19ae1ec
JR
354static int iommu_completion_wait(struct amd_iommu *iommu)
355{
8d201968
JR
356 int ret = 0;
357 unsigned long flags;
a19ae1ec 358
7e4f88da
JR
359 spin_lock_irqsave(&iommu->lock, flags);
360
09ee17eb
JR
361 if (!iommu->need_sync)
362 goto out;
363
8d201968 364 ret = __iommu_completion_wait(iommu);
09ee17eb 365
0cfd7aa9 366 iommu->need_sync = false;
a19ae1ec
JR
367
368 if (ret)
7e4f88da 369 goto out;
a19ae1ec 370
8d201968 371 __iommu_wait_for_completion(iommu);
84df8175 372
7e4f88da
JR
373out:
374 spin_unlock_irqrestore(&iommu->lock, flags);
a19ae1ec
JR
375
376 return 0;
377}
378
0518a3a4
JR
379static void iommu_flush_complete(struct protection_domain *domain)
380{
381 int i;
382
383 for (i = 0; i < amd_iommus_present; ++i) {
384 if (!domain->dev_iommu[i])
385 continue;
386
387 /*
388 * Devices of this domain are behind this IOMMU
389 * We need to wait for completion of all commands.
390 */
391 iommu_completion_wait(amd_iommus[i]);
392 }
393}
394
431b2a20
JR
395/*
396 * Command send function for invalidating a device table entry
397 */
a19ae1ec
JR
398static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
399{
d6449536 400 struct iommu_cmd cmd;
ee2fa743 401 int ret;
a19ae1ec
JR
402
403 BUG_ON(iommu == NULL);
404
405 memset(&cmd, 0, sizeof(cmd));
406 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
407 cmd.data[0] = devid;
408
ee2fa743
JR
409 ret = iommu_queue_command(iommu, &cmd);
410
ee2fa743 411 return ret;
a19ae1ec
JR
412}
413
237b6f33
JR
414static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
415 u16 domid, int pde, int s)
416{
417 memset(cmd, 0, sizeof(*cmd));
418 address &= PAGE_MASK;
419 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
420 cmd->data[1] |= domid;
421 cmd->data[2] = lower_32_bits(address);
422 cmd->data[3] = upper_32_bits(address);
423 if (s) /* size bit - we flush more than one 4kb page */
424 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
425 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
426 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
427}
428
431b2a20
JR
429/*
430 * Generic command send function for invalidaing TLB entries
431 */
a19ae1ec
JR
432static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
433 u64 address, u16 domid, int pde, int s)
434{
d6449536 435 struct iommu_cmd cmd;
ee2fa743 436 int ret;
a19ae1ec 437
237b6f33 438 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
a19ae1ec 439
ee2fa743
JR
440 ret = iommu_queue_command(iommu, &cmd);
441
ee2fa743 442 return ret;
a19ae1ec
JR
443}
444
431b2a20
JR
445/*
446 * TLB invalidation function which is called from the mapping functions.
447 * It invalidates a single PTE if the range to flush is within a single
448 * page. Otherwise it flushes the whole TLB of the IOMMU.
449 */
6de8ad9b
JR
450static void __iommu_flush_pages(struct protection_domain *domain,
451 u64 address, size_t size, int pde)
a19ae1ec 452{
6de8ad9b 453 int s = 0, i;
dcd1e92e 454 unsigned long pages = iommu_num_pages(address, size, PAGE_SIZE);
a19ae1ec
JR
455
456 address &= PAGE_MASK;
457
999ba417
JR
458 if (pages > 1) {
459 /*
460 * If we have to flush more than one page, flush all
461 * TLB entries for this domain
462 */
463 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
464 s = 1;
a19ae1ec
JR
465 }
466
999ba417 467
6de8ad9b
JR
468 for (i = 0; i < amd_iommus_present; ++i) {
469 if (!domain->dev_iommu[i])
470 continue;
471
472 /*
473 * Devices of this domain are behind this IOMMU
474 * We need a TLB flush
475 */
476 iommu_queue_inv_iommu_pages(amd_iommus[i], address,
477 domain->id, pde, s);
478 }
479
480 return;
481}
482
483static void iommu_flush_pages(struct protection_domain *domain,
484 u64 address, size_t size)
485{
486 __iommu_flush_pages(domain, address, size, 0);
a19ae1ec 487}
b6c02715 488
1c655773 489/* Flush the whole IO/TLB for a given protection domain */
dcd1e92e 490static void iommu_flush_tlb(struct protection_domain *domain)
1c655773 491{
dcd1e92e 492 __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
493}
494
42a49f96 495/* Flush the whole IO/TLB for a given protection domain - including PDE */
dcd1e92e 496static void iommu_flush_tlb_pde(struct protection_domain *domain)
42a49f96 497{
dcd1e92e 498 __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
499}
500
43f49609 501/*
e394d72a 502 * This function flushes one domain on one IOMMU
43f49609 503 */
e394d72a 504static void flush_domain_on_iommu(struct amd_iommu *iommu, u16 domid)
43f49609 505{
43f49609 506 struct iommu_cmd cmd;
e394d72a 507 unsigned long flags;
18811f55 508
43f49609
JR
509 __iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
510 domid, 1, 1);
511
e394d72a
JR
512 spin_lock_irqsave(&iommu->lock, flags);
513 __iommu_queue_command(iommu, &cmd);
514 __iommu_completion_wait(iommu);
515 __iommu_wait_for_completion(iommu);
516 spin_unlock_irqrestore(&iommu->lock, flags);
43f49609 517}
43f49609 518
e394d72a 519static void flush_all_domains_on_iommu(struct amd_iommu *iommu)
bfd1be18
JR
520{
521 int i;
522
523 for (i = 1; i < MAX_DOMAIN_ID; ++i) {
524 if (!test_bit(i, amd_iommu_pd_alloc_bitmap))
525 continue;
e394d72a 526 flush_domain_on_iommu(iommu, i);
bfd1be18 527 }
e394d72a
JR
528
529}
530
bfd1be18 531void amd_iommu_flush_all_domains(void)
e394d72a
JR
532{
533 struct amd_iommu *iommu;
534
535 for_each_iommu(iommu)
536 flush_all_domains_on_iommu(iommu);
bfd1be18
JR
537}
538
d586d785 539static void flush_all_devices_for_iommu(struct amd_iommu *iommu)
bfd1be18
JR
540{
541 int i;
542
d586d785
JR
543 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
544 if (iommu != amd_iommu_rlookup_table[i])
bfd1be18 545 continue;
d586d785
JR
546
547 iommu_queue_inv_dev_entry(iommu, i);
548 iommu_completion_wait(iommu);
bfd1be18
JR
549 }
550}
551
6a0dbcbe 552static void flush_devices_by_domain(struct protection_domain *domain)
7d7a110c
JR
553{
554 struct amd_iommu *iommu;
555 int i;
556
557 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
6a0dbcbe
JR
558 if ((domain == NULL && amd_iommu_pd_table[i] == NULL) ||
559 (amd_iommu_pd_table[i] != domain))
7d7a110c
JR
560 continue;
561
562 iommu = amd_iommu_rlookup_table[i];
563 if (!iommu)
564 continue;
565
566 iommu_queue_inv_dev_entry(iommu, i);
567 iommu_completion_wait(iommu);
568 }
569}
570
a345b23b
JR
571static void reset_iommu_command_buffer(struct amd_iommu *iommu)
572{
573 pr_err("AMD-Vi: Resetting IOMMU command buffer\n");
574
b26e81b8
JR
575 if (iommu->reset_in_progress)
576 panic("AMD-Vi: ILLEGAL_COMMAND_ERROR while resetting command buffer\n");
577
578 iommu->reset_in_progress = true;
579
a345b23b
JR
580 amd_iommu_reset_cmd_buffer(iommu);
581 flush_all_devices_for_iommu(iommu);
582 flush_all_domains_on_iommu(iommu);
b26e81b8
JR
583
584 iommu->reset_in_progress = false;
a345b23b
JR
585}
586
6a0dbcbe
JR
587void amd_iommu_flush_all_devices(void)
588{
589 flush_devices_by_domain(NULL);
590}
591
431b2a20
JR
592/****************************************************************************
593 *
594 * The functions below are used the create the page table mappings for
595 * unity mapped regions.
596 *
597 ****************************************************************************/
598
599/*
600 * Generic mapping functions. It maps a physical address into a DMA
601 * address space. It allocates the page table pages if necessary.
602 * In the future it can be extended to a generic mapping function
603 * supporting all features of AMD IOMMU page tables like level skipping
604 * and full 64 bit address spaces.
605 */
38e817fe
JR
606static int iommu_map_page(struct protection_domain *dom,
607 unsigned long bus_addr,
608 unsigned long phys_addr,
abdc5eb3
JR
609 int prot,
610 int map_size)
bd0e5211 611{
8bda3092 612 u64 __pte, *pte;
bd0e5211
JR
613
614 bus_addr = PAGE_ALIGN(bus_addr);
bb9d4ff8 615 phys_addr = PAGE_ALIGN(phys_addr);
bd0e5211 616
abdc5eb3
JR
617 BUG_ON(!PM_ALIGNED(map_size, bus_addr));
618 BUG_ON(!PM_ALIGNED(map_size, phys_addr));
619
bad1cac2 620 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
621 return -EINVAL;
622
abdc5eb3 623 pte = alloc_pte(dom, bus_addr, map_size, NULL, GFP_KERNEL);
bd0e5211
JR
624
625 if (IOMMU_PTE_PRESENT(*pte))
626 return -EBUSY;
627
628 __pte = phys_addr | IOMMU_PTE_P;
629 if (prot & IOMMU_PROT_IR)
630 __pte |= IOMMU_PTE_IR;
631 if (prot & IOMMU_PROT_IW)
632 __pte |= IOMMU_PTE_IW;
633
634 *pte = __pte;
635
04bfdd84
JR
636 update_domain(dom);
637
bd0e5211
JR
638 return 0;
639}
640
eb74ff6c 641static void iommu_unmap_page(struct protection_domain *dom,
a6b256b4 642 unsigned long bus_addr, int map_size)
eb74ff6c 643{
a6b256b4 644 u64 *pte = fetch_pte(dom, bus_addr, map_size);
eb74ff6c 645
38a76eee
JR
646 if (pte)
647 *pte = 0;
eb74ff6c 648}
eb74ff6c 649
431b2a20
JR
650/*
651 * This function checks if a specific unity mapping entry is needed for
652 * this specific IOMMU.
653 */
bd0e5211
JR
654static int iommu_for_unity_map(struct amd_iommu *iommu,
655 struct unity_map_entry *entry)
656{
657 u16 bdf, i;
658
659 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
660 bdf = amd_iommu_alias_table[i];
661 if (amd_iommu_rlookup_table[bdf] == iommu)
662 return 1;
663 }
664
665 return 0;
666}
667
431b2a20
JR
668/*
669 * Init the unity mappings for a specific IOMMU in the system
670 *
671 * Basically iterates over all unity mapping entries and applies them to
672 * the default domain DMA of that IOMMU if necessary.
673 */
bd0e5211
JR
674static int iommu_init_unity_mappings(struct amd_iommu *iommu)
675{
676 struct unity_map_entry *entry;
677 int ret;
678
679 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
680 if (!iommu_for_unity_map(iommu, entry))
681 continue;
682 ret = dma_ops_unity_map(iommu->default_dom, entry);
683 if (ret)
684 return ret;
685 }
686
687 return 0;
688}
689
431b2a20
JR
690/*
691 * This function actually applies the mapping to the page table of the
692 * dma_ops domain.
693 */
bd0e5211
JR
694static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
695 struct unity_map_entry *e)
696{
697 u64 addr;
698 int ret;
699
700 for (addr = e->address_start; addr < e->address_end;
701 addr += PAGE_SIZE) {
abdc5eb3
JR
702 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
703 PM_MAP_4k);
bd0e5211
JR
704 if (ret)
705 return ret;
706 /*
707 * if unity mapping is in aperture range mark the page
708 * as allocated in the aperture
709 */
710 if (addr < dma_dom->aperture_size)
c3239567 711 __set_bit(addr >> PAGE_SHIFT,
384de729 712 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
713 }
714
715 return 0;
716}
717
431b2a20
JR
718/*
719 * Inits the unity mappings required for a specific device
720 */
bd0e5211
JR
721static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
722 u16 devid)
723{
724 struct unity_map_entry *e;
725 int ret;
726
727 list_for_each_entry(e, &amd_iommu_unity_map, list) {
728 if (!(devid >= e->devid_start && devid <= e->devid_end))
729 continue;
730 ret = dma_ops_unity_map(dma_dom, e);
731 if (ret)
732 return ret;
733 }
734
735 return 0;
736}
737
431b2a20
JR
738/****************************************************************************
739 *
740 * The next functions belong to the address allocator for the dma_ops
741 * interface functions. They work like the allocators in the other IOMMU
742 * drivers. Its basically a bitmap which marks the allocated pages in
743 * the aperture. Maybe it could be enhanced in the future to a more
744 * efficient allocator.
745 *
746 ****************************************************************************/
d3086444 747
431b2a20 748/*
384de729 749 * The address allocator core functions.
431b2a20
JR
750 *
751 * called with domain->lock held
752 */
384de729 753
00cd122a
JR
754/*
755 * This function checks if there is a PTE for a given dma address. If
756 * there is one, it returns the pointer to it.
757 */
9355a081 758static u64 *fetch_pte(struct protection_domain *domain,
a6b256b4 759 unsigned long address, int map_size)
00cd122a 760{
9355a081 761 int level;
00cd122a
JR
762 u64 *pte;
763
9355a081
JR
764 level = domain->mode - 1;
765 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
00cd122a 766
a6b256b4 767 while (level > map_size) {
9355a081
JR
768 if (!IOMMU_PTE_PRESENT(*pte))
769 return NULL;
00cd122a 770
9355a081 771 level -= 1;
00cd122a 772
9355a081
JR
773 pte = IOMMU_PTE_PAGE(*pte);
774 pte = &pte[PM_LEVEL_INDEX(level, address)];
00cd122a 775
a6b256b4
JR
776 if ((PM_PTE_LEVEL(*pte) == 0) && level != map_size) {
777 pte = NULL;
778 break;
779 }
9355a081 780 }
00cd122a
JR
781
782 return pte;
783}
784
9cabe89b
JR
785/*
786 * This function is used to add a new aperture range to an existing
787 * aperture in case of dma_ops domain allocation or address allocation
788 * failure.
789 */
00cd122a
JR
790static int alloc_new_range(struct amd_iommu *iommu,
791 struct dma_ops_domain *dma_dom,
9cabe89b
JR
792 bool populate, gfp_t gfp)
793{
794 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
00cd122a 795 int i;
9cabe89b 796
f5e9705c
JR
797#ifdef CONFIG_IOMMU_STRESS
798 populate = false;
799#endif
800
9cabe89b
JR
801 if (index >= APERTURE_MAX_RANGES)
802 return -ENOMEM;
803
804 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
805 if (!dma_dom->aperture[index])
806 return -ENOMEM;
807
808 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
809 if (!dma_dom->aperture[index]->bitmap)
810 goto out_free;
811
812 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
813
814 if (populate) {
815 unsigned long address = dma_dom->aperture_size;
816 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
817 u64 *pte, *pte_page;
818
819 for (i = 0; i < num_ptes; ++i) {
abdc5eb3 820 pte = alloc_pte(&dma_dom->domain, address, PM_MAP_4k,
9cabe89b
JR
821 &pte_page, gfp);
822 if (!pte)
823 goto out_free;
824
825 dma_dom->aperture[index]->pte_pages[i] = pte_page;
826
827 address += APERTURE_RANGE_SIZE / 64;
828 }
829 }
830
831 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
832
00cd122a
JR
833 /* Intialize the exclusion range if necessary */
834 if (iommu->exclusion_start &&
835 iommu->exclusion_start >= dma_dom->aperture[index]->offset &&
836 iommu->exclusion_start < dma_dom->aperture_size) {
837 unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
838 int pages = iommu_num_pages(iommu->exclusion_start,
839 iommu->exclusion_length,
840 PAGE_SIZE);
841 dma_ops_reserve_addresses(dma_dom, startpage, pages);
842 }
843
844 /*
845 * Check for areas already mapped as present in the new aperture
846 * range and mark those pages as reserved in the allocator. Such
847 * mappings may already exist as a result of requested unity
848 * mappings for devices.
849 */
850 for (i = dma_dom->aperture[index]->offset;
851 i < dma_dom->aperture_size;
852 i += PAGE_SIZE) {
a6b256b4 853 u64 *pte = fetch_pte(&dma_dom->domain, i, PM_MAP_4k);
00cd122a
JR
854 if (!pte || !IOMMU_PTE_PRESENT(*pte))
855 continue;
856
857 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
858 }
859
04bfdd84
JR
860 update_domain(&dma_dom->domain);
861
9cabe89b
JR
862 return 0;
863
864out_free:
04bfdd84
JR
865 update_domain(&dma_dom->domain);
866
9cabe89b
JR
867 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
868
869 kfree(dma_dom->aperture[index]);
870 dma_dom->aperture[index] = NULL;
871
872 return -ENOMEM;
873}
874
384de729
JR
875static unsigned long dma_ops_area_alloc(struct device *dev,
876 struct dma_ops_domain *dom,
877 unsigned int pages,
878 unsigned long align_mask,
879 u64 dma_mask,
880 unsigned long start)
881{
803b8cb4 882 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
883 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
884 int i = start >> APERTURE_RANGE_SHIFT;
885 unsigned long boundary_size;
886 unsigned long address = -1;
887 unsigned long limit;
888
803b8cb4
JR
889 next_bit >>= PAGE_SHIFT;
890
384de729
JR
891 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
892 PAGE_SIZE) >> PAGE_SHIFT;
893
894 for (;i < max_index; ++i) {
895 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
896
897 if (dom->aperture[i]->offset >= dma_mask)
898 break;
899
900 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
901 dma_mask >> PAGE_SHIFT);
902
903 address = iommu_area_alloc(dom->aperture[i]->bitmap,
904 limit, next_bit, pages, 0,
905 boundary_size, align_mask);
906 if (address != -1) {
907 address = dom->aperture[i]->offset +
908 (address << PAGE_SHIFT);
803b8cb4 909 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
910 break;
911 }
912
913 next_bit = 0;
914 }
915
916 return address;
917}
918
d3086444
JR
919static unsigned long dma_ops_alloc_addresses(struct device *dev,
920 struct dma_ops_domain *dom,
6d4f343f 921 unsigned int pages,
832a90c3
JR
922 unsigned long align_mask,
923 u64 dma_mask)
d3086444 924{
d3086444 925 unsigned long address;
d3086444 926
fe16f088
JR
927#ifdef CONFIG_IOMMU_STRESS
928 dom->next_address = 0;
929 dom->need_flush = true;
930#endif
d3086444 931
384de729 932 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 933 dma_mask, dom->next_address);
d3086444 934
1c655773 935 if (address == -1) {
803b8cb4 936 dom->next_address = 0;
384de729
JR
937 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
938 dma_mask, 0);
1c655773
JR
939 dom->need_flush = true;
940 }
d3086444 941
384de729 942 if (unlikely(address == -1))
8fd524b3 943 address = DMA_ERROR_CODE;
d3086444
JR
944
945 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
946
947 return address;
948}
949
431b2a20
JR
950/*
951 * The address free function.
952 *
953 * called with domain->lock held
954 */
d3086444
JR
955static void dma_ops_free_addresses(struct dma_ops_domain *dom,
956 unsigned long address,
957 unsigned int pages)
958{
384de729
JR
959 unsigned i = address >> APERTURE_RANGE_SHIFT;
960 struct aperture_range *range = dom->aperture[i];
80be308d 961
384de729
JR
962 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
963
47bccd6b
JR
964#ifdef CONFIG_IOMMU_STRESS
965 if (i < 4)
966 return;
967#endif
80be308d 968
803b8cb4 969 if (address >= dom->next_address)
80be308d 970 dom->need_flush = true;
384de729
JR
971
972 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 973
384de729
JR
974 iommu_area_free(range->bitmap, address, pages);
975
d3086444
JR
976}
977
431b2a20
JR
978/****************************************************************************
979 *
980 * The next functions belong to the domain allocation. A domain is
981 * allocated for every IOMMU as the default domain. If device isolation
982 * is enabled, every device get its own domain. The most important thing
983 * about domains is the page table mapping the DMA address space they
984 * contain.
985 *
986 ****************************************************************************/
987
aeb26f55
JR
988/*
989 * This function adds a protection domain to the global protection domain list
990 */
991static void add_domain_to_list(struct protection_domain *domain)
992{
993 unsigned long flags;
994
995 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
996 list_add(&domain->list, &amd_iommu_pd_list);
997 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
998}
999
1000/*
1001 * This function removes a protection domain to the global
1002 * protection domain list
1003 */
1004static void del_domain_from_list(struct protection_domain *domain)
1005{
1006 unsigned long flags;
1007
1008 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1009 list_del(&domain->list);
1010 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1011}
1012
ec487d1a
JR
1013static u16 domain_id_alloc(void)
1014{
1015 unsigned long flags;
1016 int id;
1017
1018 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1019 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1020 BUG_ON(id == 0);
1021 if (id > 0 && id < MAX_DOMAIN_ID)
1022 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1023 else
1024 id = 0;
1025 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1026
1027 return id;
1028}
1029
a2acfb75
JR
1030static void domain_id_free(int id)
1031{
1032 unsigned long flags;
1033
1034 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1035 if (id > 0 && id < MAX_DOMAIN_ID)
1036 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1037 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1038}
a2acfb75 1039
431b2a20
JR
1040/*
1041 * Used to reserve address ranges in the aperture (e.g. for exclusion
1042 * ranges.
1043 */
ec487d1a
JR
1044static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1045 unsigned long start_page,
1046 unsigned int pages)
1047{
384de729 1048 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
ec487d1a
JR
1049
1050 if (start_page + pages > last_page)
1051 pages = last_page - start_page;
1052
384de729
JR
1053 for (i = start_page; i < start_page + pages; ++i) {
1054 int index = i / APERTURE_RANGE_PAGES;
1055 int page = i % APERTURE_RANGE_PAGES;
1056 __set_bit(page, dom->aperture[index]->bitmap);
1057 }
ec487d1a
JR
1058}
1059
86db2e5d 1060static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
1061{
1062 int i, j;
1063 u64 *p1, *p2, *p3;
1064
86db2e5d 1065 p1 = domain->pt_root;
ec487d1a
JR
1066
1067 if (!p1)
1068 return;
1069
1070 for (i = 0; i < 512; ++i) {
1071 if (!IOMMU_PTE_PRESENT(p1[i]))
1072 continue;
1073
1074 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 1075 for (j = 0; j < 512; ++j) {
ec487d1a
JR
1076 if (!IOMMU_PTE_PRESENT(p2[j]))
1077 continue;
1078 p3 = IOMMU_PTE_PAGE(p2[j]);
1079 free_page((unsigned long)p3);
1080 }
1081
1082 free_page((unsigned long)p2);
1083 }
1084
1085 free_page((unsigned long)p1);
86db2e5d
JR
1086
1087 domain->pt_root = NULL;
ec487d1a
JR
1088}
1089
431b2a20
JR
1090/*
1091 * Free a domain, only used if something went wrong in the
1092 * allocation path and we need to free an already allocated page table
1093 */
ec487d1a
JR
1094static void dma_ops_domain_free(struct dma_ops_domain *dom)
1095{
384de729
JR
1096 int i;
1097
ec487d1a
JR
1098 if (!dom)
1099 return;
1100
aeb26f55
JR
1101 del_domain_from_list(&dom->domain);
1102
86db2e5d 1103 free_pagetable(&dom->domain);
ec487d1a 1104
384de729
JR
1105 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1106 if (!dom->aperture[i])
1107 continue;
1108 free_page((unsigned long)dom->aperture[i]->bitmap);
1109 kfree(dom->aperture[i]);
1110 }
ec487d1a
JR
1111
1112 kfree(dom);
1113}
1114
431b2a20
JR
1115/*
1116 * Allocates a new protection domain usable for the dma_ops functions.
1117 * It also intializes the page table and the address allocator data
1118 * structures required for the dma_ops interface
1119 */
d9cfed92 1120static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
ec487d1a
JR
1121{
1122 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1123
1124 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1125 if (!dma_dom)
1126 return NULL;
1127
1128 spin_lock_init(&dma_dom->domain.lock);
1129
1130 dma_dom->domain.id = domain_id_alloc();
1131 if (dma_dom->domain.id == 0)
1132 goto free_dma_dom;
8f7a017c 1133 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 1134 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1135 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
1136 dma_dom->domain.priv = dma_dom;
1137 if (!dma_dom->domain.pt_root)
1138 goto free_dma_dom;
ec487d1a 1139
1c655773 1140 dma_dom->need_flush = false;
bd60b735 1141 dma_dom->target_dev = 0xffff;
1c655773 1142
aeb26f55
JR
1143 add_domain_to_list(&dma_dom->domain);
1144
00cd122a 1145 if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL))
ec487d1a 1146 goto free_dma_dom;
ec487d1a 1147
431b2a20 1148 /*
ec487d1a
JR
1149 * mark the first page as allocated so we never return 0 as
1150 * a valid dma-address. So we can use 0 as error value
431b2a20 1151 */
384de729 1152 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 1153 dma_dom->next_address = 0;
ec487d1a 1154
ec487d1a
JR
1155
1156 return dma_dom;
1157
1158free_dma_dom:
1159 dma_ops_domain_free(dma_dom);
1160
1161 return NULL;
1162}
1163
5b28df6f
JR
1164/*
1165 * little helper function to check whether a given protection domain is a
1166 * dma_ops domain
1167 */
1168static bool dma_ops_domain(struct protection_domain *domain)
1169{
1170 return domain->flags & PD_DMA_OPS_MASK;
1171}
1172
431b2a20
JR
1173/*
1174 * Find out the protection domain structure for a given PCI device. This
1175 * will give us the pointer to the page table root for example.
1176 */
b20ac0d4
JR
1177static struct protection_domain *domain_for_device(u16 devid)
1178{
1179 struct protection_domain *dom;
1180 unsigned long flags;
1181
1182 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1183 dom = amd_iommu_pd_table[devid];
1184 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1185
1186 return dom;
1187}
1188
407d733e 1189static void set_dte_entry(u16 devid, struct protection_domain *domain)
b20ac0d4 1190{
b20ac0d4 1191 u64 pte_root = virt_to_phys(domain->pt_root);
863c74eb 1192
38ddf41b
JR
1193 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1194 << DEV_ENTRY_MODE_SHIFT;
1195 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 1196
b20ac0d4 1197 amd_iommu_dev_table[devid].data[2] = domain->id;
aa879fff
JR
1198 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1199 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
b20ac0d4
JR
1200
1201 amd_iommu_pd_table[devid] = domain;
2b681faf
JR
1202}
1203
1204/*
1205 * If a device is not yet associated with a domain, this function does
1206 * assigns it visible for the hardware
1207 */
1208static void __attach_device(struct amd_iommu *iommu,
1209 struct protection_domain *domain,
1210 u16 devid)
1211{
1212 /* lock domain */
1213 spin_lock(&domain->lock);
1214
1215 /* update DTE entry */
1216 set_dte_entry(devid, domain);
eba6ac60 1217
c4596114
JR
1218 /* Do reference counting */
1219 domain->dev_iommu[iommu->index] += 1;
1220 domain->dev_cnt += 1;
eba6ac60
JR
1221
1222 /* ready */
1223 spin_unlock(&domain->lock);
0feae533 1224}
b20ac0d4 1225
407d733e
JR
1226/*
1227 * If a device is not yet associated with a domain, this function does
1228 * assigns it visible for the hardware
1229 */
0feae533
JR
1230static void attach_device(struct amd_iommu *iommu,
1231 struct protection_domain *domain,
1232 u16 devid)
1233{
eba6ac60
JR
1234 unsigned long flags;
1235
1236 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
0feae533 1237 __attach_device(iommu, domain, devid);
b20ac0d4
JR
1238 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1239
0feae533
JR
1240 /*
1241 * We might boot into a crash-kernel here. The crashed kernel
1242 * left the caches in the IOMMU dirty. So we have to flush
1243 * here to evict all dirty stuff.
1244 */
b20ac0d4 1245 iommu_queue_inv_dev_entry(iommu, devid);
dcd1e92e 1246 iommu_flush_tlb_pde(domain);
b20ac0d4
JR
1247}
1248
355bf553
JR
1249/*
1250 * Removes a device from a protection domain (unlocked)
1251 */
1252static void __detach_device(struct protection_domain *domain, u16 devid)
1253{
c4596114
JR
1254 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1255
1256 BUG_ON(!iommu);
355bf553
JR
1257
1258 /* lock domain */
1259 spin_lock(&domain->lock);
1260
1261 /* remove domain from the lookup table */
1262 amd_iommu_pd_table[devid] = NULL;
1263
1264 /* remove entry from the device table seen by the hardware */
1265 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1266 amd_iommu_dev_table[devid].data[1] = 0;
1267 amd_iommu_dev_table[devid].data[2] = 0;
1268
c5cca146
JR
1269 amd_iommu_apply_erratum_63(devid);
1270
c4596114
JR
1271 /* decrease reference counters */
1272 domain->dev_iommu[iommu->index] -= 1;
1273 domain->dev_cnt -= 1;
355bf553
JR
1274
1275 /* ready */
1276 spin_unlock(&domain->lock);
21129f78
JR
1277
1278 /*
1279 * If we run in passthrough mode the device must be assigned to the
1280 * passthrough domain if it is detached from any other domain
1281 */
1282 if (iommu_pass_through) {
1283 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1284 __attach_device(iommu, pt_domain, devid);
1285 }
355bf553
JR
1286}
1287
1288/*
1289 * Removes a device from a protection domain (with devtable_lock held)
1290 */
1291static void detach_device(struct protection_domain *domain, u16 devid)
1292{
1293 unsigned long flags;
1294
1295 /* lock device table */
1296 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1297 __detach_device(domain, devid);
1298 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1299}
e275a2a0
JR
1300
1301static int device_change_notifier(struct notifier_block *nb,
1302 unsigned long action, void *data)
1303{
1304 struct device *dev = data;
1305 struct pci_dev *pdev = to_pci_dev(dev);
1306 u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
1307 struct protection_domain *domain;
1308 struct dma_ops_domain *dma_domain;
1309 struct amd_iommu *iommu;
1ac4cbbc 1310 unsigned long flags;
e275a2a0
JR
1311
1312 if (devid > amd_iommu_last_bdf)
1313 goto out;
1314
1315 devid = amd_iommu_alias_table[devid];
1316
1317 iommu = amd_iommu_rlookup_table[devid];
1318 if (iommu == NULL)
1319 goto out;
1320
1321 domain = domain_for_device(devid);
1322
1323 if (domain && !dma_ops_domain(domain))
1324 WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
1325 "to a non-dma-ops domain\n", dev_name(dev));
1326
1327 switch (action) {
c1eee67b 1328 case BUS_NOTIFY_UNBOUND_DRIVER:
e275a2a0
JR
1329 if (!domain)
1330 goto out;
a1ca331c
JR
1331 if (iommu_pass_through)
1332 break;
e275a2a0 1333 detach_device(domain, devid);
1ac4cbbc
JR
1334 break;
1335 case BUS_NOTIFY_ADD_DEVICE:
1336 /* allocate a protection domain if a device is added */
1337 dma_domain = find_protection_domain(devid);
1338 if (dma_domain)
1339 goto out;
d9cfed92 1340 dma_domain = dma_ops_domain_alloc(iommu);
1ac4cbbc
JR
1341 if (!dma_domain)
1342 goto out;
1343 dma_domain->target_dev = devid;
1344
1345 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1346 list_add_tail(&dma_domain->list, &iommu_pd_list);
1347 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1348
e275a2a0
JR
1349 break;
1350 default:
1351 goto out;
1352 }
1353
1354 iommu_queue_inv_dev_entry(iommu, devid);
1355 iommu_completion_wait(iommu);
1356
1357out:
1358 return 0;
1359}
1360
b25ae679 1361static struct notifier_block device_nb = {
e275a2a0
JR
1362 .notifier_call = device_change_notifier,
1363};
355bf553 1364
431b2a20
JR
1365/*****************************************************************************
1366 *
1367 * The next functions belong to the dma_ops mapping/unmapping code.
1368 *
1369 *****************************************************************************/
1370
dbcc112e
JR
1371/*
1372 * This function checks if the driver got a valid device from the caller to
1373 * avoid dereferencing invalid pointers.
1374 */
1375static bool check_device(struct device *dev)
1376{
1377 if (!dev || !dev->dma_mask)
1378 return false;
1379
1380 return true;
1381}
1382
bd60b735
JR
1383/*
1384 * In this function the list of preallocated protection domains is traversed to
1385 * find the domain for a specific device
1386 */
1387static struct dma_ops_domain *find_protection_domain(u16 devid)
1388{
1389 struct dma_ops_domain *entry, *ret = NULL;
1390 unsigned long flags;
1391
1392 if (list_empty(&iommu_pd_list))
1393 return NULL;
1394
1395 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1396
1397 list_for_each_entry(entry, &iommu_pd_list, list) {
1398 if (entry->target_dev == devid) {
1399 ret = entry;
bd60b735
JR
1400 break;
1401 }
1402 }
1403
1404 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1405
1406 return ret;
1407}
1408
431b2a20
JR
1409/*
1410 * In the dma_ops path we only have the struct device. This function
1411 * finds the corresponding IOMMU, the protection domain and the
1412 * requestor id for a given device.
1413 * If the device is not yet associated with a domain this is also done
1414 * in this function.
1415 */
b20ac0d4
JR
1416static int get_device_resources(struct device *dev,
1417 struct amd_iommu **iommu,
1418 struct protection_domain **domain,
1419 u16 *bdf)
1420{
1421 struct dma_ops_domain *dma_dom;
1422 struct pci_dev *pcidev;
1423 u16 _bdf;
1424
dbcc112e
JR
1425 *iommu = NULL;
1426 *domain = NULL;
1427 *bdf = 0xffff;
1428
1429 if (dev->bus != &pci_bus_type)
1430 return 0;
b20ac0d4
JR
1431
1432 pcidev = to_pci_dev(dev);
d591b0a3 1433 _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
b20ac0d4 1434
431b2a20 1435 /* device not translated by any IOMMU in the system? */
dbcc112e 1436 if (_bdf > amd_iommu_last_bdf)
b20ac0d4 1437 return 0;
b20ac0d4
JR
1438
1439 *bdf = amd_iommu_alias_table[_bdf];
1440
1441 *iommu = amd_iommu_rlookup_table[*bdf];
1442 if (*iommu == NULL)
1443 return 0;
b20ac0d4
JR
1444 *domain = domain_for_device(*bdf);
1445 if (*domain == NULL) {
bd60b735
JR
1446 dma_dom = find_protection_domain(*bdf);
1447 if (!dma_dom)
1448 dma_dom = (*iommu)->default_dom;
b20ac0d4 1449 *domain = &dma_dom->domain;
f1179dc0 1450 attach_device(*iommu, *domain, *bdf);
e9a22a13
JR
1451 DUMP_printk("Using protection domain %d for device %s\n",
1452 (*domain)->id, dev_name(dev));
b20ac0d4
JR
1453 }
1454
f91ba190 1455 if (domain_for_device(_bdf) == NULL)
f1179dc0 1456 attach_device(*iommu, *domain, _bdf);
f91ba190 1457
b20ac0d4
JR
1458 return 1;
1459}
1460
04bfdd84
JR
1461static void update_device_table(struct protection_domain *domain)
1462{
2b681faf 1463 unsigned long flags;
04bfdd84
JR
1464 int i;
1465
1466 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
1467 if (amd_iommu_pd_table[i] != domain)
1468 continue;
2b681faf 1469 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
04bfdd84 1470 set_dte_entry(i, domain);
2b681faf 1471 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
04bfdd84
JR
1472 }
1473}
1474
1475static void update_domain(struct protection_domain *domain)
1476{
1477 if (!domain->updated)
1478 return;
1479
1480 update_device_table(domain);
1481 flush_devices_by_domain(domain);
601367d7 1482 iommu_flush_tlb_pde(domain);
04bfdd84
JR
1483
1484 domain->updated = false;
1485}
1486
8bda3092 1487/*
50020fb6
JR
1488 * This function is used to add another level to an IO page table. Adding
1489 * another level increases the size of the address space by 9 bits to a size up
1490 * to 64 bits.
8bda3092 1491 */
50020fb6
JR
1492static bool increase_address_space(struct protection_domain *domain,
1493 gfp_t gfp)
1494{
1495 u64 *pte;
1496
1497 if (domain->mode == PAGE_MODE_6_LEVEL)
1498 /* address space already 64 bit large */
1499 return false;
1500
1501 pte = (void *)get_zeroed_page(gfp);
1502 if (!pte)
1503 return false;
1504
1505 *pte = PM_LEVEL_PDE(domain->mode,
1506 virt_to_phys(domain->pt_root));
1507 domain->pt_root = pte;
1508 domain->mode += 1;
1509 domain->updated = true;
1510
1511 return true;
1512}
1513
8bc3e127 1514static u64 *alloc_pte(struct protection_domain *domain,
abdc5eb3
JR
1515 unsigned long address,
1516 int end_lvl,
1517 u64 **pte_page,
1518 gfp_t gfp)
8bda3092
JR
1519{
1520 u64 *pte, *page;
8bc3e127 1521 int level;
8bda3092 1522
8bc3e127
JR
1523 while (address > PM_LEVEL_SIZE(domain->mode))
1524 increase_address_space(domain, gfp);
8bda3092 1525
8bc3e127
JR
1526 level = domain->mode - 1;
1527 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
8bda3092 1528
abdc5eb3 1529 while (level > end_lvl) {
8bc3e127
JR
1530 if (!IOMMU_PTE_PRESENT(*pte)) {
1531 page = (u64 *)get_zeroed_page(gfp);
1532 if (!page)
1533 return NULL;
1534 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1535 }
8bda3092 1536
8bc3e127 1537 level -= 1;
8bda3092 1538
8bc3e127 1539 pte = IOMMU_PTE_PAGE(*pte);
8bda3092 1540
abdc5eb3 1541 if (pte_page && level == end_lvl)
8bc3e127 1542 *pte_page = pte;
8bda3092 1543
8bc3e127
JR
1544 pte = &pte[PM_LEVEL_INDEX(level, address)];
1545 }
8bda3092
JR
1546
1547 return pte;
1548}
1549
1550/*
1551 * This function fetches the PTE for a given address in the aperture
1552 */
1553static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1554 unsigned long address)
1555{
384de729 1556 struct aperture_range *aperture;
8bda3092
JR
1557 u64 *pte, *pte_page;
1558
384de729
JR
1559 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1560 if (!aperture)
1561 return NULL;
1562
1563 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 1564 if (!pte) {
abdc5eb3
JR
1565 pte = alloc_pte(&dom->domain, address, PM_MAP_4k, &pte_page,
1566 GFP_ATOMIC);
384de729
JR
1567 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1568 } else
8c8c143c 1569 pte += PM_LEVEL_INDEX(0, address);
8bda3092 1570
04bfdd84 1571 update_domain(&dom->domain);
8bda3092
JR
1572
1573 return pte;
1574}
1575
431b2a20
JR
1576/*
1577 * This is the generic map function. It maps one 4kb page at paddr to
1578 * the given address in the DMA address space for the domain.
1579 */
cb76c322
JR
1580static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
1581 struct dma_ops_domain *dom,
1582 unsigned long address,
1583 phys_addr_t paddr,
1584 int direction)
1585{
1586 u64 *pte, __pte;
1587
1588 WARN_ON(address > dom->aperture_size);
1589
1590 paddr &= PAGE_MASK;
1591
8bda3092 1592 pte = dma_ops_get_pte(dom, address);
53812c11 1593 if (!pte)
8fd524b3 1594 return DMA_ERROR_CODE;
cb76c322
JR
1595
1596 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1597
1598 if (direction == DMA_TO_DEVICE)
1599 __pte |= IOMMU_PTE_IR;
1600 else if (direction == DMA_FROM_DEVICE)
1601 __pte |= IOMMU_PTE_IW;
1602 else if (direction == DMA_BIDIRECTIONAL)
1603 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1604
1605 WARN_ON(*pte);
1606
1607 *pte = __pte;
1608
1609 return (dma_addr_t)address;
1610}
1611
431b2a20
JR
1612/*
1613 * The generic unmapping function for on page in the DMA address space.
1614 */
cb76c322
JR
1615static void dma_ops_domain_unmap(struct amd_iommu *iommu,
1616 struct dma_ops_domain *dom,
1617 unsigned long address)
1618{
384de729 1619 struct aperture_range *aperture;
cb76c322
JR
1620 u64 *pte;
1621
1622 if (address >= dom->aperture_size)
1623 return;
1624
384de729
JR
1625 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1626 if (!aperture)
1627 return;
1628
1629 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1630 if (!pte)
1631 return;
cb76c322 1632
8c8c143c 1633 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
1634
1635 WARN_ON(!*pte);
1636
1637 *pte = 0ULL;
1638}
1639
431b2a20
JR
1640/*
1641 * This function contains common code for mapping of a physically
24f81160
JR
1642 * contiguous memory region into DMA address space. It is used by all
1643 * mapping functions provided with this IOMMU driver.
431b2a20
JR
1644 * Must be called with the domain lock held.
1645 */
cb76c322
JR
1646static dma_addr_t __map_single(struct device *dev,
1647 struct amd_iommu *iommu,
1648 struct dma_ops_domain *dma_dom,
1649 phys_addr_t paddr,
1650 size_t size,
6d4f343f 1651 int dir,
832a90c3
JR
1652 bool align,
1653 u64 dma_mask)
cb76c322
JR
1654{
1655 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 1656 dma_addr_t address, start, ret;
cb76c322 1657 unsigned int pages;
6d4f343f 1658 unsigned long align_mask = 0;
cb76c322
JR
1659 int i;
1660
e3c449f5 1661 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
1662 paddr &= PAGE_MASK;
1663
8ecaf8f1
JR
1664 INC_STATS_COUNTER(total_map_requests);
1665
c1858976
JR
1666 if (pages > 1)
1667 INC_STATS_COUNTER(cross_page);
1668
6d4f343f
JR
1669 if (align)
1670 align_mask = (1UL << get_order(size)) - 1;
1671
11b83888 1672retry:
832a90c3
JR
1673 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1674 dma_mask);
8fd524b3 1675 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
1676 /*
1677 * setting next_address here will let the address
1678 * allocator only scan the new allocated range in the
1679 * first run. This is a small optimization.
1680 */
1681 dma_dom->next_address = dma_dom->aperture_size;
1682
1683 if (alloc_new_range(iommu, dma_dom, false, GFP_ATOMIC))
1684 goto out;
1685
1686 /*
1687 * aperture was sucessfully enlarged by 128 MB, try
1688 * allocation again
1689 */
1690 goto retry;
1691 }
cb76c322
JR
1692
1693 start = address;
1694 for (i = 0; i < pages; ++i) {
53812c11 1695 ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
8fd524b3 1696 if (ret == DMA_ERROR_CODE)
53812c11
JR
1697 goto out_unmap;
1698
cb76c322
JR
1699 paddr += PAGE_SIZE;
1700 start += PAGE_SIZE;
1701 }
1702 address += offset;
1703
5774f7c5
JR
1704 ADD_STATS_COUNTER(alloced_io_mem, size);
1705
afa9fdc2 1706 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
dcd1e92e 1707 iommu_flush_tlb(&dma_dom->domain);
1c655773
JR
1708 dma_dom->need_flush = false;
1709 } else if (unlikely(iommu_has_npcache(iommu)))
6de8ad9b 1710 iommu_flush_pages(&dma_dom->domain, address, size);
270cab24 1711
cb76c322
JR
1712out:
1713 return address;
53812c11
JR
1714
1715out_unmap:
1716
1717 for (--i; i >= 0; --i) {
1718 start -= PAGE_SIZE;
1719 dma_ops_domain_unmap(iommu, dma_dom, start);
1720 }
1721
1722 dma_ops_free_addresses(dma_dom, address, pages);
1723
8fd524b3 1724 return DMA_ERROR_CODE;
cb76c322
JR
1725}
1726
431b2a20
JR
1727/*
1728 * Does the reverse of the __map_single function. Must be called with
1729 * the domain lock held too
1730 */
cb76c322
JR
1731static void __unmap_single(struct amd_iommu *iommu,
1732 struct dma_ops_domain *dma_dom,
1733 dma_addr_t dma_addr,
1734 size_t size,
1735 int dir)
1736{
1737 dma_addr_t i, start;
1738 unsigned int pages;
1739
8fd524b3 1740 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 1741 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
1742 return;
1743
e3c449f5 1744 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
1745 dma_addr &= PAGE_MASK;
1746 start = dma_addr;
1747
1748 for (i = 0; i < pages; ++i) {
1749 dma_ops_domain_unmap(iommu, dma_dom, start);
1750 start += PAGE_SIZE;
1751 }
1752
5774f7c5
JR
1753 SUB_STATS_COUNTER(alloced_io_mem, size);
1754
cb76c322 1755 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 1756
80be308d 1757 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
6de8ad9b 1758 iommu_flush_pages(&dma_dom->domain, dma_addr, size);
80be308d
JR
1759 dma_dom->need_flush = false;
1760 }
cb76c322
JR
1761}
1762
431b2a20
JR
1763/*
1764 * The exported map_single function for dma_ops.
1765 */
51491367
FT
1766static dma_addr_t map_page(struct device *dev, struct page *page,
1767 unsigned long offset, size_t size,
1768 enum dma_data_direction dir,
1769 struct dma_attrs *attrs)
4da70b9e
JR
1770{
1771 unsigned long flags;
1772 struct amd_iommu *iommu;
1773 struct protection_domain *domain;
1774 u16 devid;
1775 dma_addr_t addr;
832a90c3 1776 u64 dma_mask;
51491367 1777 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 1778
0f2a86f2
JR
1779 INC_STATS_COUNTER(cnt_map_single);
1780
dbcc112e 1781 if (!check_device(dev))
8fd524b3 1782 return DMA_ERROR_CODE;
dbcc112e 1783
832a90c3 1784 dma_mask = *dev->dma_mask;
4da70b9e
JR
1785
1786 get_device_resources(dev, &iommu, &domain, &devid);
1787
1788 if (iommu == NULL || domain == NULL)
431b2a20 1789 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1790 return (dma_addr_t)paddr;
1791
5b28df6f 1792 if (!dma_ops_domain(domain))
8fd524b3 1793 return DMA_ERROR_CODE;
5b28df6f 1794
4da70b9e 1795 spin_lock_irqsave(&domain->lock, flags);
832a90c3
JR
1796 addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
1797 dma_mask);
8fd524b3 1798 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
1799 goto out;
1800
0518a3a4 1801 iommu_flush_complete(domain);
4da70b9e
JR
1802
1803out:
1804 spin_unlock_irqrestore(&domain->lock, flags);
1805
1806 return addr;
1807}
1808
431b2a20
JR
1809/*
1810 * The exported unmap_single function for dma_ops.
1811 */
51491367
FT
1812static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
1813 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
1814{
1815 unsigned long flags;
1816 struct amd_iommu *iommu;
1817 struct protection_domain *domain;
1818 u16 devid;
1819
146a6917
JR
1820 INC_STATS_COUNTER(cnt_unmap_single);
1821
dbcc112e
JR
1822 if (!check_device(dev) ||
1823 !get_device_resources(dev, &iommu, &domain, &devid))
431b2a20 1824 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1825 return;
1826
5b28df6f
JR
1827 if (!dma_ops_domain(domain))
1828 return;
1829
4da70b9e
JR
1830 spin_lock_irqsave(&domain->lock, flags);
1831
1832 __unmap_single(iommu, domain->priv, dma_addr, size, dir);
1833
0518a3a4 1834 iommu_flush_complete(domain);
4da70b9e
JR
1835
1836 spin_unlock_irqrestore(&domain->lock, flags);
1837}
1838
431b2a20
JR
1839/*
1840 * This is a special map_sg function which is used if we should map a
1841 * device which is not handled by an AMD IOMMU in the system.
1842 */
65b050ad
JR
1843static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1844 int nelems, int dir)
1845{
1846 struct scatterlist *s;
1847 int i;
1848
1849 for_each_sg(sglist, s, nelems, i) {
1850 s->dma_address = (dma_addr_t)sg_phys(s);
1851 s->dma_length = s->length;
1852 }
1853
1854 return nelems;
1855}
1856
431b2a20
JR
1857/*
1858 * The exported map_sg function for dma_ops (handles scatter-gather
1859 * lists).
1860 */
65b050ad 1861static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1862 int nelems, enum dma_data_direction dir,
1863 struct dma_attrs *attrs)
65b050ad
JR
1864{
1865 unsigned long flags;
1866 struct amd_iommu *iommu;
1867 struct protection_domain *domain;
1868 u16 devid;
1869 int i;
1870 struct scatterlist *s;
1871 phys_addr_t paddr;
1872 int mapped_elems = 0;
832a90c3 1873 u64 dma_mask;
65b050ad 1874
d03f067a
JR
1875 INC_STATS_COUNTER(cnt_map_sg);
1876
dbcc112e
JR
1877 if (!check_device(dev))
1878 return 0;
1879
832a90c3 1880 dma_mask = *dev->dma_mask;
65b050ad
JR
1881
1882 get_device_resources(dev, &iommu, &domain, &devid);
1883
1884 if (!iommu || !domain)
1885 return map_sg_no_iommu(dev, sglist, nelems, dir);
1886
5b28df6f
JR
1887 if (!dma_ops_domain(domain))
1888 return 0;
1889
65b050ad
JR
1890 spin_lock_irqsave(&domain->lock, flags);
1891
1892 for_each_sg(sglist, s, nelems, i) {
1893 paddr = sg_phys(s);
1894
1895 s->dma_address = __map_single(dev, iommu, domain->priv,
832a90c3
JR
1896 paddr, s->length, dir, false,
1897 dma_mask);
65b050ad
JR
1898
1899 if (s->dma_address) {
1900 s->dma_length = s->length;
1901 mapped_elems++;
1902 } else
1903 goto unmap;
65b050ad
JR
1904 }
1905
0518a3a4 1906 iommu_flush_complete(domain);
65b050ad
JR
1907
1908out:
1909 spin_unlock_irqrestore(&domain->lock, flags);
1910
1911 return mapped_elems;
1912unmap:
1913 for_each_sg(sglist, s, mapped_elems, i) {
1914 if (s->dma_address)
1915 __unmap_single(iommu, domain->priv, s->dma_address,
1916 s->dma_length, dir);
1917 s->dma_address = s->dma_length = 0;
1918 }
1919
1920 mapped_elems = 0;
1921
1922 goto out;
1923}
1924
431b2a20
JR
1925/*
1926 * The exported map_sg function for dma_ops (handles scatter-gather
1927 * lists).
1928 */
65b050ad 1929static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1930 int nelems, enum dma_data_direction dir,
1931 struct dma_attrs *attrs)
65b050ad
JR
1932{
1933 unsigned long flags;
1934 struct amd_iommu *iommu;
1935 struct protection_domain *domain;
1936 struct scatterlist *s;
1937 u16 devid;
1938 int i;
1939
55877a6b
JR
1940 INC_STATS_COUNTER(cnt_unmap_sg);
1941
dbcc112e
JR
1942 if (!check_device(dev) ||
1943 !get_device_resources(dev, &iommu, &domain, &devid))
65b050ad
JR
1944 return;
1945
5b28df6f
JR
1946 if (!dma_ops_domain(domain))
1947 return;
1948
65b050ad
JR
1949 spin_lock_irqsave(&domain->lock, flags);
1950
1951 for_each_sg(sglist, s, nelems, i) {
1952 __unmap_single(iommu, domain->priv, s->dma_address,
1953 s->dma_length, dir);
65b050ad
JR
1954 s->dma_address = s->dma_length = 0;
1955 }
1956
0518a3a4 1957 iommu_flush_complete(domain);
65b050ad
JR
1958
1959 spin_unlock_irqrestore(&domain->lock, flags);
1960}
1961
431b2a20
JR
1962/*
1963 * The exported alloc_coherent function for dma_ops.
1964 */
5d8b53cf
JR
1965static void *alloc_coherent(struct device *dev, size_t size,
1966 dma_addr_t *dma_addr, gfp_t flag)
1967{
1968 unsigned long flags;
1969 void *virt_addr;
1970 struct amd_iommu *iommu;
1971 struct protection_domain *domain;
1972 u16 devid;
1973 phys_addr_t paddr;
832a90c3 1974 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 1975
c8f0fb36
JR
1976 INC_STATS_COUNTER(cnt_alloc_coherent);
1977
dbcc112e
JR
1978 if (!check_device(dev))
1979 return NULL;
5d8b53cf 1980
13d9fead
FT
1981 if (!get_device_resources(dev, &iommu, &domain, &devid))
1982 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
5d8b53cf 1983
c97ac535 1984 flag |= __GFP_ZERO;
5d8b53cf
JR
1985 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1986 if (!virt_addr)
b25ae679 1987 return NULL;
5d8b53cf 1988
5d8b53cf
JR
1989 paddr = virt_to_phys(virt_addr);
1990
5d8b53cf
JR
1991 if (!iommu || !domain) {
1992 *dma_addr = (dma_addr_t)paddr;
1993 return virt_addr;
1994 }
1995
5b28df6f
JR
1996 if (!dma_ops_domain(domain))
1997 goto out_free;
1998
832a90c3
JR
1999 if (!dma_mask)
2000 dma_mask = *dev->dma_mask;
2001
5d8b53cf
JR
2002 spin_lock_irqsave(&domain->lock, flags);
2003
2004 *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
832a90c3 2005 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 2006
8fd524b3 2007 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 2008 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 2009 goto out_free;
367d04c4 2010 }
5d8b53cf 2011
0518a3a4 2012 iommu_flush_complete(domain);
5d8b53cf 2013
5d8b53cf
JR
2014 spin_unlock_irqrestore(&domain->lock, flags);
2015
2016 return virt_addr;
5b28df6f
JR
2017
2018out_free:
2019
2020 free_pages((unsigned long)virt_addr, get_order(size));
2021
2022 return NULL;
5d8b53cf
JR
2023}
2024
431b2a20
JR
2025/*
2026 * The exported free_coherent function for dma_ops.
431b2a20 2027 */
5d8b53cf
JR
2028static void free_coherent(struct device *dev, size_t size,
2029 void *virt_addr, dma_addr_t dma_addr)
2030{
2031 unsigned long flags;
2032 struct amd_iommu *iommu;
2033 struct protection_domain *domain;
2034 u16 devid;
2035
5d31ee7e
JR
2036 INC_STATS_COUNTER(cnt_free_coherent);
2037
dbcc112e
JR
2038 if (!check_device(dev))
2039 return;
2040
5d8b53cf
JR
2041 get_device_resources(dev, &iommu, &domain, &devid);
2042
2043 if (!iommu || !domain)
2044 goto free_mem;
2045
5b28df6f
JR
2046 if (!dma_ops_domain(domain))
2047 goto free_mem;
2048
5d8b53cf
JR
2049 spin_lock_irqsave(&domain->lock, flags);
2050
2051 __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 2052
0518a3a4 2053 iommu_flush_complete(domain);
5d8b53cf
JR
2054
2055 spin_unlock_irqrestore(&domain->lock, flags);
2056
2057free_mem:
2058 free_pages((unsigned long)virt_addr, get_order(size));
2059}
2060
b39ba6ad
JR
2061/*
2062 * This function is called by the DMA layer to find out if we can handle a
2063 * particular device. It is part of the dma_ops.
2064 */
2065static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2066{
2067 u16 bdf;
2068 struct pci_dev *pcidev;
2069
2070 /* No device or no PCI device */
2071 if (!dev || dev->bus != &pci_bus_type)
2072 return 0;
2073
2074 pcidev = to_pci_dev(dev);
2075
2076 bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
2077
2078 /* Out of our scope? */
2079 if (bdf > amd_iommu_last_bdf)
2080 return 0;
2081
2082 return 1;
2083}
2084
c432f3df 2085/*
431b2a20
JR
2086 * The function for pre-allocating protection domains.
2087 *
c432f3df
JR
2088 * If the driver core informs the DMA layer if a driver grabs a device
2089 * we don't need to preallocate the protection domains anymore.
2090 * For now we have to.
2091 */
0e93dd88 2092static void prealloc_protection_domains(void)
c432f3df
JR
2093{
2094 struct pci_dev *dev = NULL;
2095 struct dma_ops_domain *dma_dom;
2096 struct amd_iommu *iommu;
be831297 2097 u16 devid, __devid;
c432f3df
JR
2098
2099 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
be831297 2100 __devid = devid = calc_devid(dev->bus->number, dev->devfn);
3a61ec38 2101 if (devid > amd_iommu_last_bdf)
c432f3df
JR
2102 continue;
2103 devid = amd_iommu_alias_table[devid];
2104 if (domain_for_device(devid))
2105 continue;
2106 iommu = amd_iommu_rlookup_table[devid];
2107 if (!iommu)
2108 continue;
d9cfed92 2109 dma_dom = dma_ops_domain_alloc(iommu);
c432f3df
JR
2110 if (!dma_dom)
2111 continue;
2112 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
2113 dma_dom->target_dev = devid;
2114
be831297
JR
2115 attach_device(iommu, &dma_dom->domain, devid);
2116 if (__devid != devid)
2117 attach_device(iommu, &dma_dom->domain, __devid);
2118
bd60b735 2119 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
2120 }
2121}
2122
160c1d8e 2123static struct dma_map_ops amd_iommu_dma_ops = {
6631ee9d
JR
2124 .alloc_coherent = alloc_coherent,
2125 .free_coherent = free_coherent,
51491367
FT
2126 .map_page = map_page,
2127 .unmap_page = unmap_page,
6631ee9d
JR
2128 .map_sg = map_sg,
2129 .unmap_sg = unmap_sg,
b39ba6ad 2130 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
2131};
2132
431b2a20
JR
2133/*
2134 * The function which clues the AMD IOMMU driver into dma_ops.
2135 */
6631ee9d
JR
2136int __init amd_iommu_init_dma_ops(void)
2137{
2138 struct amd_iommu *iommu;
6631ee9d
JR
2139 int ret;
2140
431b2a20
JR
2141 /*
2142 * first allocate a default protection domain for every IOMMU we
2143 * found in the system. Devices not assigned to any other
2144 * protection domain will be assigned to the default one.
2145 */
3bd22172 2146 for_each_iommu(iommu) {
d9cfed92 2147 iommu->default_dom = dma_ops_domain_alloc(iommu);
6631ee9d
JR
2148 if (iommu->default_dom == NULL)
2149 return -ENOMEM;
e2dc14a2 2150 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
2151 ret = iommu_init_unity_mappings(iommu);
2152 if (ret)
2153 goto free_domains;
2154 }
2155
431b2a20
JR
2156 /*
2157 * If device isolation is enabled, pre-allocate the protection
2158 * domains for each device.
2159 */
6631ee9d
JR
2160 if (amd_iommu_isolate)
2161 prealloc_protection_domains();
2162
2163 iommu_detected = 1;
75f1cdf1 2164 swiotlb = 0;
92af4e29 2165#ifdef CONFIG_GART_IOMMU
6631ee9d
JR
2166 gart_iommu_aperture_disabled = 1;
2167 gart_iommu_aperture = 0;
92af4e29 2168#endif
6631ee9d 2169
431b2a20 2170 /* Make the driver finally visible to the drivers */
6631ee9d
JR
2171 dma_ops = &amd_iommu_dma_ops;
2172
26961efe 2173 register_iommu(&amd_iommu_ops);
26961efe 2174
e275a2a0
JR
2175 bus_register_notifier(&pci_bus_type, &device_nb);
2176
7f26508b
JR
2177 amd_iommu_stats_init();
2178
6631ee9d
JR
2179 return 0;
2180
2181free_domains:
2182
3bd22172 2183 for_each_iommu(iommu) {
6631ee9d
JR
2184 if (iommu->default_dom)
2185 dma_ops_domain_free(iommu->default_dom);
2186 }
2187
2188 return ret;
2189}
6d98cd80
JR
2190
2191/*****************************************************************************
2192 *
2193 * The following functions belong to the exported interface of AMD IOMMU
2194 *
2195 * This interface allows access to lower level functions of the IOMMU
2196 * like protection domain handling and assignement of devices to domains
2197 * which is not possible with the dma_ops interface.
2198 *
2199 *****************************************************************************/
2200
6d98cd80
JR
2201static void cleanup_domain(struct protection_domain *domain)
2202{
2203 unsigned long flags;
2204 u16 devid;
2205
2206 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2207
2208 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
2209 if (amd_iommu_pd_table[devid] == domain)
2210 __detach_device(domain, devid);
2211
2212 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2213}
2214
2650815f
JR
2215static void protection_domain_free(struct protection_domain *domain)
2216{
2217 if (!domain)
2218 return;
2219
aeb26f55
JR
2220 del_domain_from_list(domain);
2221
2650815f
JR
2222 if (domain->id)
2223 domain_id_free(domain->id);
2224
2225 kfree(domain);
2226}
2227
2228static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
2229{
2230 struct protection_domain *domain;
2231
2232 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2233 if (!domain)
2650815f 2234 return NULL;
c156e347
JR
2235
2236 spin_lock_init(&domain->lock);
c156e347
JR
2237 domain->id = domain_id_alloc();
2238 if (!domain->id)
2650815f
JR
2239 goto out_err;
2240
aeb26f55
JR
2241 add_domain_to_list(domain);
2242
2650815f
JR
2243 return domain;
2244
2245out_err:
2246 kfree(domain);
2247
2248 return NULL;
2249}
2250
2251static int amd_iommu_domain_init(struct iommu_domain *dom)
2252{
2253 struct protection_domain *domain;
2254
2255 domain = protection_domain_alloc();
2256 if (!domain)
c156e347 2257 goto out_free;
2650815f
JR
2258
2259 domain->mode = PAGE_MODE_3_LEVEL;
c156e347
JR
2260 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2261 if (!domain->pt_root)
2262 goto out_free;
2263
2264 dom->priv = domain;
2265
2266 return 0;
2267
2268out_free:
2650815f 2269 protection_domain_free(domain);
c156e347
JR
2270
2271 return -ENOMEM;
2272}
2273
98383fc3
JR
2274static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2275{
2276 struct protection_domain *domain = dom->priv;
2277
2278 if (!domain)
2279 return;
2280
2281 if (domain->dev_cnt > 0)
2282 cleanup_domain(domain);
2283
2284 BUG_ON(domain->dev_cnt != 0);
2285
2286 free_pagetable(domain);
2287
2288 domain_id_free(domain->id);
2289
2290 kfree(domain);
2291
2292 dom->priv = NULL;
2293}
2294
684f2888
JR
2295static void amd_iommu_detach_device(struct iommu_domain *dom,
2296 struct device *dev)
2297{
2298 struct protection_domain *domain = dom->priv;
2299 struct amd_iommu *iommu;
2300 struct pci_dev *pdev;
2301 u16 devid;
2302
2303 if (dev->bus != &pci_bus_type)
2304 return;
2305
2306 pdev = to_pci_dev(dev);
2307
2308 devid = calc_devid(pdev->bus->number, pdev->devfn);
2309
2310 if (devid > 0)
2311 detach_device(domain, devid);
2312
2313 iommu = amd_iommu_rlookup_table[devid];
2314 if (!iommu)
2315 return;
2316
2317 iommu_queue_inv_dev_entry(iommu, devid);
2318 iommu_completion_wait(iommu);
2319}
2320
01106066
JR
2321static int amd_iommu_attach_device(struct iommu_domain *dom,
2322 struct device *dev)
2323{
2324 struct protection_domain *domain = dom->priv;
2325 struct protection_domain *old_domain;
2326 struct amd_iommu *iommu;
2327 struct pci_dev *pdev;
2328 u16 devid;
2329
2330 if (dev->bus != &pci_bus_type)
2331 return -EINVAL;
2332
2333 pdev = to_pci_dev(dev);
2334
2335 devid = calc_devid(pdev->bus->number, pdev->devfn);
2336
2337 if (devid >= amd_iommu_last_bdf ||
2338 devid != amd_iommu_alias_table[devid])
2339 return -EINVAL;
2340
2341 iommu = amd_iommu_rlookup_table[devid];
2342 if (!iommu)
2343 return -EINVAL;
2344
2345 old_domain = domain_for_device(devid);
2346 if (old_domain)
71ff3bca 2347 detach_device(old_domain, devid);
01106066
JR
2348
2349 attach_device(iommu, domain, devid);
2350
2351 iommu_completion_wait(iommu);
2352
2353 return 0;
2354}
2355
c6229ca6
JR
2356static int amd_iommu_map_range(struct iommu_domain *dom,
2357 unsigned long iova, phys_addr_t paddr,
2358 size_t size, int iommu_prot)
2359{
2360 struct protection_domain *domain = dom->priv;
2361 unsigned long i, npages = iommu_num_pages(paddr, size, PAGE_SIZE);
2362 int prot = 0;
2363 int ret;
2364
2365 if (iommu_prot & IOMMU_READ)
2366 prot |= IOMMU_PROT_IR;
2367 if (iommu_prot & IOMMU_WRITE)
2368 prot |= IOMMU_PROT_IW;
2369
2370 iova &= PAGE_MASK;
2371 paddr &= PAGE_MASK;
2372
2373 for (i = 0; i < npages; ++i) {
abdc5eb3 2374 ret = iommu_map_page(domain, iova, paddr, prot, PM_MAP_4k);
c6229ca6
JR
2375 if (ret)
2376 return ret;
2377
2378 iova += PAGE_SIZE;
2379 paddr += PAGE_SIZE;
2380 }
2381
2382 return 0;
2383}
2384
eb74ff6c
JR
2385static void amd_iommu_unmap_range(struct iommu_domain *dom,
2386 unsigned long iova, size_t size)
2387{
2388
2389 struct protection_domain *domain = dom->priv;
2390 unsigned long i, npages = iommu_num_pages(iova, size, PAGE_SIZE);
2391
2392 iova &= PAGE_MASK;
2393
2394 for (i = 0; i < npages; ++i) {
a6b256b4 2395 iommu_unmap_page(domain, iova, PM_MAP_4k);
eb74ff6c
JR
2396 iova += PAGE_SIZE;
2397 }
2398
601367d7 2399 iommu_flush_tlb_pde(domain);
eb74ff6c
JR
2400}
2401
645c4c8d
JR
2402static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2403 unsigned long iova)
2404{
2405 struct protection_domain *domain = dom->priv;
2406 unsigned long offset = iova & ~PAGE_MASK;
2407 phys_addr_t paddr;
2408 u64 *pte;
2409
a6b256b4 2410 pte = fetch_pte(domain, iova, PM_MAP_4k);
645c4c8d 2411
a6d41a40 2412 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
2413 return 0;
2414
2415 paddr = *pte & IOMMU_PAGE_MASK;
2416 paddr |= offset;
2417
2418 return paddr;
2419}
2420
dbb9fd86
SY
2421static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2422 unsigned long cap)
2423{
2424 return 0;
2425}
2426
26961efe
JR
2427static struct iommu_ops amd_iommu_ops = {
2428 .domain_init = amd_iommu_domain_init,
2429 .domain_destroy = amd_iommu_domain_destroy,
2430 .attach_dev = amd_iommu_attach_device,
2431 .detach_dev = amd_iommu_detach_device,
2432 .map = amd_iommu_map_range,
2433 .unmap = amd_iommu_unmap_range,
2434 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 2435 .domain_has_cap = amd_iommu_domain_has_cap,
26961efe
JR
2436};
2437
0feae533
JR
2438/*****************************************************************************
2439 *
2440 * The next functions do a basic initialization of IOMMU for pass through
2441 * mode
2442 *
2443 * In passthrough mode the IOMMU is initialized and enabled but not used for
2444 * DMA-API translation.
2445 *
2446 *****************************************************************************/
2447
2448int __init amd_iommu_init_passthrough(void)
2449{
2450 struct pci_dev *dev = NULL;
2451 u16 devid, devid2;
2452
2453 /* allocate passthroug domain */
2454 pt_domain = protection_domain_alloc();
2455 if (!pt_domain)
2456 return -ENOMEM;
2457
2458 pt_domain->mode |= PAGE_MODE_NONE;
2459
2460 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2461 struct amd_iommu *iommu;
2462
2463 devid = calc_devid(dev->bus->number, dev->devfn);
2464 if (devid > amd_iommu_last_bdf)
2465 continue;
2466
2467 devid2 = amd_iommu_alias_table[devid];
2468
2469 iommu = amd_iommu_rlookup_table[devid2];
2470 if (!iommu)
2471 continue;
2472
2473 __attach_device(iommu, pt_domain, devid);
2474 __attach_device(iommu, pt_domain, devid2);
2475 }
2476
2477 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
2478
2479 return 0;
2480}
This page took 0.348816 seconds and 5 git commands to generate.