x86/amd-iommu: Panic if IOMMU command buffer reset fails
[deliverable/linux.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715
JR
1/*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/gfp.h>
22#include <linux/bitops.h>
7f26508b 23#include <linux/debugfs.h>
b6c02715 24#include <linux/scatterlist.h>
51491367 25#include <linux/dma-mapping.h>
b6c02715 26#include <linux/iommu-helper.h>
c156e347 27#include <linux/iommu.h>
b6c02715 28#include <asm/proto.h>
46a7fa27 29#include <asm/iommu.h>
1d9b16d1 30#include <asm/gart.h>
b6c02715 31#include <asm/amd_iommu_types.h>
c6da992e 32#include <asm/amd_iommu.h>
b6c02715
JR
33
34#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
35
136f78a1
JR
36#define EXIT_LOOP_COUNT 10000000
37
b6c02715
JR
38static DEFINE_RWLOCK(amd_iommu_devtable_lock);
39
bd60b735
JR
40/* A list of preallocated protection domains */
41static LIST_HEAD(iommu_pd_list);
42static DEFINE_SPINLOCK(iommu_pd_list_lock);
43
26961efe
JR
44#ifdef CONFIG_IOMMU_API
45static struct iommu_ops amd_iommu_ops;
46#endif
47
431b2a20
JR
48/*
49 * general struct to manage commands send to an IOMMU
50 */
d6449536 51struct iommu_cmd {
b6c02715
JR
52 u32 data[4];
53};
54
bd0e5211
JR
55static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
56 struct unity_map_entry *e);
e275a2a0 57static struct dma_ops_domain *find_protection_domain(u16 devid);
8bda3092
JR
58static u64* alloc_pte(struct protection_domain *dom,
59 unsigned long address, u64
60 **pte_page, gfp_t gfp);
00cd122a
JR
61static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
62 unsigned long start_page,
63 unsigned int pages);
a345b23b 64static void reset_iommu_command_buffer(struct amd_iommu *iommu);
bd0e5211 65
c1eee67b
CW
66#ifndef BUS_NOTIFY_UNBOUND_DRIVER
67#define BUS_NOTIFY_UNBOUND_DRIVER 0x0005
68#endif
69
7f26508b
JR
70#ifdef CONFIG_AMD_IOMMU_STATS
71
72/*
73 * Initialization code for statistics collection
74 */
75
da49f6df 76DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 77DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 78DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 79DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 80DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 81DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 82DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 83DECLARE_STATS_COUNTER(cross_page);
f57d98ae 84DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 85DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 86DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 87DECLARE_STATS_COUNTER(total_map_requests);
da49f6df 88
7f26508b
JR
89static struct dentry *stats_dir;
90static struct dentry *de_isolate;
91static struct dentry *de_fflush;
92
93static void amd_iommu_stats_add(struct __iommu_counter *cnt)
94{
95 if (stats_dir == NULL)
96 return;
97
98 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
99 &cnt->value);
100}
101
102static void amd_iommu_stats_init(void)
103{
104 stats_dir = debugfs_create_dir("amd-iommu", NULL);
105 if (stats_dir == NULL)
106 return;
107
108 de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
109 (u32 *)&amd_iommu_isolate);
110
111 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
112 (u32 *)&amd_iommu_unmap_flush);
da49f6df
JR
113
114 amd_iommu_stats_add(&compl_wait);
0f2a86f2 115 amd_iommu_stats_add(&cnt_map_single);
146a6917 116 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 117 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 118 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 119 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 120 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 121 amd_iommu_stats_add(&cross_page);
f57d98ae 122 amd_iommu_stats_add(&domain_flush_single);
18811f55 123 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 124 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 125 amd_iommu_stats_add(&total_map_requests);
7f26508b
JR
126}
127
128#endif
129
431b2a20 130/* returns !0 if the IOMMU is caching non-present entries in its TLB */
4da70b9e
JR
131static int iommu_has_npcache(struct amd_iommu *iommu)
132{
ae9b9403 133 return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
4da70b9e
JR
134}
135
a80dc3e0
JR
136/****************************************************************************
137 *
138 * Interrupt handling functions
139 *
140 ****************************************************************************/
141
e3e59876
JR
142static void dump_dte_entry(u16 devid)
143{
144 int i;
145
146 for (i = 0; i < 8; ++i)
147 pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
148 amd_iommu_dev_table[devid].data[i]);
149}
150
945b4ac4
JR
151static void dump_command(unsigned long phys_addr)
152{
153 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
154 int i;
155
156 for (i = 0; i < 4; ++i)
157 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
158}
159
a345b23b 160static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4
JR
161{
162 u32 *event = __evt;
163 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
164 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
165 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
166 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
167 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
168
169 printk(KERN_ERR "AMD IOMMU: Event logged [");
170
171 switch (type) {
172 case EVENT_TYPE_ILL_DEV:
173 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
174 "address=0x%016llx flags=0x%04x]\n",
175 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
176 address, flags);
e3e59876 177 dump_dte_entry(devid);
90008ee4
JR
178 break;
179 case EVENT_TYPE_IO_FAULT:
180 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
181 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
182 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
183 domid, address, flags);
184 break;
185 case EVENT_TYPE_DEV_TAB_ERR:
186 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
187 "address=0x%016llx flags=0x%04x]\n",
188 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
189 address, flags);
190 break;
191 case EVENT_TYPE_PAGE_TAB_ERR:
192 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
193 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
194 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
195 domid, address, flags);
196 break;
197 case EVENT_TYPE_ILL_CMD:
198 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
a345b23b 199 reset_iommu_command_buffer(iommu);
945b4ac4 200 dump_command(address);
90008ee4
JR
201 break;
202 case EVENT_TYPE_CMD_HARD_ERR:
203 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
204 "flags=0x%04x]\n", address, flags);
205 break;
206 case EVENT_TYPE_IOTLB_INV_TO:
207 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
208 "address=0x%016llx]\n",
209 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
210 address);
211 break;
212 case EVENT_TYPE_INV_DEV_REQ:
213 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
214 "address=0x%016llx flags=0x%04x]\n",
215 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
216 address, flags);
217 break;
218 default:
219 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
220 }
221}
222
223static void iommu_poll_events(struct amd_iommu *iommu)
224{
225 u32 head, tail;
226 unsigned long flags;
227
228 spin_lock_irqsave(&iommu->lock, flags);
229
230 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
231 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
232
233 while (head != tail) {
a345b23b 234 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
235 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
236 }
237
238 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
239
240 spin_unlock_irqrestore(&iommu->lock, flags);
241}
242
a80dc3e0
JR
243irqreturn_t amd_iommu_int_handler(int irq, void *data)
244{
90008ee4
JR
245 struct amd_iommu *iommu;
246
3bd22172 247 for_each_iommu(iommu)
90008ee4
JR
248 iommu_poll_events(iommu);
249
250 return IRQ_HANDLED;
a80dc3e0
JR
251}
252
431b2a20
JR
253/****************************************************************************
254 *
255 * IOMMU command queuing functions
256 *
257 ****************************************************************************/
258
259/*
260 * Writes the command to the IOMMUs command buffer and informs the
261 * hardware about the new command. Must be called with iommu->lock held.
262 */
d6449536 263static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
264{
265 u32 tail, head;
266 u8 *target;
267
268 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
8a7c5ef3 269 target = iommu->cmd_buf + tail;
a19ae1ec
JR
270 memcpy_toio(target, cmd, sizeof(*cmd));
271 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
272 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
273 if (tail == head)
274 return -ENOMEM;
275 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
276
277 return 0;
278}
279
431b2a20
JR
280/*
281 * General queuing function for commands. Takes iommu->lock and calls
282 * __iommu_queue_command().
283 */
d6449536 284static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
285{
286 unsigned long flags;
287 int ret;
288
289 spin_lock_irqsave(&iommu->lock, flags);
290 ret = __iommu_queue_command(iommu, cmd);
09ee17eb 291 if (!ret)
0cfd7aa9 292 iommu->need_sync = true;
a19ae1ec
JR
293 spin_unlock_irqrestore(&iommu->lock, flags);
294
295 return ret;
296}
297
8d201968
JR
298/*
299 * This function waits until an IOMMU has completed a completion
300 * wait command
301 */
302static void __iommu_wait_for_completion(struct amd_iommu *iommu)
303{
304 int ready = 0;
305 unsigned status = 0;
306 unsigned long i = 0;
307
da49f6df
JR
308 INC_STATS_COUNTER(compl_wait);
309
8d201968
JR
310 while (!ready && (i < EXIT_LOOP_COUNT)) {
311 ++i;
312 /* wait for the bit to become one */
313 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
314 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
315 }
316
317 /* set bit back to zero */
318 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
319 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
320
321 if (unlikely(i == EXIT_LOOP_COUNT))
322 panic("AMD IOMMU: Completion wait loop failed\n");
323}
324
325/*
326 * This function queues a completion wait command into the command
327 * buffer of an IOMMU
328 */
329static int __iommu_completion_wait(struct amd_iommu *iommu)
330{
331 struct iommu_cmd cmd;
332
333 memset(&cmd, 0, sizeof(cmd));
334 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
335 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
336
337 return __iommu_queue_command(iommu, &cmd);
338}
339
431b2a20
JR
340/*
341 * This function is called whenever we need to ensure that the IOMMU has
342 * completed execution of all commands we sent. It sends a
343 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
344 * us about that by writing a value to a physical address we pass with
345 * the command.
346 */
a19ae1ec
JR
347static int iommu_completion_wait(struct amd_iommu *iommu)
348{
8d201968
JR
349 int ret = 0;
350 unsigned long flags;
a19ae1ec 351
7e4f88da
JR
352 spin_lock_irqsave(&iommu->lock, flags);
353
09ee17eb
JR
354 if (!iommu->need_sync)
355 goto out;
356
8d201968 357 ret = __iommu_completion_wait(iommu);
09ee17eb 358
0cfd7aa9 359 iommu->need_sync = false;
a19ae1ec
JR
360
361 if (ret)
7e4f88da 362 goto out;
a19ae1ec 363
8d201968 364 __iommu_wait_for_completion(iommu);
84df8175 365
7e4f88da
JR
366out:
367 spin_unlock_irqrestore(&iommu->lock, flags);
a19ae1ec
JR
368
369 return 0;
370}
371
431b2a20
JR
372/*
373 * Command send function for invalidating a device table entry
374 */
a19ae1ec
JR
375static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
376{
d6449536 377 struct iommu_cmd cmd;
ee2fa743 378 int ret;
a19ae1ec
JR
379
380 BUG_ON(iommu == NULL);
381
382 memset(&cmd, 0, sizeof(cmd));
383 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
384 cmd.data[0] = devid;
385
ee2fa743
JR
386 ret = iommu_queue_command(iommu, &cmd);
387
ee2fa743 388 return ret;
a19ae1ec
JR
389}
390
237b6f33
JR
391static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
392 u16 domid, int pde, int s)
393{
394 memset(cmd, 0, sizeof(*cmd));
395 address &= PAGE_MASK;
396 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
397 cmd->data[1] |= domid;
398 cmd->data[2] = lower_32_bits(address);
399 cmd->data[3] = upper_32_bits(address);
400 if (s) /* size bit - we flush more than one 4kb page */
401 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
402 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
403 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
404}
405
431b2a20
JR
406/*
407 * Generic command send function for invalidaing TLB entries
408 */
a19ae1ec
JR
409static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
410 u64 address, u16 domid, int pde, int s)
411{
d6449536 412 struct iommu_cmd cmd;
ee2fa743 413 int ret;
a19ae1ec 414
237b6f33 415 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
a19ae1ec 416
ee2fa743
JR
417 ret = iommu_queue_command(iommu, &cmd);
418
ee2fa743 419 return ret;
a19ae1ec
JR
420}
421
431b2a20
JR
422/*
423 * TLB invalidation function which is called from the mapping functions.
424 * It invalidates a single PTE if the range to flush is within a single
425 * page. Otherwise it flushes the whole TLB of the IOMMU.
426 */
a19ae1ec
JR
427static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
428 u64 address, size_t size)
429{
999ba417 430 int s = 0;
e3c449f5 431 unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
a19ae1ec
JR
432
433 address &= PAGE_MASK;
434
999ba417
JR
435 if (pages > 1) {
436 /*
437 * If we have to flush more than one page, flush all
438 * TLB entries for this domain
439 */
440 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
441 s = 1;
a19ae1ec
JR
442 }
443
999ba417
JR
444 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);
445
a19ae1ec
JR
446 return 0;
447}
b6c02715 448
1c655773
JR
449/* Flush the whole IO/TLB for a given protection domain */
450static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
451{
452 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
453
f57d98ae
JR
454 INC_STATS_COUNTER(domain_flush_single);
455
1c655773
JR
456 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
457}
458
42a49f96
CW
459/* Flush the whole IO/TLB for a given protection domain - including PDE */
460static void iommu_flush_tlb_pde(struct amd_iommu *iommu, u16 domid)
461{
462 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
463
464 INC_STATS_COUNTER(domain_flush_single);
465
466 iommu_queue_inv_iommu_pages(iommu, address, domid, 1, 1);
467}
468
43f49609 469/*
e394d72a 470 * This function flushes one domain on one IOMMU
43f49609 471 */
e394d72a 472static void flush_domain_on_iommu(struct amd_iommu *iommu, u16 domid)
43f49609 473{
43f49609 474 struct iommu_cmd cmd;
e394d72a 475 unsigned long flags;
18811f55 476
43f49609
JR
477 __iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
478 domid, 1, 1);
479
e394d72a
JR
480 spin_lock_irqsave(&iommu->lock, flags);
481 __iommu_queue_command(iommu, &cmd);
482 __iommu_completion_wait(iommu);
483 __iommu_wait_for_completion(iommu);
484 spin_unlock_irqrestore(&iommu->lock, flags);
43f49609 485}
43f49609 486
e394d72a 487static void flush_all_domains_on_iommu(struct amd_iommu *iommu)
bfd1be18
JR
488{
489 int i;
490
491 for (i = 1; i < MAX_DOMAIN_ID; ++i) {
492 if (!test_bit(i, amd_iommu_pd_alloc_bitmap))
493 continue;
e394d72a 494 flush_domain_on_iommu(iommu, i);
bfd1be18 495 }
e394d72a
JR
496
497}
498
499/*
500 * This function is used to flush the IO/TLB for a given protection domain
501 * on every IOMMU in the system
502 */
503static void iommu_flush_domain(u16 domid)
504{
505 struct amd_iommu *iommu;
506
507 INC_STATS_COUNTER(domain_flush_all);
508
509 for_each_iommu(iommu)
510 flush_domain_on_iommu(iommu, domid);
511}
512
513void amd_iommu_flush_all_domains(void)
514{
515 struct amd_iommu *iommu;
516
517 for_each_iommu(iommu)
518 flush_all_domains_on_iommu(iommu);
bfd1be18
JR
519}
520
d586d785
JR
521static void flush_all_devices_for_iommu(struct amd_iommu *iommu)
522{
523 int i;
524
525 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
526 if (iommu != amd_iommu_rlookup_table[i])
527 continue;
528
529 iommu_queue_inv_dev_entry(iommu, i);
530 iommu_completion_wait(iommu);
531 }
532}
533
7d7a110c
JR
534void amd_iommu_flush_all_devices(void)
535{
536 struct amd_iommu *iommu;
537 int i;
538
539 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
540 if (amd_iommu_pd_table[i] == NULL)
541 continue;
542
543 iommu = amd_iommu_rlookup_table[i];
544 if (!iommu)
545 continue;
546
547 iommu_queue_inv_dev_entry(iommu, i);
548 iommu_completion_wait(iommu);
549 }
550}
551
a345b23b
JR
552static void reset_iommu_command_buffer(struct amd_iommu *iommu)
553{
554 pr_err("AMD-Vi: Resetting IOMMU command buffer\n");
555
b26e81b8
JR
556 if (iommu->reset_in_progress)
557 panic("AMD-Vi: ILLEGAL_COMMAND_ERROR while resetting command buffer\n");
558
559 iommu->reset_in_progress = true;
560
a345b23b
JR
561 amd_iommu_reset_cmd_buffer(iommu);
562 flush_all_devices_for_iommu(iommu);
563 flush_all_domains_on_iommu(iommu);
b26e81b8
JR
564
565 iommu->reset_in_progress = false;
a345b23b
JR
566}
567
431b2a20
JR
568/****************************************************************************
569 *
570 * The functions below are used the create the page table mappings for
571 * unity mapped regions.
572 *
573 ****************************************************************************/
574
575/*
576 * Generic mapping functions. It maps a physical address into a DMA
577 * address space. It allocates the page table pages if necessary.
578 * In the future it can be extended to a generic mapping function
579 * supporting all features of AMD IOMMU page tables like level skipping
580 * and full 64 bit address spaces.
581 */
38e817fe
JR
582static int iommu_map_page(struct protection_domain *dom,
583 unsigned long bus_addr,
584 unsigned long phys_addr,
585 int prot)
bd0e5211 586{
8bda3092 587 u64 __pte, *pte;
bd0e5211
JR
588
589 bus_addr = PAGE_ALIGN(bus_addr);
bb9d4ff8 590 phys_addr = PAGE_ALIGN(phys_addr);
bd0e5211
JR
591
592 /* only support 512GB address spaces for now */
593 if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
594 return -EINVAL;
595
8bda3092 596 pte = alloc_pte(dom, bus_addr, NULL, GFP_KERNEL);
bd0e5211
JR
597
598 if (IOMMU_PTE_PRESENT(*pte))
599 return -EBUSY;
600
601 __pte = phys_addr | IOMMU_PTE_P;
602 if (prot & IOMMU_PROT_IR)
603 __pte |= IOMMU_PTE_IR;
604 if (prot & IOMMU_PROT_IW)
605 __pte |= IOMMU_PTE_IW;
606
607 *pte = __pte;
608
609 return 0;
610}
611
eb74ff6c
JR
612static void iommu_unmap_page(struct protection_domain *dom,
613 unsigned long bus_addr)
614{
615 u64 *pte;
616
617 pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];
618
619 if (!IOMMU_PTE_PRESENT(*pte))
620 return;
621
622 pte = IOMMU_PTE_PAGE(*pte);
623 pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
624
625 if (!IOMMU_PTE_PRESENT(*pte))
626 return;
627
628 pte = IOMMU_PTE_PAGE(*pte);
629 pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
630
631 *pte = 0;
632}
eb74ff6c 633
431b2a20
JR
634/*
635 * This function checks if a specific unity mapping entry is needed for
636 * this specific IOMMU.
637 */
bd0e5211
JR
638static int iommu_for_unity_map(struct amd_iommu *iommu,
639 struct unity_map_entry *entry)
640{
641 u16 bdf, i;
642
643 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
644 bdf = amd_iommu_alias_table[i];
645 if (amd_iommu_rlookup_table[bdf] == iommu)
646 return 1;
647 }
648
649 return 0;
650}
651
431b2a20
JR
652/*
653 * Init the unity mappings for a specific IOMMU in the system
654 *
655 * Basically iterates over all unity mapping entries and applies them to
656 * the default domain DMA of that IOMMU if necessary.
657 */
bd0e5211
JR
658static int iommu_init_unity_mappings(struct amd_iommu *iommu)
659{
660 struct unity_map_entry *entry;
661 int ret;
662
663 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
664 if (!iommu_for_unity_map(iommu, entry))
665 continue;
666 ret = dma_ops_unity_map(iommu->default_dom, entry);
667 if (ret)
668 return ret;
669 }
670
671 return 0;
672}
673
431b2a20
JR
674/*
675 * This function actually applies the mapping to the page table of the
676 * dma_ops domain.
677 */
bd0e5211
JR
678static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
679 struct unity_map_entry *e)
680{
681 u64 addr;
682 int ret;
683
684 for (addr = e->address_start; addr < e->address_end;
685 addr += PAGE_SIZE) {
38e817fe 686 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
bd0e5211
JR
687 if (ret)
688 return ret;
689 /*
690 * if unity mapping is in aperture range mark the page
691 * as allocated in the aperture
692 */
693 if (addr < dma_dom->aperture_size)
c3239567 694 __set_bit(addr >> PAGE_SHIFT,
384de729 695 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
696 }
697
698 return 0;
699}
700
431b2a20
JR
701/*
702 * Inits the unity mappings required for a specific device
703 */
bd0e5211
JR
704static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
705 u16 devid)
706{
707 struct unity_map_entry *e;
708 int ret;
709
710 list_for_each_entry(e, &amd_iommu_unity_map, list) {
711 if (!(devid >= e->devid_start && devid <= e->devid_end))
712 continue;
713 ret = dma_ops_unity_map(dma_dom, e);
714 if (ret)
715 return ret;
716 }
717
718 return 0;
719}
720
431b2a20
JR
721/****************************************************************************
722 *
723 * The next functions belong to the address allocator for the dma_ops
724 * interface functions. They work like the allocators in the other IOMMU
725 * drivers. Its basically a bitmap which marks the allocated pages in
726 * the aperture. Maybe it could be enhanced in the future to a more
727 * efficient allocator.
728 *
729 ****************************************************************************/
d3086444 730
431b2a20 731/*
384de729 732 * The address allocator core functions.
431b2a20
JR
733 *
734 * called with domain->lock held
735 */
384de729 736
00cd122a
JR
737/*
738 * This function checks if there is a PTE for a given dma address. If
739 * there is one, it returns the pointer to it.
740 */
741static u64* fetch_pte(struct protection_domain *domain,
742 unsigned long address)
743{
744 u64 *pte;
745
746 pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(address)];
747
748 if (!IOMMU_PTE_PRESENT(*pte))
749 return NULL;
750
751 pte = IOMMU_PTE_PAGE(*pte);
752 pte = &pte[IOMMU_PTE_L1_INDEX(address)];
753
754 if (!IOMMU_PTE_PRESENT(*pte))
755 return NULL;
756
757 pte = IOMMU_PTE_PAGE(*pte);
758 pte = &pte[IOMMU_PTE_L0_INDEX(address)];
759
760 return pte;
761}
762
9cabe89b
JR
763/*
764 * This function is used to add a new aperture range to an existing
765 * aperture in case of dma_ops domain allocation or address allocation
766 * failure.
767 */
00cd122a
JR
768static int alloc_new_range(struct amd_iommu *iommu,
769 struct dma_ops_domain *dma_dom,
9cabe89b
JR
770 bool populate, gfp_t gfp)
771{
772 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
00cd122a 773 int i;
9cabe89b 774
f5e9705c
JR
775#ifdef CONFIG_IOMMU_STRESS
776 populate = false;
777#endif
778
9cabe89b
JR
779 if (index >= APERTURE_MAX_RANGES)
780 return -ENOMEM;
781
782 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
783 if (!dma_dom->aperture[index])
784 return -ENOMEM;
785
786 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
787 if (!dma_dom->aperture[index]->bitmap)
788 goto out_free;
789
790 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
791
792 if (populate) {
793 unsigned long address = dma_dom->aperture_size;
794 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
795 u64 *pte, *pte_page;
796
797 for (i = 0; i < num_ptes; ++i) {
798 pte = alloc_pte(&dma_dom->domain, address,
799 &pte_page, gfp);
800 if (!pte)
801 goto out_free;
802
803 dma_dom->aperture[index]->pte_pages[i] = pte_page;
804
805 address += APERTURE_RANGE_SIZE / 64;
806 }
807 }
808
809 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
810
00cd122a
JR
811 /* Intialize the exclusion range if necessary */
812 if (iommu->exclusion_start &&
813 iommu->exclusion_start >= dma_dom->aperture[index]->offset &&
814 iommu->exclusion_start < dma_dom->aperture_size) {
815 unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
816 int pages = iommu_num_pages(iommu->exclusion_start,
817 iommu->exclusion_length,
818 PAGE_SIZE);
819 dma_ops_reserve_addresses(dma_dom, startpage, pages);
820 }
821
822 /*
823 * Check for areas already mapped as present in the new aperture
824 * range and mark those pages as reserved in the allocator. Such
825 * mappings may already exist as a result of requested unity
826 * mappings for devices.
827 */
828 for (i = dma_dom->aperture[index]->offset;
829 i < dma_dom->aperture_size;
830 i += PAGE_SIZE) {
831 u64 *pte = fetch_pte(&dma_dom->domain, i);
832 if (!pte || !IOMMU_PTE_PRESENT(*pte))
833 continue;
834
835 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
836 }
837
9cabe89b
JR
838 return 0;
839
840out_free:
841 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
842
843 kfree(dma_dom->aperture[index]);
844 dma_dom->aperture[index] = NULL;
845
846 return -ENOMEM;
847}
848
384de729
JR
849static unsigned long dma_ops_area_alloc(struct device *dev,
850 struct dma_ops_domain *dom,
851 unsigned int pages,
852 unsigned long align_mask,
853 u64 dma_mask,
854 unsigned long start)
855{
803b8cb4 856 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
857 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
858 int i = start >> APERTURE_RANGE_SHIFT;
859 unsigned long boundary_size;
860 unsigned long address = -1;
861 unsigned long limit;
862
803b8cb4
JR
863 next_bit >>= PAGE_SHIFT;
864
384de729
JR
865 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
866 PAGE_SIZE) >> PAGE_SHIFT;
867
868 for (;i < max_index; ++i) {
869 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
870
871 if (dom->aperture[i]->offset >= dma_mask)
872 break;
873
874 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
875 dma_mask >> PAGE_SHIFT);
876
877 address = iommu_area_alloc(dom->aperture[i]->bitmap,
878 limit, next_bit, pages, 0,
879 boundary_size, align_mask);
880 if (address != -1) {
881 address = dom->aperture[i]->offset +
882 (address << PAGE_SHIFT);
803b8cb4 883 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
884 break;
885 }
886
887 next_bit = 0;
888 }
889
890 return address;
891}
892
d3086444
JR
893static unsigned long dma_ops_alloc_addresses(struct device *dev,
894 struct dma_ops_domain *dom,
6d4f343f 895 unsigned int pages,
832a90c3
JR
896 unsigned long align_mask,
897 u64 dma_mask)
d3086444 898{
d3086444 899 unsigned long address;
d3086444 900
fe16f088
JR
901#ifdef CONFIG_IOMMU_STRESS
902 dom->next_address = 0;
903 dom->need_flush = true;
904#endif
d3086444 905
384de729 906 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 907 dma_mask, dom->next_address);
d3086444 908
1c655773 909 if (address == -1) {
803b8cb4 910 dom->next_address = 0;
384de729
JR
911 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
912 dma_mask, 0);
1c655773
JR
913 dom->need_flush = true;
914 }
d3086444 915
384de729 916 if (unlikely(address == -1))
d3086444
JR
917 address = bad_dma_address;
918
919 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
920
921 return address;
922}
923
431b2a20
JR
924/*
925 * The address free function.
926 *
927 * called with domain->lock held
928 */
d3086444
JR
929static void dma_ops_free_addresses(struct dma_ops_domain *dom,
930 unsigned long address,
931 unsigned int pages)
932{
384de729
JR
933 unsigned i = address >> APERTURE_RANGE_SHIFT;
934 struct aperture_range *range = dom->aperture[i];
80be308d 935
384de729
JR
936 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
937
47bccd6b
JR
938#ifdef CONFIG_IOMMU_STRESS
939 if (i < 4)
940 return;
941#endif
80be308d 942
803b8cb4 943 if (address >= dom->next_address)
80be308d 944 dom->need_flush = true;
384de729
JR
945
946 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 947
384de729
JR
948 iommu_area_free(range->bitmap, address, pages);
949
d3086444
JR
950}
951
431b2a20
JR
952/****************************************************************************
953 *
954 * The next functions belong to the domain allocation. A domain is
955 * allocated for every IOMMU as the default domain. If device isolation
956 * is enabled, every device get its own domain. The most important thing
957 * about domains is the page table mapping the DMA address space they
958 * contain.
959 *
960 ****************************************************************************/
961
ec487d1a
JR
962static u16 domain_id_alloc(void)
963{
964 unsigned long flags;
965 int id;
966
967 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
968 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
969 BUG_ON(id == 0);
970 if (id > 0 && id < MAX_DOMAIN_ID)
971 __set_bit(id, amd_iommu_pd_alloc_bitmap);
972 else
973 id = 0;
974 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
975
976 return id;
977}
978
a2acfb75
JR
979static void domain_id_free(int id)
980{
981 unsigned long flags;
982
983 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
984 if (id > 0 && id < MAX_DOMAIN_ID)
985 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
986 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
987}
a2acfb75 988
431b2a20
JR
989/*
990 * Used to reserve address ranges in the aperture (e.g. for exclusion
991 * ranges.
992 */
ec487d1a
JR
993static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
994 unsigned long start_page,
995 unsigned int pages)
996{
384de729 997 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
ec487d1a
JR
998
999 if (start_page + pages > last_page)
1000 pages = last_page - start_page;
1001
384de729
JR
1002 for (i = start_page; i < start_page + pages; ++i) {
1003 int index = i / APERTURE_RANGE_PAGES;
1004 int page = i % APERTURE_RANGE_PAGES;
1005 __set_bit(page, dom->aperture[index]->bitmap);
1006 }
ec487d1a
JR
1007}
1008
86db2e5d 1009static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
1010{
1011 int i, j;
1012 u64 *p1, *p2, *p3;
1013
86db2e5d 1014 p1 = domain->pt_root;
ec487d1a
JR
1015
1016 if (!p1)
1017 return;
1018
1019 for (i = 0; i < 512; ++i) {
1020 if (!IOMMU_PTE_PRESENT(p1[i]))
1021 continue;
1022
1023 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 1024 for (j = 0; j < 512; ++j) {
ec487d1a
JR
1025 if (!IOMMU_PTE_PRESENT(p2[j]))
1026 continue;
1027 p3 = IOMMU_PTE_PAGE(p2[j]);
1028 free_page((unsigned long)p3);
1029 }
1030
1031 free_page((unsigned long)p2);
1032 }
1033
1034 free_page((unsigned long)p1);
86db2e5d
JR
1035
1036 domain->pt_root = NULL;
ec487d1a
JR
1037}
1038
431b2a20
JR
1039/*
1040 * Free a domain, only used if something went wrong in the
1041 * allocation path and we need to free an already allocated page table
1042 */
ec487d1a
JR
1043static void dma_ops_domain_free(struct dma_ops_domain *dom)
1044{
384de729
JR
1045 int i;
1046
ec487d1a
JR
1047 if (!dom)
1048 return;
1049
86db2e5d 1050 free_pagetable(&dom->domain);
ec487d1a 1051
384de729
JR
1052 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1053 if (!dom->aperture[i])
1054 continue;
1055 free_page((unsigned long)dom->aperture[i]->bitmap);
1056 kfree(dom->aperture[i]);
1057 }
ec487d1a
JR
1058
1059 kfree(dom);
1060}
1061
431b2a20
JR
1062/*
1063 * Allocates a new protection domain usable for the dma_ops functions.
1064 * It also intializes the page table and the address allocator data
1065 * structures required for the dma_ops interface
1066 */
d9cfed92 1067static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
ec487d1a
JR
1068{
1069 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1070
1071 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1072 if (!dma_dom)
1073 return NULL;
1074
1075 spin_lock_init(&dma_dom->domain.lock);
1076
1077 dma_dom->domain.id = domain_id_alloc();
1078 if (dma_dom->domain.id == 0)
1079 goto free_dma_dom;
1080 dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1081 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1082 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
1083 dma_dom->domain.priv = dma_dom;
1084 if (!dma_dom->domain.pt_root)
1085 goto free_dma_dom;
ec487d1a 1086
1c655773 1087 dma_dom->need_flush = false;
bd60b735 1088 dma_dom->target_dev = 0xffff;
1c655773 1089
00cd122a 1090 if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL))
ec487d1a 1091 goto free_dma_dom;
ec487d1a 1092
431b2a20 1093 /*
ec487d1a
JR
1094 * mark the first page as allocated so we never return 0 as
1095 * a valid dma-address. So we can use 0 as error value
431b2a20 1096 */
384de729 1097 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 1098 dma_dom->next_address = 0;
ec487d1a 1099
ec487d1a
JR
1100
1101 return dma_dom;
1102
1103free_dma_dom:
1104 dma_ops_domain_free(dma_dom);
1105
1106 return NULL;
1107}
1108
5b28df6f
JR
1109/*
1110 * little helper function to check whether a given protection domain is a
1111 * dma_ops domain
1112 */
1113static bool dma_ops_domain(struct protection_domain *domain)
1114{
1115 return domain->flags & PD_DMA_OPS_MASK;
1116}
1117
431b2a20
JR
1118/*
1119 * Find out the protection domain structure for a given PCI device. This
1120 * will give us the pointer to the page table root for example.
1121 */
b20ac0d4
JR
1122static struct protection_domain *domain_for_device(u16 devid)
1123{
1124 struct protection_domain *dom;
1125 unsigned long flags;
1126
1127 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1128 dom = amd_iommu_pd_table[devid];
1129 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1130
1131 return dom;
1132}
1133
431b2a20
JR
1134/*
1135 * If a device is not yet associated with a domain, this function does
1136 * assigns it visible for the hardware
1137 */
f1179dc0
JR
1138static void attach_device(struct amd_iommu *iommu,
1139 struct protection_domain *domain,
1140 u16 devid)
b20ac0d4
JR
1141{
1142 unsigned long flags;
b20ac0d4
JR
1143 u64 pte_root = virt_to_phys(domain->pt_root);
1144
863c74eb
JR
1145 domain->dev_cnt += 1;
1146
38ddf41b
JR
1147 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1148 << DEV_ENTRY_MODE_SHIFT;
1149 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4
JR
1150
1151 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
38ddf41b
JR
1152 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1153 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
b20ac0d4
JR
1154 amd_iommu_dev_table[devid].data[2] = domain->id;
1155
1156 amd_iommu_pd_table[devid] = domain;
1157 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1158
42a49f96
CW
1159 /*
1160 * We might boot into a crash-kernel here. The crashed kernel
1161 * left the caches in the IOMMU dirty. So we have to flush
1162 * here to evict all dirty stuff.
1163 */
b20ac0d4 1164 iommu_queue_inv_dev_entry(iommu, devid);
42a49f96 1165 iommu_flush_tlb_pde(iommu, domain->id);
b20ac0d4
JR
1166}
1167
355bf553
JR
1168/*
1169 * Removes a device from a protection domain (unlocked)
1170 */
1171static void __detach_device(struct protection_domain *domain, u16 devid)
1172{
1173
1174 /* lock domain */
1175 spin_lock(&domain->lock);
1176
1177 /* remove domain from the lookup table */
1178 amd_iommu_pd_table[devid] = NULL;
1179
1180 /* remove entry from the device table seen by the hardware */
1181 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1182 amd_iommu_dev_table[devid].data[1] = 0;
1183 amd_iommu_dev_table[devid].data[2] = 0;
1184
1185 /* decrease reference counter */
1186 domain->dev_cnt -= 1;
1187
1188 /* ready */
1189 spin_unlock(&domain->lock);
1190}
1191
1192/*
1193 * Removes a device from a protection domain (with devtable_lock held)
1194 */
1195static void detach_device(struct protection_domain *domain, u16 devid)
1196{
1197 unsigned long flags;
1198
1199 /* lock device table */
1200 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1201 __detach_device(domain, devid);
1202 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1203}
e275a2a0
JR
1204
1205static int device_change_notifier(struct notifier_block *nb,
1206 unsigned long action, void *data)
1207{
1208 struct device *dev = data;
1209 struct pci_dev *pdev = to_pci_dev(dev);
1210 u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
1211 struct protection_domain *domain;
1212 struct dma_ops_domain *dma_domain;
1213 struct amd_iommu *iommu;
1ac4cbbc 1214 unsigned long flags;
e275a2a0
JR
1215
1216 if (devid > amd_iommu_last_bdf)
1217 goto out;
1218
1219 devid = amd_iommu_alias_table[devid];
1220
1221 iommu = amd_iommu_rlookup_table[devid];
1222 if (iommu == NULL)
1223 goto out;
1224
1225 domain = domain_for_device(devid);
1226
1227 if (domain && !dma_ops_domain(domain))
1228 WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
1229 "to a non-dma-ops domain\n", dev_name(dev));
1230
1231 switch (action) {
c1eee67b 1232 case BUS_NOTIFY_UNBOUND_DRIVER:
e275a2a0
JR
1233 if (!domain)
1234 goto out;
1235 detach_device(domain, devid);
1ac4cbbc
JR
1236 break;
1237 case BUS_NOTIFY_ADD_DEVICE:
1238 /* allocate a protection domain if a device is added */
1239 dma_domain = find_protection_domain(devid);
1240 if (dma_domain)
1241 goto out;
d9cfed92 1242 dma_domain = dma_ops_domain_alloc(iommu);
1ac4cbbc
JR
1243 if (!dma_domain)
1244 goto out;
1245 dma_domain->target_dev = devid;
1246
1247 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1248 list_add_tail(&dma_domain->list, &iommu_pd_list);
1249 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1250
e275a2a0
JR
1251 break;
1252 default:
1253 goto out;
1254 }
1255
1256 iommu_queue_inv_dev_entry(iommu, devid);
1257 iommu_completion_wait(iommu);
1258
1259out:
1260 return 0;
1261}
1262
b25ae679 1263static struct notifier_block device_nb = {
e275a2a0
JR
1264 .notifier_call = device_change_notifier,
1265};
355bf553 1266
431b2a20
JR
1267/*****************************************************************************
1268 *
1269 * The next functions belong to the dma_ops mapping/unmapping code.
1270 *
1271 *****************************************************************************/
1272
dbcc112e
JR
1273/*
1274 * This function checks if the driver got a valid device from the caller to
1275 * avoid dereferencing invalid pointers.
1276 */
1277static bool check_device(struct device *dev)
1278{
1279 if (!dev || !dev->dma_mask)
1280 return false;
1281
1282 return true;
1283}
1284
bd60b735
JR
1285/*
1286 * In this function the list of preallocated protection domains is traversed to
1287 * find the domain for a specific device
1288 */
1289static struct dma_ops_domain *find_protection_domain(u16 devid)
1290{
1291 struct dma_ops_domain *entry, *ret = NULL;
1292 unsigned long flags;
1293
1294 if (list_empty(&iommu_pd_list))
1295 return NULL;
1296
1297 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1298
1299 list_for_each_entry(entry, &iommu_pd_list, list) {
1300 if (entry->target_dev == devid) {
1301 ret = entry;
bd60b735
JR
1302 break;
1303 }
1304 }
1305
1306 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1307
1308 return ret;
1309}
1310
431b2a20
JR
1311/*
1312 * In the dma_ops path we only have the struct device. This function
1313 * finds the corresponding IOMMU, the protection domain and the
1314 * requestor id for a given device.
1315 * If the device is not yet associated with a domain this is also done
1316 * in this function.
1317 */
b20ac0d4
JR
1318static int get_device_resources(struct device *dev,
1319 struct amd_iommu **iommu,
1320 struct protection_domain **domain,
1321 u16 *bdf)
1322{
1323 struct dma_ops_domain *dma_dom;
1324 struct pci_dev *pcidev;
1325 u16 _bdf;
1326
dbcc112e
JR
1327 *iommu = NULL;
1328 *domain = NULL;
1329 *bdf = 0xffff;
1330
1331 if (dev->bus != &pci_bus_type)
1332 return 0;
b20ac0d4
JR
1333
1334 pcidev = to_pci_dev(dev);
d591b0a3 1335 _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
b20ac0d4 1336
431b2a20 1337 /* device not translated by any IOMMU in the system? */
dbcc112e 1338 if (_bdf > amd_iommu_last_bdf)
b20ac0d4 1339 return 0;
b20ac0d4
JR
1340
1341 *bdf = amd_iommu_alias_table[_bdf];
1342
1343 *iommu = amd_iommu_rlookup_table[*bdf];
1344 if (*iommu == NULL)
1345 return 0;
b20ac0d4
JR
1346 *domain = domain_for_device(*bdf);
1347 if (*domain == NULL) {
bd60b735
JR
1348 dma_dom = find_protection_domain(*bdf);
1349 if (!dma_dom)
1350 dma_dom = (*iommu)->default_dom;
b20ac0d4 1351 *domain = &dma_dom->domain;
f1179dc0 1352 attach_device(*iommu, *domain, *bdf);
e9a22a13
JR
1353 DUMP_printk("Using protection domain %d for device %s\n",
1354 (*domain)->id, dev_name(dev));
b20ac0d4
JR
1355 }
1356
f91ba190 1357 if (domain_for_device(_bdf) == NULL)
f1179dc0 1358 attach_device(*iommu, *domain, _bdf);
f91ba190 1359
b20ac0d4
JR
1360 return 1;
1361}
1362
8bda3092
JR
1363/*
1364 * If the pte_page is not yet allocated this function is called
1365 */
1366static u64* alloc_pte(struct protection_domain *dom,
1367 unsigned long address, u64 **pte_page, gfp_t gfp)
1368{
1369 u64 *pte, *page;
1370
1371 pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(address)];
1372
1373 if (!IOMMU_PTE_PRESENT(*pte)) {
1374 page = (u64 *)get_zeroed_page(gfp);
1375 if (!page)
1376 return NULL;
1377 *pte = IOMMU_L2_PDE(virt_to_phys(page));
1378 }
1379
1380 pte = IOMMU_PTE_PAGE(*pte);
1381 pte = &pte[IOMMU_PTE_L1_INDEX(address)];
1382
1383 if (!IOMMU_PTE_PRESENT(*pte)) {
1384 page = (u64 *)get_zeroed_page(gfp);
1385 if (!page)
1386 return NULL;
1387 *pte = IOMMU_L1_PDE(virt_to_phys(page));
1388 }
1389
1390 pte = IOMMU_PTE_PAGE(*pte);
1391
1392 if (pte_page)
1393 *pte_page = pte;
1394
1395 pte = &pte[IOMMU_PTE_L0_INDEX(address)];
1396
1397 return pte;
1398}
1399
1400/*
1401 * This function fetches the PTE for a given address in the aperture
1402 */
1403static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1404 unsigned long address)
1405{
384de729 1406 struct aperture_range *aperture;
8bda3092
JR
1407 u64 *pte, *pte_page;
1408
384de729
JR
1409 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1410 if (!aperture)
1411 return NULL;
1412
1413 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092
JR
1414 if (!pte) {
1415 pte = alloc_pte(&dom->domain, address, &pte_page, GFP_ATOMIC);
384de729
JR
1416 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1417 } else
1418 pte += IOMMU_PTE_L0_INDEX(address);
8bda3092
JR
1419
1420 return pte;
1421}
1422
431b2a20
JR
1423/*
1424 * This is the generic map function. It maps one 4kb page at paddr to
1425 * the given address in the DMA address space for the domain.
1426 */
cb76c322
JR
1427static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
1428 struct dma_ops_domain *dom,
1429 unsigned long address,
1430 phys_addr_t paddr,
1431 int direction)
1432{
1433 u64 *pte, __pte;
1434
1435 WARN_ON(address > dom->aperture_size);
1436
1437 paddr &= PAGE_MASK;
1438
8bda3092 1439 pte = dma_ops_get_pte(dom, address);
53812c11
JR
1440 if (!pte)
1441 return bad_dma_address;
cb76c322
JR
1442
1443 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1444
1445 if (direction == DMA_TO_DEVICE)
1446 __pte |= IOMMU_PTE_IR;
1447 else if (direction == DMA_FROM_DEVICE)
1448 __pte |= IOMMU_PTE_IW;
1449 else if (direction == DMA_BIDIRECTIONAL)
1450 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1451
1452 WARN_ON(*pte);
1453
1454 *pte = __pte;
1455
1456 return (dma_addr_t)address;
1457}
1458
431b2a20
JR
1459/*
1460 * The generic unmapping function for on page in the DMA address space.
1461 */
cb76c322
JR
1462static void dma_ops_domain_unmap(struct amd_iommu *iommu,
1463 struct dma_ops_domain *dom,
1464 unsigned long address)
1465{
384de729 1466 struct aperture_range *aperture;
cb76c322
JR
1467 u64 *pte;
1468
1469 if (address >= dom->aperture_size)
1470 return;
1471
384de729
JR
1472 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1473 if (!aperture)
1474 return;
1475
1476 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1477 if (!pte)
1478 return;
cb76c322 1479
cb76c322
JR
1480 pte += IOMMU_PTE_L0_INDEX(address);
1481
1482 WARN_ON(!*pte);
1483
1484 *pte = 0ULL;
1485}
1486
431b2a20
JR
1487/*
1488 * This function contains common code for mapping of a physically
24f81160
JR
1489 * contiguous memory region into DMA address space. It is used by all
1490 * mapping functions provided with this IOMMU driver.
431b2a20
JR
1491 * Must be called with the domain lock held.
1492 */
cb76c322
JR
1493static dma_addr_t __map_single(struct device *dev,
1494 struct amd_iommu *iommu,
1495 struct dma_ops_domain *dma_dom,
1496 phys_addr_t paddr,
1497 size_t size,
6d4f343f 1498 int dir,
832a90c3
JR
1499 bool align,
1500 u64 dma_mask)
cb76c322
JR
1501{
1502 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 1503 dma_addr_t address, start, ret;
cb76c322 1504 unsigned int pages;
6d4f343f 1505 unsigned long align_mask = 0;
cb76c322
JR
1506 int i;
1507
e3c449f5 1508 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
1509 paddr &= PAGE_MASK;
1510
8ecaf8f1
JR
1511 INC_STATS_COUNTER(total_map_requests);
1512
c1858976
JR
1513 if (pages > 1)
1514 INC_STATS_COUNTER(cross_page);
1515
6d4f343f
JR
1516 if (align)
1517 align_mask = (1UL << get_order(size)) - 1;
1518
11b83888 1519retry:
832a90c3
JR
1520 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1521 dma_mask);
11b83888
JR
1522 if (unlikely(address == bad_dma_address)) {
1523 /*
1524 * setting next_address here will let the address
1525 * allocator only scan the new allocated range in the
1526 * first run. This is a small optimization.
1527 */
1528 dma_dom->next_address = dma_dom->aperture_size;
1529
1530 if (alloc_new_range(iommu, dma_dom, false, GFP_ATOMIC))
1531 goto out;
1532
1533 /*
1534 * aperture was sucessfully enlarged by 128 MB, try
1535 * allocation again
1536 */
1537 goto retry;
1538 }
cb76c322
JR
1539
1540 start = address;
1541 for (i = 0; i < pages; ++i) {
53812c11
JR
1542 ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
1543 if (ret == bad_dma_address)
1544 goto out_unmap;
1545
cb76c322
JR
1546 paddr += PAGE_SIZE;
1547 start += PAGE_SIZE;
1548 }
1549 address += offset;
1550
5774f7c5
JR
1551 ADD_STATS_COUNTER(alloced_io_mem, size);
1552
afa9fdc2 1553 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1c655773
JR
1554 iommu_flush_tlb(iommu, dma_dom->domain.id);
1555 dma_dom->need_flush = false;
1556 } else if (unlikely(iommu_has_npcache(iommu)))
270cab24
JR
1557 iommu_flush_pages(iommu, dma_dom->domain.id, address, size);
1558
cb76c322
JR
1559out:
1560 return address;
53812c11
JR
1561
1562out_unmap:
1563
1564 for (--i; i >= 0; --i) {
1565 start -= PAGE_SIZE;
1566 dma_ops_domain_unmap(iommu, dma_dom, start);
1567 }
1568
1569 dma_ops_free_addresses(dma_dom, address, pages);
1570
1571 return bad_dma_address;
cb76c322
JR
1572}
1573
431b2a20
JR
1574/*
1575 * Does the reverse of the __map_single function. Must be called with
1576 * the domain lock held too
1577 */
cb76c322
JR
1578static void __unmap_single(struct amd_iommu *iommu,
1579 struct dma_ops_domain *dma_dom,
1580 dma_addr_t dma_addr,
1581 size_t size,
1582 int dir)
1583{
1584 dma_addr_t i, start;
1585 unsigned int pages;
1586
b8d9905d
JR
1587 if ((dma_addr == bad_dma_address) ||
1588 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
1589 return;
1590
e3c449f5 1591 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
1592 dma_addr &= PAGE_MASK;
1593 start = dma_addr;
1594
1595 for (i = 0; i < pages; ++i) {
1596 dma_ops_domain_unmap(iommu, dma_dom, start);
1597 start += PAGE_SIZE;
1598 }
1599
5774f7c5
JR
1600 SUB_STATS_COUNTER(alloced_io_mem, size);
1601
cb76c322 1602 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 1603
80be308d 1604 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1c655773 1605 iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
80be308d
JR
1606 dma_dom->need_flush = false;
1607 }
cb76c322
JR
1608}
1609
431b2a20
JR
1610/*
1611 * The exported map_single function for dma_ops.
1612 */
51491367
FT
1613static dma_addr_t map_page(struct device *dev, struct page *page,
1614 unsigned long offset, size_t size,
1615 enum dma_data_direction dir,
1616 struct dma_attrs *attrs)
4da70b9e
JR
1617{
1618 unsigned long flags;
1619 struct amd_iommu *iommu;
1620 struct protection_domain *domain;
1621 u16 devid;
1622 dma_addr_t addr;
832a90c3 1623 u64 dma_mask;
51491367 1624 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 1625
0f2a86f2
JR
1626 INC_STATS_COUNTER(cnt_map_single);
1627
dbcc112e
JR
1628 if (!check_device(dev))
1629 return bad_dma_address;
1630
832a90c3 1631 dma_mask = *dev->dma_mask;
4da70b9e
JR
1632
1633 get_device_resources(dev, &iommu, &domain, &devid);
1634
1635 if (iommu == NULL || domain == NULL)
431b2a20 1636 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1637 return (dma_addr_t)paddr;
1638
5b28df6f
JR
1639 if (!dma_ops_domain(domain))
1640 return bad_dma_address;
1641
4da70b9e 1642 spin_lock_irqsave(&domain->lock, flags);
832a90c3
JR
1643 addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
1644 dma_mask);
4da70b9e
JR
1645 if (addr == bad_dma_address)
1646 goto out;
1647
09ee17eb 1648 iommu_completion_wait(iommu);
4da70b9e
JR
1649
1650out:
1651 spin_unlock_irqrestore(&domain->lock, flags);
1652
1653 return addr;
1654}
1655
431b2a20
JR
1656/*
1657 * The exported unmap_single function for dma_ops.
1658 */
51491367
FT
1659static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
1660 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
1661{
1662 unsigned long flags;
1663 struct amd_iommu *iommu;
1664 struct protection_domain *domain;
1665 u16 devid;
1666
146a6917
JR
1667 INC_STATS_COUNTER(cnt_unmap_single);
1668
dbcc112e
JR
1669 if (!check_device(dev) ||
1670 !get_device_resources(dev, &iommu, &domain, &devid))
431b2a20 1671 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1672 return;
1673
5b28df6f
JR
1674 if (!dma_ops_domain(domain))
1675 return;
1676
4da70b9e
JR
1677 spin_lock_irqsave(&domain->lock, flags);
1678
1679 __unmap_single(iommu, domain->priv, dma_addr, size, dir);
1680
09ee17eb 1681 iommu_completion_wait(iommu);
4da70b9e
JR
1682
1683 spin_unlock_irqrestore(&domain->lock, flags);
1684}
1685
431b2a20
JR
1686/*
1687 * This is a special map_sg function which is used if we should map a
1688 * device which is not handled by an AMD IOMMU in the system.
1689 */
65b050ad
JR
1690static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1691 int nelems, int dir)
1692{
1693 struct scatterlist *s;
1694 int i;
1695
1696 for_each_sg(sglist, s, nelems, i) {
1697 s->dma_address = (dma_addr_t)sg_phys(s);
1698 s->dma_length = s->length;
1699 }
1700
1701 return nelems;
1702}
1703
431b2a20
JR
1704/*
1705 * The exported map_sg function for dma_ops (handles scatter-gather
1706 * lists).
1707 */
65b050ad 1708static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1709 int nelems, enum dma_data_direction dir,
1710 struct dma_attrs *attrs)
65b050ad
JR
1711{
1712 unsigned long flags;
1713 struct amd_iommu *iommu;
1714 struct protection_domain *domain;
1715 u16 devid;
1716 int i;
1717 struct scatterlist *s;
1718 phys_addr_t paddr;
1719 int mapped_elems = 0;
832a90c3 1720 u64 dma_mask;
65b050ad 1721
d03f067a
JR
1722 INC_STATS_COUNTER(cnt_map_sg);
1723
dbcc112e
JR
1724 if (!check_device(dev))
1725 return 0;
1726
832a90c3 1727 dma_mask = *dev->dma_mask;
65b050ad
JR
1728
1729 get_device_resources(dev, &iommu, &domain, &devid);
1730
1731 if (!iommu || !domain)
1732 return map_sg_no_iommu(dev, sglist, nelems, dir);
1733
5b28df6f
JR
1734 if (!dma_ops_domain(domain))
1735 return 0;
1736
65b050ad
JR
1737 spin_lock_irqsave(&domain->lock, flags);
1738
1739 for_each_sg(sglist, s, nelems, i) {
1740 paddr = sg_phys(s);
1741
1742 s->dma_address = __map_single(dev, iommu, domain->priv,
832a90c3
JR
1743 paddr, s->length, dir, false,
1744 dma_mask);
65b050ad
JR
1745
1746 if (s->dma_address) {
1747 s->dma_length = s->length;
1748 mapped_elems++;
1749 } else
1750 goto unmap;
65b050ad
JR
1751 }
1752
09ee17eb 1753 iommu_completion_wait(iommu);
65b050ad
JR
1754
1755out:
1756 spin_unlock_irqrestore(&domain->lock, flags);
1757
1758 return mapped_elems;
1759unmap:
1760 for_each_sg(sglist, s, mapped_elems, i) {
1761 if (s->dma_address)
1762 __unmap_single(iommu, domain->priv, s->dma_address,
1763 s->dma_length, dir);
1764 s->dma_address = s->dma_length = 0;
1765 }
1766
1767 mapped_elems = 0;
1768
1769 goto out;
1770}
1771
431b2a20
JR
1772/*
1773 * The exported map_sg function for dma_ops (handles scatter-gather
1774 * lists).
1775 */
65b050ad 1776static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1777 int nelems, enum dma_data_direction dir,
1778 struct dma_attrs *attrs)
65b050ad
JR
1779{
1780 unsigned long flags;
1781 struct amd_iommu *iommu;
1782 struct protection_domain *domain;
1783 struct scatterlist *s;
1784 u16 devid;
1785 int i;
1786
55877a6b
JR
1787 INC_STATS_COUNTER(cnt_unmap_sg);
1788
dbcc112e
JR
1789 if (!check_device(dev) ||
1790 !get_device_resources(dev, &iommu, &domain, &devid))
65b050ad
JR
1791 return;
1792
5b28df6f
JR
1793 if (!dma_ops_domain(domain))
1794 return;
1795
65b050ad
JR
1796 spin_lock_irqsave(&domain->lock, flags);
1797
1798 for_each_sg(sglist, s, nelems, i) {
1799 __unmap_single(iommu, domain->priv, s->dma_address,
1800 s->dma_length, dir);
65b050ad
JR
1801 s->dma_address = s->dma_length = 0;
1802 }
1803
09ee17eb 1804 iommu_completion_wait(iommu);
65b050ad
JR
1805
1806 spin_unlock_irqrestore(&domain->lock, flags);
1807}
1808
431b2a20
JR
1809/*
1810 * The exported alloc_coherent function for dma_ops.
1811 */
5d8b53cf
JR
1812static void *alloc_coherent(struct device *dev, size_t size,
1813 dma_addr_t *dma_addr, gfp_t flag)
1814{
1815 unsigned long flags;
1816 void *virt_addr;
1817 struct amd_iommu *iommu;
1818 struct protection_domain *domain;
1819 u16 devid;
1820 phys_addr_t paddr;
832a90c3 1821 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 1822
c8f0fb36
JR
1823 INC_STATS_COUNTER(cnt_alloc_coherent);
1824
dbcc112e
JR
1825 if (!check_device(dev))
1826 return NULL;
5d8b53cf 1827
13d9fead
FT
1828 if (!get_device_resources(dev, &iommu, &domain, &devid))
1829 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
5d8b53cf 1830
c97ac535 1831 flag |= __GFP_ZERO;
5d8b53cf
JR
1832 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1833 if (!virt_addr)
b25ae679 1834 return NULL;
5d8b53cf 1835
5d8b53cf
JR
1836 paddr = virt_to_phys(virt_addr);
1837
5d8b53cf
JR
1838 if (!iommu || !domain) {
1839 *dma_addr = (dma_addr_t)paddr;
1840 return virt_addr;
1841 }
1842
5b28df6f
JR
1843 if (!dma_ops_domain(domain))
1844 goto out_free;
1845
832a90c3
JR
1846 if (!dma_mask)
1847 dma_mask = *dev->dma_mask;
1848
5d8b53cf
JR
1849 spin_lock_irqsave(&domain->lock, flags);
1850
1851 *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
832a90c3 1852 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 1853
367d04c4
JS
1854 if (*dma_addr == bad_dma_address) {
1855 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 1856 goto out_free;
367d04c4 1857 }
5d8b53cf 1858
09ee17eb 1859 iommu_completion_wait(iommu);
5d8b53cf 1860
5d8b53cf
JR
1861 spin_unlock_irqrestore(&domain->lock, flags);
1862
1863 return virt_addr;
5b28df6f
JR
1864
1865out_free:
1866
1867 free_pages((unsigned long)virt_addr, get_order(size));
1868
1869 return NULL;
5d8b53cf
JR
1870}
1871
431b2a20
JR
1872/*
1873 * The exported free_coherent function for dma_ops.
431b2a20 1874 */
5d8b53cf
JR
1875static void free_coherent(struct device *dev, size_t size,
1876 void *virt_addr, dma_addr_t dma_addr)
1877{
1878 unsigned long flags;
1879 struct amd_iommu *iommu;
1880 struct protection_domain *domain;
1881 u16 devid;
1882
5d31ee7e
JR
1883 INC_STATS_COUNTER(cnt_free_coherent);
1884
dbcc112e
JR
1885 if (!check_device(dev))
1886 return;
1887
5d8b53cf
JR
1888 get_device_resources(dev, &iommu, &domain, &devid);
1889
1890 if (!iommu || !domain)
1891 goto free_mem;
1892
5b28df6f
JR
1893 if (!dma_ops_domain(domain))
1894 goto free_mem;
1895
5d8b53cf
JR
1896 spin_lock_irqsave(&domain->lock, flags);
1897
1898 __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 1899
09ee17eb 1900 iommu_completion_wait(iommu);
5d8b53cf
JR
1901
1902 spin_unlock_irqrestore(&domain->lock, flags);
1903
1904free_mem:
1905 free_pages((unsigned long)virt_addr, get_order(size));
1906}
1907
b39ba6ad
JR
1908/*
1909 * This function is called by the DMA layer to find out if we can handle a
1910 * particular device. It is part of the dma_ops.
1911 */
1912static int amd_iommu_dma_supported(struct device *dev, u64 mask)
1913{
1914 u16 bdf;
1915 struct pci_dev *pcidev;
1916
1917 /* No device or no PCI device */
1918 if (!dev || dev->bus != &pci_bus_type)
1919 return 0;
1920
1921 pcidev = to_pci_dev(dev);
1922
1923 bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1924
1925 /* Out of our scope? */
1926 if (bdf > amd_iommu_last_bdf)
1927 return 0;
1928
1929 return 1;
1930}
1931
c432f3df 1932/*
431b2a20
JR
1933 * The function for pre-allocating protection domains.
1934 *
c432f3df
JR
1935 * If the driver core informs the DMA layer if a driver grabs a device
1936 * we don't need to preallocate the protection domains anymore.
1937 * For now we have to.
1938 */
0e93dd88 1939static void prealloc_protection_domains(void)
c432f3df
JR
1940{
1941 struct pci_dev *dev = NULL;
1942 struct dma_ops_domain *dma_dom;
1943 struct amd_iommu *iommu;
c432f3df
JR
1944 u16 devid;
1945
1946 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
edcb34da 1947 devid = calc_devid(dev->bus->number, dev->devfn);
3a61ec38 1948 if (devid > amd_iommu_last_bdf)
c432f3df
JR
1949 continue;
1950 devid = amd_iommu_alias_table[devid];
1951 if (domain_for_device(devid))
1952 continue;
1953 iommu = amd_iommu_rlookup_table[devid];
1954 if (!iommu)
1955 continue;
d9cfed92 1956 dma_dom = dma_ops_domain_alloc(iommu);
c432f3df
JR
1957 if (!dma_dom)
1958 continue;
1959 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
1960 dma_dom->target_dev = devid;
1961
1962 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
1963 }
1964}
1965
160c1d8e 1966static struct dma_map_ops amd_iommu_dma_ops = {
6631ee9d
JR
1967 .alloc_coherent = alloc_coherent,
1968 .free_coherent = free_coherent,
51491367
FT
1969 .map_page = map_page,
1970 .unmap_page = unmap_page,
6631ee9d
JR
1971 .map_sg = map_sg,
1972 .unmap_sg = unmap_sg,
b39ba6ad 1973 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
1974};
1975
431b2a20
JR
1976/*
1977 * The function which clues the AMD IOMMU driver into dma_ops.
1978 */
6631ee9d
JR
1979int __init amd_iommu_init_dma_ops(void)
1980{
1981 struct amd_iommu *iommu;
6631ee9d
JR
1982 int ret;
1983
431b2a20
JR
1984 /*
1985 * first allocate a default protection domain for every IOMMU we
1986 * found in the system. Devices not assigned to any other
1987 * protection domain will be assigned to the default one.
1988 */
3bd22172 1989 for_each_iommu(iommu) {
d9cfed92 1990 iommu->default_dom = dma_ops_domain_alloc(iommu);
6631ee9d
JR
1991 if (iommu->default_dom == NULL)
1992 return -ENOMEM;
e2dc14a2 1993 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
1994 ret = iommu_init_unity_mappings(iommu);
1995 if (ret)
1996 goto free_domains;
1997 }
1998
431b2a20
JR
1999 /*
2000 * If device isolation is enabled, pre-allocate the protection
2001 * domains for each device.
2002 */
6631ee9d
JR
2003 if (amd_iommu_isolate)
2004 prealloc_protection_domains();
2005
2006 iommu_detected = 1;
2007 force_iommu = 1;
2008 bad_dma_address = 0;
92af4e29 2009#ifdef CONFIG_GART_IOMMU
6631ee9d
JR
2010 gart_iommu_aperture_disabled = 1;
2011 gart_iommu_aperture = 0;
92af4e29 2012#endif
6631ee9d 2013
431b2a20 2014 /* Make the driver finally visible to the drivers */
6631ee9d
JR
2015 dma_ops = &amd_iommu_dma_ops;
2016
26961efe 2017 register_iommu(&amd_iommu_ops);
26961efe 2018
e275a2a0
JR
2019 bus_register_notifier(&pci_bus_type, &device_nb);
2020
7f26508b
JR
2021 amd_iommu_stats_init();
2022
6631ee9d
JR
2023 return 0;
2024
2025free_domains:
2026
3bd22172 2027 for_each_iommu(iommu) {
6631ee9d
JR
2028 if (iommu->default_dom)
2029 dma_ops_domain_free(iommu->default_dom);
2030 }
2031
2032 return ret;
2033}
6d98cd80
JR
2034
2035/*****************************************************************************
2036 *
2037 * The following functions belong to the exported interface of AMD IOMMU
2038 *
2039 * This interface allows access to lower level functions of the IOMMU
2040 * like protection domain handling and assignement of devices to domains
2041 * which is not possible with the dma_ops interface.
2042 *
2043 *****************************************************************************/
2044
6d98cd80
JR
2045static void cleanup_domain(struct protection_domain *domain)
2046{
2047 unsigned long flags;
2048 u16 devid;
2049
2050 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2051
2052 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
2053 if (amd_iommu_pd_table[devid] == domain)
2054 __detach_device(domain, devid);
2055
2056 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2057}
2058
c156e347
JR
2059static int amd_iommu_domain_init(struct iommu_domain *dom)
2060{
2061 struct protection_domain *domain;
2062
2063 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2064 if (!domain)
2065 return -ENOMEM;
2066
2067 spin_lock_init(&domain->lock);
2068 domain->mode = PAGE_MODE_3_LEVEL;
2069 domain->id = domain_id_alloc();
2070 if (!domain->id)
2071 goto out_free;
2072 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2073 if (!domain->pt_root)
2074 goto out_free;
2075
2076 dom->priv = domain;
2077
2078 return 0;
2079
2080out_free:
2081 kfree(domain);
2082
2083 return -ENOMEM;
2084}
2085
98383fc3
JR
2086static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2087{
2088 struct protection_domain *domain = dom->priv;
2089
2090 if (!domain)
2091 return;
2092
2093 if (domain->dev_cnt > 0)
2094 cleanup_domain(domain);
2095
2096 BUG_ON(domain->dev_cnt != 0);
2097
2098 free_pagetable(domain);
2099
2100 domain_id_free(domain->id);
2101
2102 kfree(domain);
2103
2104 dom->priv = NULL;
2105}
2106
684f2888
JR
2107static void amd_iommu_detach_device(struct iommu_domain *dom,
2108 struct device *dev)
2109{
2110 struct protection_domain *domain = dom->priv;
2111 struct amd_iommu *iommu;
2112 struct pci_dev *pdev;
2113 u16 devid;
2114
2115 if (dev->bus != &pci_bus_type)
2116 return;
2117
2118 pdev = to_pci_dev(dev);
2119
2120 devid = calc_devid(pdev->bus->number, pdev->devfn);
2121
2122 if (devid > 0)
2123 detach_device(domain, devid);
2124
2125 iommu = amd_iommu_rlookup_table[devid];
2126 if (!iommu)
2127 return;
2128
2129 iommu_queue_inv_dev_entry(iommu, devid);
2130 iommu_completion_wait(iommu);
2131}
2132
01106066
JR
2133static int amd_iommu_attach_device(struct iommu_domain *dom,
2134 struct device *dev)
2135{
2136 struct protection_domain *domain = dom->priv;
2137 struct protection_domain *old_domain;
2138 struct amd_iommu *iommu;
2139 struct pci_dev *pdev;
2140 u16 devid;
2141
2142 if (dev->bus != &pci_bus_type)
2143 return -EINVAL;
2144
2145 pdev = to_pci_dev(dev);
2146
2147 devid = calc_devid(pdev->bus->number, pdev->devfn);
2148
2149 if (devid >= amd_iommu_last_bdf ||
2150 devid != amd_iommu_alias_table[devid])
2151 return -EINVAL;
2152
2153 iommu = amd_iommu_rlookup_table[devid];
2154 if (!iommu)
2155 return -EINVAL;
2156
2157 old_domain = domain_for_device(devid);
2158 if (old_domain)
71ff3bca 2159 detach_device(old_domain, devid);
01106066
JR
2160
2161 attach_device(iommu, domain, devid);
2162
2163 iommu_completion_wait(iommu);
2164
2165 return 0;
2166}
2167
c6229ca6
JR
2168static int amd_iommu_map_range(struct iommu_domain *dom,
2169 unsigned long iova, phys_addr_t paddr,
2170 size_t size, int iommu_prot)
2171{
2172 struct protection_domain *domain = dom->priv;
2173 unsigned long i, npages = iommu_num_pages(paddr, size, PAGE_SIZE);
2174 int prot = 0;
2175 int ret;
2176
2177 if (iommu_prot & IOMMU_READ)
2178 prot |= IOMMU_PROT_IR;
2179 if (iommu_prot & IOMMU_WRITE)
2180 prot |= IOMMU_PROT_IW;
2181
2182 iova &= PAGE_MASK;
2183 paddr &= PAGE_MASK;
2184
2185 for (i = 0; i < npages; ++i) {
2186 ret = iommu_map_page(domain, iova, paddr, prot);
2187 if (ret)
2188 return ret;
2189
2190 iova += PAGE_SIZE;
2191 paddr += PAGE_SIZE;
2192 }
2193
2194 return 0;
2195}
2196
eb74ff6c
JR
2197static void amd_iommu_unmap_range(struct iommu_domain *dom,
2198 unsigned long iova, size_t size)
2199{
2200
2201 struct protection_domain *domain = dom->priv;
2202 unsigned long i, npages = iommu_num_pages(iova, size, PAGE_SIZE);
2203
2204 iova &= PAGE_MASK;
2205
2206 for (i = 0; i < npages; ++i) {
2207 iommu_unmap_page(domain, iova);
2208 iova += PAGE_SIZE;
2209 }
2210
2211 iommu_flush_domain(domain->id);
2212}
2213
645c4c8d
JR
2214static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2215 unsigned long iova)
2216{
2217 struct protection_domain *domain = dom->priv;
2218 unsigned long offset = iova & ~PAGE_MASK;
2219 phys_addr_t paddr;
2220 u64 *pte;
2221
2222 pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(iova)];
2223
2224 if (!IOMMU_PTE_PRESENT(*pte))
2225 return 0;
2226
2227 pte = IOMMU_PTE_PAGE(*pte);
2228 pte = &pte[IOMMU_PTE_L1_INDEX(iova)];
2229
2230 if (!IOMMU_PTE_PRESENT(*pte))
2231 return 0;
2232
2233 pte = IOMMU_PTE_PAGE(*pte);
2234 pte = &pte[IOMMU_PTE_L0_INDEX(iova)];
2235
2236 if (!IOMMU_PTE_PRESENT(*pte))
2237 return 0;
2238
2239 paddr = *pte & IOMMU_PAGE_MASK;
2240 paddr |= offset;
2241
2242 return paddr;
2243}
2244
dbb9fd86
SY
2245static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2246 unsigned long cap)
2247{
2248 return 0;
2249}
2250
26961efe
JR
2251static struct iommu_ops amd_iommu_ops = {
2252 .domain_init = amd_iommu_domain_init,
2253 .domain_destroy = amd_iommu_domain_destroy,
2254 .attach_dev = amd_iommu_attach_device,
2255 .detach_dev = amd_iommu_detach_device,
2256 .map = amd_iommu_map_range,
2257 .unmap = amd_iommu_unmap_range,
2258 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 2259 .domain_has_cap = amd_iommu_domain_has_cap,
26961efe
JR
2260};
2261
This page took 0.301679 seconds and 5 git commands to generate.