x86: cpu/common.c, let 64-bit code have 32-bit only functions
[deliverable/linux.git] / arch / x86 / kernel / cpu / common_64.c
CommitLineData
f580366f 1#include <linux/init.h>
0f0124fa
YL
2#include <linux/kernel.h>
3#include <linux/sched.h>
4#include <linux/string.h>
5#include <linux/bootmem.h>
6#include <linux/bitops.h>
7#include <linux/module.h>
8#include <linux/kgdb.h>
9#include <linux/topology.h>
f580366f
YL
10#include <linux/delay.h>
11#include <linux/smp.h>
f580366f 12#include <linux/percpu.h>
f580366f
YL
13#include <asm/i387.h>
14#include <asm/msr.h>
15#include <asm/io.h>
cbcd79c2 16#include <asm/linkage.h>
f580366f
YL
17#include <asm/mmu_context.h>
18#include <asm/mtrr.h>
19#include <asm/mce.h>
20#include <asm/pat.h>
7e00df58 21#include <asm/asm.h>
f580366f
YL
22#include <asm/numa.h>
23#ifdef CONFIG_X86_LOCAL_APIC
24#include <asm/mpspec.h>
25#include <asm/apic.h>
26#include <mach_apic.h>
f0fc4aff 27#include <asm/genapic.h>
f580366f 28#endif
0f0124fa
YL
29#include <asm/pda.h>
30#include <asm/pgtable.h>
31#include <asm/processor.h>
32#include <asm/desc.h>
33#include <asm/atomic.h>
34#include <asm/proto.h>
35#include <asm/sections.h>
36#include <asm/setup.h>
f580366f
YL
37
38#include "cpu.h"
39
0a488a53
YL
40static struct cpu_dev *this_cpu __cpuinitdata;
41
950ad7ff 42#ifdef CONFIG_X86_64
f580366f
YL
43/* We need valid kernel segments for data and code in long mode too
44 * IRET will check the segment types kkeil 2000/10/28
45 * Also sysret mandates a special GDT layout
46 */
47/* The TLS descriptors are currently at a different place compared to i386.
48 Hopefully nobody expects them at a fixed place (Wine?) */
49DEFINE_PER_CPU(struct gdt_page, gdt_page) = { .gdt = {
50 [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
51 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
52 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
53 [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
54 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
55 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
56} };
950ad7ff
YL
57#else
58DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
59 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
60 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
61 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
62 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
63 /*
64 * Segments used for calling PnP BIOS have byte granularity.
65 * They code segments and data segments have fixed 64k limits,
66 * the transfer segment sizes are set at run time.
67 */
68 /* 32-bit code */
69 [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
70 /* 16-bit code */
71 [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
72 /* 16-bit data */
73 [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
74 /* 16-bit data */
75 [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
76 /* 16-bit data */
77 [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
78 /*
79 * The APM segments have byte granularity and their bases
80 * are set at run time. All have 64k limits.
81 */
82 /* 32-bit code */
83 [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
84 /* 16-bit code */
85 [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
86 /* data */
87 [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
88
89 [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
90 [GDT_ENTRY_PERCPU] = { { { 0x00000000, 0x00000000 } } },
91} };
92#endif
f580366f
YL
93EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
94
ba51dced
YL
95#ifdef CONFIG_X86_32
96static int cachesize_override __cpuinitdata = -1;
97static int disable_x86_serial_nr __cpuinitdata = 1;
98
99static int __init cachesize_setup(char *str)
100{
101 get_option(&str, &cachesize_override);
102 return 1;
103}
104__setup("cachesize=", cachesize_setup);
105
106/*
107 * Naming convention should be: <Name> [(<Codename>)]
108 * This table only is used unless init_<vendor>() below doesn't set it;
109 * in particular, if CPUID levels 0x80000002..4 are supported, this isn't used
110 *
111 */
112
113/* Look up CPU names by table lookup. */
114static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
115{
116 struct cpu_model_info *info;
117
118 if (c->x86_model >= 16)
119 return NULL; /* Range check */
120
121 if (!this_cpu)
122 return NULL;
123
124 info = this_cpu->c_models;
125
126 while (info && info->family) {
127 if (info->family == c->x86)
128 return info->model_names[c->x86_model];
129 info++;
130 }
131 return NULL; /* Not found */
132}
133
134static int __init x86_fxsr_setup(char *s)
135{
136 setup_clear_cpu_cap(X86_FEATURE_FXSR);
137 setup_clear_cpu_cap(X86_FEATURE_XMM);
138 return 1;
139}
140__setup("nofxsr", x86_fxsr_setup);
141
142static int __init x86_sep_setup(char *s)
143{
144 setup_clear_cpu_cap(X86_FEATURE_SEP);
145 return 1;
146}
147__setup("nosep", x86_sep_setup);
148
149/* Standard macro to see if a specific flag is changeable */
150static inline int flag_is_changeable_p(u32 flag)
151{
152 u32 f1, f2;
153
154 asm("pushfl\n\t"
155 "pushfl\n\t"
156 "popl %0\n\t"
157 "movl %0,%1\n\t"
158 "xorl %2,%0\n\t"
159 "pushl %0\n\t"
160 "popfl\n\t"
161 "pushfl\n\t"
162 "popl %0\n\t"
163 "popfl\n\t"
164 : "=&r" (f1), "=&r" (f2)
165 : "ir" (flag));
166
167 return ((f1^f2) & flag) != 0;
168}
169
170/* Probe for the CPUID instruction */
171static int __cpuinit have_cpuid_p(void)
172{
173 return flag_is_changeable_p(X86_EFLAGS_ID);
174}
175
176static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
177{
178 if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr) {
179 /* Disable processor serial number */
180 unsigned long lo, hi;
181 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
182 lo |= 0x200000;
183 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
184 printk(KERN_NOTICE "CPU serial number disabled.\n");
185 clear_cpu_cap(c, X86_FEATURE_PN);
186
187 /* Disabling the serial number may affect the cpuid level */
188 c->cpuid_level = cpuid_eax(0);
189 }
190}
191
192static int __init x86_serial_nr_setup(char *s)
193{
194 disable_x86_serial_nr = 0;
195 return 1;
196}
197__setup("serialnumber", x86_serial_nr_setup);
198#else
199/* Probe for the CPUID instruction */
200static inline int have_cpuid_p(void)
201{
202 return 1;
203}
204#endif
205
f580366f
YL
206__u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
207
208/* Current gdt points %fs at the "master" per-cpu area: after this,
209 * it's on the real one. */
210void switch_to_new_gdt(void)
211{
212 struct desc_ptr gdt_descr;
213
214 gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id());
215 gdt_descr.size = GDT_SIZE - 1;
216 load_gdt(&gdt_descr);
217}
218
10a434fc 219static struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
f580366f
YL
220
221static void __cpuinit default_init(struct cpuinfo_x86 *c)
222{
223 display_cacheinfo(c);
224}
225
226static struct cpu_dev __cpuinitdata default_cpu = {
227 .c_init = default_init,
228 .c_vendor = "Unknown",
10a434fc 229 .c_x86_vendor = X86_VENDOR_UNKNOWN,
f580366f 230};
f580366f
YL
231
232int __cpuinit get_model_name(struct cpuinfo_x86 *c)
233{
234 unsigned int *v;
01b2e16a 235 char *p, *q;
f580366f
YL
236
237 if (c->extended_cpuid_level < 0x80000004)
238 return 0;
239
240 v = (unsigned int *) c->x86_model_id;
241 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
242 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
243 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
244 c->x86_model_id[48] = 0;
01b2e16a
YL
245
246 /* Intel chips right-justify this string for some dumb reason;
247 undo that brain damage */
248 p = q = &c->x86_model_id[0];
249 while (*p == ' ')
250 p++;
251 if (p != q) {
252 while (*p)
253 *q++ = *p++;
254 while (q <= &c->x86_model_id[48])
255 *q++ = '\0'; /* Zero-pad the rest */
256 }
257
f580366f
YL
258 return 1;
259}
260
261
262void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
263{
0a488a53 264 unsigned int n, dummy, ebx, ecx, edx, l2size;
f580366f
YL
265
266 n = c->extended_cpuid_level;
267
268 if (n >= 0x80000005) {
269 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
9d31d35b
YL
270 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
271 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
f580366f
YL
272 c->x86_cache_size = (ecx>>24) + (edx>>24);
273 /* On K8 L1 TLB is inclusive, so don't count it */
274 c->x86_tlbsize = 0;
275 }
276
0a488a53
YL
277 if (n < 0x80000006) /* Some chips just has a large L1. */
278 return;
f580366f 279
0a488a53
YL
280 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
281 l2size = ecx >> 16;
282 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
283
284 c->x86_cache_size = l2size;
285
286 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
287 l2size, ecx & 0xFF);
f580366f
YL
288}
289
290void __cpuinit detect_ht(struct cpuinfo_x86 *c)
291{
97e4db7c 292#ifdef CONFIG_X86_HT
f580366f
YL
293 u32 eax, ebx, ecx, edx;
294 int index_msb, core_bits;
295
f580366f
YL
296 if (!cpu_has(c, X86_FEATURE_HT))
297 return;
298 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
299 goto out;
300
90427638
IM
301 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
302 return;
303
0a488a53
YL
304 cpuid(1, &eax, &ebx, &ecx, &edx);
305
f580366f
YL
306 smp_num_siblings = (ebx & 0xff0000) >> 16;
307
308 if (smp_num_siblings == 1) {
309 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
310 } else if (smp_num_siblings > 1) {
311
312 if (smp_num_siblings > NR_CPUS) {
9d31d35b
YL
313 printk(KERN_WARNING "CPU: Unsupported number of siblings %d",
314 smp_num_siblings);
f580366f
YL
315 smp_num_siblings = 1;
316 return;
317 }
318
319 index_msb = get_count_order(smp_num_siblings);
320 c->phys_proc_id = phys_pkg_id(index_msb);
321
322 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
323
324 index_msb = get_count_order(smp_num_siblings);
325
326 core_bits = get_count_order(c->x86_max_cores);
327
328 c->cpu_core_id = phys_pkg_id(index_msb) &
329 ((1 << core_bits) - 1);
330 }
0a488a53 331
f580366f
YL
332out:
333 if ((c->x86_max_cores * smp_num_siblings) > 1) {
334 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
335 c->phys_proc_id);
336 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
337 c->cpu_core_id);
338 }
f580366f
YL
339#endif
340}
341
342static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
343{
344 char *v = c->x86_vendor_id;
345 int i;
346 static int printed;
347
348 for (i = 0; i < X86_VENDOR_NUM; i++) {
10a434fc
YL
349 if (!cpu_devs[i])
350 break;
351
352 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
353 (cpu_devs[i]->c_ident[1] &&
354 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
355 this_cpu = cpu_devs[i];
356 c->x86_vendor = this_cpu->c_x86_vendor;
357 return;
f580366f
YL
358 }
359 }
10a434fc 360
f580366f
YL
361 if (!printed) {
362 printed++;
363 printk(KERN_ERR "CPU: Vendor unknown, using generic init.\n");
364 printk(KERN_ERR "CPU: Your system may be unstable.\n");
365 }
10a434fc 366
f580366f 367 c->x86_vendor = X86_VENDOR_UNKNOWN;
3da99c97 368 this_cpu = &default_cpu;
f580366f
YL
369}
370
3da99c97 371void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
f580366f 372{
f580366f
YL
373 /* Get vendor name */
374 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
375 (unsigned int *)&c->x86_vendor_id[0],
376 (unsigned int *)&c->x86_vendor_id[8],
377 (unsigned int *)&c->x86_vendor_id[4]);
378
9d31d35b 379 c->x86 = 4;
f580366f
YL
380 /* Intel-defined flags: level 0x00000001 */
381 if (c->cpuid_level >= 0x00000001) {
3da99c97
YL
382 u32 junk, tfms, cap0, misc;
383 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
f580366f
YL
384 c->x86 = (tfms >> 8) & 0xf;
385 c->x86_model = (tfms >> 4) & 0xf;
386 c->x86_mask = tfms & 0xf;
387 if (c->x86 == 0xf)
388 c->x86 += (tfms >> 20) & 0xff;
389 if (c->x86 >= 0x6)
9d31d35b
YL
390 c->x86_model += ((tfms >> 16) & 0xf) << 4;
391 if (cap0 & (1<<19)) {
f580366f 392 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
9d31d35b
YL
393 c->x86_cache_alignment = c->x86_clflush_size;
394 }
f580366f 395 }
3da99c97
YL
396}
397
398
399static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
400{
401 u32 tfms, xlvl;
402 u32 ebx;
403
3da99c97
YL
404 /* Intel-defined flags: level 0x00000001 */
405 if (c->cpuid_level >= 0x00000001) {
406 u32 capability, excap;
407
408 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
409 c->x86_capability[0] = capability;
410 c->x86_capability[4] = excap;
411 }
f580366f 412
f580366f
YL
413 /* AMD-defined flags: level 0x80000001 */
414 xlvl = cpuid_eax(0x80000000);
415 c->extended_cpuid_level = xlvl;
416 if ((xlvl & 0xffff0000) == 0x80000000) {
417 if (xlvl >= 0x80000001) {
418 c->x86_capability[1] = cpuid_edx(0x80000001);
419 c->x86_capability[6] = cpuid_ecx(0x80000001);
420 }
f580366f
YL
421 }
422
423 /* Transmeta-defined flags: level 0x80860001 */
424 xlvl = cpuid_eax(0x80860000);
425 if ((xlvl & 0xffff0000) == 0x80860000) {
426 /* Don't set x86_cpuid_level here for now to not confuse. */
427 if (xlvl >= 0x80860001)
428 c->x86_capability[2] = cpuid_edx(0x80860001);
429 }
430
f580366f
YL
431 if (c->extended_cpuid_level >= 0x80000007)
432 c->x86_power = cpuid_edx(0x80000007);
433
87a1c441
YL
434 if (c->extended_cpuid_level >= 0x80000008) {
435 u32 eax = cpuid_eax(0x80000008);
436
437 c->x86_virt_bits = (eax >> 8) & 0xff;
438 c->x86_phys_bits = eax & 0xff;
439 }
f580366f
YL
440}
441
3da99c97
YL
442/* Do some early cpuid on the boot CPU to get some parameter that are
443 needed before check_bugs. Everything advanced is in identify_cpu
444 below. */
445static void __init early_identify_cpu(struct cpuinfo_x86 *c)
f580366f 446{
3da99c97
YL
447
448 c->x86_clflush_size = 64;
449 c->x86_cache_alignment = c->x86_clflush_size;
450
451 memset(&c->x86_capability, 0, sizeof c->x86_capability);
452
453 c->extended_cpuid_level = 0;
454
455 cpu_detect(c);
456
457 get_cpu_vendor(c);
458
459 get_cpu_cap(c);
7e00df58 460
10a434fc
YL
461 if (this_cpu->c_early_init)
462 this_cpu->c_early_init(c);
f580366f
YL
463
464 validate_pat_support(c);
f580366f
YL
465}
466
3da99c97
YL
467void __init early_cpu_init(void)
468{
10a434fc
YL
469 struct cpu_dev **cdev;
470 int count = 0;
f580366f
YL
471
472 printk("KERNEL supported cpus:\n");
10a434fc
YL
473 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
474 struct cpu_dev *cpudev = *cdev;
475 unsigned int j;
3da99c97 476
10a434fc
YL
477 if (count >= X86_VENDOR_NUM)
478 break;
479 cpu_devs[count] = cpudev;
480 count++;
481
f580366f 482 for (j = 0; j < 2; j++) {
10a434fc 483 if (!cpudev->c_ident[j])
f580366f 484 continue;
10a434fc
YL
485 printk(" %s %s\n", cpudev->c_vendor,
486 cpudev->c_ident[j]);
f580366f
YL
487 }
488 }
3da99c97 489
3da99c97 490 early_identify_cpu(&boot_cpu_data);
f580366f
YL
491}
492
7e00df58
PA
493/*
494 * The NOPL instruction is supposed to exist on all CPUs with
495 * family >= 6, unfortunately, that's not true in practice because
496 * of early VIA chips and (more importantly) broken virtualizers that
497 * are not easy to detect. Hence, probe for it based on first
498 * principles.
499 *
500 * Note: no 64-bit chip is known to lack these, but put the code here
501 * for consistency with 32 bits, and to make it utterly trivial to
502 * diagnose the problem should it ever surface.
503 */
504static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
505{
506 const u32 nopl_signature = 0x888c53b1; /* Random number */
507 u32 has_nopl = nopl_signature;
508
509 clear_cpu_cap(c, X86_FEATURE_NOPL);
510 if (c->x86 >= 6) {
511 asm volatile("\n"
512 "1: .byte 0x0f,0x1f,0xc0\n" /* nopl %eax */
513 "2:\n"
514 " .section .fixup,\"ax\"\n"
515 "3: xor %0,%0\n"
516 " jmp 2b\n"
517 " .previous\n"
518 _ASM_EXTABLE(1b,3b)
519 : "+a" (has_nopl));
520
521 if (has_nopl == nopl_signature)
522 set_cpu_cap(c, X86_FEATURE_NOPL);
523 }
524}
525
3da99c97 526static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
f580366f 527{
f580366f 528 c->extended_cpuid_level = 0;
f580366f 529
3da99c97 530 cpu_detect(c);
f580366f
YL
531
532 get_cpu_vendor(c);
533
3da99c97 534 get_cpu_cap(c);
f580366f
YL
535
536 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xff;
537#ifdef CONFIG_SMP
538 c->phys_proc_id = c->initial_apicid;
539#endif
f580366f 540
3da99c97
YL
541 if (c->extended_cpuid_level >= 0x80000004)
542 get_model_name(c); /* Default name */
87a1c441 543
3da99c97 544 init_scattered_cpuid_features(c);
7e00df58 545 detect_nopl(c);
f580366f
YL
546}
547
548/*
549 * This does the hard work of actually picking apart the CPU stuff...
550 */
9a250347 551static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
f580366f
YL
552{
553 int i;
554
3da99c97
YL
555 c->loops_per_jiffy = loops_per_jiffy;
556 c->x86_cache_size = -1;
557 c->x86_vendor = X86_VENDOR_UNKNOWN;
558 c->x86_model = c->x86_mask = 0; /* So far unknown... */
559 c->x86_vendor_id[0] = '\0'; /* Unset */
560 c->x86_model_id[0] = '\0'; /* Unset */
3da99c97
YL
561 c->x86_max_cores = 1;
562 c->x86_coreid_bits = 0;
0a488a53
YL
563 c->x86_clflush_size = 64;
564 c->x86_cache_alignment = c->x86_clflush_size;
3da99c97 565 memset(&c->x86_capability, 0, sizeof c->x86_capability);
f580366f 566
3da99c97 567 generic_identify(c);
f580366f
YL
568
569 c->apicid = phys_pkg_id(0);
570
571 /*
572 * Vendor-specific initialization. In this section we
573 * canonicalize the feature flags, meaning if there are
574 * features a certain CPU supports which CPUID doesn't
575 * tell us, CPUID claiming incorrect flags, or other bugs,
576 * we handle them here.
577 *
578 * At the end of this section, c->x86_capability better
579 * indicate the features this CPU genuinely supports!
580 */
581 if (this_cpu->c_init)
582 this_cpu->c_init(c);
583
584 detect_ht(c);
585
586 /*
587 * On SMP, boot_cpu_data holds the common feature set between
588 * all CPUs; so make sure that we indicate which features are
589 * common between the CPUs. The first time this routine gets
590 * executed, c == &boot_cpu_data.
591 */
592 if (c != &boot_cpu_data) {
593 /* AND the already accumulated flags with these */
594 for (i = 0; i < NCAPINTS; i++)
595 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
596 }
597
598 /* Clear all flags overriden by options */
599 for (i = 0; i < NCAPINTS; i++)
600 c->x86_capability[i] &= ~cleared_cpu_caps[i];
601
602#ifdef CONFIG_X86_MCE
603 mcheck_init(c);
604#endif
605 select_idle_routine(c);
606
607#ifdef CONFIG_NUMA
608 numa_add_cpu(smp_processor_id());
609#endif
610
611}
612
9d31d35b 613void __init identify_boot_cpu(void)
f580366f
YL
614{
615 identify_cpu(&boot_cpu_data);
616}
617
618void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
619{
620 BUG_ON(c == &boot_cpu_data);
621 identify_cpu(c);
622 mtrr_ap_init();
623}
624
b05f78f5
YL
625struct msr_range {
626 unsigned min;
627 unsigned max;
628};
629
630static struct msr_range msr_range_array[] __cpuinitdata = {
631 { 0x00000000, 0x00000418},
632 { 0xc0000000, 0xc000040b},
633 { 0xc0010000, 0xc0010142},
634 { 0xc0011000, 0xc001103b},
635};
636
637static void __cpuinit print_cpu_msr(void)
638{
639 unsigned index;
640 u64 val;
641 int i;
642 unsigned index_min, index_max;
643
644 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
645 index_min = msr_range_array[i].min;
646 index_max = msr_range_array[i].max;
647 for (index = index_min; index < index_max; index++) {
648 if (rdmsrl_amd_safe(index, &val))
649 continue;
650 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
651 }
652 }
653}
654
655static int show_msr __cpuinitdata;
656static __init int setup_show_msr(char *arg)
657{
658 int num;
659
660 get_option(&arg, &num);
661
662 if (num > 0)
663 show_msr = num;
664 return 1;
665}
666__setup("show_msr=", setup_show_msr);
667
f580366f
YL
668static __init int setup_noclflush(char *arg)
669{
670 setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
671 return 1;
672}
673__setup("noclflush", setup_noclflush);
674
675void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
676{
677 if (c->x86_model_id[0])
678 printk(KERN_CONT "%s", c->x86_model_id);
679
680 if (c->x86_mask || c->cpuid_level >= 0)
681 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
682 else
683 printk(KERN_CONT "\n");
b05f78f5
YL
684
685#ifdef CONFIG_SMP
686 if (c->cpu_index < show_msr)
687 print_cpu_msr();
688#else
689 if (show_msr)
690 print_cpu_msr();
691#endif
f580366f
YL
692}
693
694static __init int setup_disablecpuid(char *arg)
695{
696 int bit;
697 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
698 setup_clear_cpu_cap(bit);
699 else
700 return 0;
701 return 1;
702}
703__setup("clearcpuid=", setup_disablecpuid);
0f0124fa 704
0f0124fa
YL
705cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE;
706
707struct x8664_pda **_cpu_pda __read_mostly;
708EXPORT_SYMBOL(_cpu_pda);
709
710struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
711
712char boot_cpu_stack[IRQSTACKSIZE] __page_aligned_bss;
713
714unsigned long __supported_pte_mask __read_mostly = ~0UL;
715EXPORT_SYMBOL_GPL(__supported_pte_mask);
716
717static int do_not_nx __cpuinitdata;
718
719/* noexec=on|off
720Control non executable mappings for 64bit processes.
721
722on Enable(default)
723off Disable
724*/
725static int __init nonx_setup(char *str)
726{
727 if (!str)
728 return -EINVAL;
729 if (!strncmp(str, "on", 2)) {
730 __supported_pte_mask |= _PAGE_NX;
731 do_not_nx = 0;
732 } else if (!strncmp(str, "off", 3)) {
733 do_not_nx = 1;
734 __supported_pte_mask &= ~_PAGE_NX;
735 }
736 return 0;
737}
738early_param("noexec", nonx_setup);
739
740int force_personality32;
741
742/* noexec32=on|off
743Control non executable heap for 32bit processes.
744To control the stack too use noexec=off
745
746on PROT_READ does not imply PROT_EXEC for 32bit processes (default)
747off PROT_READ implies PROT_EXEC
748*/
749static int __init nonx32_setup(char *str)
750{
751 if (!strcmp(str, "on"))
752 force_personality32 &= ~READ_IMPLIES_EXEC;
753 else if (!strcmp(str, "off"))
754 force_personality32 |= READ_IMPLIES_EXEC;
755 return 1;
756}
757__setup("noexec32=", nonx32_setup);
758
759void pda_init(int cpu)
760{
761 struct x8664_pda *pda = cpu_pda(cpu);
762
763 /* Setup up data that may be needed in __get_free_pages early */
ada85708
JF
764 loadsegment(fs, 0);
765 loadsegment(gs, 0);
0f0124fa
YL
766 /* Memory clobbers used to order PDA accessed */
767 mb();
768 wrmsrl(MSR_GS_BASE, pda);
769 mb();
770
771 pda->cpunumber = cpu;
772 pda->irqcount = -1;
773 pda->kernelstack = (unsigned long)stack_thread_info() -
774 PDA_STACKOFFSET + THREAD_SIZE;
775 pda->active_mm = &init_mm;
776 pda->mmu_state = 0;
777
778 if (cpu == 0) {
779 /* others are initialized in smpboot.c */
780 pda->pcurrent = &init_task;
781 pda->irqstackptr = boot_cpu_stack;
49800efc 782 pda->irqstackptr += IRQSTACKSIZE - 64;
0f0124fa 783 } else {
49800efc
AH
784 if (!pda->irqstackptr) {
785 pda->irqstackptr = (char *)
786 __get_free_pages(GFP_ATOMIC, IRQSTACK_ORDER);
787 if (!pda->irqstackptr)
788 panic("cannot allocate irqstack for cpu %d",
789 cpu);
790 pda->irqstackptr += IRQSTACKSIZE - 64;
791 }
0f0124fa
YL
792
793 if (pda->nodenumber == 0 && cpu_to_node(cpu) != NUMA_NO_NODE)
794 pda->nodenumber = cpu_to_node(cpu);
795 }
0f0124fa
YL
796}
797
798char boot_exception_stacks[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ +
cbcd79c2 799 DEBUG_STKSZ] __page_aligned_bss;
0f0124fa
YL
800
801extern asmlinkage void ignore_sysret(void);
802
803/* May not be marked __init: used by software suspend */
804void syscall_init(void)
805{
806 /*
807 * LSTAR and STAR live in a bit strange symbiosis.
808 * They both write to the same internal register. STAR allows to
809 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
810 */
811 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
812 wrmsrl(MSR_LSTAR, system_call);
813 wrmsrl(MSR_CSTAR, ignore_sysret);
814
815#ifdef CONFIG_IA32_EMULATION
816 syscall32_cpu_init();
817#endif
818
819 /* Flags to clear on syscall */
820 wrmsrl(MSR_SYSCALL_MASK,
821 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
822}
823
824void __cpuinit check_efer(void)
825{
826 unsigned long efer;
827
828 rdmsrl(MSR_EFER, efer);
829 if (!(efer & EFER_NX) || do_not_nx)
830 __supported_pte_mask &= ~_PAGE_NX;
831}
832
833unsigned long kernel_eflags;
834
835/*
836 * Copies of the original ist values from the tss are only accessed during
837 * debugging, no special alignment required.
838 */
839DEFINE_PER_CPU(struct orig_ist, orig_ist);
840
841/*
842 * cpu_init() initializes state that is per-CPU. Some data is already
843 * initialized (naturally) in the bootstrap process, such as the GDT
844 * and IDT. We reload them nevertheless, this function acts as a
845 * 'CPU state barrier', nothing should get across.
846 * A lot of state is already set up in PDA init.
847 */
848void __cpuinit cpu_init(void)
849{
850 int cpu = stack_smp_processor_id();
851 struct tss_struct *t = &per_cpu(init_tss, cpu);
852 struct orig_ist *orig_ist = &per_cpu(orig_ist, cpu);
853 unsigned long v;
854 char *estacks = NULL;
855 struct task_struct *me;
856 int i;
857
858 /* CPU 0 is initialised in head64.c */
859 if (cpu != 0)
860 pda_init(cpu);
861 else
862 estacks = boot_exception_stacks;
863
864 me = current;
865
866 if (cpu_test_and_set(cpu, cpu_initialized))
867 panic("CPU#%d already initialized!\n", cpu);
868
869 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
870
871 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
872
873 /*
874 * Initialize the per-CPU GDT with the boot GDT,
875 * and set up the GDT descriptor:
876 */
877
878 switch_to_new_gdt();
879 load_idt((const struct desc_ptr *)&idt_descr);
880
881 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
882 syscall_init();
883
884 wrmsrl(MSR_FS_BASE, 0);
885 wrmsrl(MSR_KERNEL_GS_BASE, 0);
886 barrier();
887
888 check_efer();
6e1cb38a
SS
889 if (cpu != 0 && x2apic)
890 enable_x2apic();
0f0124fa
YL
891
892 /*
893 * set up and load the per-CPU TSS
894 */
b55793f7 895 if (!orig_ist->ist[0]) {
0f0124fa 896 static const unsigned int order[N_EXCEPTION_STACKS] = {
b55793f7
AH
897 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STACK_ORDER,
898 [DEBUG_STACK - 1] = DEBUG_STACK_ORDER
0f0124fa 899 };
b55793f7
AH
900 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
901 if (cpu) {
902 estacks = (char *)__get_free_pages(GFP_ATOMIC, order[v]);
903 if (!estacks)
904 panic("Cannot allocate exception "
905 "stack %ld %d\n", v, cpu);
906 }
907 estacks += PAGE_SIZE << order[v];
908 orig_ist->ist[v] = t->x86_tss.ist[v] =
909 (unsigned long)estacks;
0f0124fa 910 }
0f0124fa
YL
911 }
912
913 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
914 /*
915 * <= is required because the CPU will access up to
916 * 8 bits beyond the end of the IO permission bitmap.
917 */
918 for (i = 0; i <= IO_BITMAP_LONGS; i++)
919 t->io_bitmap[i] = ~0UL;
920
921 atomic_inc(&init_mm.mm_count);
922 me->active_mm = &init_mm;
923 if (me->mm)
924 BUG();
925 enter_lazy_tlb(&init_mm, me);
926
927 load_sp0(t, &current->thread);
928 set_tss_desc(cpu, t);
929 load_TR_desc();
930 load_LDT(&init_mm.context);
931
932#ifdef CONFIG_KGDB
933 /*
934 * If the kgdb is connected no debug regs should be altered. This
935 * is only applicable when KGDB and a KGDB I/O module are built
936 * into the kernel and you are using early debugging with
937 * kgdbwait. KGDB will control the kernel HW breakpoint registers.
938 */
939 if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
940 arch_kgdb_ops.correct_hw_break();
941 else {
942#endif
943 /*
944 * Clear all 6 debug registers:
945 */
946
947 set_debugreg(0UL, 0);
948 set_debugreg(0UL, 1);
949 set_debugreg(0UL, 2);
950 set_debugreg(0UL, 3);
951 set_debugreg(0UL, 6);
952 set_debugreg(0UL, 7);
953#ifdef CONFIG_KGDB
954 /* If the kgdb is connected no debug regs should be altered. */
955 }
956#endif
957
958 fpu_init();
959
960 raw_local_save_flags(kernel_eflags);
961
962 if (is_uv_system())
963 uv_cpu_init();
964}
This page took 0.163406 seconds and 5 git commands to generate.