cpufreq: use work_on_cpu in acpi-cpufreq.c for drv_read and drv_write
[deliverable/linux.git] / arch / x86 / kernel / cpu / cpufreq / acpi-cpufreq.c
CommitLineData
1da177e4 1/*
fe27cb35 2 * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.4 $)
1da177e4
LT
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
fe27cb35 7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
1da177e4
LT
8 *
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24 *
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26 */
27
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/init.h>
fe27cb35
VP
31#include <linux/smp.h>
32#include <linux/sched.h>
1da177e4 33#include <linux/cpufreq.h>
d395bf12 34#include <linux/compiler.h>
8adcc0c6 35#include <linux/dmi.h>
f3f47a67 36#include <linux/ftrace.h>
1da177e4
LT
37
38#include <linux/acpi.h>
39#include <acpi/processor.h>
40
fe27cb35 41#include <asm/io.h>
dde9f7ba 42#include <asm/msr.h>
fe27cb35
VP
43#include <asm/processor.h>
44#include <asm/cpufeature.h>
45#include <asm/delay.h>
46#include <asm/uaccess.h>
47
1da177e4
LT
48#define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
49
50MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
51MODULE_DESCRIPTION("ACPI Processor P-States Driver");
52MODULE_LICENSE("GPL");
53
dde9f7ba
VP
54enum {
55 UNDEFINED_CAPABLE = 0,
56 SYSTEM_INTEL_MSR_CAPABLE,
57 SYSTEM_IO_CAPABLE,
58};
59
60#define INTEL_MSR_RANGE (0xffff)
dfde5d62 61#define CPUID_6_ECX_APERFMPERF_CAPABILITY (0x1)
dde9f7ba 62
fe27cb35 63struct acpi_cpufreq_data {
64be7eed
VP
64 struct acpi_processor_performance *acpi_data;
65 struct cpufreq_frequency_table *freq_table;
dfde5d62 66 unsigned int max_freq;
64be7eed
VP
67 unsigned int resume;
68 unsigned int cpu_feature;
1da177e4
LT
69};
70
ea348f3e 71static DEFINE_PER_CPU(struct acpi_cpufreq_data *, drv_data);
72
50109292
FY
73/* acpi_perf_data is a pointer to percpu data. */
74static struct acpi_processor_performance *acpi_perf_data;
1da177e4
LT
75
76static struct cpufreq_driver acpi_cpufreq_driver;
77
d395bf12
VP
78static unsigned int acpi_pstate_strict;
79
dde9f7ba
VP
80static int check_est_cpu(unsigned int cpuid)
81{
92cb7612 82 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
dde9f7ba
VP
83
84 if (cpu->x86_vendor != X86_VENDOR_INTEL ||
64be7eed 85 !cpu_has(cpu, X86_FEATURE_EST))
dde9f7ba
VP
86 return 0;
87
88 return 1;
89}
90
dde9f7ba 91static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
fe27cb35 92{
64be7eed
VP
93 struct acpi_processor_performance *perf;
94 int i;
fe27cb35
VP
95
96 perf = data->acpi_data;
97
95dd7227 98 for (i=0; i<perf->state_count; i++) {
fe27cb35
VP
99 if (value == perf->states[i].status)
100 return data->freq_table[i].frequency;
101 }
102 return 0;
103}
104
dde9f7ba
VP
105static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
106{
107 int i;
a6f6e6e6 108 struct acpi_processor_performance *perf;
dde9f7ba
VP
109
110 msr &= INTEL_MSR_RANGE;
a6f6e6e6
VP
111 perf = data->acpi_data;
112
95dd7227 113 for (i=0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
a6f6e6e6 114 if (msr == perf->states[data->freq_table[i].index].status)
dde9f7ba
VP
115 return data->freq_table[i].frequency;
116 }
117 return data->freq_table[0].frequency;
118}
119
dde9f7ba
VP
120static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
121{
122 switch (data->cpu_feature) {
64be7eed 123 case SYSTEM_INTEL_MSR_CAPABLE:
dde9f7ba 124 return extract_msr(val, data);
64be7eed 125 case SYSTEM_IO_CAPABLE:
dde9f7ba 126 return extract_io(val, data);
64be7eed 127 default:
dde9f7ba
VP
128 return 0;
129 }
130}
131
dde9f7ba
VP
132struct msr_addr {
133 u32 reg;
134};
135
fe27cb35
VP
136struct io_addr {
137 u16 port;
138 u8 bit_width;
139};
140
dde9f7ba
VP
141typedef union {
142 struct msr_addr msr;
143 struct io_addr io;
144} drv_addr_union;
145
fe27cb35 146struct drv_cmd {
dde9f7ba 147 unsigned int type;
4d8bb537 148 cpumask_var_t mask;
dde9f7ba 149 drv_addr_union addr;
fe27cb35
VP
150 u32 val;
151};
152
72859081 153static long do_drv_read(void *_cmd)
1da177e4 154{
72859081 155 struct drv_cmd *cmd = _cmd;
dde9f7ba
VP
156 u32 h;
157
158 switch (cmd->type) {
64be7eed 159 case SYSTEM_INTEL_MSR_CAPABLE:
dde9f7ba
VP
160 rdmsr(cmd->addr.msr.reg, cmd->val, h);
161 break;
64be7eed 162 case SYSTEM_IO_CAPABLE:
4e581ff1
VP
163 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
164 &cmd->val,
165 (u32)cmd->addr.io.bit_width);
dde9f7ba 166 break;
64be7eed 167 default:
dde9f7ba
VP
168 break;
169 }
72859081 170 return 0;
fe27cb35 171}
1da177e4 172
72859081 173static long do_drv_write(void *_cmd)
fe27cb35 174{
72859081 175 struct drv_cmd *cmd = _cmd;
13424f65 176 u32 lo, hi;
dde9f7ba
VP
177
178 switch (cmd->type) {
64be7eed 179 case SYSTEM_INTEL_MSR_CAPABLE:
13424f65
VP
180 rdmsr(cmd->addr.msr.reg, lo, hi);
181 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
182 wrmsr(cmd->addr.msr.reg, lo, hi);
dde9f7ba 183 break;
64be7eed 184 case SYSTEM_IO_CAPABLE:
4e581ff1
VP
185 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
186 cmd->val,
187 (u32)cmd->addr.io.bit_width);
dde9f7ba 188 break;
64be7eed 189 default:
dde9f7ba
VP
190 break;
191 }
72859081 192 return 0;
fe27cb35 193}
1da177e4 194
95dd7227 195static void drv_read(struct drv_cmd *cmd)
fe27cb35 196{
fe27cb35
VP
197 cmd->val = 0;
198
72859081 199 work_on_cpu(cpumask_any(cmd->mask), do_drv_read, cmd);
fe27cb35
VP
200}
201
202static void drv_write(struct drv_cmd *cmd)
203{
64be7eed 204 unsigned int i;
fe27cb35 205
4d8bb537 206 for_each_cpu(i, cmd->mask) {
72859081 207 work_on_cpu(i, do_drv_write, cmd);
1da177e4 208 }
fe27cb35 209}
1da177e4 210
4d8bb537 211static u32 get_cur_val(const struct cpumask *mask)
fe27cb35 212{
64be7eed
VP
213 struct acpi_processor_performance *perf;
214 struct drv_cmd cmd;
1da177e4 215
4d8bb537 216 if (unlikely(cpumask_empty(mask)))
fe27cb35 217 return 0;
1da177e4 218
4d8bb537 219 switch (per_cpu(drv_data, cpumask_first(mask))->cpu_feature) {
dde9f7ba
VP
220 case SYSTEM_INTEL_MSR_CAPABLE:
221 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
222 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
223 break;
224 case SYSTEM_IO_CAPABLE:
225 cmd.type = SYSTEM_IO_CAPABLE;
4d8bb537 226 perf = per_cpu(drv_data, cpumask_first(mask))->acpi_data;
dde9f7ba
VP
227 cmd.addr.io.port = perf->control_register.address;
228 cmd.addr.io.bit_width = perf->control_register.bit_width;
229 break;
230 default:
231 return 0;
232 }
233
fe27cb35 234 drv_read(&cmd);
1da177e4 235
fe27cb35
VP
236 dprintk("get_cur_val = %u\n", cmd.val);
237
238 return cmd.val;
239}
1da177e4 240
e39ad415
MT
241struct perf_cur {
242 union {
243 struct {
244 u32 lo;
245 u32 hi;
246 } split;
247 u64 whole;
248 } aperf_cur, mperf_cur;
249};
250
251
252static long read_measured_perf_ctrs(void *_cur)
253{
254 struct perf_cur *cur = _cur;
255
256 rdmsr(MSR_IA32_APERF, cur->aperf_cur.split.lo, cur->aperf_cur.split.hi);
257 rdmsr(MSR_IA32_MPERF, cur->mperf_cur.split.lo, cur->mperf_cur.split.hi);
258
259 wrmsr(MSR_IA32_APERF, 0, 0);
260 wrmsr(MSR_IA32_MPERF, 0, 0);
261
262 return 0;
263}
264
dfde5d62
VP
265/*
266 * Return the measured active (C0) frequency on this CPU since last call
267 * to this function.
268 * Input: cpu number
269 * Return: Average CPU frequency in terms of max frequency (zero on error)
270 *
271 * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
272 * over a period of time, while CPU is in C0 state.
273 * IA32_MPERF counts at the rate of max advertised frequency
274 * IA32_APERF counts at the rate of actual CPU frequency
275 * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
276 * no meaning should be associated with absolute values of these MSRs.
277 */
bf0b90e3 278static unsigned int get_measured_perf(struct cpufreq_policy *policy,
279 unsigned int cpu)
dfde5d62 280{
e39ad415 281 struct perf_cur cur;
dfde5d62
VP
282 unsigned int perf_percent;
283 unsigned int retval;
284
e39ad415 285 if (!work_on_cpu(cpu, read_measured_perf_ctrs, &cur))
dfde5d62 286 return 0;
dfde5d62
VP
287
288#ifdef __i386__
289 /*
290 * We dont want to do 64 bit divide with 32 bit kernel
291 * Get an approximate value. Return failure in case we cannot get
292 * an approximate value.
293 */
e39ad415 294 if (unlikely(cur.aperf_cur.split.hi || cur.mperf_cur.split.hi)) {
dfde5d62
VP
295 int shift_count;
296 u32 h;
297
e39ad415 298 h = max_t(u32, cur.aperf_cur.split.hi, cur.mperf_cur.split.hi);
dfde5d62
VP
299 shift_count = fls(h);
300
e39ad415
MT
301 cur.aperf_cur.whole >>= shift_count;
302 cur.mperf_cur.whole >>= shift_count;
dfde5d62
VP
303 }
304
e39ad415 305 if (((unsigned long)(-1) / 100) < cur.aperf_cur.split.lo) {
dfde5d62 306 int shift_count = 7;
e39ad415
MT
307 cur.aperf_cur.split.lo >>= shift_count;
308 cur.mperf_cur.split.lo >>= shift_count;
dfde5d62
VP
309 }
310
e39ad415
MT
311 if (cur.aperf_cur.split.lo && cur.mperf_cur.split.lo)
312 perf_percent = (cur.aperf_cur.split.lo * 100) /
313 cur.mperf_cur.split.lo;
95dd7227 314 else
dfde5d62 315 perf_percent = 0;
dfde5d62
VP
316
317#else
e39ad415 318 if (unlikely(((unsigned long)(-1) / 100) < cur.aperf_cur.whole)) {
dfde5d62 319 int shift_count = 7;
e39ad415
MT
320 cur.aperf_cur.whole >>= shift_count;
321 cur.mperf_cur.whole >>= shift_count;
dfde5d62
VP
322 }
323
e39ad415
MT
324 if (cur.aperf_cur.whole && cur.mperf_cur.whole)
325 perf_percent = (cur.aperf_cur.whole * 100) /
326 cur.mperf_cur.whole;
95dd7227 327 else
dfde5d62 328 perf_percent = 0;
dfde5d62
VP
329
330#endif
331
bf0b90e3 332 retval = per_cpu(drv_data, policy->cpu)->max_freq * perf_percent / 100;
dfde5d62 333
dfde5d62
VP
334 return retval;
335}
336
fe27cb35
VP
337static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
338{
ea348f3e 339 struct acpi_cpufreq_data *data = per_cpu(drv_data, cpu);
64be7eed 340 unsigned int freq;
e56a727b 341 unsigned int cached_freq;
fe27cb35
VP
342
343 dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
344
345 if (unlikely(data == NULL ||
64be7eed 346 data->acpi_data == NULL || data->freq_table == NULL)) {
fe27cb35 347 return 0;
1da177e4
LT
348 }
349
e56a727b 350 cached_freq = data->freq_table[data->acpi_data->state].frequency;
e39ad415 351 freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
e56a727b
VP
352 if (freq != cached_freq) {
353 /*
354 * The dreaded BIOS frequency change behind our back.
355 * Force set the frequency on next target call.
356 */
357 data->resume = 1;
358 }
359
fe27cb35 360 dprintk("cur freq = %u\n", freq);
1da177e4 361
fe27cb35 362 return freq;
1da177e4
LT
363}
364
72859081 365static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
64be7eed 366 struct acpi_cpufreq_data *data)
fe27cb35 367{
64be7eed
VP
368 unsigned int cur_freq;
369 unsigned int i;
1da177e4 370
95dd7227 371 for (i=0; i<100; i++) {
fe27cb35
VP
372 cur_freq = extract_freq(get_cur_val(mask), data);
373 if (cur_freq == freq)
374 return 1;
375 udelay(10);
376 }
377 return 0;
378}
379
380static int acpi_cpufreq_target(struct cpufreq_policy *policy,
64be7eed 381 unsigned int target_freq, unsigned int relation)
1da177e4 382{
ea348f3e 383 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
64be7eed
VP
384 struct acpi_processor_performance *perf;
385 struct cpufreq_freqs freqs;
64be7eed 386 struct drv_cmd cmd;
8edc59d9
VP
387 unsigned int next_state = 0; /* Index into freq_table */
388 unsigned int next_perf_state = 0; /* Index into perf table */
64be7eed
VP
389 unsigned int i;
390 int result = 0;
f3f47a67 391 struct power_trace it;
fe27cb35
VP
392
393 dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
394
395 if (unlikely(data == NULL ||
95dd7227 396 data->acpi_data == NULL || data->freq_table == NULL)) {
fe27cb35
VP
397 return -ENODEV;
398 }
1da177e4 399
4d8bb537
MT
400 if (unlikely(!alloc_cpumask_var(&cmd.mask, GFP_KERNEL)))
401 return -ENOMEM;
402
fe27cb35 403 perf = data->acpi_data;
1da177e4 404 result = cpufreq_frequency_table_target(policy,
64be7eed
VP
405 data->freq_table,
406 target_freq,
407 relation, &next_state);
4d8bb537
MT
408 if (unlikely(result)) {
409 result = -ENODEV;
410 goto out;
411 }
1da177e4 412
fe27cb35 413 next_perf_state = data->freq_table[next_state].index;
7650b281 414 if (perf->state == next_perf_state) {
fe27cb35 415 if (unlikely(data->resume)) {
64be7eed
VP
416 dprintk("Called after resume, resetting to P%d\n",
417 next_perf_state);
fe27cb35
VP
418 data->resume = 0;
419 } else {
64be7eed
VP
420 dprintk("Already at target state (P%d)\n",
421 next_perf_state);
4d8bb537 422 goto out;
fe27cb35 423 }
09b4d1ee
VP
424 }
425
f3f47a67
AV
426 trace_power_mark(&it, POWER_PSTATE, next_perf_state);
427
64be7eed
VP
428 switch (data->cpu_feature) {
429 case SYSTEM_INTEL_MSR_CAPABLE:
430 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
431 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
13424f65 432 cmd.val = (u32) perf->states[next_perf_state].control;
64be7eed
VP
433 break;
434 case SYSTEM_IO_CAPABLE:
435 cmd.type = SYSTEM_IO_CAPABLE;
436 cmd.addr.io.port = perf->control_register.address;
437 cmd.addr.io.bit_width = perf->control_register.bit_width;
438 cmd.val = (u32) perf->states[next_perf_state].control;
439 break;
440 default:
4d8bb537
MT
441 result = -ENODEV;
442 goto out;
64be7eed 443 }
09b4d1ee 444
4d8bb537 445 /* cpufreq holds the hotplug lock, so we are safe from here on */
fe27cb35 446 if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
4d8bb537 447 cpumask_and(cmd.mask, cpu_online_mask, policy->cpus);
fe27cb35 448 else
4d8bb537 449 cpumask_copy(cmd.mask, cpumask_of(policy->cpu));
09b4d1ee 450
8edc59d9
VP
451 freqs.old = perf->states[perf->state].core_frequency * 1000;
452 freqs.new = data->freq_table[next_state].frequency;
4d8bb537 453 for_each_cpu(i, cmd.mask) {
fe27cb35
VP
454 freqs.cpu = i;
455 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
09b4d1ee 456 }
1da177e4 457
fe27cb35 458 drv_write(&cmd);
09b4d1ee 459
fe27cb35 460 if (acpi_pstate_strict) {
4d8bb537 461 if (!check_freqs(cmd.mask, freqs.new, data)) {
fe27cb35 462 dprintk("acpi_cpufreq_target failed (%d)\n",
64be7eed 463 policy->cpu);
4d8bb537
MT
464 result = -EAGAIN;
465 goto out;
09b4d1ee
VP
466 }
467 }
468
4d8bb537 469 for_each_cpu(i, cmd.mask) {
fe27cb35
VP
470 freqs.cpu = i;
471 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
472 }
473 perf->state = next_perf_state;
474
4d8bb537
MT
475out:
476 free_cpumask_var(cmd.mask);
fe27cb35 477 return result;
1da177e4
LT
478}
479
64be7eed 480static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
1da177e4 481{
ea348f3e 482 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
1da177e4
LT
483
484 dprintk("acpi_cpufreq_verify\n");
485
fe27cb35 486 return cpufreq_frequency_table_verify(policy, data->freq_table);
1da177e4
LT
487}
488
1da177e4 489static unsigned long
64be7eed 490acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
1da177e4 491{
64be7eed 492 struct acpi_processor_performance *perf = data->acpi_data;
09b4d1ee 493
1da177e4
LT
494 if (cpu_khz) {
495 /* search the closest match to cpu_khz */
496 unsigned int i;
497 unsigned long freq;
09b4d1ee 498 unsigned long freqn = perf->states[0].core_frequency * 1000;
1da177e4 499
95dd7227 500 for (i=0; i<(perf->state_count-1); i++) {
1da177e4 501 freq = freqn;
95dd7227 502 freqn = perf->states[i+1].core_frequency * 1000;
1da177e4 503 if ((2 * cpu_khz) > (freqn + freq)) {
09b4d1ee 504 perf->state = i;
64be7eed 505 return freq;
1da177e4
LT
506 }
507 }
95dd7227 508 perf->state = perf->state_count-1;
64be7eed 509 return freqn;
09b4d1ee 510 } else {
1da177e4 511 /* assume CPU is at P0... */
09b4d1ee
VP
512 perf->state = 0;
513 return perf->states[0].core_frequency * 1000;
514 }
1da177e4
LT
515}
516
2fdf66b4
RR
517static void free_acpi_perf_data(void)
518{
519 unsigned int i;
520
521 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
522 for_each_possible_cpu(i)
523 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
524 ->shared_cpu_map);
525 free_percpu(acpi_perf_data);
526}
527
09b4d1ee
VP
528/*
529 * acpi_cpufreq_early_init - initialize ACPI P-States library
530 *
531 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
532 * in order to determine correct frequency and voltage pairings. We can
533 * do _PDC and _PSD and find out the processor dependency for the
534 * actual init that will happen later...
535 */
50109292 536static int __init acpi_cpufreq_early_init(void)
09b4d1ee 537{
2fdf66b4 538 unsigned int i;
09b4d1ee
VP
539 dprintk("acpi_cpufreq_early_init\n");
540
50109292
FY
541 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
542 if (!acpi_perf_data) {
543 dprintk("Memory allocation error for acpi_perf_data.\n");
544 return -ENOMEM;
09b4d1ee 545 }
2fdf66b4 546 for_each_possible_cpu(i) {
80855f73
MT
547 if (!alloc_cpumask_var_node(
548 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
549 GFP_KERNEL, cpu_to_node(i))) {
2fdf66b4
RR
550
551 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
552 free_acpi_perf_data();
553 return -ENOMEM;
554 }
555 }
09b4d1ee
VP
556
557 /* Do initialization in ACPI core */
fe27cb35
VP
558 acpi_processor_preregister_performance(acpi_perf_data);
559 return 0;
09b4d1ee
VP
560}
561
95625b8f 562#ifdef CONFIG_SMP
8adcc0c6
VP
563/*
564 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
565 * or do it in BIOS firmware and won't inform about it to OS. If not
566 * detected, this has a side effect of making CPU run at a different speed
567 * than OS intended it to run at. Detect it and handle it cleanly.
568 */
569static int bios_with_sw_any_bug;
570
1855256c 571static int sw_any_bug_found(const struct dmi_system_id *d)
8adcc0c6
VP
572{
573 bios_with_sw_any_bug = 1;
574 return 0;
575}
576
1855256c 577static const struct dmi_system_id sw_any_bug_dmi_table[] = {
8adcc0c6
VP
578 {
579 .callback = sw_any_bug_found,
580 .ident = "Supermicro Server X6DLP",
581 .matches = {
582 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
583 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
584 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
585 },
586 },
587 { }
588};
95625b8f 589#endif
8adcc0c6 590
64be7eed 591static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
1da177e4 592{
64be7eed
VP
593 unsigned int i;
594 unsigned int valid_states = 0;
595 unsigned int cpu = policy->cpu;
596 struct acpi_cpufreq_data *data;
64be7eed 597 unsigned int result = 0;
92cb7612 598 struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
64be7eed 599 struct acpi_processor_performance *perf;
1da177e4 600
1da177e4 601 dprintk("acpi_cpufreq_cpu_init\n");
1da177e4 602
fe27cb35 603 data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
1da177e4 604 if (!data)
64be7eed 605 return -ENOMEM;
1da177e4 606
50109292 607 data->acpi_data = percpu_ptr(acpi_perf_data, cpu);
ea348f3e 608 per_cpu(drv_data, cpu) = data;
1da177e4 609
95dd7227 610 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
fe27cb35 611 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
1da177e4 612
fe27cb35 613 result = acpi_processor_register_performance(data->acpi_data, cpu);
1da177e4
LT
614 if (result)
615 goto err_free;
616
09b4d1ee 617 perf = data->acpi_data;
09b4d1ee 618 policy->shared_type = perf->shared_type;
95dd7227 619
46f18e3a 620 /*
95dd7227 621 * Will let policy->cpus know about dependency only when software
46f18e3a
VP
622 * coordination is required.
623 */
624 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
8adcc0c6 625 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
835481d9 626 cpumask_copy(policy->cpus, perf->shared_cpu_map);
8adcc0c6 627 }
835481d9 628 cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
8adcc0c6
VP
629
630#ifdef CONFIG_SMP
631 dmi_check_system(sw_any_bug_dmi_table);
835481d9 632 if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
8adcc0c6 633 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
835481d9 634 cpumask_copy(policy->cpus, cpu_core_mask(cpu));
8adcc0c6
VP
635 }
636#endif
09b4d1ee 637
1da177e4 638 /* capability check */
09b4d1ee 639 if (perf->state_count <= 1) {
1da177e4
LT
640 dprintk("No P-States\n");
641 result = -ENODEV;
642 goto err_unreg;
643 }
09b4d1ee 644
fe27cb35
VP
645 if (perf->control_register.space_id != perf->status_register.space_id) {
646 result = -ENODEV;
647 goto err_unreg;
648 }
649
650 switch (perf->control_register.space_id) {
64be7eed 651 case ACPI_ADR_SPACE_SYSTEM_IO:
fe27cb35 652 dprintk("SYSTEM IO addr space\n");
dde9f7ba
VP
653 data->cpu_feature = SYSTEM_IO_CAPABLE;
654 break;
64be7eed 655 case ACPI_ADR_SPACE_FIXED_HARDWARE:
dde9f7ba
VP
656 dprintk("HARDWARE addr space\n");
657 if (!check_est_cpu(cpu)) {
658 result = -ENODEV;
659 goto err_unreg;
660 }
661 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
fe27cb35 662 break;
64be7eed 663 default:
fe27cb35 664 dprintk("Unknown addr space %d\n",
64be7eed 665 (u32) (perf->control_register.space_id));
1da177e4
LT
666 result = -ENODEV;
667 goto err_unreg;
668 }
669
95dd7227
DJ
670 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
671 (perf->state_count+1), GFP_KERNEL);
1da177e4
LT
672 if (!data->freq_table) {
673 result = -ENOMEM;
674 goto err_unreg;
675 }
676
677 /* detect transition latency */
678 policy->cpuinfo.transition_latency = 0;
95dd7227 679 for (i=0; i<perf->state_count; i++) {
64be7eed
VP
680 if ((perf->states[i].transition_latency * 1000) >
681 policy->cpuinfo.transition_latency)
682 policy->cpuinfo.transition_latency =
683 perf->states[i].transition_latency * 1000;
1da177e4 684 }
1da177e4 685
dfde5d62 686 data->max_freq = perf->states[0].core_frequency * 1000;
1da177e4 687 /* table init */
95dd7227 688 for (i=0; i<perf->state_count; i++) {
3cdf552b
ZR
689 if (i>0 && perf->states[i].core_frequency >=
690 data->freq_table[valid_states-1].frequency / 1000)
fe27cb35
VP
691 continue;
692
693 data->freq_table[valid_states].index = i;
694 data->freq_table[valid_states].frequency =
64be7eed 695 perf->states[i].core_frequency * 1000;
fe27cb35 696 valid_states++;
1da177e4 697 }
3d4a7ef3 698 data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
8edc59d9 699 perf->state = 0;
1da177e4
LT
700
701 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
95dd7227 702 if (result)
1da177e4 703 goto err_freqfree;
1da177e4 704
a507ac4b 705 switch (perf->control_register.space_id) {
64be7eed 706 case ACPI_ADR_SPACE_SYSTEM_IO:
dde9f7ba
VP
707 /* Current speed is unknown and not detectable by IO port */
708 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
709 break;
64be7eed 710 case ACPI_ADR_SPACE_FIXED_HARDWARE:
7650b281 711 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
a507ac4b 712 policy->cur = get_cur_freq_on_cpu(cpu);
dde9f7ba 713 break;
64be7eed 714 default:
dde9f7ba
VP
715 break;
716 }
717
1da177e4
LT
718 /* notify BIOS that we exist */
719 acpi_processor_notify_smm(THIS_MODULE);
720
dfde5d62
VP
721 /* Check for APERF/MPERF support in hardware */
722 if (c->x86_vendor == X86_VENDOR_INTEL && c->cpuid_level >= 6) {
723 unsigned int ecx;
724 ecx = cpuid_ecx(6);
95dd7227 725 if (ecx & CPUID_6_ECX_APERFMPERF_CAPABILITY)
dfde5d62 726 acpi_cpufreq_driver.getavg = get_measured_perf;
dfde5d62
VP
727 }
728
fe27cb35 729 dprintk("CPU%u - ACPI performance management activated.\n", cpu);
09b4d1ee 730 for (i = 0; i < perf->state_count; i++)
1da177e4 731 dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
64be7eed 732 (i == perf->state ? '*' : ' '), i,
09b4d1ee
VP
733 (u32) perf->states[i].core_frequency,
734 (u32) perf->states[i].power,
735 (u32) perf->states[i].transition_latency);
1da177e4
LT
736
737 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
64be7eed 738
4b31e774
DB
739 /*
740 * the first call to ->target() should result in us actually
741 * writing something to the appropriate registers.
742 */
743 data->resume = 1;
64be7eed 744
fe27cb35 745 return result;
1da177e4 746
95dd7227 747err_freqfree:
1da177e4 748 kfree(data->freq_table);
95dd7227 749err_unreg:
09b4d1ee 750 acpi_processor_unregister_performance(perf, cpu);
95dd7227 751err_free:
1da177e4 752 kfree(data);
ea348f3e 753 per_cpu(drv_data, cpu) = NULL;
1da177e4 754
64be7eed 755 return result;
1da177e4
LT
756}
757
64be7eed 758static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
1da177e4 759{
ea348f3e 760 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
1da177e4 761
1da177e4
LT
762 dprintk("acpi_cpufreq_cpu_exit\n");
763
764 if (data) {
765 cpufreq_frequency_table_put_attr(policy->cpu);
ea348f3e 766 per_cpu(drv_data, policy->cpu) = NULL;
64be7eed
VP
767 acpi_processor_unregister_performance(data->acpi_data,
768 policy->cpu);
1da177e4
LT
769 kfree(data);
770 }
771
64be7eed 772 return 0;
1da177e4
LT
773}
774
64be7eed 775static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
1da177e4 776{
ea348f3e 777 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
1da177e4 778
1da177e4
LT
779 dprintk("acpi_cpufreq_resume\n");
780
781 data->resume = 1;
782
64be7eed 783 return 0;
1da177e4
LT
784}
785
64be7eed 786static struct freq_attr *acpi_cpufreq_attr[] = {
1da177e4
LT
787 &cpufreq_freq_attr_scaling_available_freqs,
788 NULL,
789};
790
791static struct cpufreq_driver acpi_cpufreq_driver = {
64be7eed
VP
792 .verify = acpi_cpufreq_verify,
793 .target = acpi_cpufreq_target,
64be7eed
VP
794 .init = acpi_cpufreq_cpu_init,
795 .exit = acpi_cpufreq_cpu_exit,
796 .resume = acpi_cpufreq_resume,
797 .name = "acpi-cpufreq",
798 .owner = THIS_MODULE,
799 .attr = acpi_cpufreq_attr,
1da177e4
LT
800};
801
64be7eed 802static int __init acpi_cpufreq_init(void)
1da177e4 803{
50109292
FY
804 int ret;
805
ee297533
YL
806 if (acpi_disabled)
807 return 0;
808
1da177e4
LT
809 dprintk("acpi_cpufreq_init\n");
810
50109292
FY
811 ret = acpi_cpufreq_early_init();
812 if (ret)
813 return ret;
09b4d1ee 814
847aef6f
AM
815 ret = cpufreq_register_driver(&acpi_cpufreq_driver);
816 if (ret)
2fdf66b4 817 free_acpi_perf_data();
847aef6f
AM
818
819 return ret;
1da177e4
LT
820}
821
64be7eed 822static void __exit acpi_cpufreq_exit(void)
1da177e4
LT
823{
824 dprintk("acpi_cpufreq_exit\n");
825
826 cpufreq_unregister_driver(&acpi_cpufreq_driver);
827
50109292 828 free_percpu(acpi_perf_data);
1da177e4
LT
829}
830
d395bf12 831module_param(acpi_pstate_strict, uint, 0644);
64be7eed 832MODULE_PARM_DESC(acpi_pstate_strict,
95dd7227
DJ
833 "value 0 or non-zero. non-zero -> strict ACPI checks are "
834 "performed during frequency changes.");
1da177e4
LT
835
836late_initcall(acpi_cpufreq_init);
837module_exit(acpi_cpufreq_exit);
838
839MODULE_ALIAS("acpi");
This page took 0.453017 seconds and 5 git commands to generate.