x86/amd-iommu: Use __iommu_flush_pages for tlb flushes
[deliverable/linux.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715 1/*
bf3118c1 2 * Copyright (C) 2007-2009 Advanced Micro Devices, Inc.
b6c02715
JR
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/gfp.h>
22#include <linux/bitops.h>
7f26508b 23#include <linux/debugfs.h>
b6c02715 24#include <linux/scatterlist.h>
51491367 25#include <linux/dma-mapping.h>
b6c02715 26#include <linux/iommu-helper.h>
c156e347 27#include <linux/iommu.h>
b6c02715 28#include <asm/proto.h>
46a7fa27 29#include <asm/iommu.h>
1d9b16d1 30#include <asm/gart.h>
6a9401a7 31#include <asm/amd_iommu_proto.h>
b6c02715 32#include <asm/amd_iommu_types.h>
c6da992e 33#include <asm/amd_iommu.h>
b6c02715
JR
34
35#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
36
136f78a1
JR
37#define EXIT_LOOP_COUNT 10000000
38
b6c02715
JR
39static DEFINE_RWLOCK(amd_iommu_devtable_lock);
40
bd60b735
JR
41/* A list of preallocated protection domains */
42static LIST_HEAD(iommu_pd_list);
43static DEFINE_SPINLOCK(iommu_pd_list_lock);
44
0feae533
JR
45/*
46 * Domain for untranslated devices - only allocated
47 * if iommu=pt passed on kernel cmd line.
48 */
49static struct protection_domain *pt_domain;
50
26961efe 51static struct iommu_ops amd_iommu_ops;
26961efe 52
431b2a20
JR
53/*
54 * general struct to manage commands send to an IOMMU
55 */
d6449536 56struct iommu_cmd {
b6c02715
JR
57 u32 data[4];
58};
59
bd0e5211
JR
60static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
61 struct unity_map_entry *e);
e275a2a0 62static struct dma_ops_domain *find_protection_domain(u16 devid);
8bc3e127 63static u64 *alloc_pte(struct protection_domain *domain,
abdc5eb3
JR
64 unsigned long address, int end_lvl,
65 u64 **pte_page, gfp_t gfp);
00cd122a
JR
66static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
67 unsigned long start_page,
68 unsigned int pages);
a345b23b 69static void reset_iommu_command_buffer(struct amd_iommu *iommu);
9355a081 70static u64 *fetch_pte(struct protection_domain *domain,
a6b256b4 71 unsigned long address, int map_size);
04bfdd84 72static void update_domain(struct protection_domain *domain);
c1eee67b 73
7f26508b
JR
74#ifdef CONFIG_AMD_IOMMU_STATS
75
76/*
77 * Initialization code for statistics collection
78 */
79
da49f6df 80DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 81DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 82DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 83DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 84DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 85DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 86DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 87DECLARE_STATS_COUNTER(cross_page);
f57d98ae 88DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 89DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 90DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 91DECLARE_STATS_COUNTER(total_map_requests);
da49f6df 92
7f26508b
JR
93static struct dentry *stats_dir;
94static struct dentry *de_isolate;
95static struct dentry *de_fflush;
96
97static void amd_iommu_stats_add(struct __iommu_counter *cnt)
98{
99 if (stats_dir == NULL)
100 return;
101
102 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
103 &cnt->value);
104}
105
106static void amd_iommu_stats_init(void)
107{
108 stats_dir = debugfs_create_dir("amd-iommu", NULL);
109 if (stats_dir == NULL)
110 return;
111
112 de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
113 (u32 *)&amd_iommu_isolate);
114
115 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
116 (u32 *)&amd_iommu_unmap_flush);
da49f6df
JR
117
118 amd_iommu_stats_add(&compl_wait);
0f2a86f2 119 amd_iommu_stats_add(&cnt_map_single);
146a6917 120 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 121 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 122 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 123 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 124 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 125 amd_iommu_stats_add(&cross_page);
f57d98ae 126 amd_iommu_stats_add(&domain_flush_single);
18811f55 127 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 128 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 129 amd_iommu_stats_add(&total_map_requests);
7f26508b
JR
130}
131
132#endif
133
431b2a20 134/* returns !0 if the IOMMU is caching non-present entries in its TLB */
4da70b9e
JR
135static int iommu_has_npcache(struct amd_iommu *iommu)
136{
ae9b9403 137 return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
4da70b9e
JR
138}
139
a80dc3e0
JR
140/****************************************************************************
141 *
142 * Interrupt handling functions
143 *
144 ****************************************************************************/
145
e3e59876
JR
146static void dump_dte_entry(u16 devid)
147{
148 int i;
149
150 for (i = 0; i < 8; ++i)
151 pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
152 amd_iommu_dev_table[devid].data[i]);
153}
154
945b4ac4
JR
155static void dump_command(unsigned long phys_addr)
156{
157 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
158 int i;
159
160 for (i = 0; i < 4; ++i)
161 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
162}
163
a345b23b 164static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4
JR
165{
166 u32 *event = __evt;
167 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
168 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
169 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
170 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
171 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
172
4c6f40d4 173 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
174
175 switch (type) {
176 case EVENT_TYPE_ILL_DEV:
177 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
178 "address=0x%016llx flags=0x%04x]\n",
179 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
180 address, flags);
e3e59876 181 dump_dte_entry(devid);
90008ee4
JR
182 break;
183 case EVENT_TYPE_IO_FAULT:
184 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
185 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
186 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
187 domid, address, flags);
188 break;
189 case EVENT_TYPE_DEV_TAB_ERR:
190 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
191 "address=0x%016llx flags=0x%04x]\n",
192 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
193 address, flags);
194 break;
195 case EVENT_TYPE_PAGE_TAB_ERR:
196 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
197 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
198 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
199 domid, address, flags);
200 break;
201 case EVENT_TYPE_ILL_CMD:
202 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
a345b23b 203 reset_iommu_command_buffer(iommu);
945b4ac4 204 dump_command(address);
90008ee4
JR
205 break;
206 case EVENT_TYPE_CMD_HARD_ERR:
207 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
208 "flags=0x%04x]\n", address, flags);
209 break;
210 case EVENT_TYPE_IOTLB_INV_TO:
211 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
212 "address=0x%016llx]\n",
213 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
214 address);
215 break;
216 case EVENT_TYPE_INV_DEV_REQ:
217 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
218 "address=0x%016llx flags=0x%04x]\n",
219 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
220 address, flags);
221 break;
222 default:
223 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
224 }
225}
226
227static void iommu_poll_events(struct amd_iommu *iommu)
228{
229 u32 head, tail;
230 unsigned long flags;
231
232 spin_lock_irqsave(&iommu->lock, flags);
233
234 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
235 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
236
237 while (head != tail) {
a345b23b 238 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
239 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
240 }
241
242 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
243
244 spin_unlock_irqrestore(&iommu->lock, flags);
245}
246
a80dc3e0
JR
247irqreturn_t amd_iommu_int_handler(int irq, void *data)
248{
90008ee4
JR
249 struct amd_iommu *iommu;
250
3bd22172 251 for_each_iommu(iommu)
90008ee4
JR
252 iommu_poll_events(iommu);
253
254 return IRQ_HANDLED;
a80dc3e0
JR
255}
256
431b2a20
JR
257/****************************************************************************
258 *
259 * IOMMU command queuing functions
260 *
261 ****************************************************************************/
262
263/*
264 * Writes the command to the IOMMUs command buffer and informs the
265 * hardware about the new command. Must be called with iommu->lock held.
266 */
d6449536 267static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
268{
269 u32 tail, head;
270 u8 *target;
271
272 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
8a7c5ef3 273 target = iommu->cmd_buf + tail;
a19ae1ec
JR
274 memcpy_toio(target, cmd, sizeof(*cmd));
275 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
276 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
277 if (tail == head)
278 return -ENOMEM;
279 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
280
281 return 0;
282}
283
431b2a20
JR
284/*
285 * General queuing function for commands. Takes iommu->lock and calls
286 * __iommu_queue_command().
287 */
d6449536 288static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
289{
290 unsigned long flags;
291 int ret;
292
293 spin_lock_irqsave(&iommu->lock, flags);
294 ret = __iommu_queue_command(iommu, cmd);
09ee17eb 295 if (!ret)
0cfd7aa9 296 iommu->need_sync = true;
a19ae1ec
JR
297 spin_unlock_irqrestore(&iommu->lock, flags);
298
299 return ret;
300}
301
8d201968
JR
302/*
303 * This function waits until an IOMMU has completed a completion
304 * wait command
305 */
306static void __iommu_wait_for_completion(struct amd_iommu *iommu)
307{
308 int ready = 0;
309 unsigned status = 0;
310 unsigned long i = 0;
311
da49f6df
JR
312 INC_STATS_COUNTER(compl_wait);
313
8d201968
JR
314 while (!ready && (i < EXIT_LOOP_COUNT)) {
315 ++i;
316 /* wait for the bit to become one */
317 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
318 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
319 }
320
321 /* set bit back to zero */
322 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
323 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
324
6a1eddd2
JR
325 if (unlikely(i == EXIT_LOOP_COUNT)) {
326 spin_unlock(&iommu->lock);
327 reset_iommu_command_buffer(iommu);
328 spin_lock(&iommu->lock);
329 }
8d201968
JR
330}
331
332/*
333 * This function queues a completion wait command into the command
334 * buffer of an IOMMU
335 */
336static int __iommu_completion_wait(struct amd_iommu *iommu)
337{
338 struct iommu_cmd cmd;
339
340 memset(&cmd, 0, sizeof(cmd));
341 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
342 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
343
344 return __iommu_queue_command(iommu, &cmd);
345}
346
431b2a20
JR
347/*
348 * This function is called whenever we need to ensure that the IOMMU has
349 * completed execution of all commands we sent. It sends a
350 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
351 * us about that by writing a value to a physical address we pass with
352 * the command.
353 */
a19ae1ec
JR
354static int iommu_completion_wait(struct amd_iommu *iommu)
355{
8d201968
JR
356 int ret = 0;
357 unsigned long flags;
a19ae1ec 358
7e4f88da
JR
359 spin_lock_irqsave(&iommu->lock, flags);
360
09ee17eb
JR
361 if (!iommu->need_sync)
362 goto out;
363
8d201968 364 ret = __iommu_completion_wait(iommu);
09ee17eb 365
0cfd7aa9 366 iommu->need_sync = false;
a19ae1ec
JR
367
368 if (ret)
7e4f88da 369 goto out;
a19ae1ec 370
8d201968 371 __iommu_wait_for_completion(iommu);
84df8175 372
7e4f88da
JR
373out:
374 spin_unlock_irqrestore(&iommu->lock, flags);
a19ae1ec
JR
375
376 return 0;
377}
378
0518a3a4
JR
379static void iommu_flush_complete(struct protection_domain *domain)
380{
381 int i;
382
383 for (i = 0; i < amd_iommus_present; ++i) {
384 if (!domain->dev_iommu[i])
385 continue;
386
387 /*
388 * Devices of this domain are behind this IOMMU
389 * We need to wait for completion of all commands.
390 */
391 iommu_completion_wait(amd_iommus[i]);
392 }
393}
394
431b2a20
JR
395/*
396 * Command send function for invalidating a device table entry
397 */
a19ae1ec
JR
398static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
399{
d6449536 400 struct iommu_cmd cmd;
ee2fa743 401 int ret;
a19ae1ec
JR
402
403 BUG_ON(iommu == NULL);
404
405 memset(&cmd, 0, sizeof(cmd));
406 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
407 cmd.data[0] = devid;
408
ee2fa743
JR
409 ret = iommu_queue_command(iommu, &cmd);
410
ee2fa743 411 return ret;
a19ae1ec
JR
412}
413
237b6f33
JR
414static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
415 u16 domid, int pde, int s)
416{
417 memset(cmd, 0, sizeof(*cmd));
418 address &= PAGE_MASK;
419 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
420 cmd->data[1] |= domid;
421 cmd->data[2] = lower_32_bits(address);
422 cmd->data[3] = upper_32_bits(address);
423 if (s) /* size bit - we flush more than one 4kb page */
424 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
425 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
426 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
427}
428
431b2a20
JR
429/*
430 * Generic command send function for invalidaing TLB entries
431 */
a19ae1ec
JR
432static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
433 u64 address, u16 domid, int pde, int s)
434{
d6449536 435 struct iommu_cmd cmd;
ee2fa743 436 int ret;
a19ae1ec 437
237b6f33 438 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
a19ae1ec 439
ee2fa743
JR
440 ret = iommu_queue_command(iommu, &cmd);
441
ee2fa743 442 return ret;
a19ae1ec
JR
443}
444
431b2a20
JR
445/*
446 * TLB invalidation function which is called from the mapping functions.
447 * It invalidates a single PTE if the range to flush is within a single
448 * page. Otherwise it flushes the whole TLB of the IOMMU.
449 */
6de8ad9b
JR
450static void __iommu_flush_pages(struct protection_domain *domain,
451 u64 address, size_t size, int pde)
a19ae1ec 452{
6de8ad9b 453 int s = 0, i;
dcd1e92e 454 unsigned long pages = iommu_num_pages(address, size, PAGE_SIZE);
a19ae1ec
JR
455
456 address &= PAGE_MASK;
457
999ba417
JR
458 if (pages > 1) {
459 /*
460 * If we have to flush more than one page, flush all
461 * TLB entries for this domain
462 */
463 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
464 s = 1;
a19ae1ec
JR
465 }
466
999ba417 467
6de8ad9b
JR
468 for (i = 0; i < amd_iommus_present; ++i) {
469 if (!domain->dev_iommu[i])
470 continue;
471
472 /*
473 * Devices of this domain are behind this IOMMU
474 * We need a TLB flush
475 */
476 iommu_queue_inv_iommu_pages(amd_iommus[i], address,
477 domain->id, pde, s);
478 }
479
480 return;
481}
482
483static void iommu_flush_pages(struct protection_domain *domain,
484 u64 address, size_t size)
485{
486 __iommu_flush_pages(domain, address, size, 0);
a19ae1ec 487}
b6c02715 488
1c655773 489/* Flush the whole IO/TLB for a given protection domain */
dcd1e92e 490static void iommu_flush_tlb(struct protection_domain *domain)
1c655773 491{
dcd1e92e 492 __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
493}
494
42a49f96 495/* Flush the whole IO/TLB for a given protection domain - including PDE */
dcd1e92e 496static void iommu_flush_tlb_pde(struct protection_domain *domain)
42a49f96 497{
dcd1e92e 498 __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
499}
500
43f49609 501/*
e394d72a 502 * This function flushes one domain on one IOMMU
43f49609 503 */
e394d72a 504static void flush_domain_on_iommu(struct amd_iommu *iommu, u16 domid)
43f49609 505{
43f49609 506 struct iommu_cmd cmd;
e394d72a 507 unsigned long flags;
18811f55 508
43f49609
JR
509 __iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
510 domid, 1, 1);
511
e394d72a
JR
512 spin_lock_irqsave(&iommu->lock, flags);
513 __iommu_queue_command(iommu, &cmd);
514 __iommu_completion_wait(iommu);
515 __iommu_wait_for_completion(iommu);
516 spin_unlock_irqrestore(&iommu->lock, flags);
43f49609 517}
43f49609 518
e394d72a 519static void flush_all_domains_on_iommu(struct amd_iommu *iommu)
bfd1be18
JR
520{
521 int i;
522
523 for (i = 1; i < MAX_DOMAIN_ID; ++i) {
524 if (!test_bit(i, amd_iommu_pd_alloc_bitmap))
525 continue;
e394d72a 526 flush_domain_on_iommu(iommu, i);
bfd1be18 527 }
e394d72a
JR
528
529}
530
43f49609
JR
531/*
532 * This function is used to flush the IO/TLB for a given protection domain
533 * on every IOMMU in the system
534 */
535static void iommu_flush_domain(u16 domid)
536{
43f49609 537 struct amd_iommu *iommu;
43f49609 538
18811f55
JR
539 INC_STATS_COUNTER(domain_flush_all);
540
e394d72a
JR
541 for_each_iommu(iommu)
542 flush_domain_on_iommu(iommu, domid);
43f49609 543}
43f49609 544
bfd1be18 545void amd_iommu_flush_all_domains(void)
e394d72a
JR
546{
547 struct amd_iommu *iommu;
548
549 for_each_iommu(iommu)
550 flush_all_domains_on_iommu(iommu);
bfd1be18
JR
551}
552
d586d785 553static void flush_all_devices_for_iommu(struct amd_iommu *iommu)
bfd1be18
JR
554{
555 int i;
556
d586d785
JR
557 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
558 if (iommu != amd_iommu_rlookup_table[i])
bfd1be18 559 continue;
d586d785
JR
560
561 iommu_queue_inv_dev_entry(iommu, i);
562 iommu_completion_wait(iommu);
bfd1be18
JR
563 }
564}
565
6a0dbcbe 566static void flush_devices_by_domain(struct protection_domain *domain)
7d7a110c
JR
567{
568 struct amd_iommu *iommu;
569 int i;
570
571 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
6a0dbcbe
JR
572 if ((domain == NULL && amd_iommu_pd_table[i] == NULL) ||
573 (amd_iommu_pd_table[i] != domain))
7d7a110c
JR
574 continue;
575
576 iommu = amd_iommu_rlookup_table[i];
577 if (!iommu)
578 continue;
579
580 iommu_queue_inv_dev_entry(iommu, i);
581 iommu_completion_wait(iommu);
582 }
583}
584
a345b23b
JR
585static void reset_iommu_command_buffer(struct amd_iommu *iommu)
586{
587 pr_err("AMD-Vi: Resetting IOMMU command buffer\n");
588
b26e81b8
JR
589 if (iommu->reset_in_progress)
590 panic("AMD-Vi: ILLEGAL_COMMAND_ERROR while resetting command buffer\n");
591
592 iommu->reset_in_progress = true;
593
a345b23b
JR
594 amd_iommu_reset_cmd_buffer(iommu);
595 flush_all_devices_for_iommu(iommu);
596 flush_all_domains_on_iommu(iommu);
b26e81b8
JR
597
598 iommu->reset_in_progress = false;
a345b23b
JR
599}
600
6a0dbcbe
JR
601void amd_iommu_flush_all_devices(void)
602{
603 flush_devices_by_domain(NULL);
604}
605
431b2a20
JR
606/****************************************************************************
607 *
608 * The functions below are used the create the page table mappings for
609 * unity mapped regions.
610 *
611 ****************************************************************************/
612
613/*
614 * Generic mapping functions. It maps a physical address into a DMA
615 * address space. It allocates the page table pages if necessary.
616 * In the future it can be extended to a generic mapping function
617 * supporting all features of AMD IOMMU page tables like level skipping
618 * and full 64 bit address spaces.
619 */
38e817fe
JR
620static int iommu_map_page(struct protection_domain *dom,
621 unsigned long bus_addr,
622 unsigned long phys_addr,
abdc5eb3
JR
623 int prot,
624 int map_size)
bd0e5211 625{
8bda3092 626 u64 __pte, *pte;
bd0e5211
JR
627
628 bus_addr = PAGE_ALIGN(bus_addr);
bb9d4ff8 629 phys_addr = PAGE_ALIGN(phys_addr);
bd0e5211 630
abdc5eb3
JR
631 BUG_ON(!PM_ALIGNED(map_size, bus_addr));
632 BUG_ON(!PM_ALIGNED(map_size, phys_addr));
633
bad1cac2 634 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
635 return -EINVAL;
636
abdc5eb3 637 pte = alloc_pte(dom, bus_addr, map_size, NULL, GFP_KERNEL);
bd0e5211
JR
638
639 if (IOMMU_PTE_PRESENT(*pte))
640 return -EBUSY;
641
642 __pte = phys_addr | IOMMU_PTE_P;
643 if (prot & IOMMU_PROT_IR)
644 __pte |= IOMMU_PTE_IR;
645 if (prot & IOMMU_PROT_IW)
646 __pte |= IOMMU_PTE_IW;
647
648 *pte = __pte;
649
04bfdd84
JR
650 update_domain(dom);
651
bd0e5211
JR
652 return 0;
653}
654
eb74ff6c 655static void iommu_unmap_page(struct protection_domain *dom,
a6b256b4 656 unsigned long bus_addr, int map_size)
eb74ff6c 657{
a6b256b4 658 u64 *pte = fetch_pte(dom, bus_addr, map_size);
eb74ff6c 659
38a76eee
JR
660 if (pte)
661 *pte = 0;
eb74ff6c 662}
eb74ff6c 663
431b2a20
JR
664/*
665 * This function checks if a specific unity mapping entry is needed for
666 * this specific IOMMU.
667 */
bd0e5211
JR
668static int iommu_for_unity_map(struct amd_iommu *iommu,
669 struct unity_map_entry *entry)
670{
671 u16 bdf, i;
672
673 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
674 bdf = amd_iommu_alias_table[i];
675 if (amd_iommu_rlookup_table[bdf] == iommu)
676 return 1;
677 }
678
679 return 0;
680}
681
431b2a20
JR
682/*
683 * Init the unity mappings for a specific IOMMU in the system
684 *
685 * Basically iterates over all unity mapping entries and applies them to
686 * the default domain DMA of that IOMMU if necessary.
687 */
bd0e5211
JR
688static int iommu_init_unity_mappings(struct amd_iommu *iommu)
689{
690 struct unity_map_entry *entry;
691 int ret;
692
693 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
694 if (!iommu_for_unity_map(iommu, entry))
695 continue;
696 ret = dma_ops_unity_map(iommu->default_dom, entry);
697 if (ret)
698 return ret;
699 }
700
701 return 0;
702}
703
431b2a20
JR
704/*
705 * This function actually applies the mapping to the page table of the
706 * dma_ops domain.
707 */
bd0e5211
JR
708static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
709 struct unity_map_entry *e)
710{
711 u64 addr;
712 int ret;
713
714 for (addr = e->address_start; addr < e->address_end;
715 addr += PAGE_SIZE) {
abdc5eb3
JR
716 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
717 PM_MAP_4k);
bd0e5211
JR
718 if (ret)
719 return ret;
720 /*
721 * if unity mapping is in aperture range mark the page
722 * as allocated in the aperture
723 */
724 if (addr < dma_dom->aperture_size)
c3239567 725 __set_bit(addr >> PAGE_SHIFT,
384de729 726 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
727 }
728
729 return 0;
730}
731
431b2a20
JR
732/*
733 * Inits the unity mappings required for a specific device
734 */
bd0e5211
JR
735static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
736 u16 devid)
737{
738 struct unity_map_entry *e;
739 int ret;
740
741 list_for_each_entry(e, &amd_iommu_unity_map, list) {
742 if (!(devid >= e->devid_start && devid <= e->devid_end))
743 continue;
744 ret = dma_ops_unity_map(dma_dom, e);
745 if (ret)
746 return ret;
747 }
748
749 return 0;
750}
751
431b2a20
JR
752/****************************************************************************
753 *
754 * The next functions belong to the address allocator for the dma_ops
755 * interface functions. They work like the allocators in the other IOMMU
756 * drivers. Its basically a bitmap which marks the allocated pages in
757 * the aperture. Maybe it could be enhanced in the future to a more
758 * efficient allocator.
759 *
760 ****************************************************************************/
d3086444 761
431b2a20 762/*
384de729 763 * The address allocator core functions.
431b2a20
JR
764 *
765 * called with domain->lock held
766 */
384de729 767
00cd122a
JR
768/*
769 * This function checks if there is a PTE for a given dma address. If
770 * there is one, it returns the pointer to it.
771 */
9355a081 772static u64 *fetch_pte(struct protection_domain *domain,
a6b256b4 773 unsigned long address, int map_size)
00cd122a 774{
9355a081 775 int level;
00cd122a
JR
776 u64 *pte;
777
9355a081
JR
778 level = domain->mode - 1;
779 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
00cd122a 780
a6b256b4 781 while (level > map_size) {
9355a081
JR
782 if (!IOMMU_PTE_PRESENT(*pte))
783 return NULL;
00cd122a 784
9355a081 785 level -= 1;
00cd122a 786
9355a081
JR
787 pte = IOMMU_PTE_PAGE(*pte);
788 pte = &pte[PM_LEVEL_INDEX(level, address)];
00cd122a 789
a6b256b4
JR
790 if ((PM_PTE_LEVEL(*pte) == 0) && level != map_size) {
791 pte = NULL;
792 break;
793 }
9355a081 794 }
00cd122a
JR
795
796 return pte;
797}
798
9cabe89b
JR
799/*
800 * This function is used to add a new aperture range to an existing
801 * aperture in case of dma_ops domain allocation or address allocation
802 * failure.
803 */
00cd122a
JR
804static int alloc_new_range(struct amd_iommu *iommu,
805 struct dma_ops_domain *dma_dom,
9cabe89b
JR
806 bool populate, gfp_t gfp)
807{
808 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
00cd122a 809 int i;
9cabe89b 810
f5e9705c
JR
811#ifdef CONFIG_IOMMU_STRESS
812 populate = false;
813#endif
814
9cabe89b
JR
815 if (index >= APERTURE_MAX_RANGES)
816 return -ENOMEM;
817
818 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
819 if (!dma_dom->aperture[index])
820 return -ENOMEM;
821
822 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
823 if (!dma_dom->aperture[index]->bitmap)
824 goto out_free;
825
826 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
827
828 if (populate) {
829 unsigned long address = dma_dom->aperture_size;
830 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
831 u64 *pte, *pte_page;
832
833 for (i = 0; i < num_ptes; ++i) {
abdc5eb3 834 pte = alloc_pte(&dma_dom->domain, address, PM_MAP_4k,
9cabe89b
JR
835 &pte_page, gfp);
836 if (!pte)
837 goto out_free;
838
839 dma_dom->aperture[index]->pte_pages[i] = pte_page;
840
841 address += APERTURE_RANGE_SIZE / 64;
842 }
843 }
844
845 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
846
00cd122a
JR
847 /* Intialize the exclusion range if necessary */
848 if (iommu->exclusion_start &&
849 iommu->exclusion_start >= dma_dom->aperture[index]->offset &&
850 iommu->exclusion_start < dma_dom->aperture_size) {
851 unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
852 int pages = iommu_num_pages(iommu->exclusion_start,
853 iommu->exclusion_length,
854 PAGE_SIZE);
855 dma_ops_reserve_addresses(dma_dom, startpage, pages);
856 }
857
858 /*
859 * Check for areas already mapped as present in the new aperture
860 * range and mark those pages as reserved in the allocator. Such
861 * mappings may already exist as a result of requested unity
862 * mappings for devices.
863 */
864 for (i = dma_dom->aperture[index]->offset;
865 i < dma_dom->aperture_size;
866 i += PAGE_SIZE) {
a6b256b4 867 u64 *pte = fetch_pte(&dma_dom->domain, i, PM_MAP_4k);
00cd122a
JR
868 if (!pte || !IOMMU_PTE_PRESENT(*pte))
869 continue;
870
871 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
872 }
873
04bfdd84
JR
874 update_domain(&dma_dom->domain);
875
9cabe89b
JR
876 return 0;
877
878out_free:
04bfdd84
JR
879 update_domain(&dma_dom->domain);
880
9cabe89b
JR
881 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
882
883 kfree(dma_dom->aperture[index]);
884 dma_dom->aperture[index] = NULL;
885
886 return -ENOMEM;
887}
888
384de729
JR
889static unsigned long dma_ops_area_alloc(struct device *dev,
890 struct dma_ops_domain *dom,
891 unsigned int pages,
892 unsigned long align_mask,
893 u64 dma_mask,
894 unsigned long start)
895{
803b8cb4 896 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
897 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
898 int i = start >> APERTURE_RANGE_SHIFT;
899 unsigned long boundary_size;
900 unsigned long address = -1;
901 unsigned long limit;
902
803b8cb4
JR
903 next_bit >>= PAGE_SHIFT;
904
384de729
JR
905 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
906 PAGE_SIZE) >> PAGE_SHIFT;
907
908 for (;i < max_index; ++i) {
909 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
910
911 if (dom->aperture[i]->offset >= dma_mask)
912 break;
913
914 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
915 dma_mask >> PAGE_SHIFT);
916
917 address = iommu_area_alloc(dom->aperture[i]->bitmap,
918 limit, next_bit, pages, 0,
919 boundary_size, align_mask);
920 if (address != -1) {
921 address = dom->aperture[i]->offset +
922 (address << PAGE_SHIFT);
803b8cb4 923 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
924 break;
925 }
926
927 next_bit = 0;
928 }
929
930 return address;
931}
932
d3086444
JR
933static unsigned long dma_ops_alloc_addresses(struct device *dev,
934 struct dma_ops_domain *dom,
6d4f343f 935 unsigned int pages,
832a90c3
JR
936 unsigned long align_mask,
937 u64 dma_mask)
d3086444 938{
d3086444 939 unsigned long address;
d3086444 940
fe16f088
JR
941#ifdef CONFIG_IOMMU_STRESS
942 dom->next_address = 0;
943 dom->need_flush = true;
944#endif
d3086444 945
384de729 946 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 947 dma_mask, dom->next_address);
d3086444 948
1c655773 949 if (address == -1) {
803b8cb4 950 dom->next_address = 0;
384de729
JR
951 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
952 dma_mask, 0);
1c655773
JR
953 dom->need_flush = true;
954 }
d3086444 955
384de729 956 if (unlikely(address == -1))
8fd524b3 957 address = DMA_ERROR_CODE;
d3086444
JR
958
959 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
960
961 return address;
962}
963
431b2a20
JR
964/*
965 * The address free function.
966 *
967 * called with domain->lock held
968 */
d3086444
JR
969static void dma_ops_free_addresses(struct dma_ops_domain *dom,
970 unsigned long address,
971 unsigned int pages)
972{
384de729
JR
973 unsigned i = address >> APERTURE_RANGE_SHIFT;
974 struct aperture_range *range = dom->aperture[i];
80be308d 975
384de729
JR
976 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
977
47bccd6b
JR
978#ifdef CONFIG_IOMMU_STRESS
979 if (i < 4)
980 return;
981#endif
80be308d 982
803b8cb4 983 if (address >= dom->next_address)
80be308d 984 dom->need_flush = true;
384de729
JR
985
986 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 987
384de729
JR
988 iommu_area_free(range->bitmap, address, pages);
989
d3086444
JR
990}
991
431b2a20
JR
992/****************************************************************************
993 *
994 * The next functions belong to the domain allocation. A domain is
995 * allocated for every IOMMU as the default domain. If device isolation
996 * is enabled, every device get its own domain. The most important thing
997 * about domains is the page table mapping the DMA address space they
998 * contain.
999 *
1000 ****************************************************************************/
1001
ec487d1a
JR
1002static u16 domain_id_alloc(void)
1003{
1004 unsigned long flags;
1005 int id;
1006
1007 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1008 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1009 BUG_ON(id == 0);
1010 if (id > 0 && id < MAX_DOMAIN_ID)
1011 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1012 else
1013 id = 0;
1014 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1015
1016 return id;
1017}
1018
a2acfb75
JR
1019static void domain_id_free(int id)
1020{
1021 unsigned long flags;
1022
1023 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1024 if (id > 0 && id < MAX_DOMAIN_ID)
1025 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1026 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1027}
a2acfb75 1028
431b2a20
JR
1029/*
1030 * Used to reserve address ranges in the aperture (e.g. for exclusion
1031 * ranges.
1032 */
ec487d1a
JR
1033static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1034 unsigned long start_page,
1035 unsigned int pages)
1036{
384de729 1037 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
ec487d1a
JR
1038
1039 if (start_page + pages > last_page)
1040 pages = last_page - start_page;
1041
384de729
JR
1042 for (i = start_page; i < start_page + pages; ++i) {
1043 int index = i / APERTURE_RANGE_PAGES;
1044 int page = i % APERTURE_RANGE_PAGES;
1045 __set_bit(page, dom->aperture[index]->bitmap);
1046 }
ec487d1a
JR
1047}
1048
86db2e5d 1049static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
1050{
1051 int i, j;
1052 u64 *p1, *p2, *p3;
1053
86db2e5d 1054 p1 = domain->pt_root;
ec487d1a
JR
1055
1056 if (!p1)
1057 return;
1058
1059 for (i = 0; i < 512; ++i) {
1060 if (!IOMMU_PTE_PRESENT(p1[i]))
1061 continue;
1062
1063 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 1064 for (j = 0; j < 512; ++j) {
ec487d1a
JR
1065 if (!IOMMU_PTE_PRESENT(p2[j]))
1066 continue;
1067 p3 = IOMMU_PTE_PAGE(p2[j]);
1068 free_page((unsigned long)p3);
1069 }
1070
1071 free_page((unsigned long)p2);
1072 }
1073
1074 free_page((unsigned long)p1);
86db2e5d
JR
1075
1076 domain->pt_root = NULL;
ec487d1a
JR
1077}
1078
431b2a20
JR
1079/*
1080 * Free a domain, only used if something went wrong in the
1081 * allocation path and we need to free an already allocated page table
1082 */
ec487d1a
JR
1083static void dma_ops_domain_free(struct dma_ops_domain *dom)
1084{
384de729
JR
1085 int i;
1086
ec487d1a
JR
1087 if (!dom)
1088 return;
1089
86db2e5d 1090 free_pagetable(&dom->domain);
ec487d1a 1091
384de729
JR
1092 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1093 if (!dom->aperture[i])
1094 continue;
1095 free_page((unsigned long)dom->aperture[i]->bitmap);
1096 kfree(dom->aperture[i]);
1097 }
ec487d1a
JR
1098
1099 kfree(dom);
1100}
1101
431b2a20
JR
1102/*
1103 * Allocates a new protection domain usable for the dma_ops functions.
1104 * It also intializes the page table and the address allocator data
1105 * structures required for the dma_ops interface
1106 */
d9cfed92 1107static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
ec487d1a
JR
1108{
1109 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1110
1111 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1112 if (!dma_dom)
1113 return NULL;
1114
1115 spin_lock_init(&dma_dom->domain.lock);
1116
1117 dma_dom->domain.id = domain_id_alloc();
1118 if (dma_dom->domain.id == 0)
1119 goto free_dma_dom;
8f7a017c 1120 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 1121 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1122 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
1123 dma_dom->domain.priv = dma_dom;
1124 if (!dma_dom->domain.pt_root)
1125 goto free_dma_dom;
ec487d1a 1126
1c655773 1127 dma_dom->need_flush = false;
bd60b735 1128 dma_dom->target_dev = 0xffff;
1c655773 1129
00cd122a 1130 if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL))
ec487d1a 1131 goto free_dma_dom;
ec487d1a 1132
431b2a20 1133 /*
ec487d1a
JR
1134 * mark the first page as allocated so we never return 0 as
1135 * a valid dma-address. So we can use 0 as error value
431b2a20 1136 */
384de729 1137 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 1138 dma_dom->next_address = 0;
ec487d1a 1139
ec487d1a
JR
1140
1141 return dma_dom;
1142
1143free_dma_dom:
1144 dma_ops_domain_free(dma_dom);
1145
1146 return NULL;
1147}
1148
5b28df6f
JR
1149/*
1150 * little helper function to check whether a given protection domain is a
1151 * dma_ops domain
1152 */
1153static bool dma_ops_domain(struct protection_domain *domain)
1154{
1155 return domain->flags & PD_DMA_OPS_MASK;
1156}
1157
431b2a20
JR
1158/*
1159 * Find out the protection domain structure for a given PCI device. This
1160 * will give us the pointer to the page table root for example.
1161 */
b20ac0d4
JR
1162static struct protection_domain *domain_for_device(u16 devid)
1163{
1164 struct protection_domain *dom;
1165 unsigned long flags;
1166
1167 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1168 dom = amd_iommu_pd_table[devid];
1169 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1170
1171 return dom;
1172}
1173
407d733e 1174static void set_dte_entry(u16 devid, struct protection_domain *domain)
b20ac0d4 1175{
b20ac0d4 1176 u64 pte_root = virt_to_phys(domain->pt_root);
863c74eb 1177
38ddf41b
JR
1178 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1179 << DEV_ENTRY_MODE_SHIFT;
1180 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 1181
b20ac0d4 1182 amd_iommu_dev_table[devid].data[2] = domain->id;
aa879fff
JR
1183 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1184 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
b20ac0d4
JR
1185
1186 amd_iommu_pd_table[devid] = domain;
2b681faf
JR
1187}
1188
1189/*
1190 * If a device is not yet associated with a domain, this function does
1191 * assigns it visible for the hardware
1192 */
1193static void __attach_device(struct amd_iommu *iommu,
1194 struct protection_domain *domain,
1195 u16 devid)
1196{
1197 /* lock domain */
1198 spin_lock(&domain->lock);
1199
1200 /* update DTE entry */
1201 set_dte_entry(devid, domain);
eba6ac60 1202
c4596114
JR
1203 /* Do reference counting */
1204 domain->dev_iommu[iommu->index] += 1;
1205 domain->dev_cnt += 1;
eba6ac60
JR
1206
1207 /* ready */
1208 spin_unlock(&domain->lock);
0feae533 1209}
b20ac0d4 1210
407d733e
JR
1211/*
1212 * If a device is not yet associated with a domain, this function does
1213 * assigns it visible for the hardware
1214 */
0feae533
JR
1215static void attach_device(struct amd_iommu *iommu,
1216 struct protection_domain *domain,
1217 u16 devid)
1218{
eba6ac60
JR
1219 unsigned long flags;
1220
1221 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
0feae533 1222 __attach_device(iommu, domain, devid);
b20ac0d4
JR
1223 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1224
0feae533
JR
1225 /*
1226 * We might boot into a crash-kernel here. The crashed kernel
1227 * left the caches in the IOMMU dirty. So we have to flush
1228 * here to evict all dirty stuff.
1229 */
b20ac0d4 1230 iommu_queue_inv_dev_entry(iommu, devid);
dcd1e92e 1231 iommu_flush_tlb_pde(domain);
b20ac0d4
JR
1232}
1233
355bf553
JR
1234/*
1235 * Removes a device from a protection domain (unlocked)
1236 */
1237static void __detach_device(struct protection_domain *domain, u16 devid)
1238{
c4596114
JR
1239 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1240
1241 BUG_ON(!iommu);
355bf553
JR
1242
1243 /* lock domain */
1244 spin_lock(&domain->lock);
1245
1246 /* remove domain from the lookup table */
1247 amd_iommu_pd_table[devid] = NULL;
1248
1249 /* remove entry from the device table seen by the hardware */
1250 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1251 amd_iommu_dev_table[devid].data[1] = 0;
1252 amd_iommu_dev_table[devid].data[2] = 0;
1253
c5cca146
JR
1254 amd_iommu_apply_erratum_63(devid);
1255
c4596114
JR
1256 /* decrease reference counters */
1257 domain->dev_iommu[iommu->index] -= 1;
1258 domain->dev_cnt -= 1;
355bf553
JR
1259
1260 /* ready */
1261 spin_unlock(&domain->lock);
21129f78
JR
1262
1263 /*
1264 * If we run in passthrough mode the device must be assigned to the
1265 * passthrough domain if it is detached from any other domain
1266 */
1267 if (iommu_pass_through) {
1268 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1269 __attach_device(iommu, pt_domain, devid);
1270 }
355bf553
JR
1271}
1272
1273/*
1274 * Removes a device from a protection domain (with devtable_lock held)
1275 */
1276static void detach_device(struct protection_domain *domain, u16 devid)
1277{
1278 unsigned long flags;
1279
1280 /* lock device table */
1281 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1282 __detach_device(domain, devid);
1283 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1284}
e275a2a0
JR
1285
1286static int device_change_notifier(struct notifier_block *nb,
1287 unsigned long action, void *data)
1288{
1289 struct device *dev = data;
1290 struct pci_dev *pdev = to_pci_dev(dev);
1291 u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
1292 struct protection_domain *domain;
1293 struct dma_ops_domain *dma_domain;
1294 struct amd_iommu *iommu;
1ac4cbbc 1295 unsigned long flags;
e275a2a0
JR
1296
1297 if (devid > amd_iommu_last_bdf)
1298 goto out;
1299
1300 devid = amd_iommu_alias_table[devid];
1301
1302 iommu = amd_iommu_rlookup_table[devid];
1303 if (iommu == NULL)
1304 goto out;
1305
1306 domain = domain_for_device(devid);
1307
1308 if (domain && !dma_ops_domain(domain))
1309 WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
1310 "to a non-dma-ops domain\n", dev_name(dev));
1311
1312 switch (action) {
c1eee67b 1313 case BUS_NOTIFY_UNBOUND_DRIVER:
e275a2a0
JR
1314 if (!domain)
1315 goto out;
a1ca331c
JR
1316 if (iommu_pass_through)
1317 break;
e275a2a0 1318 detach_device(domain, devid);
1ac4cbbc
JR
1319 break;
1320 case BUS_NOTIFY_ADD_DEVICE:
1321 /* allocate a protection domain if a device is added */
1322 dma_domain = find_protection_domain(devid);
1323 if (dma_domain)
1324 goto out;
d9cfed92 1325 dma_domain = dma_ops_domain_alloc(iommu);
1ac4cbbc
JR
1326 if (!dma_domain)
1327 goto out;
1328 dma_domain->target_dev = devid;
1329
1330 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1331 list_add_tail(&dma_domain->list, &iommu_pd_list);
1332 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1333
e275a2a0
JR
1334 break;
1335 default:
1336 goto out;
1337 }
1338
1339 iommu_queue_inv_dev_entry(iommu, devid);
1340 iommu_completion_wait(iommu);
1341
1342out:
1343 return 0;
1344}
1345
b25ae679 1346static struct notifier_block device_nb = {
e275a2a0
JR
1347 .notifier_call = device_change_notifier,
1348};
355bf553 1349
431b2a20
JR
1350/*****************************************************************************
1351 *
1352 * The next functions belong to the dma_ops mapping/unmapping code.
1353 *
1354 *****************************************************************************/
1355
dbcc112e
JR
1356/*
1357 * This function checks if the driver got a valid device from the caller to
1358 * avoid dereferencing invalid pointers.
1359 */
1360static bool check_device(struct device *dev)
1361{
1362 if (!dev || !dev->dma_mask)
1363 return false;
1364
1365 return true;
1366}
1367
bd60b735
JR
1368/*
1369 * In this function the list of preallocated protection domains is traversed to
1370 * find the domain for a specific device
1371 */
1372static struct dma_ops_domain *find_protection_domain(u16 devid)
1373{
1374 struct dma_ops_domain *entry, *ret = NULL;
1375 unsigned long flags;
1376
1377 if (list_empty(&iommu_pd_list))
1378 return NULL;
1379
1380 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1381
1382 list_for_each_entry(entry, &iommu_pd_list, list) {
1383 if (entry->target_dev == devid) {
1384 ret = entry;
bd60b735
JR
1385 break;
1386 }
1387 }
1388
1389 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1390
1391 return ret;
1392}
1393
431b2a20
JR
1394/*
1395 * In the dma_ops path we only have the struct device. This function
1396 * finds the corresponding IOMMU, the protection domain and the
1397 * requestor id for a given device.
1398 * If the device is not yet associated with a domain this is also done
1399 * in this function.
1400 */
b20ac0d4
JR
1401static int get_device_resources(struct device *dev,
1402 struct amd_iommu **iommu,
1403 struct protection_domain **domain,
1404 u16 *bdf)
1405{
1406 struct dma_ops_domain *dma_dom;
1407 struct pci_dev *pcidev;
1408 u16 _bdf;
1409
dbcc112e
JR
1410 *iommu = NULL;
1411 *domain = NULL;
1412 *bdf = 0xffff;
1413
1414 if (dev->bus != &pci_bus_type)
1415 return 0;
b20ac0d4
JR
1416
1417 pcidev = to_pci_dev(dev);
d591b0a3 1418 _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
b20ac0d4 1419
431b2a20 1420 /* device not translated by any IOMMU in the system? */
dbcc112e 1421 if (_bdf > amd_iommu_last_bdf)
b20ac0d4 1422 return 0;
b20ac0d4
JR
1423
1424 *bdf = amd_iommu_alias_table[_bdf];
1425
1426 *iommu = amd_iommu_rlookup_table[*bdf];
1427 if (*iommu == NULL)
1428 return 0;
b20ac0d4
JR
1429 *domain = domain_for_device(*bdf);
1430 if (*domain == NULL) {
bd60b735
JR
1431 dma_dom = find_protection_domain(*bdf);
1432 if (!dma_dom)
1433 dma_dom = (*iommu)->default_dom;
b20ac0d4 1434 *domain = &dma_dom->domain;
f1179dc0 1435 attach_device(*iommu, *domain, *bdf);
e9a22a13
JR
1436 DUMP_printk("Using protection domain %d for device %s\n",
1437 (*domain)->id, dev_name(dev));
b20ac0d4
JR
1438 }
1439
f91ba190 1440 if (domain_for_device(_bdf) == NULL)
f1179dc0 1441 attach_device(*iommu, *domain, _bdf);
f91ba190 1442
b20ac0d4
JR
1443 return 1;
1444}
1445
04bfdd84
JR
1446static void update_device_table(struct protection_domain *domain)
1447{
2b681faf 1448 unsigned long flags;
04bfdd84
JR
1449 int i;
1450
1451 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
1452 if (amd_iommu_pd_table[i] != domain)
1453 continue;
2b681faf 1454 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
04bfdd84 1455 set_dte_entry(i, domain);
2b681faf 1456 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
04bfdd84
JR
1457 }
1458}
1459
1460static void update_domain(struct protection_domain *domain)
1461{
1462 if (!domain->updated)
1463 return;
1464
1465 update_device_table(domain);
1466 flush_devices_by_domain(domain);
1467 iommu_flush_domain(domain->id);
1468
1469 domain->updated = false;
1470}
1471
8bda3092 1472/*
50020fb6
JR
1473 * This function is used to add another level to an IO page table. Adding
1474 * another level increases the size of the address space by 9 bits to a size up
1475 * to 64 bits.
8bda3092 1476 */
50020fb6
JR
1477static bool increase_address_space(struct protection_domain *domain,
1478 gfp_t gfp)
1479{
1480 u64 *pte;
1481
1482 if (domain->mode == PAGE_MODE_6_LEVEL)
1483 /* address space already 64 bit large */
1484 return false;
1485
1486 pte = (void *)get_zeroed_page(gfp);
1487 if (!pte)
1488 return false;
1489
1490 *pte = PM_LEVEL_PDE(domain->mode,
1491 virt_to_phys(domain->pt_root));
1492 domain->pt_root = pte;
1493 domain->mode += 1;
1494 domain->updated = true;
1495
1496 return true;
1497}
1498
8bc3e127 1499static u64 *alloc_pte(struct protection_domain *domain,
abdc5eb3
JR
1500 unsigned long address,
1501 int end_lvl,
1502 u64 **pte_page,
1503 gfp_t gfp)
8bda3092
JR
1504{
1505 u64 *pte, *page;
8bc3e127 1506 int level;
8bda3092 1507
8bc3e127
JR
1508 while (address > PM_LEVEL_SIZE(domain->mode))
1509 increase_address_space(domain, gfp);
8bda3092 1510
8bc3e127
JR
1511 level = domain->mode - 1;
1512 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
8bda3092 1513
abdc5eb3 1514 while (level > end_lvl) {
8bc3e127
JR
1515 if (!IOMMU_PTE_PRESENT(*pte)) {
1516 page = (u64 *)get_zeroed_page(gfp);
1517 if (!page)
1518 return NULL;
1519 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1520 }
8bda3092 1521
8bc3e127 1522 level -= 1;
8bda3092 1523
8bc3e127 1524 pte = IOMMU_PTE_PAGE(*pte);
8bda3092 1525
abdc5eb3 1526 if (pte_page && level == end_lvl)
8bc3e127 1527 *pte_page = pte;
8bda3092 1528
8bc3e127
JR
1529 pte = &pte[PM_LEVEL_INDEX(level, address)];
1530 }
8bda3092
JR
1531
1532 return pte;
1533}
1534
1535/*
1536 * This function fetches the PTE for a given address in the aperture
1537 */
1538static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1539 unsigned long address)
1540{
384de729 1541 struct aperture_range *aperture;
8bda3092
JR
1542 u64 *pte, *pte_page;
1543
384de729
JR
1544 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1545 if (!aperture)
1546 return NULL;
1547
1548 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 1549 if (!pte) {
abdc5eb3
JR
1550 pte = alloc_pte(&dom->domain, address, PM_MAP_4k, &pte_page,
1551 GFP_ATOMIC);
384de729
JR
1552 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1553 } else
8c8c143c 1554 pte += PM_LEVEL_INDEX(0, address);
8bda3092 1555
04bfdd84 1556 update_domain(&dom->domain);
8bda3092
JR
1557
1558 return pte;
1559}
1560
431b2a20
JR
1561/*
1562 * This is the generic map function. It maps one 4kb page at paddr to
1563 * the given address in the DMA address space for the domain.
1564 */
cb76c322
JR
1565static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
1566 struct dma_ops_domain *dom,
1567 unsigned long address,
1568 phys_addr_t paddr,
1569 int direction)
1570{
1571 u64 *pte, __pte;
1572
1573 WARN_ON(address > dom->aperture_size);
1574
1575 paddr &= PAGE_MASK;
1576
8bda3092 1577 pte = dma_ops_get_pte(dom, address);
53812c11 1578 if (!pte)
8fd524b3 1579 return DMA_ERROR_CODE;
cb76c322
JR
1580
1581 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1582
1583 if (direction == DMA_TO_DEVICE)
1584 __pte |= IOMMU_PTE_IR;
1585 else if (direction == DMA_FROM_DEVICE)
1586 __pte |= IOMMU_PTE_IW;
1587 else if (direction == DMA_BIDIRECTIONAL)
1588 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1589
1590 WARN_ON(*pte);
1591
1592 *pte = __pte;
1593
1594 return (dma_addr_t)address;
1595}
1596
431b2a20
JR
1597/*
1598 * The generic unmapping function for on page in the DMA address space.
1599 */
cb76c322
JR
1600static void dma_ops_domain_unmap(struct amd_iommu *iommu,
1601 struct dma_ops_domain *dom,
1602 unsigned long address)
1603{
384de729 1604 struct aperture_range *aperture;
cb76c322
JR
1605 u64 *pte;
1606
1607 if (address >= dom->aperture_size)
1608 return;
1609
384de729
JR
1610 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1611 if (!aperture)
1612 return;
1613
1614 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1615 if (!pte)
1616 return;
cb76c322 1617
8c8c143c 1618 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
1619
1620 WARN_ON(!*pte);
1621
1622 *pte = 0ULL;
1623}
1624
431b2a20
JR
1625/*
1626 * This function contains common code for mapping of a physically
24f81160
JR
1627 * contiguous memory region into DMA address space. It is used by all
1628 * mapping functions provided with this IOMMU driver.
431b2a20
JR
1629 * Must be called with the domain lock held.
1630 */
cb76c322
JR
1631static dma_addr_t __map_single(struct device *dev,
1632 struct amd_iommu *iommu,
1633 struct dma_ops_domain *dma_dom,
1634 phys_addr_t paddr,
1635 size_t size,
6d4f343f 1636 int dir,
832a90c3
JR
1637 bool align,
1638 u64 dma_mask)
cb76c322
JR
1639{
1640 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 1641 dma_addr_t address, start, ret;
cb76c322 1642 unsigned int pages;
6d4f343f 1643 unsigned long align_mask = 0;
cb76c322
JR
1644 int i;
1645
e3c449f5 1646 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
1647 paddr &= PAGE_MASK;
1648
8ecaf8f1
JR
1649 INC_STATS_COUNTER(total_map_requests);
1650
c1858976
JR
1651 if (pages > 1)
1652 INC_STATS_COUNTER(cross_page);
1653
6d4f343f
JR
1654 if (align)
1655 align_mask = (1UL << get_order(size)) - 1;
1656
11b83888 1657retry:
832a90c3
JR
1658 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1659 dma_mask);
8fd524b3 1660 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
1661 /*
1662 * setting next_address here will let the address
1663 * allocator only scan the new allocated range in the
1664 * first run. This is a small optimization.
1665 */
1666 dma_dom->next_address = dma_dom->aperture_size;
1667
1668 if (alloc_new_range(iommu, dma_dom, false, GFP_ATOMIC))
1669 goto out;
1670
1671 /*
1672 * aperture was sucessfully enlarged by 128 MB, try
1673 * allocation again
1674 */
1675 goto retry;
1676 }
cb76c322
JR
1677
1678 start = address;
1679 for (i = 0; i < pages; ++i) {
53812c11 1680 ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
8fd524b3 1681 if (ret == DMA_ERROR_CODE)
53812c11
JR
1682 goto out_unmap;
1683
cb76c322
JR
1684 paddr += PAGE_SIZE;
1685 start += PAGE_SIZE;
1686 }
1687 address += offset;
1688
5774f7c5
JR
1689 ADD_STATS_COUNTER(alloced_io_mem, size);
1690
afa9fdc2 1691 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
dcd1e92e 1692 iommu_flush_tlb(&dma_dom->domain);
1c655773
JR
1693 dma_dom->need_flush = false;
1694 } else if (unlikely(iommu_has_npcache(iommu)))
6de8ad9b 1695 iommu_flush_pages(&dma_dom->domain, address, size);
270cab24 1696
cb76c322
JR
1697out:
1698 return address;
53812c11
JR
1699
1700out_unmap:
1701
1702 for (--i; i >= 0; --i) {
1703 start -= PAGE_SIZE;
1704 dma_ops_domain_unmap(iommu, dma_dom, start);
1705 }
1706
1707 dma_ops_free_addresses(dma_dom, address, pages);
1708
8fd524b3 1709 return DMA_ERROR_CODE;
cb76c322
JR
1710}
1711
431b2a20
JR
1712/*
1713 * Does the reverse of the __map_single function. Must be called with
1714 * the domain lock held too
1715 */
cb76c322
JR
1716static void __unmap_single(struct amd_iommu *iommu,
1717 struct dma_ops_domain *dma_dom,
1718 dma_addr_t dma_addr,
1719 size_t size,
1720 int dir)
1721{
1722 dma_addr_t i, start;
1723 unsigned int pages;
1724
8fd524b3 1725 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 1726 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
1727 return;
1728
e3c449f5 1729 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
1730 dma_addr &= PAGE_MASK;
1731 start = dma_addr;
1732
1733 for (i = 0; i < pages; ++i) {
1734 dma_ops_domain_unmap(iommu, dma_dom, start);
1735 start += PAGE_SIZE;
1736 }
1737
5774f7c5
JR
1738 SUB_STATS_COUNTER(alloced_io_mem, size);
1739
cb76c322 1740 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 1741
80be308d 1742 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
6de8ad9b 1743 iommu_flush_pages(&dma_dom->domain, dma_addr, size);
80be308d
JR
1744 dma_dom->need_flush = false;
1745 }
cb76c322
JR
1746}
1747
431b2a20
JR
1748/*
1749 * The exported map_single function for dma_ops.
1750 */
51491367
FT
1751static dma_addr_t map_page(struct device *dev, struct page *page,
1752 unsigned long offset, size_t size,
1753 enum dma_data_direction dir,
1754 struct dma_attrs *attrs)
4da70b9e
JR
1755{
1756 unsigned long flags;
1757 struct amd_iommu *iommu;
1758 struct protection_domain *domain;
1759 u16 devid;
1760 dma_addr_t addr;
832a90c3 1761 u64 dma_mask;
51491367 1762 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 1763
0f2a86f2
JR
1764 INC_STATS_COUNTER(cnt_map_single);
1765
dbcc112e 1766 if (!check_device(dev))
8fd524b3 1767 return DMA_ERROR_CODE;
dbcc112e 1768
832a90c3 1769 dma_mask = *dev->dma_mask;
4da70b9e
JR
1770
1771 get_device_resources(dev, &iommu, &domain, &devid);
1772
1773 if (iommu == NULL || domain == NULL)
431b2a20 1774 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1775 return (dma_addr_t)paddr;
1776
5b28df6f 1777 if (!dma_ops_domain(domain))
8fd524b3 1778 return DMA_ERROR_CODE;
5b28df6f 1779
4da70b9e 1780 spin_lock_irqsave(&domain->lock, flags);
832a90c3
JR
1781 addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
1782 dma_mask);
8fd524b3 1783 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
1784 goto out;
1785
0518a3a4 1786 iommu_flush_complete(domain);
4da70b9e
JR
1787
1788out:
1789 spin_unlock_irqrestore(&domain->lock, flags);
1790
1791 return addr;
1792}
1793
431b2a20
JR
1794/*
1795 * The exported unmap_single function for dma_ops.
1796 */
51491367
FT
1797static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
1798 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
1799{
1800 unsigned long flags;
1801 struct amd_iommu *iommu;
1802 struct protection_domain *domain;
1803 u16 devid;
1804
146a6917
JR
1805 INC_STATS_COUNTER(cnt_unmap_single);
1806
dbcc112e
JR
1807 if (!check_device(dev) ||
1808 !get_device_resources(dev, &iommu, &domain, &devid))
431b2a20 1809 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1810 return;
1811
5b28df6f
JR
1812 if (!dma_ops_domain(domain))
1813 return;
1814
4da70b9e
JR
1815 spin_lock_irqsave(&domain->lock, flags);
1816
1817 __unmap_single(iommu, domain->priv, dma_addr, size, dir);
1818
0518a3a4 1819 iommu_flush_complete(domain);
4da70b9e
JR
1820
1821 spin_unlock_irqrestore(&domain->lock, flags);
1822}
1823
431b2a20
JR
1824/*
1825 * This is a special map_sg function which is used if we should map a
1826 * device which is not handled by an AMD IOMMU in the system.
1827 */
65b050ad
JR
1828static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1829 int nelems, int dir)
1830{
1831 struct scatterlist *s;
1832 int i;
1833
1834 for_each_sg(sglist, s, nelems, i) {
1835 s->dma_address = (dma_addr_t)sg_phys(s);
1836 s->dma_length = s->length;
1837 }
1838
1839 return nelems;
1840}
1841
431b2a20
JR
1842/*
1843 * The exported map_sg function for dma_ops (handles scatter-gather
1844 * lists).
1845 */
65b050ad 1846static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1847 int nelems, enum dma_data_direction dir,
1848 struct dma_attrs *attrs)
65b050ad
JR
1849{
1850 unsigned long flags;
1851 struct amd_iommu *iommu;
1852 struct protection_domain *domain;
1853 u16 devid;
1854 int i;
1855 struct scatterlist *s;
1856 phys_addr_t paddr;
1857 int mapped_elems = 0;
832a90c3 1858 u64 dma_mask;
65b050ad 1859
d03f067a
JR
1860 INC_STATS_COUNTER(cnt_map_sg);
1861
dbcc112e
JR
1862 if (!check_device(dev))
1863 return 0;
1864
832a90c3 1865 dma_mask = *dev->dma_mask;
65b050ad
JR
1866
1867 get_device_resources(dev, &iommu, &domain, &devid);
1868
1869 if (!iommu || !domain)
1870 return map_sg_no_iommu(dev, sglist, nelems, dir);
1871
5b28df6f
JR
1872 if (!dma_ops_domain(domain))
1873 return 0;
1874
65b050ad
JR
1875 spin_lock_irqsave(&domain->lock, flags);
1876
1877 for_each_sg(sglist, s, nelems, i) {
1878 paddr = sg_phys(s);
1879
1880 s->dma_address = __map_single(dev, iommu, domain->priv,
832a90c3
JR
1881 paddr, s->length, dir, false,
1882 dma_mask);
65b050ad
JR
1883
1884 if (s->dma_address) {
1885 s->dma_length = s->length;
1886 mapped_elems++;
1887 } else
1888 goto unmap;
65b050ad
JR
1889 }
1890
0518a3a4 1891 iommu_flush_complete(domain);
65b050ad
JR
1892
1893out:
1894 spin_unlock_irqrestore(&domain->lock, flags);
1895
1896 return mapped_elems;
1897unmap:
1898 for_each_sg(sglist, s, mapped_elems, i) {
1899 if (s->dma_address)
1900 __unmap_single(iommu, domain->priv, s->dma_address,
1901 s->dma_length, dir);
1902 s->dma_address = s->dma_length = 0;
1903 }
1904
1905 mapped_elems = 0;
1906
1907 goto out;
1908}
1909
431b2a20
JR
1910/*
1911 * The exported map_sg function for dma_ops (handles scatter-gather
1912 * lists).
1913 */
65b050ad 1914static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1915 int nelems, enum dma_data_direction dir,
1916 struct dma_attrs *attrs)
65b050ad
JR
1917{
1918 unsigned long flags;
1919 struct amd_iommu *iommu;
1920 struct protection_domain *domain;
1921 struct scatterlist *s;
1922 u16 devid;
1923 int i;
1924
55877a6b
JR
1925 INC_STATS_COUNTER(cnt_unmap_sg);
1926
dbcc112e
JR
1927 if (!check_device(dev) ||
1928 !get_device_resources(dev, &iommu, &domain, &devid))
65b050ad
JR
1929 return;
1930
5b28df6f
JR
1931 if (!dma_ops_domain(domain))
1932 return;
1933
65b050ad
JR
1934 spin_lock_irqsave(&domain->lock, flags);
1935
1936 for_each_sg(sglist, s, nelems, i) {
1937 __unmap_single(iommu, domain->priv, s->dma_address,
1938 s->dma_length, dir);
65b050ad
JR
1939 s->dma_address = s->dma_length = 0;
1940 }
1941
0518a3a4 1942 iommu_flush_complete(domain);
65b050ad
JR
1943
1944 spin_unlock_irqrestore(&domain->lock, flags);
1945}
1946
431b2a20
JR
1947/*
1948 * The exported alloc_coherent function for dma_ops.
1949 */
5d8b53cf
JR
1950static void *alloc_coherent(struct device *dev, size_t size,
1951 dma_addr_t *dma_addr, gfp_t flag)
1952{
1953 unsigned long flags;
1954 void *virt_addr;
1955 struct amd_iommu *iommu;
1956 struct protection_domain *domain;
1957 u16 devid;
1958 phys_addr_t paddr;
832a90c3 1959 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 1960
c8f0fb36
JR
1961 INC_STATS_COUNTER(cnt_alloc_coherent);
1962
dbcc112e
JR
1963 if (!check_device(dev))
1964 return NULL;
5d8b53cf 1965
13d9fead
FT
1966 if (!get_device_resources(dev, &iommu, &domain, &devid))
1967 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
5d8b53cf 1968
c97ac535 1969 flag |= __GFP_ZERO;
5d8b53cf
JR
1970 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1971 if (!virt_addr)
b25ae679 1972 return NULL;
5d8b53cf 1973
5d8b53cf
JR
1974 paddr = virt_to_phys(virt_addr);
1975
5d8b53cf
JR
1976 if (!iommu || !domain) {
1977 *dma_addr = (dma_addr_t)paddr;
1978 return virt_addr;
1979 }
1980
5b28df6f
JR
1981 if (!dma_ops_domain(domain))
1982 goto out_free;
1983
832a90c3
JR
1984 if (!dma_mask)
1985 dma_mask = *dev->dma_mask;
1986
5d8b53cf
JR
1987 spin_lock_irqsave(&domain->lock, flags);
1988
1989 *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
832a90c3 1990 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 1991
8fd524b3 1992 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 1993 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 1994 goto out_free;
367d04c4 1995 }
5d8b53cf 1996
0518a3a4 1997 iommu_flush_complete(domain);
5d8b53cf 1998
5d8b53cf
JR
1999 spin_unlock_irqrestore(&domain->lock, flags);
2000
2001 return virt_addr;
5b28df6f
JR
2002
2003out_free:
2004
2005 free_pages((unsigned long)virt_addr, get_order(size));
2006
2007 return NULL;
5d8b53cf
JR
2008}
2009
431b2a20
JR
2010/*
2011 * The exported free_coherent function for dma_ops.
431b2a20 2012 */
5d8b53cf
JR
2013static void free_coherent(struct device *dev, size_t size,
2014 void *virt_addr, dma_addr_t dma_addr)
2015{
2016 unsigned long flags;
2017 struct amd_iommu *iommu;
2018 struct protection_domain *domain;
2019 u16 devid;
2020
5d31ee7e
JR
2021 INC_STATS_COUNTER(cnt_free_coherent);
2022
dbcc112e
JR
2023 if (!check_device(dev))
2024 return;
2025
5d8b53cf
JR
2026 get_device_resources(dev, &iommu, &domain, &devid);
2027
2028 if (!iommu || !domain)
2029 goto free_mem;
2030
5b28df6f
JR
2031 if (!dma_ops_domain(domain))
2032 goto free_mem;
2033
5d8b53cf
JR
2034 spin_lock_irqsave(&domain->lock, flags);
2035
2036 __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 2037
0518a3a4 2038 iommu_flush_complete(domain);
5d8b53cf
JR
2039
2040 spin_unlock_irqrestore(&domain->lock, flags);
2041
2042free_mem:
2043 free_pages((unsigned long)virt_addr, get_order(size));
2044}
2045
b39ba6ad
JR
2046/*
2047 * This function is called by the DMA layer to find out if we can handle a
2048 * particular device. It is part of the dma_ops.
2049 */
2050static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2051{
2052 u16 bdf;
2053 struct pci_dev *pcidev;
2054
2055 /* No device or no PCI device */
2056 if (!dev || dev->bus != &pci_bus_type)
2057 return 0;
2058
2059 pcidev = to_pci_dev(dev);
2060
2061 bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
2062
2063 /* Out of our scope? */
2064 if (bdf > amd_iommu_last_bdf)
2065 return 0;
2066
2067 return 1;
2068}
2069
c432f3df 2070/*
431b2a20
JR
2071 * The function for pre-allocating protection domains.
2072 *
c432f3df
JR
2073 * If the driver core informs the DMA layer if a driver grabs a device
2074 * we don't need to preallocate the protection domains anymore.
2075 * For now we have to.
2076 */
0e93dd88 2077static void prealloc_protection_domains(void)
c432f3df
JR
2078{
2079 struct pci_dev *dev = NULL;
2080 struct dma_ops_domain *dma_dom;
2081 struct amd_iommu *iommu;
be831297 2082 u16 devid, __devid;
c432f3df
JR
2083
2084 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
be831297 2085 __devid = devid = calc_devid(dev->bus->number, dev->devfn);
3a61ec38 2086 if (devid > amd_iommu_last_bdf)
c432f3df
JR
2087 continue;
2088 devid = amd_iommu_alias_table[devid];
2089 if (domain_for_device(devid))
2090 continue;
2091 iommu = amd_iommu_rlookup_table[devid];
2092 if (!iommu)
2093 continue;
d9cfed92 2094 dma_dom = dma_ops_domain_alloc(iommu);
c432f3df
JR
2095 if (!dma_dom)
2096 continue;
2097 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
2098 dma_dom->target_dev = devid;
2099
be831297
JR
2100 attach_device(iommu, &dma_dom->domain, devid);
2101 if (__devid != devid)
2102 attach_device(iommu, &dma_dom->domain, __devid);
2103
bd60b735 2104 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
2105 }
2106}
2107
160c1d8e 2108static struct dma_map_ops amd_iommu_dma_ops = {
6631ee9d
JR
2109 .alloc_coherent = alloc_coherent,
2110 .free_coherent = free_coherent,
51491367
FT
2111 .map_page = map_page,
2112 .unmap_page = unmap_page,
6631ee9d
JR
2113 .map_sg = map_sg,
2114 .unmap_sg = unmap_sg,
b39ba6ad 2115 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
2116};
2117
431b2a20
JR
2118/*
2119 * The function which clues the AMD IOMMU driver into dma_ops.
2120 */
6631ee9d
JR
2121int __init amd_iommu_init_dma_ops(void)
2122{
2123 struct amd_iommu *iommu;
6631ee9d
JR
2124 int ret;
2125
431b2a20
JR
2126 /*
2127 * first allocate a default protection domain for every IOMMU we
2128 * found in the system. Devices not assigned to any other
2129 * protection domain will be assigned to the default one.
2130 */
3bd22172 2131 for_each_iommu(iommu) {
d9cfed92 2132 iommu->default_dom = dma_ops_domain_alloc(iommu);
6631ee9d
JR
2133 if (iommu->default_dom == NULL)
2134 return -ENOMEM;
e2dc14a2 2135 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
2136 ret = iommu_init_unity_mappings(iommu);
2137 if (ret)
2138 goto free_domains;
2139 }
2140
431b2a20
JR
2141 /*
2142 * If device isolation is enabled, pre-allocate the protection
2143 * domains for each device.
2144 */
6631ee9d
JR
2145 if (amd_iommu_isolate)
2146 prealloc_protection_domains();
2147
2148 iommu_detected = 1;
75f1cdf1 2149 swiotlb = 0;
92af4e29 2150#ifdef CONFIG_GART_IOMMU
6631ee9d
JR
2151 gart_iommu_aperture_disabled = 1;
2152 gart_iommu_aperture = 0;
92af4e29 2153#endif
6631ee9d 2154
431b2a20 2155 /* Make the driver finally visible to the drivers */
6631ee9d
JR
2156 dma_ops = &amd_iommu_dma_ops;
2157
26961efe 2158 register_iommu(&amd_iommu_ops);
26961efe 2159
e275a2a0
JR
2160 bus_register_notifier(&pci_bus_type, &device_nb);
2161
7f26508b
JR
2162 amd_iommu_stats_init();
2163
6631ee9d
JR
2164 return 0;
2165
2166free_domains:
2167
3bd22172 2168 for_each_iommu(iommu) {
6631ee9d
JR
2169 if (iommu->default_dom)
2170 dma_ops_domain_free(iommu->default_dom);
2171 }
2172
2173 return ret;
2174}
6d98cd80
JR
2175
2176/*****************************************************************************
2177 *
2178 * The following functions belong to the exported interface of AMD IOMMU
2179 *
2180 * This interface allows access to lower level functions of the IOMMU
2181 * like protection domain handling and assignement of devices to domains
2182 * which is not possible with the dma_ops interface.
2183 *
2184 *****************************************************************************/
2185
6d98cd80
JR
2186static void cleanup_domain(struct protection_domain *domain)
2187{
2188 unsigned long flags;
2189 u16 devid;
2190
2191 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2192
2193 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
2194 if (amd_iommu_pd_table[devid] == domain)
2195 __detach_device(domain, devid);
2196
2197 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2198}
2199
2650815f
JR
2200static void protection_domain_free(struct protection_domain *domain)
2201{
2202 if (!domain)
2203 return;
2204
2205 if (domain->id)
2206 domain_id_free(domain->id);
2207
2208 kfree(domain);
2209}
2210
2211static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
2212{
2213 struct protection_domain *domain;
2214
2215 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2216 if (!domain)
2650815f 2217 return NULL;
c156e347
JR
2218
2219 spin_lock_init(&domain->lock);
c156e347
JR
2220 domain->id = domain_id_alloc();
2221 if (!domain->id)
2650815f
JR
2222 goto out_err;
2223
2224 return domain;
2225
2226out_err:
2227 kfree(domain);
2228
2229 return NULL;
2230}
2231
2232static int amd_iommu_domain_init(struct iommu_domain *dom)
2233{
2234 struct protection_domain *domain;
2235
2236 domain = protection_domain_alloc();
2237 if (!domain)
c156e347 2238 goto out_free;
2650815f
JR
2239
2240 domain->mode = PAGE_MODE_3_LEVEL;
c156e347
JR
2241 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2242 if (!domain->pt_root)
2243 goto out_free;
2244
2245 dom->priv = domain;
2246
2247 return 0;
2248
2249out_free:
2650815f 2250 protection_domain_free(domain);
c156e347
JR
2251
2252 return -ENOMEM;
2253}
2254
98383fc3
JR
2255static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2256{
2257 struct protection_domain *domain = dom->priv;
2258
2259 if (!domain)
2260 return;
2261
2262 if (domain->dev_cnt > 0)
2263 cleanup_domain(domain);
2264
2265 BUG_ON(domain->dev_cnt != 0);
2266
2267 free_pagetable(domain);
2268
2269 domain_id_free(domain->id);
2270
2271 kfree(domain);
2272
2273 dom->priv = NULL;
2274}
2275
684f2888
JR
2276static void amd_iommu_detach_device(struct iommu_domain *dom,
2277 struct device *dev)
2278{
2279 struct protection_domain *domain = dom->priv;
2280 struct amd_iommu *iommu;
2281 struct pci_dev *pdev;
2282 u16 devid;
2283
2284 if (dev->bus != &pci_bus_type)
2285 return;
2286
2287 pdev = to_pci_dev(dev);
2288
2289 devid = calc_devid(pdev->bus->number, pdev->devfn);
2290
2291 if (devid > 0)
2292 detach_device(domain, devid);
2293
2294 iommu = amd_iommu_rlookup_table[devid];
2295 if (!iommu)
2296 return;
2297
2298 iommu_queue_inv_dev_entry(iommu, devid);
2299 iommu_completion_wait(iommu);
2300}
2301
01106066
JR
2302static int amd_iommu_attach_device(struct iommu_domain *dom,
2303 struct device *dev)
2304{
2305 struct protection_domain *domain = dom->priv;
2306 struct protection_domain *old_domain;
2307 struct amd_iommu *iommu;
2308 struct pci_dev *pdev;
2309 u16 devid;
2310
2311 if (dev->bus != &pci_bus_type)
2312 return -EINVAL;
2313
2314 pdev = to_pci_dev(dev);
2315
2316 devid = calc_devid(pdev->bus->number, pdev->devfn);
2317
2318 if (devid >= amd_iommu_last_bdf ||
2319 devid != amd_iommu_alias_table[devid])
2320 return -EINVAL;
2321
2322 iommu = amd_iommu_rlookup_table[devid];
2323 if (!iommu)
2324 return -EINVAL;
2325
2326 old_domain = domain_for_device(devid);
2327 if (old_domain)
71ff3bca 2328 detach_device(old_domain, devid);
01106066
JR
2329
2330 attach_device(iommu, domain, devid);
2331
2332 iommu_completion_wait(iommu);
2333
2334 return 0;
2335}
2336
c6229ca6
JR
2337static int amd_iommu_map_range(struct iommu_domain *dom,
2338 unsigned long iova, phys_addr_t paddr,
2339 size_t size, int iommu_prot)
2340{
2341 struct protection_domain *domain = dom->priv;
2342 unsigned long i, npages = iommu_num_pages(paddr, size, PAGE_SIZE);
2343 int prot = 0;
2344 int ret;
2345
2346 if (iommu_prot & IOMMU_READ)
2347 prot |= IOMMU_PROT_IR;
2348 if (iommu_prot & IOMMU_WRITE)
2349 prot |= IOMMU_PROT_IW;
2350
2351 iova &= PAGE_MASK;
2352 paddr &= PAGE_MASK;
2353
2354 for (i = 0; i < npages; ++i) {
abdc5eb3 2355 ret = iommu_map_page(domain, iova, paddr, prot, PM_MAP_4k);
c6229ca6
JR
2356 if (ret)
2357 return ret;
2358
2359 iova += PAGE_SIZE;
2360 paddr += PAGE_SIZE;
2361 }
2362
2363 return 0;
2364}
2365
eb74ff6c
JR
2366static void amd_iommu_unmap_range(struct iommu_domain *dom,
2367 unsigned long iova, size_t size)
2368{
2369
2370 struct protection_domain *domain = dom->priv;
2371 unsigned long i, npages = iommu_num_pages(iova, size, PAGE_SIZE);
2372
2373 iova &= PAGE_MASK;
2374
2375 for (i = 0; i < npages; ++i) {
a6b256b4 2376 iommu_unmap_page(domain, iova, PM_MAP_4k);
eb74ff6c
JR
2377 iova += PAGE_SIZE;
2378 }
2379
2380 iommu_flush_domain(domain->id);
2381}
2382
645c4c8d
JR
2383static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2384 unsigned long iova)
2385{
2386 struct protection_domain *domain = dom->priv;
2387 unsigned long offset = iova & ~PAGE_MASK;
2388 phys_addr_t paddr;
2389 u64 *pte;
2390
a6b256b4 2391 pte = fetch_pte(domain, iova, PM_MAP_4k);
645c4c8d 2392
a6d41a40 2393 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
2394 return 0;
2395
2396 paddr = *pte & IOMMU_PAGE_MASK;
2397 paddr |= offset;
2398
2399 return paddr;
2400}
2401
dbb9fd86
SY
2402static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2403 unsigned long cap)
2404{
2405 return 0;
2406}
2407
26961efe
JR
2408static struct iommu_ops amd_iommu_ops = {
2409 .domain_init = amd_iommu_domain_init,
2410 .domain_destroy = amd_iommu_domain_destroy,
2411 .attach_dev = amd_iommu_attach_device,
2412 .detach_dev = amd_iommu_detach_device,
2413 .map = amd_iommu_map_range,
2414 .unmap = amd_iommu_unmap_range,
2415 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 2416 .domain_has_cap = amd_iommu_domain_has_cap,
26961efe
JR
2417};
2418
0feae533
JR
2419/*****************************************************************************
2420 *
2421 * The next functions do a basic initialization of IOMMU for pass through
2422 * mode
2423 *
2424 * In passthrough mode the IOMMU is initialized and enabled but not used for
2425 * DMA-API translation.
2426 *
2427 *****************************************************************************/
2428
2429int __init amd_iommu_init_passthrough(void)
2430{
2431 struct pci_dev *dev = NULL;
2432 u16 devid, devid2;
2433
2434 /* allocate passthroug domain */
2435 pt_domain = protection_domain_alloc();
2436 if (!pt_domain)
2437 return -ENOMEM;
2438
2439 pt_domain->mode |= PAGE_MODE_NONE;
2440
2441 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2442 struct amd_iommu *iommu;
2443
2444 devid = calc_devid(dev->bus->number, dev->devfn);
2445 if (devid > amd_iommu_last_bdf)
2446 continue;
2447
2448 devid2 = amd_iommu_alias_table[devid];
2449
2450 iommu = amd_iommu_rlookup_table[devid2];
2451 if (!iommu)
2452 continue;
2453
2454 __attach_device(iommu, pt_domain, devid);
2455 __attach_device(iommu, pt_domain, devid2);
2456 }
2457
2458 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
2459
2460 return 0;
2461}
This page took 0.529191 seconds and 5 git commands to generate.