Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[deliverable/linux.git] / arch / x86 / kernel / amd_iommu_init.c
CommitLineData
f6e2e6b6
JR
1/*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/acpi.h>
22#include <linux/gfp.h>
23#include <linux/list.h>
7441e9cb 24#include <linux/sysdev.h>
a80dc3e0
JR
25#include <linux/interrupt.h>
26#include <linux/msi.h>
f6e2e6b6
JR
27#include <asm/pci-direct.h>
28#include <asm/amd_iommu_types.h>
c6da992e 29#include <asm/amd_iommu.h>
46a7fa27 30#include <asm/iommu.h>
1d9b16d1 31#include <asm/gart.h>
f6e2e6b6
JR
32
33/*
34 * definitions for the ACPI scanning code
35 */
f6e2e6b6 36#define IVRS_HEADER_LENGTH 48
f6e2e6b6
JR
37
38#define ACPI_IVHD_TYPE 0x10
39#define ACPI_IVMD_TYPE_ALL 0x20
40#define ACPI_IVMD_TYPE 0x21
41#define ACPI_IVMD_TYPE_RANGE 0x22
42
43#define IVHD_DEV_ALL 0x01
44#define IVHD_DEV_SELECT 0x02
45#define IVHD_DEV_SELECT_RANGE_START 0x03
46#define IVHD_DEV_RANGE_END 0x04
47#define IVHD_DEV_ALIAS 0x42
48#define IVHD_DEV_ALIAS_RANGE 0x43
49#define IVHD_DEV_EXT_SELECT 0x46
50#define IVHD_DEV_EXT_SELECT_RANGE 0x47
51
6da7342f
JR
52#define IVHD_FLAG_HT_TUN_EN_MASK 0x01
53#define IVHD_FLAG_PASSPW_EN_MASK 0x02
54#define IVHD_FLAG_RESPASSPW_EN_MASK 0x04
55#define IVHD_FLAG_ISOC_EN_MASK 0x08
f6e2e6b6
JR
56
57#define IVMD_FLAG_EXCL_RANGE 0x08
58#define IVMD_FLAG_UNITY_MAP 0x01
59
60#define ACPI_DEVFLAG_INITPASS 0x01
61#define ACPI_DEVFLAG_EXTINT 0x02
62#define ACPI_DEVFLAG_NMI 0x04
63#define ACPI_DEVFLAG_SYSMGT1 0x10
64#define ACPI_DEVFLAG_SYSMGT2 0x20
65#define ACPI_DEVFLAG_LINT0 0x40
66#define ACPI_DEVFLAG_LINT1 0x80
67#define ACPI_DEVFLAG_ATSDIS 0x10000000
68
b65233a9
JR
69/*
70 * ACPI table definitions
71 *
72 * These data structures are laid over the table to parse the important values
73 * out of it.
74 */
75
76/*
77 * structure describing one IOMMU in the ACPI table. Typically followed by one
78 * or more ivhd_entrys.
79 */
f6e2e6b6
JR
80struct ivhd_header {
81 u8 type;
82 u8 flags;
83 u16 length;
84 u16 devid;
85 u16 cap_ptr;
86 u64 mmio_phys;
87 u16 pci_seg;
88 u16 info;
89 u32 reserved;
90} __attribute__((packed));
91
b65233a9
JR
92/*
93 * A device entry describing which devices a specific IOMMU translates and
94 * which requestor ids they use.
95 */
f6e2e6b6
JR
96struct ivhd_entry {
97 u8 type;
98 u16 devid;
99 u8 flags;
100 u32 ext;
101} __attribute__((packed));
102
b65233a9
JR
103/*
104 * An AMD IOMMU memory definition structure. It defines things like exclusion
105 * ranges for devices and regions that should be unity mapped.
106 */
f6e2e6b6
JR
107struct ivmd_header {
108 u8 type;
109 u8 flags;
110 u16 length;
111 u16 devid;
112 u16 aux;
113 u64 resv;
114 u64 range_start;
115 u64 range_length;
116} __attribute__((packed));
117
fefda117
JR
118bool amd_iommu_dump;
119
c1cbebee
JR
120static int __initdata amd_iommu_detected;
121
b65233a9
JR
122u16 amd_iommu_last_bdf; /* largest PCI device id we have
123 to handle */
2e22847f 124LIST_HEAD(amd_iommu_unity_map); /* a list of required unity mappings
b65233a9 125 we find in ACPI */
2e8b5696
JR
126#ifdef CONFIG_IOMMU_STRESS
127bool amd_iommu_isolate = false;
128#else
c226f853
JR
129bool amd_iommu_isolate = true; /* if true, device isolation is
130 enabled */
2e8b5696
JR
131#endif
132
afa9fdc2 133bool amd_iommu_unmap_flush; /* if true, flush on every unmap */
928abd25 134
2e22847f 135LIST_HEAD(amd_iommu_list); /* list of all AMD IOMMUs in the
b65233a9 136 system */
928abd25 137
b65233a9
JR
138/*
139 * Pointer to the device table which is shared by all AMD IOMMUs
140 * it is indexed by the PCI device id or the HT unit id and contains
141 * information about the domain the device belongs to as well as the
142 * page table root pointer.
143 */
928abd25 144struct dev_table_entry *amd_iommu_dev_table;
b65233a9
JR
145
146/*
147 * The alias table is a driver specific data structure which contains the
148 * mappings of the PCI device ids to the actual requestor ids on the IOMMU.
149 * More than one device can share the same requestor id.
150 */
928abd25 151u16 *amd_iommu_alias_table;
b65233a9
JR
152
153/*
154 * The rlookup table is used to find the IOMMU which is responsible
155 * for a specific device. It is also indexed by the PCI device id.
156 */
928abd25 157struct amd_iommu **amd_iommu_rlookup_table;
b65233a9
JR
158
159/*
160 * The pd table (protection domain table) is used to find the protection domain
161 * data structure a device belongs to. Indexed with the PCI device id too.
162 */
928abd25 163struct protection_domain **amd_iommu_pd_table;
b65233a9
JR
164
165/*
166 * AMD IOMMU allows up to 2^16 differend protection domains. This is a bitmap
167 * to know which ones are already in use.
168 */
928abd25
JR
169unsigned long *amd_iommu_pd_alloc_bitmap;
170
b65233a9
JR
171static u32 dev_table_size; /* size of the device table */
172static u32 alias_table_size; /* size of the alias table */
173static u32 rlookup_table_size; /* size if the rlookup table */
3e8064ba 174
208ec8c9
JR
175static inline void update_last_devid(u16 devid)
176{
177 if (devid > amd_iommu_last_bdf)
178 amd_iommu_last_bdf = devid;
179}
180
c571484e
JR
181static inline unsigned long tbl_size(int entry_size)
182{
183 unsigned shift = PAGE_SHIFT +
421f909c 184 get_order(((int)amd_iommu_last_bdf + 1) * entry_size);
c571484e
JR
185
186 return 1UL << shift;
187}
188
b65233a9
JR
189/****************************************************************************
190 *
191 * AMD IOMMU MMIO register space handling functions
192 *
193 * These functions are used to program the IOMMU device registers in
194 * MMIO space required for that driver.
195 *
196 ****************************************************************************/
3e8064ba 197
b65233a9
JR
198/*
199 * This function set the exclusion range in the IOMMU. DMA accesses to the
200 * exclusion range are passed through untranslated
201 */
05f92db9 202static void iommu_set_exclusion_range(struct amd_iommu *iommu)
b2026aa2
JR
203{
204 u64 start = iommu->exclusion_start & PAGE_MASK;
205 u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
206 u64 entry;
207
208 if (!iommu->exclusion_start)
209 return;
210
211 entry = start | MMIO_EXCL_ENABLE_MASK;
212 memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
213 &entry, sizeof(entry));
214
215 entry = limit;
216 memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
217 &entry, sizeof(entry));
218}
219
b65233a9 220/* Programs the physical address of the device table into the IOMMU hardware */
b2026aa2
JR
221static void __init iommu_set_device_table(struct amd_iommu *iommu)
222{
f609891f 223 u64 entry;
b2026aa2
JR
224
225 BUG_ON(iommu->mmio_base == NULL);
226
227 entry = virt_to_phys(amd_iommu_dev_table);
228 entry |= (dev_table_size >> 12) - 1;
229 memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
230 &entry, sizeof(entry));
231}
232
b65233a9 233/* Generic functions to enable/disable certain features of the IOMMU. */
05f92db9 234static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
b2026aa2
JR
235{
236 u32 ctrl;
237
238 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
239 ctrl |= (1 << bit);
240 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
241}
242
243static void __init iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
244{
245 u32 ctrl;
246
199d0d50 247 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
b2026aa2
JR
248 ctrl &= ~(1 << bit);
249 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
250}
251
b65233a9 252/* Function to enable the hardware */
05f92db9 253static void iommu_enable(struct amd_iommu *iommu)
b2026aa2 254{
4c6f40d4 255 printk(KERN_INFO "AMD-Vi: Enabling IOMMU at %s cap 0x%hx\n",
a4e267c8 256 dev_name(&iommu->dev->dev), iommu->cap_ptr);
b2026aa2
JR
257
258 iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
b2026aa2
JR
259}
260
92ac4320 261static void iommu_disable(struct amd_iommu *iommu)
126c52be 262{
a8c485bb
CW
263 /* Disable command buffer */
264 iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
265
266 /* Disable event logging and event interrupts */
267 iommu_feature_disable(iommu, CONTROL_EVT_INT_EN);
268 iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);
269
270 /* Disable IOMMU hardware itself */
92ac4320 271 iommu_feature_disable(iommu, CONTROL_IOMMU_EN);
126c52be
JR
272}
273
b65233a9
JR
274/*
275 * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
276 * the system has one.
277 */
6c56747b
JR
278static u8 * __init iommu_map_mmio_space(u64 address)
279{
280 u8 *ret;
281
282 if (!request_mem_region(address, MMIO_REGION_LENGTH, "amd_iommu"))
283 return NULL;
284
285 ret = ioremap_nocache(address, MMIO_REGION_LENGTH);
286 if (ret != NULL)
287 return ret;
288
289 release_mem_region(address, MMIO_REGION_LENGTH);
290
291 return NULL;
292}
293
294static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
295{
296 if (iommu->mmio_base)
297 iounmap(iommu->mmio_base);
298 release_mem_region(iommu->mmio_phys, MMIO_REGION_LENGTH);
299}
300
b65233a9
JR
301/****************************************************************************
302 *
303 * The functions below belong to the first pass of AMD IOMMU ACPI table
304 * parsing. In this pass we try to find out the highest device id this
305 * code has to handle. Upon this information the size of the shared data
306 * structures is determined later.
307 *
308 ****************************************************************************/
309
b514e555
JR
310/*
311 * This function calculates the length of a given IVHD entry
312 */
313static inline int ivhd_entry_length(u8 *ivhd)
314{
315 return 0x04 << (*ivhd >> 6);
316}
317
b65233a9
JR
318/*
319 * This function reads the last device id the IOMMU has to handle from the PCI
320 * capability header for this IOMMU
321 */
3e8064ba
JR
322static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr)
323{
324 u32 cap;
325
326 cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
d591b0a3 327 update_last_devid(calc_devid(MMIO_GET_BUS(cap), MMIO_GET_LD(cap)));
3e8064ba
JR
328
329 return 0;
330}
331
b65233a9
JR
332/*
333 * After reading the highest device id from the IOMMU PCI capability header
334 * this function looks if there is a higher device id defined in the ACPI table
335 */
3e8064ba
JR
336static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
337{
338 u8 *p = (void *)h, *end = (void *)h;
339 struct ivhd_entry *dev;
340
341 p += sizeof(*h);
342 end += h->length;
343
344 find_last_devid_on_pci(PCI_BUS(h->devid),
345 PCI_SLOT(h->devid),
346 PCI_FUNC(h->devid),
347 h->cap_ptr);
348
349 while (p < end) {
350 dev = (struct ivhd_entry *)p;
351 switch (dev->type) {
352 case IVHD_DEV_SELECT:
353 case IVHD_DEV_RANGE_END:
354 case IVHD_DEV_ALIAS:
355 case IVHD_DEV_EXT_SELECT:
b65233a9 356 /* all the above subfield types refer to device ids */
208ec8c9 357 update_last_devid(dev->devid);
3e8064ba
JR
358 break;
359 default:
360 break;
361 }
b514e555 362 p += ivhd_entry_length(p);
3e8064ba
JR
363 }
364
365 WARN_ON(p != end);
366
367 return 0;
368}
369
b65233a9
JR
370/*
371 * Iterate over all IVHD entries in the ACPI table and find the highest device
372 * id which we need to handle. This is the first of three functions which parse
373 * the ACPI table. So we check the checksum here.
374 */
3e8064ba
JR
375static int __init find_last_devid_acpi(struct acpi_table_header *table)
376{
377 int i;
378 u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table;
379 struct ivhd_header *h;
380
381 /*
382 * Validate checksum here so we don't need to do it when
383 * we actually parse the table
384 */
385 for (i = 0; i < table->length; ++i)
386 checksum += p[i];
387 if (checksum != 0)
388 /* ACPI table corrupt */
389 return -ENODEV;
390
391 p += IVRS_HEADER_LENGTH;
392
393 end += table->length;
394 while (p < end) {
395 h = (struct ivhd_header *)p;
396 switch (h->type) {
397 case ACPI_IVHD_TYPE:
398 find_last_devid_from_ivhd(h);
399 break;
400 default:
401 break;
402 }
403 p += h->length;
404 }
405 WARN_ON(p != end);
406
407 return 0;
408}
409
b65233a9
JR
410/****************************************************************************
411 *
412 * The following functions belong the the code path which parses the ACPI table
413 * the second time. In this ACPI parsing iteration we allocate IOMMU specific
414 * data structures, initialize the device/alias/rlookup table and also
415 * basically initialize the hardware.
416 *
417 ****************************************************************************/
418
419/*
420 * Allocates the command buffer. This buffer is per AMD IOMMU. We can
421 * write commands to that buffer later and the IOMMU will execute them
422 * asynchronously
423 */
b36ca91e
JR
424static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
425{
d0312b21 426 u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
b36ca91e 427 get_order(CMD_BUFFER_SIZE));
b36ca91e
JR
428
429 if (cmd_buf == NULL)
430 return NULL;
431
432 iommu->cmd_buf_size = CMD_BUFFER_SIZE;
433
58492e12
JR
434 return cmd_buf;
435}
436
93f1cc67
JR
437/*
438 * This function resets the command buffer if the IOMMU stopped fetching
439 * commands from it.
440 */
441void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu)
442{
443 iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
444
445 writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
446 writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
447
448 iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
449}
450
58492e12
JR
451/*
452 * This function writes the command buffer address to the hardware and
453 * enables it.
454 */
455static void iommu_enable_command_buffer(struct amd_iommu *iommu)
456{
457 u64 entry;
458
459 BUG_ON(iommu->cmd_buf == NULL);
460
461 entry = (u64)virt_to_phys(iommu->cmd_buf);
b36ca91e 462 entry |= MMIO_CMD_SIZE_512;
58492e12 463
b36ca91e 464 memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
58492e12 465 &entry, sizeof(entry));
b36ca91e 466
93f1cc67 467 amd_iommu_reset_cmd_buffer(iommu);
b36ca91e
JR
468}
469
470static void __init free_command_buffer(struct amd_iommu *iommu)
471{
23c1713f
JR
472 free_pages((unsigned long)iommu->cmd_buf,
473 get_order(iommu->cmd_buf_size));
b36ca91e
JR
474}
475
335503e5
JR
476/* allocates the memory where the IOMMU will log its events to */
477static u8 * __init alloc_event_buffer(struct amd_iommu *iommu)
478{
335503e5
JR
479 iommu->evt_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
480 get_order(EVT_BUFFER_SIZE));
481
482 if (iommu->evt_buf == NULL)
483 return NULL;
484
1bc6f838
JR
485 iommu->evt_buf_size = EVT_BUFFER_SIZE;
486
58492e12
JR
487 return iommu->evt_buf;
488}
489
490static void iommu_enable_event_buffer(struct amd_iommu *iommu)
491{
492 u64 entry;
493
494 BUG_ON(iommu->evt_buf == NULL);
495
335503e5 496 entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
58492e12 497
335503e5
JR
498 memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
499 &entry, sizeof(entry));
500
09067207
JR
501 /* set head and tail to zero manually */
502 writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
503 writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
504
58492e12 505 iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
335503e5
JR
506}
507
508static void __init free_event_buffer(struct amd_iommu *iommu)
509{
510 free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
511}
512
b65233a9 513/* sets a specific bit in the device table entry. */
3566b778
JR
514static void set_dev_entry_bit(u16 devid, u8 bit)
515{
516 int i = (bit >> 5) & 0x07;
517 int _bit = bit & 0x1f;
518
519 amd_iommu_dev_table[devid].data[i] |= (1 << _bit);
520}
521
5ff4789d
JR
522/* Writes the specific IOMMU for a device into the rlookup table */
523static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
524{
525 amd_iommu_rlookup_table[devid] = iommu;
526}
527
b65233a9
JR
528/*
529 * This function takes the device specific flags read from the ACPI
530 * table and sets up the device table entry with that information
531 */
5ff4789d
JR
532static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
533 u16 devid, u32 flags, u32 ext_flags)
3566b778
JR
534{
535 if (flags & ACPI_DEVFLAG_INITPASS)
536 set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
537 if (flags & ACPI_DEVFLAG_EXTINT)
538 set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
539 if (flags & ACPI_DEVFLAG_NMI)
540 set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
541 if (flags & ACPI_DEVFLAG_SYSMGT1)
542 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
543 if (flags & ACPI_DEVFLAG_SYSMGT2)
544 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
545 if (flags & ACPI_DEVFLAG_LINT0)
546 set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
547 if (flags & ACPI_DEVFLAG_LINT1)
548 set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);
3566b778 549
5ff4789d 550 set_iommu_for_device(iommu, devid);
3566b778
JR
551}
552
b65233a9
JR
553/*
554 * Reads the device exclusion range from ACPI and initialize IOMMU with
555 * it
556 */
3566b778
JR
557static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
558{
559 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
560
561 if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
562 return;
563
564 if (iommu) {
b65233a9
JR
565 /*
566 * We only can configure exclusion ranges per IOMMU, not
567 * per device. But we can enable the exclusion range per
568 * device. This is done here
569 */
3566b778
JR
570 set_dev_entry_bit(m->devid, DEV_ENTRY_EX);
571 iommu->exclusion_start = m->range_start;
572 iommu->exclusion_length = m->range_length;
573 }
574}
575
b65233a9
JR
576/*
577 * This function reads some important data from the IOMMU PCI space and
578 * initializes the driver data structure with it. It reads the hardware
579 * capabilities and the first/last device entries
580 */
5d0c8e49
JR
581static void __init init_iommu_from_pci(struct amd_iommu *iommu)
582{
5d0c8e49 583 int cap_ptr = iommu->cap_ptr;
a80dc3e0 584 u32 range, misc;
5d0c8e49 585
3eaf28a1
JR
586 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
587 &iommu->cap);
588 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET,
589 &range);
a80dc3e0
JR
590 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET,
591 &misc);
5d0c8e49 592
d591b0a3
JR
593 iommu->first_device = calc_devid(MMIO_GET_BUS(range),
594 MMIO_GET_FD(range));
595 iommu->last_device = calc_devid(MMIO_GET_BUS(range),
596 MMIO_GET_LD(range));
a80dc3e0 597 iommu->evt_msi_num = MMIO_MSI_NUM(misc);
5d0c8e49
JR
598}
599
b65233a9
JR
600/*
601 * Takes a pointer to an AMD IOMMU entry in the ACPI table and
602 * initializes the hardware and our data structures with it.
603 */
5d0c8e49
JR
604static void __init init_iommu_from_acpi(struct amd_iommu *iommu,
605 struct ivhd_header *h)
606{
607 u8 *p = (u8 *)h;
608 u8 *end = p, flags = 0;
609 u16 dev_i, devid = 0, devid_start = 0, devid_to = 0;
610 u32 ext_flags = 0;
58a3bee5 611 bool alias = false;
5d0c8e49
JR
612 struct ivhd_entry *e;
613
614 /*
615 * First set the recommended feature enable bits from ACPI
616 * into the IOMMU control registers
617 */
6da7342f 618 h->flags & IVHD_FLAG_HT_TUN_EN_MASK ?
5d0c8e49
JR
619 iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
620 iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);
621
6da7342f 622 h->flags & IVHD_FLAG_PASSPW_EN_MASK ?
5d0c8e49
JR
623 iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
624 iommu_feature_disable(iommu, CONTROL_PASSPW_EN);
625
6da7342f 626 h->flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
5d0c8e49
JR
627 iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
628 iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);
629
6da7342f 630 h->flags & IVHD_FLAG_ISOC_EN_MASK ?
5d0c8e49
JR
631 iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
632 iommu_feature_disable(iommu, CONTROL_ISOC_EN);
633
634 /*
635 * make IOMMU memory accesses cache coherent
636 */
637 iommu_feature_enable(iommu, CONTROL_COHERENT_EN);
638
639 /*
640 * Done. Now parse the device entries
641 */
642 p += sizeof(struct ivhd_header);
643 end += h->length;
644
42a698f4 645
5d0c8e49
JR
646 while (p < end) {
647 e = (struct ivhd_entry *)p;
648 switch (e->type) {
649 case IVHD_DEV_ALL:
42a698f4
JR
650
651 DUMP_printk(" DEV_ALL\t\t\t first devid: %02x:%02x.%x"
652 " last device %02x:%02x.%x flags: %02x\n",
653 PCI_BUS(iommu->first_device),
654 PCI_SLOT(iommu->first_device),
655 PCI_FUNC(iommu->first_device),
656 PCI_BUS(iommu->last_device),
657 PCI_SLOT(iommu->last_device),
658 PCI_FUNC(iommu->last_device),
659 e->flags);
660
5d0c8e49
JR
661 for (dev_i = iommu->first_device;
662 dev_i <= iommu->last_device; ++dev_i)
5ff4789d
JR
663 set_dev_entry_from_acpi(iommu, dev_i,
664 e->flags, 0);
5d0c8e49
JR
665 break;
666 case IVHD_DEV_SELECT:
42a698f4
JR
667
668 DUMP_printk(" DEV_SELECT\t\t\t devid: %02x:%02x.%x "
669 "flags: %02x\n",
670 PCI_BUS(e->devid),
671 PCI_SLOT(e->devid),
672 PCI_FUNC(e->devid),
673 e->flags);
674
5d0c8e49 675 devid = e->devid;
5ff4789d 676 set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
5d0c8e49
JR
677 break;
678 case IVHD_DEV_SELECT_RANGE_START:
42a698f4
JR
679
680 DUMP_printk(" DEV_SELECT_RANGE_START\t "
681 "devid: %02x:%02x.%x flags: %02x\n",
682 PCI_BUS(e->devid),
683 PCI_SLOT(e->devid),
684 PCI_FUNC(e->devid),
685 e->flags);
686
5d0c8e49
JR
687 devid_start = e->devid;
688 flags = e->flags;
689 ext_flags = 0;
58a3bee5 690 alias = false;
5d0c8e49
JR
691 break;
692 case IVHD_DEV_ALIAS:
42a698f4
JR
693
694 DUMP_printk(" DEV_ALIAS\t\t\t devid: %02x:%02x.%x "
695 "flags: %02x devid_to: %02x:%02x.%x\n",
696 PCI_BUS(e->devid),
697 PCI_SLOT(e->devid),
698 PCI_FUNC(e->devid),
699 e->flags,
700 PCI_BUS(e->ext >> 8),
701 PCI_SLOT(e->ext >> 8),
702 PCI_FUNC(e->ext >> 8));
703
5d0c8e49
JR
704 devid = e->devid;
705 devid_to = e->ext >> 8;
7a6a3a08 706 set_dev_entry_from_acpi(iommu, devid , e->flags, 0);
7455aab1 707 set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0);
5d0c8e49
JR
708 amd_iommu_alias_table[devid] = devid_to;
709 break;
710 case IVHD_DEV_ALIAS_RANGE:
42a698f4
JR
711
712 DUMP_printk(" DEV_ALIAS_RANGE\t\t "
713 "devid: %02x:%02x.%x flags: %02x "
714 "devid_to: %02x:%02x.%x\n",
715 PCI_BUS(e->devid),
716 PCI_SLOT(e->devid),
717 PCI_FUNC(e->devid),
718 e->flags,
719 PCI_BUS(e->ext >> 8),
720 PCI_SLOT(e->ext >> 8),
721 PCI_FUNC(e->ext >> 8));
722
5d0c8e49
JR
723 devid_start = e->devid;
724 flags = e->flags;
725 devid_to = e->ext >> 8;
726 ext_flags = 0;
58a3bee5 727 alias = true;
5d0c8e49
JR
728 break;
729 case IVHD_DEV_EXT_SELECT:
42a698f4
JR
730
731 DUMP_printk(" DEV_EXT_SELECT\t\t devid: %02x:%02x.%x "
732 "flags: %02x ext: %08x\n",
733 PCI_BUS(e->devid),
734 PCI_SLOT(e->devid),
735 PCI_FUNC(e->devid),
736 e->flags, e->ext);
737
5d0c8e49 738 devid = e->devid;
5ff4789d
JR
739 set_dev_entry_from_acpi(iommu, devid, e->flags,
740 e->ext);
5d0c8e49
JR
741 break;
742 case IVHD_DEV_EXT_SELECT_RANGE:
42a698f4
JR
743
744 DUMP_printk(" DEV_EXT_SELECT_RANGE\t devid: "
745 "%02x:%02x.%x flags: %02x ext: %08x\n",
746 PCI_BUS(e->devid),
747 PCI_SLOT(e->devid),
748 PCI_FUNC(e->devid),
749 e->flags, e->ext);
750
5d0c8e49
JR
751 devid_start = e->devid;
752 flags = e->flags;
753 ext_flags = e->ext;
58a3bee5 754 alias = false;
5d0c8e49
JR
755 break;
756 case IVHD_DEV_RANGE_END:
42a698f4
JR
757
758 DUMP_printk(" DEV_RANGE_END\t\t devid: %02x:%02x.%x\n",
759 PCI_BUS(e->devid),
760 PCI_SLOT(e->devid),
761 PCI_FUNC(e->devid));
762
5d0c8e49
JR
763 devid = e->devid;
764 for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
7a6a3a08 765 if (alias) {
5d0c8e49 766 amd_iommu_alias_table[dev_i] = devid_to;
7a6a3a08
JR
767 set_dev_entry_from_acpi(iommu,
768 devid_to, flags, ext_flags);
769 }
770 set_dev_entry_from_acpi(iommu, dev_i,
771 flags, ext_flags);
5d0c8e49
JR
772 }
773 break;
774 default:
775 break;
776 }
777
b514e555 778 p += ivhd_entry_length(p);
5d0c8e49
JR
779 }
780}
781
b65233a9 782/* Initializes the device->iommu mapping for the driver */
5d0c8e49
JR
783static int __init init_iommu_devices(struct amd_iommu *iommu)
784{
785 u16 i;
786
787 for (i = iommu->first_device; i <= iommu->last_device; ++i)
788 set_iommu_for_device(iommu, i);
789
790 return 0;
791}
792
e47d402d
JR
793static void __init free_iommu_one(struct amd_iommu *iommu)
794{
795 free_command_buffer(iommu);
335503e5 796 free_event_buffer(iommu);
e47d402d
JR
797 iommu_unmap_mmio_space(iommu);
798}
799
800static void __init free_iommu_all(void)
801{
802 struct amd_iommu *iommu, *next;
803
3bd22172 804 for_each_iommu_safe(iommu, next) {
e47d402d
JR
805 list_del(&iommu->list);
806 free_iommu_one(iommu);
807 kfree(iommu);
808 }
809}
810
b65233a9
JR
811/*
812 * This function clues the initialization function for one IOMMU
813 * together and also allocates the command buffer and programs the
814 * hardware. It does NOT enable the IOMMU. This is done afterwards.
815 */
e47d402d
JR
816static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
817{
818 spin_lock_init(&iommu->lock);
819 list_add_tail(&iommu->list, &amd_iommu_list);
820
821 /*
822 * Copy data from ACPI table entry to the iommu struct
823 */
3eaf28a1
JR
824 iommu->dev = pci_get_bus_and_slot(PCI_BUS(h->devid), h->devid & 0xff);
825 if (!iommu->dev)
826 return 1;
827
e47d402d 828 iommu->cap_ptr = h->cap_ptr;
ee893c24 829 iommu->pci_seg = h->pci_seg;
e47d402d
JR
830 iommu->mmio_phys = h->mmio_phys;
831 iommu->mmio_base = iommu_map_mmio_space(h->mmio_phys);
832 if (!iommu->mmio_base)
833 return -ENOMEM;
834
e47d402d
JR
835 iommu->cmd_buf = alloc_command_buffer(iommu);
836 if (!iommu->cmd_buf)
837 return -ENOMEM;
838
335503e5
JR
839 iommu->evt_buf = alloc_event_buffer(iommu);
840 if (!iommu->evt_buf)
841 return -ENOMEM;
842
a80dc3e0
JR
843 iommu->int_enabled = false;
844
e47d402d
JR
845 init_iommu_from_pci(iommu);
846 init_iommu_from_acpi(iommu, h);
847 init_iommu_devices(iommu);
848
8a66712b 849 return pci_enable_device(iommu->dev);
e47d402d
JR
850}
851
b65233a9
JR
852/*
853 * Iterates over all IOMMU entries in the ACPI table, allocates the
854 * IOMMU structure and initializes it with init_iommu_one()
855 */
e47d402d
JR
856static int __init init_iommu_all(struct acpi_table_header *table)
857{
858 u8 *p = (u8 *)table, *end = (u8 *)table;
859 struct ivhd_header *h;
860 struct amd_iommu *iommu;
861 int ret;
862
e47d402d
JR
863 end += table->length;
864 p += IVRS_HEADER_LENGTH;
865
866 while (p < end) {
867 h = (struct ivhd_header *)p;
868 switch (*p) {
869 case ACPI_IVHD_TYPE:
9c72041f 870
ae908c22 871 DUMP_printk("device: %02x:%02x.%01x cap: %04x "
9c72041f
JR
872 "seg: %d flags: %01x info %04x\n",
873 PCI_BUS(h->devid), PCI_SLOT(h->devid),
874 PCI_FUNC(h->devid), h->cap_ptr,
875 h->pci_seg, h->flags, h->info);
876 DUMP_printk(" mmio-addr: %016llx\n",
877 h->mmio_phys);
878
e47d402d
JR
879 iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
880 if (iommu == NULL)
881 return -ENOMEM;
882 ret = init_iommu_one(iommu, h);
883 if (ret)
884 return ret;
885 break;
886 default:
887 break;
888 }
889 p += h->length;
890
891 }
892 WARN_ON(p != end);
893
894 return 0;
895}
896
a80dc3e0
JR
897/****************************************************************************
898 *
899 * The following functions initialize the MSI interrupts for all IOMMUs
900 * in the system. Its a bit challenging because there could be multiple
901 * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
902 * pci_dev.
903 *
904 ****************************************************************************/
905
a80dc3e0
JR
906static int __init iommu_setup_msi(struct amd_iommu *iommu)
907{
908 int r;
a80dc3e0
JR
909
910 if (pci_enable_msi(iommu->dev))
911 return 1;
912
913 r = request_irq(iommu->dev->irq, amd_iommu_int_handler,
914 IRQF_SAMPLE_RANDOM,
4c6f40d4 915 "AMD-Vi",
a80dc3e0
JR
916 NULL);
917
918 if (r) {
919 pci_disable_msi(iommu->dev);
920 return 1;
921 }
922
fab6afa3 923 iommu->int_enabled = true;
58492e12
JR
924 iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);
925
a80dc3e0
JR
926 return 0;
927}
928
05f92db9 929static int iommu_init_msi(struct amd_iommu *iommu)
a80dc3e0
JR
930{
931 if (iommu->int_enabled)
932 return 0;
933
d91cecdd 934 if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSI))
a80dc3e0
JR
935 return iommu_setup_msi(iommu);
936
937 return 1;
938}
939
b65233a9
JR
940/****************************************************************************
941 *
942 * The next functions belong to the third pass of parsing the ACPI
943 * table. In this last pass the memory mapping requirements are
944 * gathered (like exclusion and unity mapping reanges).
945 *
946 ****************************************************************************/
947
be2a022c
JR
948static void __init free_unity_maps(void)
949{
950 struct unity_map_entry *entry, *next;
951
952 list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
953 list_del(&entry->list);
954 kfree(entry);
955 }
956}
957
b65233a9 958/* called when we find an exclusion range definition in ACPI */
be2a022c
JR
959static int __init init_exclusion_range(struct ivmd_header *m)
960{
961 int i;
962
963 switch (m->type) {
964 case ACPI_IVMD_TYPE:
965 set_device_exclusion_range(m->devid, m);
966 break;
967 case ACPI_IVMD_TYPE_ALL:
3a61ec38 968 for (i = 0; i <= amd_iommu_last_bdf; ++i)
be2a022c
JR
969 set_device_exclusion_range(i, m);
970 break;
971 case ACPI_IVMD_TYPE_RANGE:
972 for (i = m->devid; i <= m->aux; ++i)
973 set_device_exclusion_range(i, m);
974 break;
975 default:
976 break;
977 }
978
979 return 0;
980}
981
b65233a9 982/* called for unity map ACPI definition */
be2a022c
JR
983static int __init init_unity_map_range(struct ivmd_header *m)
984{
985 struct unity_map_entry *e = 0;
02acc43a 986 char *s;
be2a022c
JR
987
988 e = kzalloc(sizeof(*e), GFP_KERNEL);
989 if (e == NULL)
990 return -ENOMEM;
991
992 switch (m->type) {
993 default:
0bc252f4
JR
994 kfree(e);
995 return 0;
be2a022c 996 case ACPI_IVMD_TYPE:
02acc43a 997 s = "IVMD_TYPEi\t\t\t";
be2a022c
JR
998 e->devid_start = e->devid_end = m->devid;
999 break;
1000 case ACPI_IVMD_TYPE_ALL:
02acc43a 1001 s = "IVMD_TYPE_ALL\t\t";
be2a022c
JR
1002 e->devid_start = 0;
1003 e->devid_end = amd_iommu_last_bdf;
1004 break;
1005 case ACPI_IVMD_TYPE_RANGE:
02acc43a 1006 s = "IVMD_TYPE_RANGE\t\t";
be2a022c
JR
1007 e->devid_start = m->devid;
1008 e->devid_end = m->aux;
1009 break;
1010 }
1011 e->address_start = PAGE_ALIGN(m->range_start);
1012 e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
1013 e->prot = m->flags >> 1;
1014
02acc43a
JR
1015 DUMP_printk("%s devid_start: %02x:%02x.%x devid_end: %02x:%02x.%x"
1016 " range_start: %016llx range_end: %016llx flags: %x\n", s,
1017 PCI_BUS(e->devid_start), PCI_SLOT(e->devid_start),
1018 PCI_FUNC(e->devid_start), PCI_BUS(e->devid_end),
1019 PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end),
1020 e->address_start, e->address_end, m->flags);
1021
be2a022c
JR
1022 list_add_tail(&e->list, &amd_iommu_unity_map);
1023
1024 return 0;
1025}
1026
b65233a9 1027/* iterates over all memory definitions we find in the ACPI table */
be2a022c
JR
1028static int __init init_memory_definitions(struct acpi_table_header *table)
1029{
1030 u8 *p = (u8 *)table, *end = (u8 *)table;
1031 struct ivmd_header *m;
1032
be2a022c
JR
1033 end += table->length;
1034 p += IVRS_HEADER_LENGTH;
1035
1036 while (p < end) {
1037 m = (struct ivmd_header *)p;
1038 if (m->flags & IVMD_FLAG_EXCL_RANGE)
1039 init_exclusion_range(m);
1040 else if (m->flags & IVMD_FLAG_UNITY_MAP)
1041 init_unity_map_range(m);
1042
1043 p += m->length;
1044 }
1045
1046 return 0;
1047}
1048
9f5f5fb3
JR
1049/*
1050 * Init the device table to not allow DMA access for devices and
1051 * suppress all page faults
1052 */
1053static void init_device_table(void)
1054{
1055 u16 devid;
1056
1057 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
1058 set_dev_entry_bit(devid, DEV_ENTRY_VALID);
1059 set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
9f5f5fb3
JR
1060 }
1061}
1062
b65233a9
JR
1063/*
1064 * This function finally enables all IOMMUs found in the system after
1065 * they have been initialized
1066 */
05f92db9 1067static void enable_iommus(void)
8736197b
JR
1068{
1069 struct amd_iommu *iommu;
1070
3bd22172 1071 for_each_iommu(iommu) {
a8c485bb 1072 iommu_disable(iommu);
58492e12
JR
1073 iommu_set_device_table(iommu);
1074 iommu_enable_command_buffer(iommu);
1075 iommu_enable_event_buffer(iommu);
8736197b 1076 iommu_set_exclusion_range(iommu);
a80dc3e0 1077 iommu_init_msi(iommu);
8736197b
JR
1078 iommu_enable(iommu);
1079 }
1080}
1081
92ac4320
JR
1082static void disable_iommus(void)
1083{
1084 struct amd_iommu *iommu;
1085
1086 for_each_iommu(iommu)
1087 iommu_disable(iommu);
1088}
1089
7441e9cb
JR
1090/*
1091 * Suspend/Resume support
1092 * disable suspend until real resume implemented
1093 */
1094
1095static int amd_iommu_resume(struct sys_device *dev)
1096{
736501ee
JR
1097 /* re-load the hardware */
1098 enable_iommus();
1099
1100 /*
1101 * we have to flush after the IOMMUs are enabled because a
1102 * disabled IOMMU will never execute the commands we send
1103 */
736501ee 1104 amd_iommu_flush_all_devices();
6a047d8b 1105 amd_iommu_flush_all_domains();
736501ee 1106
7441e9cb
JR
1107 return 0;
1108}
1109
1110static int amd_iommu_suspend(struct sys_device *dev, pm_message_t state)
1111{
736501ee
JR
1112 /* disable IOMMUs to go out of the way for BIOS */
1113 disable_iommus();
1114
1115 return 0;
7441e9cb
JR
1116}
1117
1118static struct sysdev_class amd_iommu_sysdev_class = {
1119 .name = "amd_iommu",
1120 .suspend = amd_iommu_suspend,
1121 .resume = amd_iommu_resume,
1122};
1123
1124static struct sys_device device_amd_iommu = {
1125 .id = 0,
1126 .cls = &amd_iommu_sysdev_class,
1127};
1128
b65233a9
JR
1129/*
1130 * This is the core init function for AMD IOMMU hardware in the system.
1131 * This function is called from the generic x86 DMA layer initialization
1132 * code.
1133 *
1134 * This function basically parses the ACPI table for AMD IOMMU (IVRS)
1135 * three times:
1136 *
1137 * 1 pass) Find the highest PCI device id the driver has to handle.
1138 * Upon this information the size of the data structures is
1139 * determined that needs to be allocated.
1140 *
1141 * 2 pass) Initialize the data structures just allocated with the
1142 * information in the ACPI table about available AMD IOMMUs
1143 * in the system. It also maps the PCI devices in the
1144 * system to specific IOMMUs
1145 *
1146 * 3 pass) After the basic data structures are allocated and
1147 * initialized we update them with information about memory
1148 * remapping requirements parsed out of the ACPI table in
1149 * this last pass.
1150 *
1151 * After that the hardware is initialized and ready to go. In the last
1152 * step we do some Linux specific things like registering the driver in
1153 * the dma_ops interface and initializing the suspend/resume support
1154 * functions. Finally it prints some information about AMD IOMMUs and
1155 * the driver state and enables the hardware.
1156 */
fe74c9cf
JR
1157int __init amd_iommu_init(void)
1158{
1159 int i, ret = 0;
1160
1161
8b14518f 1162 if (no_iommu) {
4c6f40d4 1163 printk(KERN_INFO "AMD-Vi disabled by kernel command line\n");
fe74c9cf
JR
1164 return 0;
1165 }
1166
c1cbebee
JR
1167 if (!amd_iommu_detected)
1168 return -ENODEV;
1169
fe74c9cf
JR
1170 /*
1171 * First parse ACPI tables to find the largest Bus/Dev/Func
1172 * we need to handle. Upon this information the shared data
1173 * structures for the IOMMUs in the system will be allocated
1174 */
1175 if (acpi_table_parse("IVRS", find_last_devid_acpi) != 0)
1176 return -ENODEV;
1177
c571484e
JR
1178 dev_table_size = tbl_size(DEV_TABLE_ENTRY_SIZE);
1179 alias_table_size = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
1180 rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
fe74c9cf
JR
1181
1182 ret = -ENOMEM;
1183
1184 /* Device table - directly used by all IOMMUs */
5dc8bff0 1185 amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1186 get_order(dev_table_size));
1187 if (amd_iommu_dev_table == NULL)
1188 goto out;
1189
1190 /*
1191 * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
1192 * IOMMU see for that device
1193 */
1194 amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
1195 get_order(alias_table_size));
1196 if (amd_iommu_alias_table == NULL)
1197 goto free;
1198
1199 /* IOMMU rlookup table - find the IOMMU for a specific device */
83fd5cc6
JR
1200 amd_iommu_rlookup_table = (void *)__get_free_pages(
1201 GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1202 get_order(rlookup_table_size));
1203 if (amd_iommu_rlookup_table == NULL)
1204 goto free;
1205
1206 /*
1207 * Protection Domain table - maps devices to protection domains
1208 * This table has the same size as the rlookup_table
1209 */
5dc8bff0 1210 amd_iommu_pd_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1211 get_order(rlookup_table_size));
1212 if (amd_iommu_pd_table == NULL)
1213 goto free;
1214
5dc8bff0
JR
1215 amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
1216 GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1217 get_order(MAX_DOMAIN_ID/8));
1218 if (amd_iommu_pd_alloc_bitmap == NULL)
1219 goto free;
1220
9f5f5fb3
JR
1221 /* init the device table */
1222 init_device_table();
1223
fe74c9cf 1224 /*
5dc8bff0 1225 * let all alias entries point to itself
fe74c9cf 1226 */
3a61ec38 1227 for (i = 0; i <= amd_iommu_last_bdf; ++i)
fe74c9cf
JR
1228 amd_iommu_alias_table[i] = i;
1229
fe74c9cf
JR
1230 /*
1231 * never allocate domain 0 because its used as the non-allocated and
1232 * error value placeholder
1233 */
1234 amd_iommu_pd_alloc_bitmap[0] = 1;
1235
1236 /*
1237 * now the data structures are allocated and basically initialized
1238 * start the real acpi table scan
1239 */
1240 ret = -ENODEV;
1241 if (acpi_table_parse("IVRS", init_iommu_all) != 0)
1242 goto free;
1243
1244 if (acpi_table_parse("IVRS", init_memory_definitions) != 0)
1245 goto free;
1246
129d6aba 1247 ret = sysdev_class_register(&amd_iommu_sysdev_class);
8736197b
JR
1248 if (ret)
1249 goto free;
1250
129d6aba 1251 ret = sysdev_register(&device_amd_iommu);
7441e9cb
JR
1252 if (ret)
1253 goto free;
1254
4751a951
JR
1255 if (iommu_pass_through)
1256 ret = amd_iommu_init_passthrough();
1257 else
1258 ret = amd_iommu_init_dma_ops();
7441e9cb
JR
1259 if (ret)
1260 goto free;
1261
8736197b
JR
1262 enable_iommus();
1263
4751a951
JR
1264 if (iommu_pass_through)
1265 goto out;
1266
4c6f40d4 1267 printk(KERN_INFO "AMD-Vi: device isolation ");
fe74c9cf
JR
1268 if (amd_iommu_isolate)
1269 printk("enabled\n");
1270 else
1271 printk("disabled\n");
1272
afa9fdc2 1273 if (amd_iommu_unmap_flush)
4c6f40d4 1274 printk(KERN_INFO "AMD-Vi: IO/TLB flush on unmap enabled\n");
1c655773 1275 else
4c6f40d4 1276 printk(KERN_INFO "AMD-Vi: Lazy IO/TLB flushing enabled\n");
1c655773 1277
fe74c9cf
JR
1278out:
1279 return ret;
1280
1281free:
d58befd3
JR
1282 free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
1283 get_order(MAX_DOMAIN_ID/8));
fe74c9cf 1284
9a836de0
JR
1285 free_pages((unsigned long)amd_iommu_pd_table,
1286 get_order(rlookup_table_size));
fe74c9cf 1287
9a836de0
JR
1288 free_pages((unsigned long)amd_iommu_rlookup_table,
1289 get_order(rlookup_table_size));
fe74c9cf 1290
9a836de0
JR
1291 free_pages((unsigned long)amd_iommu_alias_table,
1292 get_order(alias_table_size));
fe74c9cf 1293
9a836de0
JR
1294 free_pages((unsigned long)amd_iommu_dev_table,
1295 get_order(dev_table_size));
fe74c9cf
JR
1296
1297 free_iommu_all();
1298
1299 free_unity_maps();
1300
1301 goto out;
1302}
1303
09759042
JR
1304void amd_iommu_shutdown(void)
1305{
1306 disable_iommus();
1307}
1308
b65233a9
JR
1309/****************************************************************************
1310 *
1311 * Early detect code. This code runs at IOMMU detection time in the DMA
1312 * layer. It just looks if there is an IVRS ACPI table to detect AMD
1313 * IOMMUs
1314 *
1315 ****************************************************************************/
ae7877de
JR
1316static int __init early_amd_iommu_detect(struct acpi_table_header *table)
1317{
1318 return 0;
1319}
1320
1321void __init amd_iommu_detect(void)
1322{
299a140d 1323 if (swiotlb || no_iommu || (iommu_detected && !gart_iommu_aperture))
ae7877de
JR
1324 return;
1325
ae7877de
JR
1326 if (acpi_table_parse("IVRS", early_amd_iommu_detect) == 0) {
1327 iommu_detected = 1;
c1cbebee 1328 amd_iommu_detected = 1;
92af4e29 1329#ifdef CONFIG_GART_IOMMU
ae7877de
JR
1330 gart_iommu_aperture_disabled = 1;
1331 gart_iommu_aperture = 0;
92af4e29 1332#endif
ae7877de
JR
1333 }
1334}
1335
b65233a9
JR
1336/****************************************************************************
1337 *
1338 * Parsing functions for the AMD IOMMU specific kernel command line
1339 * options.
1340 *
1341 ****************************************************************************/
1342
fefda117
JR
1343static int __init parse_amd_iommu_dump(char *str)
1344{
1345 amd_iommu_dump = true;
1346
1347 return 1;
1348}
1349
918ad6c5
JR
1350static int __init parse_amd_iommu_options(char *str)
1351{
1352 for (; *str; ++str) {
1c655773 1353 if (strncmp(str, "isolate", 7) == 0)
c226f853 1354 amd_iommu_isolate = true;
e5e1f606 1355 if (strncmp(str, "share", 5) == 0)
c226f853 1356 amd_iommu_isolate = false;
695b5676 1357 if (strncmp(str, "fullflush", 9) == 0)
afa9fdc2 1358 amd_iommu_unmap_flush = true;
918ad6c5
JR
1359 }
1360
1361 return 1;
1362}
1363
fefda117 1364__setup("amd_iommu_dump", parse_amd_iommu_dump);
918ad6c5 1365__setup("amd_iommu=", parse_amd_iommu_options);
This page took 0.44947 seconds and 5 git commands to generate.