x86, apbt: Setup affinity for apb timers acting as per-cpu timer
[deliverable/linux.git] / arch / x86 / kernel / apb_timer.c
CommitLineData
bb24c471
JP
1/*
2 * apb_timer.c: Driver for Langwell APB timers
3 *
4 * (C) Copyright 2009 Intel Corporation
5 * Author: Jacob Pan (jacob.jun.pan@intel.com)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 *
12 * Note:
13 * Langwell is the south complex of Intel Moorestown MID platform. There are
14 * eight external timers in total that can be used by the operating system.
15 * The timer information, such as frequency and addresses, is provided to the
16 * OS via SFI tables.
17 * Timer interrupts are routed via FW/HW emulated IOAPIC independently via
18 * individual redirection table entries (RTE).
19 * Unlike HPET, there is no master counter, therefore one of the timers are
20 * used as clocksource. The overall allocation looks like:
21 * - timer 0 - NR_CPUs for per cpu timer
22 * - one timer for clocksource
23 * - one timer for watchdog driver.
24 * It is also worth notice that APB timer does not support true one-shot mode,
25 * free-running mode will be used here to emulate one-shot mode.
26 * APB timer can also be used as broadcast timer along with per cpu local APIC
27 * timer, but by default APB timer has higher rating than local APIC timers.
28 */
29
30#include <linux/clocksource.h>
31#include <linux/clockchips.h>
32#include <linux/delay.h>
33#include <linux/errno.h>
34#include <linux/init.h>
35#include <linux/sysdev.h>
5a0e3ad6 36#include <linux/slab.h>
bb24c471
JP
37#include <linux/pm.h>
38#include <linux/pci.h>
39#include <linux/sfi.h>
40#include <linux/interrupt.h>
41#include <linux/cpu.h>
42#include <linux/irq.h>
43
44#include <asm/fixmap.h>
45#include <asm/apb_timer.h>
a875c019 46#include <asm/mrst.h>
bb24c471 47
c7bbf52a
PA
48#define APBT_MASK CLOCKSOURCE_MASK(32)
49#define APBT_SHIFT 22
a875c019 50#define APBT_CLOCKEVENT_RATING 110
c7bbf52a
PA
51#define APBT_CLOCKSOURCE_RATING 250
52#define APBT_MIN_DELTA_USEC 200
bb24c471
JP
53
54#define EVT_TO_APBT_DEV(evt) container_of(evt, struct apbt_dev, evt)
55#define APBT_CLOCKEVENT0_NUM (0)
56#define APBT_CLOCKEVENT1_NUM (1)
57#define APBT_CLOCKSOURCE_NUM (2)
58
59static unsigned long apbt_address;
60static int apb_timer_block_enabled;
61static void __iomem *apbt_virt_address;
62static int phy_cs_timer_id;
63
64/*
65 * Common DW APB timer info
66 */
67static uint64_t apbt_freq;
68
69static void apbt_set_mode(enum clock_event_mode mode,
c7bbf52a 70 struct clock_event_device *evt);
bb24c471 71static int apbt_next_event(unsigned long delta,
c7bbf52a 72 struct clock_event_device *evt);
bb24c471 73static cycle_t apbt_read_clocksource(struct clocksource *cs);
322aafa6 74static void apbt_restart_clocksource(struct clocksource *cs);
bb24c471
JP
75
76struct apbt_dev {
c7bbf52a
PA
77 struct clock_event_device evt;
78 unsigned int num;
79 int cpu;
80 unsigned int irq;
81 unsigned int tick;
82 unsigned int count;
83 unsigned int flags;
84 char name[10];
bb24c471
JP
85};
86
3010673e
JP
87static DEFINE_PER_CPU(struct apbt_dev, cpu_apbt_dev);
88
bb24c471
JP
89#ifdef CONFIG_SMP
90static unsigned int apbt_num_timers_used;
bb24c471
JP
91static struct apbt_dev *apbt_devs;
92#endif
93
c7bbf52a 94static inline unsigned long apbt_readl_reg(unsigned long a)
bb24c471 95{
c7bbf52a 96 return readl(apbt_virt_address + a);
bb24c471
JP
97}
98
99static inline void apbt_writel_reg(unsigned long d, unsigned long a)
100{
c7bbf52a 101 writel(d, apbt_virt_address + a);
bb24c471
JP
102}
103
104static inline unsigned long apbt_readl(int n, unsigned long a)
105{
c7bbf52a 106 return readl(apbt_virt_address + a + n * APBTMRS_REG_SIZE);
bb24c471
JP
107}
108
109static inline void apbt_writel(int n, unsigned long d, unsigned long a)
110{
c7bbf52a 111 writel(d, apbt_virt_address + a + n * APBTMRS_REG_SIZE);
bb24c471
JP
112}
113
114static inline void apbt_set_mapping(void)
115{
c7bbf52a
PA
116 struct sfi_timer_table_entry *mtmr;
117
118 if (apbt_virt_address) {
119 pr_debug("APBT base already mapped\n");
120 return;
121 }
122 mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
123 if (mtmr == NULL) {
124 printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
125 APBT_CLOCKEVENT0_NUM);
126 return;
127 }
128 apbt_address = (unsigned long)mtmr->phys_addr;
129 if (!apbt_address) {
130 printk(KERN_WARNING "No timer base from SFI, use default\n");
131 apbt_address = APBT_DEFAULT_BASE;
132 }
133 apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE);
134 if (apbt_virt_address) {
135 pr_debug("Mapped APBT physical addr %p at virtual addr %p\n",\
136 (void *)apbt_address, (void *)apbt_virt_address);
137 } else {
138 pr_debug("Failed mapping APBT phy address at %p\n",\
139 (void *)apbt_address);
140 goto panic_noapbt;
141 }
142 apbt_freq = mtmr->freq_hz / USEC_PER_SEC;
143 sfi_free_mtmr(mtmr);
144
145 /* Now figure out the physical timer id for clocksource device */
146 mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM);
147 if (mtmr == NULL)
148 goto panic_noapbt;
149
150 /* Now figure out the physical timer id */
151 phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff)
152 / APBTMRS_REG_SIZE;
153 pr_debug("Use timer %d for clocksource\n", phy_cs_timer_id);
154 return;
bb24c471
JP
155
156panic_noapbt:
c7bbf52a 157 panic("Failed to setup APB system timer\n");
bb24c471
JP
158
159}
160
161static inline void apbt_clear_mapping(void)
162{
c7bbf52a
PA
163 iounmap(apbt_virt_address);
164 apbt_virt_address = NULL;
bb24c471
JP
165}
166
167/*
168 * APBT timer interrupt enable / disable
169 */
170static inline int is_apbt_capable(void)
171{
c7bbf52a 172 return apbt_virt_address ? 1 : 0;
bb24c471
JP
173}
174
175static struct clocksource clocksource_apbt = {
c7bbf52a
PA
176 .name = "apbt",
177 .rating = APBT_CLOCKSOURCE_RATING,
178 .read = apbt_read_clocksource,
179 .mask = APBT_MASK,
180 .shift = APBT_SHIFT,
181 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
182 .resume = apbt_restart_clocksource,
bb24c471
JP
183};
184
185/* boot APB clock event device */
186static struct clock_event_device apbt_clockevent = {
c7bbf52a
PA
187 .name = "apbt0",
188 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
189 .set_mode = apbt_set_mode,
190 .set_next_event = apbt_next_event,
191 .shift = APBT_SHIFT,
192 .irq = 0,
193 .rating = APBT_CLOCKEVENT_RATING,
bb24c471
JP
194};
195
bb24c471
JP
196/*
197 * start count down from 0xffff_ffff. this is done by toggling the enable bit
198 * then load initial load count to ~0.
199 */
200static void apbt_start_counter(int n)
201{
c7bbf52a
PA
202 unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
203
204 ctrl &= ~APBTMR_CONTROL_ENABLE;
205 apbt_writel(n, ctrl, APBTMR_N_CONTROL);
206 apbt_writel(n, ~0, APBTMR_N_LOAD_COUNT);
207 /* enable, mask interrupt */
208 ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
209 ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
210 apbt_writel(n, ctrl, APBTMR_N_CONTROL);
211 /* read it once to get cached counter value initialized */
212 apbt_read_clocksource(&clocksource_apbt);
bb24c471
JP
213}
214
215static irqreturn_t apbt_interrupt_handler(int irq, void *data)
216{
c7bbf52a
PA
217 struct apbt_dev *dev = (struct apbt_dev *)data;
218 struct clock_event_device *aevt = &dev->evt;
219
220 if (!aevt->event_handler) {
221 printk(KERN_INFO "Spurious APBT timer interrupt on %d\n",
222 dev->num);
223 return IRQ_NONE;
224 }
225 aevt->event_handler(aevt);
226 return IRQ_HANDLED;
bb24c471
JP
227}
228
322aafa6 229static void apbt_restart_clocksource(struct clocksource *cs)
bb24c471 230{
c7bbf52a 231 apbt_start_counter(phy_cs_timer_id);
bb24c471
JP
232}
233
bb24c471
JP
234static void apbt_enable_int(int n)
235{
c7bbf52a
PA
236 unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
237 /* clear pending intr */
238 apbt_readl(n, APBTMR_N_EOI);
239 ctrl &= ~APBTMR_CONTROL_INT;
240 apbt_writel(n, ctrl, APBTMR_N_CONTROL);
bb24c471
JP
241}
242
243static void apbt_disable_int(int n)
244{
c7bbf52a 245 unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
bb24c471 246
c7bbf52a
PA
247 ctrl |= APBTMR_CONTROL_INT;
248 apbt_writel(n, ctrl, APBTMR_N_CONTROL);
bb24c471
JP
249}
250
251
252static int __init apbt_clockevent_register(void)
253{
c7bbf52a
PA
254 struct sfi_timer_table_entry *mtmr;
255 struct apbt_dev *adev = &__get_cpu_var(cpu_apbt_dev);
256
257 mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
258 if (mtmr == NULL) {
259 printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
260 APBT_CLOCKEVENT0_NUM);
261 return -ENODEV;
262 }
263
264 /*
265 * We need to calculate the scaled math multiplication factor for
266 * nanosecond to apbt tick conversion.
267 * mult = (nsec/cycle)*2^APBT_SHIFT
268 */
269 apbt_clockevent.mult = div_sc((unsigned long) mtmr->freq_hz
270 , NSEC_PER_SEC, APBT_SHIFT);
271
272 /* Calculate the min / max delta */
273 apbt_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
274 &apbt_clockevent);
275 apbt_clockevent.min_delta_ns = clockevent_delta2ns(
276 APBT_MIN_DELTA_USEC*apbt_freq,
277 &apbt_clockevent);
278 /*
279 * Start apbt with the boot cpu mask and make it
280 * global if not used for per cpu timer.
281 */
282 apbt_clockevent.cpumask = cpumask_of(smp_processor_id());
283 adev->num = smp_processor_id();
284 memcpy(&adev->evt, &apbt_clockevent, sizeof(struct clock_event_device));
285
a875c019 286 if (mrst_timer_options == MRST_TIMER_LAPIC_APBT) {
c7bbf52a 287 apbt_clockevent.rating = APBT_CLOCKEVENT_RATING - 100;
3010673e 288 global_clock_event = &adev->evt;
c7bbf52a
PA
289 printk(KERN_DEBUG "%s clockevent registered as global\n",
290 global_clock_event->name);
291 }
292
293 if (request_irq(apbt_clockevent.irq, apbt_interrupt_handler,
294 IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
295 apbt_clockevent.name, adev)) {
296 printk(KERN_ERR "Failed request IRQ for APBT%d\n",
297 apbt_clockevent.irq);
298 }
299
300 clockevents_register_device(&adev->evt);
301 /* Start APBT 0 interrupts */
302 apbt_enable_int(APBT_CLOCKEVENT0_NUM);
303
304 sfi_free_mtmr(mtmr);
305 return 0;
bb24c471
JP
306}
307
308#ifdef CONFIG_SMP
a5ef2e70
TG
309
310static void apbt_setup_irq(struct apbt_dev *adev)
311{
312 /* timer0 irq has been setup early */
313 if (adev->irq == 0)
314 return;
315
316 if (system_state == SYSTEM_BOOTING) {
317 irq_modify_status(adev->irq, 0, IRQ_MOVE_PCNTXT);
e4d2ebca 318 irq_set_affinity(adev->irq, cpumask_of(adev->cpu));
a5ef2e70
TG
319 /* APB timer irqs are set up as mp_irqs, timer is edge type */
320 __set_irq_handler(adev->irq, handle_edge_irq, 0, "edge");
321 if (request_irq(adev->irq, apbt_interrupt_handler,
322 IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
323 adev->name, adev)) {
324 printk(KERN_ERR "Failed request IRQ for APBT%d\n",
325 adev->num);
326 }
327 } else
328 enable_irq(adev->irq);
329}
330
bb24c471
JP
331/* Should be called with per cpu */
332void apbt_setup_secondary_clock(void)
333{
c7bbf52a
PA
334 struct apbt_dev *adev;
335 struct clock_event_device *aevt;
336 int cpu;
337
338 /* Don't register boot CPU clockevent */
339 cpu = smp_processor_id();
f6e9456c 340 if (!cpu)
c7bbf52a
PA
341 return;
342 /*
343 * We need to calculate the scaled math multiplication factor for
344 * nanosecond to apbt tick conversion.
345 * mult = (nsec/cycle)*2^APBT_SHIFT
346 */
347 printk(KERN_INFO "Init per CPU clockevent %d\n", cpu);
348 adev = &per_cpu(cpu_apbt_dev, cpu);
349 aevt = &adev->evt;
350
351 memcpy(aevt, &apbt_clockevent, sizeof(*aevt));
352 aevt->cpumask = cpumask_of(cpu);
353 aevt->name = adev->name;
354 aevt->mode = CLOCK_EVT_MODE_UNUSED;
355
356 printk(KERN_INFO "Registering CPU %d clockevent device %s, mask %08x\n",
357 cpu, aevt->name, *(u32 *)aevt->cpumask);
358
359 apbt_setup_irq(adev);
360
361 clockevents_register_device(aevt);
362
363 apbt_enable_int(cpu);
364
365 return;
bb24c471
JP
366}
367
368/*
369 * this notify handler process CPU hotplug events. in case of S0i3, nonboot
370 * cpus are disabled/enabled frequently, for performance reasons, we keep the
371 * per cpu timer irq registered so that we do need to do free_irq/request_irq.
372 *
373 * TODO: it might be more reliable to directly disable percpu clockevent device
374 * without the notifier chain. currently, cpu 0 may get interrupts from other
375 * cpu timers during the offline process due to the ordering of notification.
376 * the extra interrupt is harmless.
377 */
378static int apbt_cpuhp_notify(struct notifier_block *n,
c7bbf52a 379 unsigned long action, void *hcpu)
bb24c471 380{
c7bbf52a
PA
381 unsigned long cpu = (unsigned long)hcpu;
382 struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu);
383
384 switch (action & 0xf) {
385 case CPU_DEAD:
a5ef2e70 386 disable_irq(adev->irq);
c7bbf52a 387 apbt_disable_int(cpu);
a5ef2e70 388 if (system_state == SYSTEM_RUNNING) {
c7bbf52a 389 pr_debug("skipping APBT CPU %lu offline\n", cpu);
a5ef2e70 390 } else if (adev) {
c7bbf52a
PA
391 pr_debug("APBT clockevent for cpu %lu offline\n", cpu);
392 free_irq(adev->irq, adev);
393 }
394 break;
395 default:
d0ed0c32 396 pr_debug("APBT notified %lu, no action\n", action);
c7bbf52a
PA
397 }
398 return NOTIFY_OK;
bb24c471
JP
399}
400
401static __init int apbt_late_init(void)
402{
a875c019
JP
403 if (mrst_timer_options == MRST_TIMER_LAPIC_APBT ||
404 !apb_timer_block_enabled)
c7bbf52a
PA
405 return 0;
406 /* This notifier should be called after workqueue is ready */
407 hotcpu_notifier(apbt_cpuhp_notify, -20);
408 return 0;
bb24c471
JP
409}
410fs_initcall(apbt_late_init);
411#else
412
413void apbt_setup_secondary_clock(void) {}
414
415#endif /* CONFIG_SMP */
416
417static void apbt_set_mode(enum clock_event_mode mode,
c7bbf52a 418 struct clock_event_device *evt)
bb24c471 419{
c7bbf52a
PA
420 unsigned long ctrl;
421 uint64_t delta;
422 int timer_num;
423 struct apbt_dev *adev = EVT_TO_APBT_DEV(evt);
424
a875c019
JP
425 BUG_ON(!apbt_virt_address);
426
c7bbf52a
PA
427 timer_num = adev->num;
428 pr_debug("%s CPU %d timer %d mode=%d\n",
429 __func__, first_cpu(*evt->cpumask), timer_num, mode);
430
431 switch (mode) {
432 case CLOCK_EVT_MODE_PERIODIC:
433 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * apbt_clockevent.mult;
434 delta >>= apbt_clockevent.shift;
435 ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
436 ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
437 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
438 /*
439 * DW APB p. 46, have to disable timer before load counter,
440 * may cause sync problem.
441 */
442 ctrl &= ~APBTMR_CONTROL_ENABLE;
443 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
444 udelay(1);
445 pr_debug("Setting clock period %d for HZ %d\n", (int)delta, HZ);
446 apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT);
447 ctrl |= APBTMR_CONTROL_ENABLE;
448 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
449 break;
450 /* APB timer does not have one-shot mode, use free running mode */
451 case CLOCK_EVT_MODE_ONESHOT:
452 ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
453 /*
454 * set free running mode, this mode will let timer reload max
455 * timeout which will give time (3min on 25MHz clock) to rearm
456 * the next event, therefore emulate the one-shot mode.
457 */
458 ctrl &= ~APBTMR_CONTROL_ENABLE;
459 ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
460
461 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
462 /* write again to set free running mode */
463 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
464
465 /*
466 * DW APB p. 46, load counter with all 1s before starting free
467 * running mode.
468 */
469 apbt_writel(timer_num, ~0, APBTMR_N_LOAD_COUNT);
470 ctrl &= ~APBTMR_CONTROL_INT;
471 ctrl |= APBTMR_CONTROL_ENABLE;
472 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
473 break;
474
475 case CLOCK_EVT_MODE_UNUSED:
476 case CLOCK_EVT_MODE_SHUTDOWN:
477 apbt_disable_int(timer_num);
478 ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
479 ctrl &= ~APBTMR_CONTROL_ENABLE;
480 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
481 break;
482
483 case CLOCK_EVT_MODE_RESUME:
484 apbt_enable_int(timer_num);
485 break;
486 }
bb24c471
JP
487}
488
489static int apbt_next_event(unsigned long delta,
c7bbf52a 490 struct clock_event_device *evt)
bb24c471 491{
c7bbf52a
PA
492 unsigned long ctrl;
493 int timer_num;
494
495 struct apbt_dev *adev = EVT_TO_APBT_DEV(evt);
496
497 timer_num = adev->num;
498 /* Disable timer */
499 ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
500 ctrl &= ~APBTMR_CONTROL_ENABLE;
501 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
502 /* write new count */
503 apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT);
504 ctrl |= APBTMR_CONTROL_ENABLE;
505 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
506 return 0;
bb24c471
JP
507}
508
509/*
510 * APB timer clock is not in sync with pclk on Langwell, which translates to
511 * unreliable read value caused by sampling error. the error does not add up
512 * overtime and only happens when sampling a 0 as a 1 by mistake. so the time
513 * would go backwards. the following code is trying to prevent time traveling
514 * backwards. little bit paranoid.
515 */
516static cycle_t apbt_read_clocksource(struct clocksource *cs)
517{
c7bbf52a
PA
518 unsigned long t0, t1, t2;
519 static unsigned long last_read;
bb24c471
JP
520
521bad_count:
c7bbf52a
PA
522 t1 = apbt_readl(phy_cs_timer_id,
523 APBTMR_N_CURRENT_VALUE);
524 t2 = apbt_readl(phy_cs_timer_id,
525 APBTMR_N_CURRENT_VALUE);
526 if (unlikely(t1 < t2)) {
527 pr_debug("APBT: read current count error %lx:%lx:%lx\n",
528 t1, t2, t2 - t1);
529 goto bad_count;
530 }
531 /*
532 * check against cached last read, makes sure time does not go back.
533 * it could be a normal rollover but we will do tripple check anyway
534 */
535 if (unlikely(t2 > last_read)) {
536 /* check if we have a normal rollover */
537 unsigned long raw_intr_status =
538 apbt_readl_reg(APBTMRS_RAW_INT_STATUS);
539 /*
540 * cs timer interrupt is masked but raw intr bit is set if
541 * rollover occurs. then we read EOI reg to clear it.
542 */
543 if (raw_intr_status & (1 << phy_cs_timer_id)) {
544 apbt_readl(phy_cs_timer_id, APBTMR_N_EOI);
545 goto out;
546 }
547 pr_debug("APB CS going back %lx:%lx:%lx ",
548 t2, last_read, t2 - last_read);
bb24c471 549bad_count_x3:
d0ed0c32 550 pr_debug("triple check enforced\n");
c7bbf52a
PA
551 t0 = apbt_readl(phy_cs_timer_id,
552 APBTMR_N_CURRENT_VALUE);
553 udelay(1);
554 t1 = apbt_readl(phy_cs_timer_id,
555 APBTMR_N_CURRENT_VALUE);
556 udelay(1);
557 t2 = apbt_readl(phy_cs_timer_id,
558 APBTMR_N_CURRENT_VALUE);
559 if ((t2 > t1) || (t1 > t0)) {
560 printk(KERN_ERR "Error: APB CS tripple check failed\n");
561 goto bad_count_x3;
562 }
563 }
bb24c471 564out:
c7bbf52a
PA
565 last_read = t2;
566 return (cycle_t)~t2;
bb24c471
JP
567}
568
569static int apbt_clocksource_register(void)
570{
c7bbf52a
PA
571 u64 start, now;
572 cycle_t t1;
573
574 /* Start the counter, use timer 2 as source, timer 0/1 for event */
575 apbt_start_counter(phy_cs_timer_id);
576
577 /* Verify whether apbt counter works */
578 t1 = apbt_read_clocksource(&clocksource_apbt);
579 rdtscll(start);
580
581 /*
582 * We don't know the TSC frequency yet, but waiting for
583 * 200000 TSC cycles is safe:
584 * 4 GHz == 50us
585 * 1 GHz == 200us
586 */
587 do {
588 rep_nop();
589 rdtscll(now);
590 } while ((now - start) < 200000UL);
591
592 /* APBT is the only always on clocksource, it has to work! */
593 if (t1 == apbt_read_clocksource(&clocksource_apbt))
594 panic("APBT counter not counting. APBT disabled\n");
595
596 /*
597 * initialize and register APBT clocksource
598 * convert that to ns/clock cycle
599 * mult = (ns/c) * 2^APBT_SHIFT
600 */
601 clocksource_apbt.mult = div_sc(MSEC_PER_SEC,
602 (unsigned long) apbt_freq, APBT_SHIFT);
603 clocksource_register(&clocksource_apbt);
604
605 return 0;
bb24c471
JP
606}
607
608/*
609 * Early setup the APBT timer, only use timer 0 for booting then switch to
610 * per CPU timer if possible.
611 * returns 1 if per cpu apbt is setup
612 * returns 0 if no per cpu apbt is chosen
613 * panic if set up failed, this is the only platform timer on Moorestown.
614 */
615void __init apbt_time_init(void)
616{
617#ifdef CONFIG_SMP
c7bbf52a
PA
618 int i;
619 struct sfi_timer_table_entry *p_mtmr;
620 unsigned int percpu_timer;
621 struct apbt_dev *adev;
bb24c471
JP
622#endif
623
c7bbf52a
PA
624 if (apb_timer_block_enabled)
625 return;
626 apbt_set_mapping();
627 if (apbt_virt_address) {
628 pr_debug("Found APBT version 0x%lx\n",\
629 apbt_readl_reg(APBTMRS_COMP_VERSION));
630 } else
631 goto out_noapbt;
632 /*
633 * Read the frequency and check for a sane value, for ESL model
634 * we extend the possible clock range to allow time scaling.
635 */
636
637 if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) {
638 pr_debug("APBT has invalid freq 0x%llx\n", apbt_freq);
639 goto out_noapbt;
640 }
641 if (apbt_clocksource_register()) {
642 pr_debug("APBT has failed to register clocksource\n");
643 goto out_noapbt;
644 }
645 if (!apbt_clockevent_register())
646 apb_timer_block_enabled = 1;
647 else {
648 pr_debug("APBT has failed to register clockevent\n");
649 goto out_noapbt;
650 }
bb24c471 651#ifdef CONFIG_SMP
c7bbf52a 652 /* kernel cmdline disable apb timer, so we will use lapic timers */
a875c019 653 if (mrst_timer_options == MRST_TIMER_LAPIC_APBT) {
c7bbf52a
PA
654 printk(KERN_INFO "apbt: disabled per cpu timer\n");
655 return;
656 }
657 pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus());
658 if (num_possible_cpus() <= sfi_mtimer_num) {
659 percpu_timer = 1;
660 apbt_num_timers_used = num_possible_cpus();
661 } else {
662 percpu_timer = 0;
663 apbt_num_timers_used = 1;
664 adev = &per_cpu(cpu_apbt_dev, 0);
665 adev->flags &= ~APBT_DEV_USED;
666 }
667 pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used);
668
669 /* here we set up per CPU timer data structure */
670 apbt_devs = kzalloc(sizeof(struct apbt_dev) * apbt_num_timers_used,
671 GFP_KERNEL);
672 if (!apbt_devs) {
673 printk(KERN_ERR "Failed to allocate APB timer devices\n");
674 return;
675 }
676 for (i = 0; i < apbt_num_timers_used; i++) {
677 adev = &per_cpu(cpu_apbt_dev, i);
678 adev->num = i;
679 adev->cpu = i;
680 p_mtmr = sfi_get_mtmr(i);
681 if (p_mtmr) {
682 adev->tick = p_mtmr->freq_hz;
683 adev->irq = p_mtmr->irq;
684 } else
685 printk(KERN_ERR "Failed to get timer for cpu %d\n", i);
686 adev->count = 0;
687 sprintf(adev->name, "apbt%d", i);
688 }
bb24c471
JP
689#endif
690
c7bbf52a 691 return;
bb24c471
JP
692
693out_noapbt:
c7bbf52a
PA
694 apbt_clear_mapping();
695 apb_timer_block_enabled = 0;
696 panic("failed to enable APB timer\n");
bb24c471
JP
697}
698
699static inline void apbt_disable(int n)
700{
c7bbf52a
PA
701 if (is_apbt_capable()) {
702 unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
703 ctrl &= ~APBTMR_CONTROL_ENABLE;
704 apbt_writel(n, ctrl, APBTMR_N_CONTROL);
705 }
bb24c471
JP
706}
707
708/* called before apb_timer_enable, use early map */
709unsigned long apbt_quick_calibrate()
710{
c7bbf52a
PA
711 int i, scale;
712 u64 old, new;
713 cycle_t t1, t2;
714 unsigned long khz = 0;
715 u32 loop, shift;
716
717 apbt_set_mapping();
718 apbt_start_counter(phy_cs_timer_id);
719
720 /* check if the timer can count down, otherwise return */
721 old = apbt_read_clocksource(&clocksource_apbt);
722 i = 10000;
723 while (--i) {
724 if (old != apbt_read_clocksource(&clocksource_apbt))
725 break;
726 }
727 if (!i)
728 goto failed;
729
730 /* count 16 ms */
731 loop = (apbt_freq * 1000) << 4;
732
733 /* restart the timer to ensure it won't get to 0 in the calibration */
734 apbt_start_counter(phy_cs_timer_id);
735
736 old = apbt_read_clocksource(&clocksource_apbt);
737 old += loop;
738
739 t1 = __native_read_tsc();
740
741 do {
742 new = apbt_read_clocksource(&clocksource_apbt);
743 } while (new < old);
744
745 t2 = __native_read_tsc();
746
747 shift = 5;
748 if (unlikely(loop >> shift == 0)) {
749 printk(KERN_INFO
750 "APBT TSC calibration failed, not enough resolution\n");
751 return 0;
752 }
753 scale = (int)div_u64((t2 - t1), loop >> shift);
754 khz = (scale * apbt_freq * 1000) >> shift;
755 printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz);
756 return khz;
bb24c471 757failed:
c7bbf52a 758 return 0;
bb24c471 759}
This page took 0.087512 seconds and 5 git commands to generate.