perf: Add const qualifier to perf_pmu_register's 'name' arg
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_event.c
CommitLineData
241771ef 1/*
cdd6c482 2 * Performance events x86 architecture code
241771ef 3 *
98144511
IM
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
30dd568c 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
1da53e02 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
241771ef
IM
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
cdd6c482 15#include <linux/perf_event.h>
241771ef
IM
16#include <linux/capability.h>
17#include <linux/notifier.h>
18#include <linux/hardirq.h>
19#include <linux/kprobes.h>
4ac13294 20#include <linux/module.h>
241771ef
IM
21#include <linux/kdebug.h>
22#include <linux/sched.h>
d7d59fb3 23#include <linux/uaccess.h>
5a0e3ad6 24#include <linux/slab.h>
30dd568c 25#include <linux/cpu.h>
272d30be 26#include <linux/bitops.h>
0c9d42ed 27#include <linux/device.h>
241771ef 28
241771ef 29#include <asm/apic.h>
d7d59fb3 30#include <asm/stacktrace.h>
4e935e47 31#include <asm/nmi.h>
69092624 32#include <asm/smp.h>
c8e5910e 33#include <asm/alternative.h>
e3f3541c 34#include <asm/timer.h>
d07bdfd3
PZ
35#include <asm/desc.h>
36#include <asm/ldt.h>
241771ef 37
de0428a7
KW
38#include "perf_event.h"
39
de0428a7 40struct x86_pmu x86_pmu __read_mostly;
efc9f05d 41
de0428a7 42DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
b0f3f28e
PZ
43 .enabled = 1,
44};
241771ef 45
de0428a7 46u64 __read_mostly hw_cache_event_ids
8326f44d
IM
47 [PERF_COUNT_HW_CACHE_MAX]
48 [PERF_COUNT_HW_CACHE_OP_MAX]
49 [PERF_COUNT_HW_CACHE_RESULT_MAX];
de0428a7 50u64 __read_mostly hw_cache_extra_regs
e994d7d2
AK
51 [PERF_COUNT_HW_CACHE_MAX]
52 [PERF_COUNT_HW_CACHE_OP_MAX]
53 [PERF_COUNT_HW_CACHE_RESULT_MAX];
8326f44d 54
ee06094f 55/*
cdd6c482
IM
56 * Propagate event elapsed time into the generic event.
57 * Can only be executed on the CPU where the event is active.
ee06094f
IM
58 * Returns the delta events processed.
59 */
de0428a7 60u64 x86_perf_event_update(struct perf_event *event)
ee06094f 61{
cc2ad4ba 62 struct hw_perf_event *hwc = &event->hw;
948b1bb8 63 int shift = 64 - x86_pmu.cntval_bits;
ec3232bd 64 u64 prev_raw_count, new_raw_count;
cc2ad4ba 65 int idx = hwc->idx;
ec3232bd 66 s64 delta;
ee06094f 67
15c7ad51 68 if (idx == INTEL_PMC_IDX_FIXED_BTS)
30dd568c
MM
69 return 0;
70
ee06094f 71 /*
cdd6c482 72 * Careful: an NMI might modify the previous event value.
ee06094f
IM
73 *
74 * Our tactic to handle this is to first atomically read and
75 * exchange a new raw count - then add that new-prev delta
cdd6c482 76 * count to the generic event atomically:
ee06094f
IM
77 */
78again:
e7850595 79 prev_raw_count = local64_read(&hwc->prev_count);
c48b6053 80 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
ee06094f 81
e7850595 82 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
ee06094f
IM
83 new_raw_count) != prev_raw_count)
84 goto again;
85
86 /*
87 * Now we have the new raw value and have updated the prev
88 * timestamp already. We can now calculate the elapsed delta
cdd6c482 89 * (event-)time and add that to the generic event.
ee06094f
IM
90 *
91 * Careful, not all hw sign-extends above the physical width
ec3232bd 92 * of the count.
ee06094f 93 */
ec3232bd
PZ
94 delta = (new_raw_count << shift) - (prev_raw_count << shift);
95 delta >>= shift;
ee06094f 96
e7850595
PZ
97 local64_add(delta, &event->count);
98 local64_sub(delta, &hwc->period_left);
4b7bfd0d
RR
99
100 return new_raw_count;
ee06094f
IM
101}
102
a7e3ed1e
AK
103/*
104 * Find and validate any extra registers to set up.
105 */
106static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
107{
efc9f05d 108 struct hw_perf_event_extra *reg;
a7e3ed1e
AK
109 struct extra_reg *er;
110
efc9f05d 111 reg = &event->hw.extra_reg;
a7e3ed1e
AK
112
113 if (!x86_pmu.extra_regs)
114 return 0;
115
116 for (er = x86_pmu.extra_regs; er->msr; er++) {
117 if (er->event != (config & er->config_mask))
118 continue;
119 if (event->attr.config1 & ~er->valid_mask)
120 return -EINVAL;
efc9f05d
SE
121
122 reg->idx = er->idx;
123 reg->config = event->attr.config1;
124 reg->reg = er->msr;
a7e3ed1e
AK
125 break;
126 }
127 return 0;
128}
129
cdd6c482 130static atomic_t active_events;
4e935e47
PZ
131static DEFINE_MUTEX(pmc_reserve_mutex);
132
b27ea29c
RR
133#ifdef CONFIG_X86_LOCAL_APIC
134
4e935e47
PZ
135static bool reserve_pmc_hardware(void)
136{
137 int i;
138
948b1bb8 139 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 140 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
4e935e47
PZ
141 goto perfctr_fail;
142 }
143
948b1bb8 144 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 145 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
4e935e47
PZ
146 goto eventsel_fail;
147 }
148
149 return true;
150
151eventsel_fail:
152 for (i--; i >= 0; i--)
41bf4989 153 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 154
948b1bb8 155 i = x86_pmu.num_counters;
4e935e47
PZ
156
157perfctr_fail:
158 for (i--; i >= 0; i--)
41bf4989 159 release_perfctr_nmi(x86_pmu_event_addr(i));
4e935e47 160
4e935e47
PZ
161 return false;
162}
163
164static void release_pmc_hardware(void)
165{
166 int i;
167
948b1bb8 168 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989
RR
169 release_perfctr_nmi(x86_pmu_event_addr(i));
170 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 171 }
4e935e47
PZ
172}
173
b27ea29c
RR
174#else
175
176static bool reserve_pmc_hardware(void) { return true; }
177static void release_pmc_hardware(void) {}
178
179#endif
180
33c6d6a7
DZ
181static bool check_hw_exists(void)
182{
a5ebe0ba
GD
183 u64 val, val_fail, val_new= ~0;
184 int i, reg, reg_fail, ret = 0;
185 int bios_fail = 0;
33c6d6a7 186
4407204c
PZ
187 /*
188 * Check to see if the BIOS enabled any of the counters, if so
189 * complain and bail.
190 */
191 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 192 reg = x86_pmu_config_addr(i);
4407204c
PZ
193 ret = rdmsrl_safe(reg, &val);
194 if (ret)
195 goto msr_fail;
a5ebe0ba
GD
196 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
197 bios_fail = 1;
198 val_fail = val;
199 reg_fail = reg;
200 }
4407204c
PZ
201 }
202
203 if (x86_pmu.num_counters_fixed) {
204 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
205 ret = rdmsrl_safe(reg, &val);
206 if (ret)
207 goto msr_fail;
208 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
a5ebe0ba
GD
209 if (val & (0x03 << i*4)) {
210 bios_fail = 1;
211 val_fail = val;
212 reg_fail = reg;
213 }
4407204c
PZ
214 }
215 }
216
217 /*
bffd5fc2
AP
218 * Read the current value, change it and read it back to see if it
219 * matches, this is needed to detect certain hardware emulators
220 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4407204c 221 */
f285f92f 222 reg = x86_pmu_event_addr(0);
bffd5fc2
AP
223 if (rdmsrl_safe(reg, &val))
224 goto msr_fail;
225 val ^= 0xffffUL;
f285f92f
RR
226 ret = wrmsrl_safe(reg, val);
227 ret |= rdmsrl_safe(reg, &val_new);
33c6d6a7 228 if (ret || val != val_new)
4407204c 229 goto msr_fail;
33c6d6a7 230
45daae57
IM
231 /*
232 * We still allow the PMU driver to operate:
233 */
a5ebe0ba
GD
234 if (bios_fail) {
235 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
236 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail, val_fail);
237 }
45daae57
IM
238
239 return true;
4407204c
PZ
240
241msr_fail:
242 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
f285f92f 243 printk(KERN_ERR "Failed to access perfctr msr (MSR %x is %Lx)\n", reg, val_new);
45daae57 244
4407204c 245 return false;
33c6d6a7
DZ
246}
247
cdd6c482 248static void hw_perf_event_destroy(struct perf_event *event)
4e935e47 249{
cdd6c482 250 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
4e935e47 251 release_pmc_hardware();
ca037701 252 release_ds_buffers();
4e935e47
PZ
253 mutex_unlock(&pmc_reserve_mutex);
254 }
255}
256
85cf9dba
RR
257static inline int x86_pmu_initialized(void)
258{
259 return x86_pmu.handle_irq != NULL;
260}
261
8326f44d 262static inline int
e994d7d2 263set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
8326f44d 264{
e994d7d2 265 struct perf_event_attr *attr = &event->attr;
8326f44d
IM
266 unsigned int cache_type, cache_op, cache_result;
267 u64 config, val;
268
269 config = attr->config;
270
271 cache_type = (config >> 0) & 0xff;
272 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
273 return -EINVAL;
274
275 cache_op = (config >> 8) & 0xff;
276 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
277 return -EINVAL;
278
279 cache_result = (config >> 16) & 0xff;
280 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
281 return -EINVAL;
282
283 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
284
285 if (val == 0)
286 return -ENOENT;
287
288 if (val == -1)
289 return -EINVAL;
290
291 hwc->config |= val;
e994d7d2
AK
292 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
293 return x86_pmu_extra_regs(val, event);
8326f44d
IM
294}
295
de0428a7 296int x86_setup_perfctr(struct perf_event *event)
c1726f34
RR
297{
298 struct perf_event_attr *attr = &event->attr;
299 struct hw_perf_event *hwc = &event->hw;
300 u64 config;
301
6c7e550f 302 if (!is_sampling_event(event)) {
c1726f34
RR
303 hwc->sample_period = x86_pmu.max_period;
304 hwc->last_period = hwc->sample_period;
e7850595 305 local64_set(&hwc->period_left, hwc->sample_period);
c1726f34
RR
306 } else {
307 /*
308 * If we have a PMU initialized but no APIC
309 * interrupts, we cannot sample hardware
310 * events (user-space has to fall back and
311 * sample via a hrtimer based software event):
312 */
313 if (!x86_pmu.apic)
314 return -EOPNOTSUPP;
315 }
316
317 if (attr->type == PERF_TYPE_RAW)
ed13ec58 318 return x86_pmu_extra_regs(event->attr.config, event);
c1726f34
RR
319
320 if (attr->type == PERF_TYPE_HW_CACHE)
e994d7d2 321 return set_ext_hw_attr(hwc, event);
c1726f34
RR
322
323 if (attr->config >= x86_pmu.max_events)
324 return -EINVAL;
325
326 /*
327 * The generic map:
328 */
329 config = x86_pmu.event_map(attr->config);
330
331 if (config == 0)
332 return -ENOENT;
333
334 if (config == -1LL)
335 return -EINVAL;
336
337 /*
338 * Branch tracing:
339 */
18a073a3
PZ
340 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
341 !attr->freq && hwc->sample_period == 1) {
c1726f34 342 /* BTS is not supported by this architecture. */
6809b6ea 343 if (!x86_pmu.bts_active)
c1726f34
RR
344 return -EOPNOTSUPP;
345
346 /* BTS is currently only allowed for user-mode. */
347 if (!attr->exclude_kernel)
348 return -EOPNOTSUPP;
349 }
350
351 hwc->config |= config;
352
353 return 0;
354}
4261e0e0 355
ff3fb511
SE
356/*
357 * check that branch_sample_type is compatible with
358 * settings needed for precise_ip > 1 which implies
359 * using the LBR to capture ALL taken branches at the
360 * priv levels of the measurement
361 */
362static inline int precise_br_compat(struct perf_event *event)
363{
364 u64 m = event->attr.branch_sample_type;
365 u64 b = 0;
366
367 /* must capture all branches */
368 if (!(m & PERF_SAMPLE_BRANCH_ANY))
369 return 0;
370
371 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
372
373 if (!event->attr.exclude_user)
374 b |= PERF_SAMPLE_BRANCH_USER;
375
376 if (!event->attr.exclude_kernel)
377 b |= PERF_SAMPLE_BRANCH_KERNEL;
378
379 /*
380 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
381 */
382
383 return m == b;
384}
385
de0428a7 386int x86_pmu_hw_config(struct perf_event *event)
a072738e 387{
ab608344
PZ
388 if (event->attr.precise_ip) {
389 int precise = 0;
390
391 /* Support for constant skid */
c93dc84c 392 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
ab608344
PZ
393 precise++;
394
5553be26
PZ
395 /* Support for IP fixup */
396 if (x86_pmu.lbr_nr)
397 precise++;
398 }
ab608344
PZ
399
400 if (event->attr.precise_ip > precise)
401 return -EOPNOTSUPP;
ff3fb511
SE
402 /*
403 * check that PEBS LBR correction does not conflict with
404 * whatever the user is asking with attr->branch_sample_type
405 */
406 if (event->attr.precise_ip > 1) {
407 u64 *br_type = &event->attr.branch_sample_type;
408
409 if (has_branch_stack(event)) {
410 if (!precise_br_compat(event))
411 return -EOPNOTSUPP;
412
413 /* branch_sample_type is compatible */
414
415 } else {
416 /*
417 * user did not specify branch_sample_type
418 *
419 * For PEBS fixups, we capture all
420 * the branches at the priv level of the
421 * event.
422 */
423 *br_type = PERF_SAMPLE_BRANCH_ANY;
424
425 if (!event->attr.exclude_user)
426 *br_type |= PERF_SAMPLE_BRANCH_USER;
427
428 if (!event->attr.exclude_kernel)
429 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
430 }
431 }
ab608344
PZ
432 }
433
a072738e
CG
434 /*
435 * Generate PMC IRQs:
436 * (keep 'enabled' bit clear for now)
437 */
b4cdc5c2 438 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
a072738e
CG
439
440 /*
441 * Count user and OS events unless requested not to
442 */
b4cdc5c2
PZ
443 if (!event->attr.exclude_user)
444 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
445 if (!event->attr.exclude_kernel)
446 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
a072738e 447
b4cdc5c2
PZ
448 if (event->attr.type == PERF_TYPE_RAW)
449 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
a072738e 450
9d0fcba6 451 return x86_setup_perfctr(event);
a098f448
RR
452}
453
241771ef 454/*
0d48696f 455 * Setup the hardware configuration for a given attr_type
241771ef 456 */
b0a873eb 457static int __x86_pmu_event_init(struct perf_event *event)
241771ef 458{
4e935e47 459 int err;
241771ef 460
85cf9dba
RR
461 if (!x86_pmu_initialized())
462 return -ENODEV;
241771ef 463
4e935e47 464 err = 0;
cdd6c482 465 if (!atomic_inc_not_zero(&active_events)) {
4e935e47 466 mutex_lock(&pmc_reserve_mutex);
cdd6c482 467 if (atomic_read(&active_events) == 0) {
30dd568c
MM
468 if (!reserve_pmc_hardware())
469 err = -EBUSY;
f80c9e30
PZ
470 else
471 reserve_ds_buffers();
30dd568c
MM
472 }
473 if (!err)
cdd6c482 474 atomic_inc(&active_events);
4e935e47
PZ
475 mutex_unlock(&pmc_reserve_mutex);
476 }
477 if (err)
478 return err;
479
cdd6c482 480 event->destroy = hw_perf_event_destroy;
a1792cda 481
4261e0e0
RR
482 event->hw.idx = -1;
483 event->hw.last_cpu = -1;
484 event->hw.last_tag = ~0ULL;
b690081d 485
efc9f05d
SE
486 /* mark unused */
487 event->hw.extra_reg.idx = EXTRA_REG_NONE;
b36817e8
SE
488 event->hw.branch_reg.idx = EXTRA_REG_NONE;
489
9d0fcba6 490 return x86_pmu.hw_config(event);
4261e0e0
RR
491}
492
de0428a7 493void x86_pmu_disable_all(void)
f87ad35d 494{
cdd6c482 495 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
9e35ad38
PZ
496 int idx;
497
948b1bb8 498 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
b0f3f28e
PZ
499 u64 val;
500
43f6201a 501 if (!test_bit(idx, cpuc->active_mask))
4295ee62 502 continue;
41bf4989 503 rdmsrl(x86_pmu_config_addr(idx), val);
bb1165d6 504 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
4295ee62 505 continue;
bb1165d6 506 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
41bf4989 507 wrmsrl(x86_pmu_config_addr(idx), val);
f87ad35d 508 }
f87ad35d
JSR
509}
510
a4eaf7f1 511static void x86_pmu_disable(struct pmu *pmu)
b56a3802 512{
1da53e02
SE
513 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
514
85cf9dba 515 if (!x86_pmu_initialized())
9e35ad38 516 return;
1da53e02 517
1a6e21f7
PZ
518 if (!cpuc->enabled)
519 return;
520
521 cpuc->n_added = 0;
522 cpuc->enabled = 0;
523 barrier();
1da53e02
SE
524
525 x86_pmu.disable_all();
b56a3802 526}
241771ef 527
de0428a7 528void x86_pmu_enable_all(int added)
f87ad35d 529{
cdd6c482 530 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
f87ad35d
JSR
531 int idx;
532
948b1bb8 533 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
d45dd923 534 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
b0f3f28e 535
43f6201a 536 if (!test_bit(idx, cpuc->active_mask))
4295ee62 537 continue;
984b838c 538
d45dd923 539 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
f87ad35d
JSR
540 }
541}
542
51b0fe39 543static struct pmu pmu;
1da53e02
SE
544
545static inline int is_x86_event(struct perf_event *event)
546{
547 return event->pmu == &pmu;
548}
549
1e2ad28f
RR
550/*
551 * Event scheduler state:
552 *
553 * Assign events iterating over all events and counters, beginning
554 * with events with least weights first. Keep the current iterator
555 * state in struct sched_state.
556 */
557struct sched_state {
558 int weight;
559 int event; /* event index */
560 int counter; /* counter index */
561 int unassigned; /* number of events to be assigned left */
562 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
563};
564
bc1738f6
RR
565/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
566#define SCHED_STATES_MAX 2
567
1e2ad28f
RR
568struct perf_sched {
569 int max_weight;
570 int max_events;
571 struct event_constraint **constraints;
572 struct sched_state state;
bc1738f6
RR
573 int saved_states;
574 struct sched_state saved[SCHED_STATES_MAX];
1e2ad28f
RR
575};
576
577/*
578 * Initialize interator that runs through all events and counters.
579 */
580static void perf_sched_init(struct perf_sched *sched, struct event_constraint **c,
581 int num, int wmin, int wmax)
582{
583 int idx;
584
585 memset(sched, 0, sizeof(*sched));
586 sched->max_events = num;
587 sched->max_weight = wmax;
588 sched->constraints = c;
589
590 for (idx = 0; idx < num; idx++) {
591 if (c[idx]->weight == wmin)
592 break;
593 }
594
595 sched->state.event = idx; /* start with min weight */
596 sched->state.weight = wmin;
597 sched->state.unassigned = num;
598}
599
bc1738f6
RR
600static void perf_sched_save_state(struct perf_sched *sched)
601{
602 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
603 return;
604
605 sched->saved[sched->saved_states] = sched->state;
606 sched->saved_states++;
607}
608
609static bool perf_sched_restore_state(struct perf_sched *sched)
610{
611 if (!sched->saved_states)
612 return false;
613
614 sched->saved_states--;
615 sched->state = sched->saved[sched->saved_states];
616
617 /* continue with next counter: */
618 clear_bit(sched->state.counter++, sched->state.used);
619
620 return true;
621}
622
1e2ad28f
RR
623/*
624 * Select a counter for the current event to schedule. Return true on
625 * success.
626 */
bc1738f6 627static bool __perf_sched_find_counter(struct perf_sched *sched)
1e2ad28f
RR
628{
629 struct event_constraint *c;
630 int idx;
631
632 if (!sched->state.unassigned)
633 return false;
634
635 if (sched->state.event >= sched->max_events)
636 return false;
637
638 c = sched->constraints[sched->state.event];
639
4defea85 640 /* Prefer fixed purpose counters */
15c7ad51
RR
641 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
642 idx = INTEL_PMC_IDX_FIXED;
307b1cd7 643 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
4defea85
PZ
644 if (!__test_and_set_bit(idx, sched->state.used))
645 goto done;
646 }
647 }
1e2ad28f
RR
648 /* Grab the first unused counter starting with idx */
649 idx = sched->state.counter;
15c7ad51 650 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
1e2ad28f 651 if (!__test_and_set_bit(idx, sched->state.used))
4defea85 652 goto done;
1e2ad28f 653 }
1e2ad28f 654
4defea85
PZ
655 return false;
656
657done:
658 sched->state.counter = idx;
1e2ad28f 659
bc1738f6
RR
660 if (c->overlap)
661 perf_sched_save_state(sched);
662
663 return true;
664}
665
666static bool perf_sched_find_counter(struct perf_sched *sched)
667{
668 while (!__perf_sched_find_counter(sched)) {
669 if (!perf_sched_restore_state(sched))
670 return false;
671 }
672
1e2ad28f
RR
673 return true;
674}
675
676/*
677 * Go through all unassigned events and find the next one to schedule.
678 * Take events with the least weight first. Return true on success.
679 */
680static bool perf_sched_next_event(struct perf_sched *sched)
681{
682 struct event_constraint *c;
683
684 if (!sched->state.unassigned || !--sched->state.unassigned)
685 return false;
686
687 do {
688 /* next event */
689 sched->state.event++;
690 if (sched->state.event >= sched->max_events) {
691 /* next weight */
692 sched->state.event = 0;
693 sched->state.weight++;
694 if (sched->state.weight > sched->max_weight)
695 return false;
696 }
697 c = sched->constraints[sched->state.event];
698 } while (c->weight != sched->state.weight);
699
700 sched->state.counter = 0; /* start with first counter */
701
702 return true;
703}
704
705/*
706 * Assign a counter for each event.
707 */
4b4969b1
YZ
708int perf_assign_events(struct event_constraint **constraints, int n,
709 int wmin, int wmax, int *assign)
1e2ad28f
RR
710{
711 struct perf_sched sched;
712
713 perf_sched_init(&sched, constraints, n, wmin, wmax);
714
715 do {
716 if (!perf_sched_find_counter(&sched))
717 break; /* failed */
718 if (assign)
719 assign[sched.state.event] = sched.state.counter;
720 } while (perf_sched_next_event(&sched));
721
722 return sched.state.unassigned;
723}
724
de0428a7 725int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
1da53e02 726{
63b14649 727 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
1da53e02 728 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
1e2ad28f 729 int i, wmin, wmax, num = 0;
1da53e02
SE
730 struct hw_perf_event *hwc;
731
732 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
733
1e2ad28f 734 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
b622d644
PZ
735 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
736 constraints[i] = c;
1e2ad28f
RR
737 wmin = min(wmin, c->weight);
738 wmax = max(wmax, c->weight);
1da53e02
SE
739 }
740
8113070d
SE
741 /*
742 * fastpath, try to reuse previous register
743 */
c933c1a6 744 for (i = 0; i < n; i++) {
8113070d 745 hwc = &cpuc->event_list[i]->hw;
81269a08 746 c = constraints[i];
8113070d
SE
747
748 /* never assigned */
749 if (hwc->idx == -1)
750 break;
751
752 /* constraint still honored */
63b14649 753 if (!test_bit(hwc->idx, c->idxmsk))
8113070d
SE
754 break;
755
756 /* not already used */
757 if (test_bit(hwc->idx, used_mask))
758 break;
759
34538ee7 760 __set_bit(hwc->idx, used_mask);
8113070d
SE
761 if (assign)
762 assign[i] = hwc->idx;
763 }
8113070d 764
1e2ad28f
RR
765 /* slow path */
766 if (i != n)
767 num = perf_assign_events(constraints, n, wmin, wmax, assign);
8113070d 768
1da53e02
SE
769 /*
770 * scheduling failed or is just a simulation,
771 * free resources if necessary
772 */
773 if (!assign || num) {
774 for (i = 0; i < n; i++) {
775 if (x86_pmu.put_event_constraints)
776 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
777 }
778 }
aa2bc1ad 779 return num ? -EINVAL : 0;
1da53e02
SE
780}
781
782/*
783 * dogrp: true if must collect siblings events (group)
784 * returns total number of events and error code
785 */
786static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
787{
788 struct perf_event *event;
789 int n, max_count;
790
948b1bb8 791 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1da53e02
SE
792
793 /* current number of events already accepted */
794 n = cpuc->n_events;
795
796 if (is_x86_event(leader)) {
797 if (n >= max_count)
aa2bc1ad 798 return -EINVAL;
1da53e02
SE
799 cpuc->event_list[n] = leader;
800 n++;
801 }
802 if (!dogrp)
803 return n;
804
805 list_for_each_entry(event, &leader->sibling_list, group_entry) {
806 if (!is_x86_event(event) ||
8113070d 807 event->state <= PERF_EVENT_STATE_OFF)
1da53e02
SE
808 continue;
809
810 if (n >= max_count)
aa2bc1ad 811 return -EINVAL;
1da53e02
SE
812
813 cpuc->event_list[n] = event;
814 n++;
815 }
816 return n;
817}
818
1da53e02 819static inline void x86_assign_hw_event(struct perf_event *event,
447a194b 820 struct cpu_hw_events *cpuc, int i)
1da53e02 821{
447a194b
SE
822 struct hw_perf_event *hwc = &event->hw;
823
824 hwc->idx = cpuc->assign[i];
825 hwc->last_cpu = smp_processor_id();
826 hwc->last_tag = ++cpuc->tags[i];
1da53e02 827
15c7ad51 828 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1da53e02
SE
829 hwc->config_base = 0;
830 hwc->event_base = 0;
15c7ad51 831 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1da53e02 832 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
15c7ad51
RR
833 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
834 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1da53e02 835 } else {
73d6e522
RR
836 hwc->config_base = x86_pmu_config_addr(hwc->idx);
837 hwc->event_base = x86_pmu_event_addr(hwc->idx);
0fbdad07 838 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1da53e02
SE
839 }
840}
841
447a194b
SE
842static inline int match_prev_assignment(struct hw_perf_event *hwc,
843 struct cpu_hw_events *cpuc,
844 int i)
845{
846 return hwc->idx == cpuc->assign[i] &&
847 hwc->last_cpu == smp_processor_id() &&
848 hwc->last_tag == cpuc->tags[i];
849}
850
a4eaf7f1 851static void x86_pmu_start(struct perf_event *event, int flags);
2e841873 852
a4eaf7f1 853static void x86_pmu_enable(struct pmu *pmu)
ee06094f 854{
1da53e02
SE
855 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
856 struct perf_event *event;
857 struct hw_perf_event *hwc;
11164cd4 858 int i, added = cpuc->n_added;
1da53e02 859
85cf9dba 860 if (!x86_pmu_initialized())
2b9ff0db 861 return;
1a6e21f7
PZ
862
863 if (cpuc->enabled)
864 return;
865
1da53e02 866 if (cpuc->n_added) {
19925ce7 867 int n_running = cpuc->n_events - cpuc->n_added;
1da53e02
SE
868 /*
869 * apply assignment obtained either from
870 * hw_perf_group_sched_in() or x86_pmu_enable()
871 *
872 * step1: save events moving to new counters
873 * step2: reprogram moved events into new counters
874 */
19925ce7 875 for (i = 0; i < n_running; i++) {
1da53e02
SE
876 event = cpuc->event_list[i];
877 hwc = &event->hw;
878
447a194b
SE
879 /*
880 * we can avoid reprogramming counter if:
881 * - assigned same counter as last time
882 * - running on same CPU as last time
883 * - no other event has used the counter since
884 */
885 if (hwc->idx == -1 ||
886 match_prev_assignment(hwc, cpuc, i))
1da53e02
SE
887 continue;
888
a4eaf7f1
PZ
889 /*
890 * Ensure we don't accidentally enable a stopped
891 * counter simply because we rescheduled.
892 */
893 if (hwc->state & PERF_HES_STOPPED)
894 hwc->state |= PERF_HES_ARCH;
895
896 x86_pmu_stop(event, PERF_EF_UPDATE);
1da53e02
SE
897 }
898
899 for (i = 0; i < cpuc->n_events; i++) {
1da53e02
SE
900 event = cpuc->event_list[i];
901 hwc = &event->hw;
902
45e16a68 903 if (!match_prev_assignment(hwc, cpuc, i))
447a194b 904 x86_assign_hw_event(event, cpuc, i);
45e16a68
PZ
905 else if (i < n_running)
906 continue;
1da53e02 907
a4eaf7f1
PZ
908 if (hwc->state & PERF_HES_ARCH)
909 continue;
910
911 x86_pmu_start(event, PERF_EF_RELOAD);
1da53e02
SE
912 }
913 cpuc->n_added = 0;
914 perf_events_lapic_init();
915 }
1a6e21f7
PZ
916
917 cpuc->enabled = 1;
918 barrier();
919
11164cd4 920 x86_pmu.enable_all(added);
ee06094f 921}
ee06094f 922
245b2e70 923static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
241771ef 924
ee06094f
IM
925/*
926 * Set the next IRQ period, based on the hwc->period_left value.
cdd6c482 927 * To be called with the event disabled in hw:
ee06094f 928 */
de0428a7 929int x86_perf_event_set_period(struct perf_event *event)
241771ef 930{
07088edb 931 struct hw_perf_event *hwc = &event->hw;
e7850595 932 s64 left = local64_read(&hwc->period_left);
e4abb5d4 933 s64 period = hwc->sample_period;
7645a24c 934 int ret = 0, idx = hwc->idx;
ee06094f 935
15c7ad51 936 if (idx == INTEL_PMC_IDX_FIXED_BTS)
30dd568c
MM
937 return 0;
938
ee06094f 939 /*
af901ca1 940 * If we are way outside a reasonable range then just skip forward:
ee06094f
IM
941 */
942 if (unlikely(left <= -period)) {
943 left = period;
e7850595 944 local64_set(&hwc->period_left, left);
9e350de3 945 hwc->last_period = period;
e4abb5d4 946 ret = 1;
ee06094f
IM
947 }
948
949 if (unlikely(left <= 0)) {
950 left += period;
e7850595 951 local64_set(&hwc->period_left, left);
9e350de3 952 hwc->last_period = period;
e4abb5d4 953 ret = 1;
ee06094f 954 }
1c80f4b5 955 /*
dfc65094 956 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1c80f4b5
IM
957 */
958 if (unlikely(left < 2))
959 left = 2;
241771ef 960
e4abb5d4
PZ
961 if (left > x86_pmu.max_period)
962 left = x86_pmu.max_period;
963
245b2e70 964 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
ee06094f
IM
965
966 /*
cdd6c482 967 * The hw event starts counting from this event offset,
ee06094f
IM
968 * mark it to be able to extra future deltas:
969 */
e7850595 970 local64_set(&hwc->prev_count, (u64)-left);
ee06094f 971
73d6e522 972 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
68aa00ac
CG
973
974 /*
975 * Due to erratum on certan cpu we need
976 * a second write to be sure the register
977 * is updated properly
978 */
979 if (x86_pmu.perfctr_second_write) {
73d6e522 980 wrmsrl(hwc->event_base,
948b1bb8 981 (u64)(-left) & x86_pmu.cntval_mask);
68aa00ac 982 }
e4abb5d4 983
cdd6c482 984 perf_event_update_userpage(event);
194002b2 985
e4abb5d4 986 return ret;
2f18d1e8
IM
987}
988
de0428a7 989void x86_pmu_enable_event(struct perf_event *event)
7c90cc45 990{
0a3aee0d 991 if (__this_cpu_read(cpu_hw_events.enabled))
31fa58af
RR
992 __x86_pmu_enable_event(&event->hw,
993 ARCH_PERFMON_EVENTSEL_ENABLE);
241771ef
IM
994}
995
b690081d 996/*
a4eaf7f1 997 * Add a single event to the PMU.
1da53e02
SE
998 *
999 * The event is added to the group of enabled events
1000 * but only if it can be scehduled with existing events.
fe9081cc 1001 */
a4eaf7f1 1002static int x86_pmu_add(struct perf_event *event, int flags)
fe9081cc
PZ
1003{
1004 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1da53e02
SE
1005 struct hw_perf_event *hwc;
1006 int assign[X86_PMC_IDX_MAX];
1007 int n, n0, ret;
fe9081cc 1008
1da53e02 1009 hwc = &event->hw;
fe9081cc 1010
33696fc0 1011 perf_pmu_disable(event->pmu);
1da53e02 1012 n0 = cpuc->n_events;
24cd7f54
PZ
1013 ret = n = collect_events(cpuc, event, false);
1014 if (ret < 0)
1015 goto out;
53b441a5 1016
a4eaf7f1
PZ
1017 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1018 if (!(flags & PERF_EF_START))
1019 hwc->state |= PERF_HES_ARCH;
1020
4d1c52b0
LM
1021 /*
1022 * If group events scheduling transaction was started,
0d2eb44f 1023 * skip the schedulability test here, it will be performed
a4eaf7f1 1024 * at commit time (->commit_txn) as a whole
4d1c52b0 1025 */
8d2cacbb 1026 if (cpuc->group_flag & PERF_EVENT_TXN)
24cd7f54 1027 goto done_collect;
4d1c52b0 1028
a072738e 1029 ret = x86_pmu.schedule_events(cpuc, n, assign);
1da53e02 1030 if (ret)
24cd7f54 1031 goto out;
1da53e02
SE
1032 /*
1033 * copy new assignment, now we know it is possible
1034 * will be used by hw_perf_enable()
1035 */
1036 memcpy(cpuc->assign, assign, n*sizeof(int));
7e2ae347 1037
24cd7f54 1038done_collect:
1da53e02 1039 cpuc->n_events = n;
356e1f2e 1040 cpuc->n_added += n - n0;
90151c35 1041 cpuc->n_txn += n - n0;
95cdd2e7 1042
24cd7f54
PZ
1043 ret = 0;
1044out:
33696fc0 1045 perf_pmu_enable(event->pmu);
24cd7f54 1046 return ret;
241771ef
IM
1047}
1048
a4eaf7f1 1049static void x86_pmu_start(struct perf_event *event, int flags)
d76a0812 1050{
c08053e6
PZ
1051 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1052 int idx = event->hw.idx;
1053
a4eaf7f1
PZ
1054 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1055 return;
1056
1057 if (WARN_ON_ONCE(idx == -1))
1058 return;
1059
1060 if (flags & PERF_EF_RELOAD) {
1061 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1062 x86_perf_event_set_period(event);
1063 }
1064
1065 event->hw.state = 0;
d76a0812 1066
c08053e6
PZ
1067 cpuc->events[idx] = event;
1068 __set_bit(idx, cpuc->active_mask);
63e6be6d 1069 __set_bit(idx, cpuc->running);
aff3d91a 1070 x86_pmu.enable(event);
c08053e6 1071 perf_event_update_userpage(event);
a78ac325
PZ
1072}
1073
cdd6c482 1074void perf_event_print_debug(void)
241771ef 1075{
2f18d1e8 1076 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
ca037701 1077 u64 pebs;
cdd6c482 1078 struct cpu_hw_events *cpuc;
5bb9efe3 1079 unsigned long flags;
1e125676
IM
1080 int cpu, idx;
1081
948b1bb8 1082 if (!x86_pmu.num_counters)
1e125676 1083 return;
241771ef 1084
5bb9efe3 1085 local_irq_save(flags);
241771ef
IM
1086
1087 cpu = smp_processor_id();
cdd6c482 1088 cpuc = &per_cpu(cpu_hw_events, cpu);
241771ef 1089
faa28ae0 1090 if (x86_pmu.version >= 2) {
a1ef58f4
JSR
1091 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1092 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1093 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1094 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
ca037701 1095 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
a1ef58f4
JSR
1096
1097 pr_info("\n");
1098 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1099 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1100 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1101 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
ca037701 1102 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
f87ad35d 1103 }
7645a24c 1104 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
241771ef 1105
948b1bb8 1106 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
41bf4989
RR
1107 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1108 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
241771ef 1109
245b2e70 1110 prev_left = per_cpu(pmc_prev_left[idx], cpu);
241771ef 1111
a1ef58f4 1112 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
241771ef 1113 cpu, idx, pmc_ctrl);
a1ef58f4 1114 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
241771ef 1115 cpu, idx, pmc_count);
a1ef58f4 1116 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
ee06094f 1117 cpu, idx, prev_left);
241771ef 1118 }
948b1bb8 1119 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
2f18d1e8
IM
1120 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1121
a1ef58f4 1122 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
2f18d1e8
IM
1123 cpu, idx, pmc_count);
1124 }
5bb9efe3 1125 local_irq_restore(flags);
241771ef
IM
1126}
1127
de0428a7 1128void x86_pmu_stop(struct perf_event *event, int flags)
241771ef 1129{
d76a0812 1130 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
cdd6c482 1131 struct hw_perf_event *hwc = &event->hw;
241771ef 1132
a4eaf7f1
PZ
1133 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1134 x86_pmu.disable(event);
1135 cpuc->events[hwc->idx] = NULL;
1136 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1137 hwc->state |= PERF_HES_STOPPED;
1138 }
30dd568c 1139
a4eaf7f1
PZ
1140 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1141 /*
1142 * Drain the remaining delta count out of a event
1143 * that we are disabling:
1144 */
1145 x86_perf_event_update(event);
1146 hwc->state |= PERF_HES_UPTODATE;
1147 }
2e841873
PZ
1148}
1149
a4eaf7f1 1150static void x86_pmu_del(struct perf_event *event, int flags)
2e841873
PZ
1151{
1152 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1153 int i;
1154
90151c35
SE
1155 /*
1156 * If we're called during a txn, we don't need to do anything.
1157 * The events never got scheduled and ->cancel_txn will truncate
1158 * the event_list.
1159 */
8d2cacbb 1160 if (cpuc->group_flag & PERF_EVENT_TXN)
90151c35
SE
1161 return;
1162
a4eaf7f1 1163 x86_pmu_stop(event, PERF_EF_UPDATE);
194002b2 1164
1da53e02
SE
1165 for (i = 0; i < cpuc->n_events; i++) {
1166 if (event == cpuc->event_list[i]) {
1167
1168 if (x86_pmu.put_event_constraints)
1169 x86_pmu.put_event_constraints(cpuc, event);
1170
1171 while (++i < cpuc->n_events)
1172 cpuc->event_list[i-1] = cpuc->event_list[i];
1173
1174 --cpuc->n_events;
6c9687ab 1175 break;
1da53e02
SE
1176 }
1177 }
cdd6c482 1178 perf_event_update_userpage(event);
241771ef
IM
1179}
1180
de0428a7 1181int x86_pmu_handle_irq(struct pt_regs *regs)
a29aa8a7 1182{
df1a132b 1183 struct perf_sample_data data;
cdd6c482
IM
1184 struct cpu_hw_events *cpuc;
1185 struct perf_event *event;
11d1578f 1186 int idx, handled = 0;
9029a5e3
IM
1187 u64 val;
1188
cdd6c482 1189 cpuc = &__get_cpu_var(cpu_hw_events);
962bf7a6 1190
2bce5dac
DZ
1191 /*
1192 * Some chipsets need to unmask the LVTPC in a particular spot
1193 * inside the nmi handler. As a result, the unmasking was pushed
1194 * into all the nmi handlers.
1195 *
1196 * This generic handler doesn't seem to have any issues where the
1197 * unmasking occurs so it was left at the top.
1198 */
1199 apic_write(APIC_LVTPC, APIC_DM_NMI);
1200
948b1bb8 1201 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
63e6be6d
RR
1202 if (!test_bit(idx, cpuc->active_mask)) {
1203 /*
1204 * Though we deactivated the counter some cpus
1205 * might still deliver spurious interrupts still
1206 * in flight. Catch them:
1207 */
1208 if (__test_and_clear_bit(idx, cpuc->running))
1209 handled++;
a29aa8a7 1210 continue;
63e6be6d 1211 }
962bf7a6 1212
cdd6c482 1213 event = cpuc->events[idx];
a4016a79 1214
cc2ad4ba 1215 val = x86_perf_event_update(event);
948b1bb8 1216 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
48e22d56 1217 continue;
962bf7a6 1218
9e350de3 1219 /*
cdd6c482 1220 * event overflow
9e350de3 1221 */
4177c42a 1222 handled++;
fd0d000b 1223 perf_sample_data_init(&data, 0, event->hw.last_period);
9e350de3 1224
07088edb 1225 if (!x86_perf_event_set_period(event))
e4abb5d4
PZ
1226 continue;
1227
a8b0ca17 1228 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 1229 x86_pmu_stop(event, 0);
a29aa8a7 1230 }
962bf7a6 1231
9e350de3
PZ
1232 if (handled)
1233 inc_irq_stat(apic_perf_irqs);
1234
a29aa8a7
RR
1235 return handled;
1236}
39d81eab 1237
cdd6c482 1238void perf_events_lapic_init(void)
241771ef 1239{
04da8a43 1240 if (!x86_pmu.apic || !x86_pmu_initialized())
241771ef 1241 return;
85cf9dba 1242
241771ef 1243 /*
c323d95f 1244 * Always use NMI for PMU
241771ef 1245 */
c323d95f 1246 apic_write(APIC_LVTPC, APIC_DM_NMI);
241771ef
IM
1247}
1248
1249static int __kprobes
9c48f1c6 1250perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
241771ef 1251{
cdd6c482 1252 if (!atomic_read(&active_events))
9c48f1c6 1253 return NMI_DONE;
4177c42a 1254
9c48f1c6 1255 return x86_pmu.handle_irq(regs);
241771ef
IM
1256}
1257
de0428a7
KW
1258struct event_constraint emptyconstraint;
1259struct event_constraint unconstrained;
f87ad35d 1260
3f6da390
PZ
1261static int __cpuinit
1262x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1263{
1264 unsigned int cpu = (long)hcpu;
7fdba1ca 1265 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
b38b24ea 1266 int ret = NOTIFY_OK;
3f6da390
PZ
1267
1268 switch (action & ~CPU_TASKS_FROZEN) {
1269 case CPU_UP_PREPARE:
7fdba1ca 1270 cpuc->kfree_on_online = NULL;
3f6da390 1271 if (x86_pmu.cpu_prepare)
b38b24ea 1272 ret = x86_pmu.cpu_prepare(cpu);
3f6da390
PZ
1273 break;
1274
1275 case CPU_STARTING:
0c9d42ed
PZ
1276 if (x86_pmu.attr_rdpmc)
1277 set_in_cr4(X86_CR4_PCE);
3f6da390
PZ
1278 if (x86_pmu.cpu_starting)
1279 x86_pmu.cpu_starting(cpu);
1280 break;
1281
7fdba1ca
PZ
1282 case CPU_ONLINE:
1283 kfree(cpuc->kfree_on_online);
1284 break;
1285
3f6da390
PZ
1286 case CPU_DYING:
1287 if (x86_pmu.cpu_dying)
1288 x86_pmu.cpu_dying(cpu);
1289 break;
1290
b38b24ea 1291 case CPU_UP_CANCELED:
3f6da390
PZ
1292 case CPU_DEAD:
1293 if (x86_pmu.cpu_dead)
1294 x86_pmu.cpu_dead(cpu);
1295 break;
1296
1297 default:
1298 break;
1299 }
1300
b38b24ea 1301 return ret;
3f6da390
PZ
1302}
1303
12558038
CG
1304static void __init pmu_check_apic(void)
1305{
1306 if (cpu_has_apic)
1307 return;
1308
1309 x86_pmu.apic = 0;
1310 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1311 pr_info("no hardware sampling interrupt available.\n");
1312}
1313
641cc938
JO
1314static struct attribute_group x86_pmu_format_group = {
1315 .name = "format",
1316 .attrs = NULL,
1317};
1318
8300daa2
JO
1319/*
1320 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1321 * out of events_attr attributes.
1322 */
1323static void __init filter_events(struct attribute **attrs)
1324{
3a54aaa0
SE
1325 struct device_attribute *d;
1326 struct perf_pmu_events_attr *pmu_attr;
8300daa2
JO
1327 int i, j;
1328
1329 for (i = 0; attrs[i]; i++) {
3a54aaa0
SE
1330 d = (struct device_attribute *)attrs[i];
1331 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1332 /* str trumps id */
1333 if (pmu_attr->event_str)
1334 continue;
8300daa2
JO
1335 if (x86_pmu.event_map(i))
1336 continue;
1337
1338 for (j = i; attrs[j]; j++)
1339 attrs[j] = attrs[j + 1];
1340
1341 /* Check the shifted attr. */
1342 i--;
1343 }
1344}
1345
1a6461b1
AK
1346/* Merge two pointer arrays */
1347static __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1348{
1349 struct attribute **new;
1350 int j, i;
1351
1352 for (j = 0; a[j]; j++)
1353 ;
1354 for (i = 0; b[i]; i++)
1355 j++;
1356 j++;
1357
1358 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1359 if (!new)
1360 return NULL;
1361
1362 j = 0;
1363 for (i = 0; a[i]; i++)
1364 new[j++] = a[i];
1365 for (i = 0; b[i]; i++)
1366 new[j++] = b[i];
1367 new[j] = NULL;
1368
1369 return new;
1370}
1371
f20093ee 1372ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
a4747393
JO
1373 char *page)
1374{
1375 struct perf_pmu_events_attr *pmu_attr = \
1376 container_of(attr, struct perf_pmu_events_attr, attr);
a4747393 1377 u64 config = x86_pmu.event_map(pmu_attr->id);
a4747393 1378
3a54aaa0
SE
1379 /* string trumps id */
1380 if (pmu_attr->event_str)
1381 return sprintf(page, "%s", pmu_attr->event_str);
a4747393 1382
3a54aaa0
SE
1383 return x86_pmu.events_sysfs_show(page, config);
1384}
a4747393
JO
1385
1386EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1387EVENT_ATTR(instructions, INSTRUCTIONS );
1388EVENT_ATTR(cache-references, CACHE_REFERENCES );
1389EVENT_ATTR(cache-misses, CACHE_MISSES );
1390EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1391EVENT_ATTR(branch-misses, BRANCH_MISSES );
1392EVENT_ATTR(bus-cycles, BUS_CYCLES );
1393EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1394EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1395EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1396
1397static struct attribute *empty_attrs;
1398
95d18aa2 1399static struct attribute *events_attr[] = {
a4747393
JO
1400 EVENT_PTR(CPU_CYCLES),
1401 EVENT_PTR(INSTRUCTIONS),
1402 EVENT_PTR(CACHE_REFERENCES),
1403 EVENT_PTR(CACHE_MISSES),
1404 EVENT_PTR(BRANCH_INSTRUCTIONS),
1405 EVENT_PTR(BRANCH_MISSES),
1406 EVENT_PTR(BUS_CYCLES),
1407 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1408 EVENT_PTR(STALLED_CYCLES_BACKEND),
1409 EVENT_PTR(REF_CPU_CYCLES),
1410 NULL,
1411};
1412
1413static struct attribute_group x86_pmu_events_group = {
1414 .name = "events",
1415 .attrs = events_attr,
1416};
1417
0bf79d44 1418ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
43c032fe 1419{
43c032fe
JO
1420 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1421 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1422 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1423 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1424 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1425 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1426 ssize_t ret;
1427
1428 /*
1429 * We have whole page size to spend and just little data
1430 * to write, so we can safely use sprintf.
1431 */
1432 ret = sprintf(page, "event=0x%02llx", event);
1433
1434 if (umask)
1435 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1436
1437 if (edge)
1438 ret += sprintf(page + ret, ",edge");
1439
1440 if (pc)
1441 ret += sprintf(page + ret, ",pc");
1442
1443 if (any)
1444 ret += sprintf(page + ret, ",any");
1445
1446 if (inv)
1447 ret += sprintf(page + ret, ",inv");
1448
1449 if (cmask)
1450 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1451
1452 ret += sprintf(page + ret, "\n");
1453
1454 return ret;
1455}
1456
dda99116 1457static int __init init_hw_perf_events(void)
b56a3802 1458{
c1d6f42f 1459 struct x86_pmu_quirk *quirk;
72eae04d
RR
1460 int err;
1461
cdd6c482 1462 pr_info("Performance Events: ");
1123e3ad 1463
b56a3802
JSR
1464 switch (boot_cpu_data.x86_vendor) {
1465 case X86_VENDOR_INTEL:
72eae04d 1466 err = intel_pmu_init();
b56a3802 1467 break;
f87ad35d 1468 case X86_VENDOR_AMD:
72eae04d 1469 err = amd_pmu_init();
f87ad35d 1470 break;
4138960a 1471 default:
004417a6 1472 return 0;
b56a3802 1473 }
1123e3ad 1474 if (err != 0) {
cdd6c482 1475 pr_cont("no PMU driver, software events only.\n");
004417a6 1476 return 0;
1123e3ad 1477 }
b56a3802 1478
12558038
CG
1479 pmu_check_apic();
1480
33c6d6a7 1481 /* sanity check that the hardware exists or is emulated */
4407204c 1482 if (!check_hw_exists())
004417a6 1483 return 0;
33c6d6a7 1484
1123e3ad 1485 pr_cont("%s PMU driver.\n", x86_pmu.name);
faa28ae0 1486
c1d6f42f
PZ
1487 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1488 quirk->func();
3c44780b 1489
a1eac7ac
RR
1490 if (!x86_pmu.intel_ctrl)
1491 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
241771ef 1492
cdd6c482 1493 perf_events_lapic_init();
9c48f1c6 1494 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1123e3ad 1495
63b14649 1496 unconstrained = (struct event_constraint)
948b1bb8 1497 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
9fac2cf3 1498 0, x86_pmu.num_counters, 0, 0);
63b14649 1499
0c9d42ed 1500 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
641cc938 1501 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
0c9d42ed 1502
f20093ee
SE
1503 if (x86_pmu.event_attrs)
1504 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1505
a4747393
JO
1506 if (!x86_pmu.events_sysfs_show)
1507 x86_pmu_events_group.attrs = &empty_attrs;
8300daa2
JO
1508 else
1509 filter_events(x86_pmu_events_group.attrs);
a4747393 1510
1a6461b1
AK
1511 if (x86_pmu.cpu_events) {
1512 struct attribute **tmp;
1513
1514 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1515 if (!WARN_ON(!tmp))
1516 x86_pmu_events_group.attrs = tmp;
1517 }
1518
57c0c15b 1519 pr_info("... version: %d\n", x86_pmu.version);
948b1bb8
RR
1520 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1521 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1522 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
57c0c15b 1523 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
948b1bb8 1524 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
d6dc0b4e 1525 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
3f6da390 1526
2e80a82a 1527 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
3f6da390 1528 perf_cpu_notifier(x86_pmu_notifier);
004417a6
PZ
1529
1530 return 0;
241771ef 1531}
004417a6 1532early_initcall(init_hw_perf_events);
621a01ea 1533
cdd6c482 1534static inline void x86_pmu_read(struct perf_event *event)
ee06094f 1535{
cc2ad4ba 1536 x86_perf_event_update(event);
ee06094f
IM
1537}
1538
4d1c52b0
LM
1539/*
1540 * Start group events scheduling transaction
1541 * Set the flag to make pmu::enable() not perform the
1542 * schedulability test, it will be performed at commit time
1543 */
51b0fe39 1544static void x86_pmu_start_txn(struct pmu *pmu)
4d1c52b0 1545{
33696fc0 1546 perf_pmu_disable(pmu);
0a3aee0d
TH
1547 __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1548 __this_cpu_write(cpu_hw_events.n_txn, 0);
4d1c52b0
LM
1549}
1550
1551/*
1552 * Stop group events scheduling transaction
1553 * Clear the flag and pmu::enable() will perform the
1554 * schedulability test.
1555 */
51b0fe39 1556static void x86_pmu_cancel_txn(struct pmu *pmu)
4d1c52b0 1557{
0a3aee0d 1558 __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
90151c35
SE
1559 /*
1560 * Truncate the collected events.
1561 */
0a3aee0d
TH
1562 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1563 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
33696fc0 1564 perf_pmu_enable(pmu);
4d1c52b0
LM
1565}
1566
1567/*
1568 * Commit group events scheduling transaction
1569 * Perform the group schedulability test as a whole
1570 * Return 0 if success
1571 */
51b0fe39 1572static int x86_pmu_commit_txn(struct pmu *pmu)
4d1c52b0
LM
1573{
1574 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1575 int assign[X86_PMC_IDX_MAX];
1576 int n, ret;
1577
1578 n = cpuc->n_events;
1579
1580 if (!x86_pmu_initialized())
1581 return -EAGAIN;
1582
1583 ret = x86_pmu.schedule_events(cpuc, n, assign);
1584 if (ret)
1585 return ret;
1586
1587 /*
1588 * copy new assignment, now we know it is possible
1589 * will be used by hw_perf_enable()
1590 */
1591 memcpy(cpuc->assign, assign, n*sizeof(int));
1592
8d2cacbb 1593 cpuc->group_flag &= ~PERF_EVENT_TXN;
33696fc0 1594 perf_pmu_enable(pmu);
4d1c52b0
LM
1595 return 0;
1596}
cd8a38d3
SE
1597/*
1598 * a fake_cpuc is used to validate event groups. Due to
1599 * the extra reg logic, we need to also allocate a fake
1600 * per_core and per_cpu structure. Otherwise, group events
1601 * using extra reg may conflict without the kernel being
1602 * able to catch this when the last event gets added to
1603 * the group.
1604 */
1605static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1606{
1607 kfree(cpuc->shared_regs);
1608 kfree(cpuc);
1609}
1610
1611static struct cpu_hw_events *allocate_fake_cpuc(void)
1612{
1613 struct cpu_hw_events *cpuc;
1614 int cpu = raw_smp_processor_id();
1615
1616 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1617 if (!cpuc)
1618 return ERR_PTR(-ENOMEM);
1619
1620 /* only needed, if we have extra_regs */
1621 if (x86_pmu.extra_regs) {
1622 cpuc->shared_regs = allocate_shared_regs(cpu);
1623 if (!cpuc->shared_regs)
1624 goto error;
1625 }
b430f7c4 1626 cpuc->is_fake = 1;
cd8a38d3
SE
1627 return cpuc;
1628error:
1629 free_fake_cpuc(cpuc);
1630 return ERR_PTR(-ENOMEM);
1631}
4d1c52b0 1632
ca037701
PZ
1633/*
1634 * validate that we can schedule this event
1635 */
1636static int validate_event(struct perf_event *event)
1637{
1638 struct cpu_hw_events *fake_cpuc;
1639 struct event_constraint *c;
1640 int ret = 0;
1641
cd8a38d3
SE
1642 fake_cpuc = allocate_fake_cpuc();
1643 if (IS_ERR(fake_cpuc))
1644 return PTR_ERR(fake_cpuc);
ca037701
PZ
1645
1646 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1647
1648 if (!c || !c->weight)
aa2bc1ad 1649 ret = -EINVAL;
ca037701
PZ
1650
1651 if (x86_pmu.put_event_constraints)
1652 x86_pmu.put_event_constraints(fake_cpuc, event);
1653
cd8a38d3 1654 free_fake_cpuc(fake_cpuc);
ca037701
PZ
1655
1656 return ret;
1657}
1658
1da53e02
SE
1659/*
1660 * validate a single event group
1661 *
1662 * validation include:
184f412c
IM
1663 * - check events are compatible which each other
1664 * - events do not compete for the same counter
1665 * - number of events <= number of counters
1da53e02
SE
1666 *
1667 * validation ensures the group can be loaded onto the
1668 * PMU if it was the only group available.
1669 */
fe9081cc
PZ
1670static int validate_group(struct perf_event *event)
1671{
1da53e02 1672 struct perf_event *leader = event->group_leader;
502568d5 1673 struct cpu_hw_events *fake_cpuc;
aa2bc1ad 1674 int ret = -EINVAL, n;
fe9081cc 1675
cd8a38d3
SE
1676 fake_cpuc = allocate_fake_cpuc();
1677 if (IS_ERR(fake_cpuc))
1678 return PTR_ERR(fake_cpuc);
1da53e02
SE
1679 /*
1680 * the event is not yet connected with its
1681 * siblings therefore we must first collect
1682 * existing siblings, then add the new event
1683 * before we can simulate the scheduling
1684 */
502568d5 1685 n = collect_events(fake_cpuc, leader, true);
1da53e02 1686 if (n < 0)
cd8a38d3 1687 goto out;
fe9081cc 1688
502568d5
PZ
1689 fake_cpuc->n_events = n;
1690 n = collect_events(fake_cpuc, event, false);
1da53e02 1691 if (n < 0)
cd8a38d3 1692 goto out;
fe9081cc 1693
502568d5 1694 fake_cpuc->n_events = n;
1da53e02 1695
a072738e 1696 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
502568d5 1697
502568d5 1698out:
cd8a38d3 1699 free_fake_cpuc(fake_cpuc);
502568d5 1700 return ret;
fe9081cc
PZ
1701}
1702
dda99116 1703static int x86_pmu_event_init(struct perf_event *event)
621a01ea 1704{
51b0fe39 1705 struct pmu *tmp;
621a01ea
IM
1706 int err;
1707
b0a873eb
PZ
1708 switch (event->attr.type) {
1709 case PERF_TYPE_RAW:
1710 case PERF_TYPE_HARDWARE:
1711 case PERF_TYPE_HW_CACHE:
1712 break;
1713
1714 default:
1715 return -ENOENT;
1716 }
1717
1718 err = __x86_pmu_event_init(event);
fe9081cc 1719 if (!err) {
8113070d
SE
1720 /*
1721 * we temporarily connect event to its pmu
1722 * such that validate_group() can classify
1723 * it as an x86 event using is_x86_event()
1724 */
1725 tmp = event->pmu;
1726 event->pmu = &pmu;
1727
fe9081cc
PZ
1728 if (event->group_leader != event)
1729 err = validate_group(event);
ca037701
PZ
1730 else
1731 err = validate_event(event);
8113070d
SE
1732
1733 event->pmu = tmp;
fe9081cc 1734 }
a1792cda 1735 if (err) {
cdd6c482
IM
1736 if (event->destroy)
1737 event->destroy(event);
a1792cda 1738 }
621a01ea 1739
b0a873eb 1740 return err;
621a01ea 1741}
d7d59fb3 1742
fe4a3308
PZ
1743static int x86_pmu_event_idx(struct perf_event *event)
1744{
1745 int idx = event->hw.idx;
1746
c7206205
PZ
1747 if (!x86_pmu.attr_rdpmc)
1748 return 0;
1749
15c7ad51
RR
1750 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
1751 idx -= INTEL_PMC_IDX_FIXED;
fe4a3308
PZ
1752 idx |= 1 << 30;
1753 }
1754
1755 return idx + 1;
1756}
1757
0c9d42ed
PZ
1758static ssize_t get_attr_rdpmc(struct device *cdev,
1759 struct device_attribute *attr,
1760 char *buf)
1761{
1762 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
1763}
1764
1765static void change_rdpmc(void *info)
1766{
1767 bool enable = !!(unsigned long)info;
1768
1769 if (enable)
1770 set_in_cr4(X86_CR4_PCE);
1771 else
1772 clear_in_cr4(X86_CR4_PCE);
1773}
1774
1775static ssize_t set_attr_rdpmc(struct device *cdev,
1776 struct device_attribute *attr,
1777 const char *buf, size_t count)
1778{
e2b297fc
SK
1779 unsigned long val;
1780 ssize_t ret;
1781
1782 ret = kstrtoul(buf, 0, &val);
1783 if (ret)
1784 return ret;
0c9d42ed
PZ
1785
1786 if (!!val != !!x86_pmu.attr_rdpmc) {
1787 x86_pmu.attr_rdpmc = !!val;
1788 smp_call_function(change_rdpmc, (void *)val, 1);
1789 }
1790
1791 return count;
1792}
1793
1794static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
1795
1796static struct attribute *x86_pmu_attrs[] = {
1797 &dev_attr_rdpmc.attr,
1798 NULL,
1799};
1800
1801static struct attribute_group x86_pmu_attr_group = {
1802 .attrs = x86_pmu_attrs,
1803};
1804
1805static const struct attribute_group *x86_pmu_attr_groups[] = {
1806 &x86_pmu_attr_group,
641cc938 1807 &x86_pmu_format_group,
a4747393 1808 &x86_pmu_events_group,
0c9d42ed
PZ
1809 NULL,
1810};
1811
d010b332
SE
1812static void x86_pmu_flush_branch_stack(void)
1813{
1814 if (x86_pmu.flush_branch_stack)
1815 x86_pmu.flush_branch_stack();
1816}
1817
c93dc84c
PZ
1818void perf_check_microcode(void)
1819{
1820 if (x86_pmu.check_microcode)
1821 x86_pmu.check_microcode();
1822}
1823EXPORT_SYMBOL_GPL(perf_check_microcode);
1824
b0a873eb 1825static struct pmu pmu = {
d010b332
SE
1826 .pmu_enable = x86_pmu_enable,
1827 .pmu_disable = x86_pmu_disable,
a4eaf7f1 1828
c93dc84c 1829 .attr_groups = x86_pmu_attr_groups,
0c9d42ed 1830
c93dc84c 1831 .event_init = x86_pmu_event_init,
a4eaf7f1 1832
d010b332
SE
1833 .add = x86_pmu_add,
1834 .del = x86_pmu_del,
1835 .start = x86_pmu_start,
1836 .stop = x86_pmu_stop,
1837 .read = x86_pmu_read,
a4eaf7f1 1838
c93dc84c
PZ
1839 .start_txn = x86_pmu_start_txn,
1840 .cancel_txn = x86_pmu_cancel_txn,
1841 .commit_txn = x86_pmu_commit_txn,
fe4a3308 1842
c93dc84c 1843 .event_idx = x86_pmu_event_idx,
d010b332 1844 .flush_branch_stack = x86_pmu_flush_branch_stack,
b0a873eb
PZ
1845};
1846
c7206205 1847void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c 1848{
c7206205
PZ
1849 userpg->cap_usr_time = 0;
1850 userpg->cap_usr_rdpmc = x86_pmu.attr_rdpmc;
1851 userpg->pmc_width = x86_pmu.cntval_bits;
1852
e3f3541c
PZ
1853 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1854 return;
1855
1856 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
1857 return;
1858
c7206205 1859 userpg->cap_usr_time = 1;
e3f3541c
PZ
1860 userpg->time_mult = this_cpu_read(cyc2ns);
1861 userpg->time_shift = CYC2NS_SCALE_FACTOR;
1862 userpg->time_offset = this_cpu_read(cyc2ns_offset) - now;
1863}
1864
d7d59fb3
PZ
1865/*
1866 * callchain support
1867 */
1868
d7d59fb3
PZ
1869static int backtrace_stack(void *data, char *name)
1870{
038e836e 1871 return 0;
d7d59fb3
PZ
1872}
1873
1874static void backtrace_address(void *data, unsigned long addr, int reliable)
1875{
1876 struct perf_callchain_entry *entry = data;
1877
70791ce9 1878 perf_callchain_store(entry, addr);
d7d59fb3
PZ
1879}
1880
1881static const struct stacktrace_ops backtrace_ops = {
d7d59fb3
PZ
1882 .stack = backtrace_stack,
1883 .address = backtrace_address,
06d65bda 1884 .walk_stack = print_context_stack_bp,
d7d59fb3
PZ
1885};
1886
56962b44
FW
1887void
1888perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
d7d59fb3 1889{
927c7a9e
FW
1890 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1891 /* TODO: We don't support guest os callchain now */
ed805261 1892 return;
927c7a9e
FW
1893 }
1894
70791ce9 1895 perf_callchain_store(entry, regs->ip);
d7d59fb3 1896
e8e999cf 1897 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
d7d59fb3
PZ
1898}
1899
bc6ca7b3
AS
1900static inline int
1901valid_user_frame(const void __user *fp, unsigned long size)
1902{
1903 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1904}
1905
d07bdfd3
PZ
1906static unsigned long get_segment_base(unsigned int segment)
1907{
1908 struct desc_struct *desc;
1909 int idx = segment >> 3;
1910
1911 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1912 if (idx > LDT_ENTRIES)
1913 return 0;
1914
1915 if (idx > current->active_mm->context.size)
1916 return 0;
1917
1918 desc = current->active_mm->context.ldt;
1919 } else {
1920 if (idx > GDT_ENTRIES)
1921 return 0;
1922
1923 desc = __this_cpu_ptr(&gdt_page.gdt[0]);
1924 }
1925
1926 return get_desc_base(desc + idx);
1927}
1928
257ef9d2 1929#ifdef CONFIG_COMPAT
d1a797f3
PA
1930
1931#include <asm/compat.h>
1932
257ef9d2
TE
1933static inline int
1934perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
74193ef0 1935{
257ef9d2 1936 /* 32-bit process in 64-bit kernel. */
d07bdfd3 1937 unsigned long ss_base, cs_base;
257ef9d2
TE
1938 struct stack_frame_ia32 frame;
1939 const void __user *fp;
74193ef0 1940
257ef9d2
TE
1941 if (!test_thread_flag(TIF_IA32))
1942 return 0;
1943
d07bdfd3
PZ
1944 cs_base = get_segment_base(regs->cs);
1945 ss_base = get_segment_base(regs->ss);
1946
1947 fp = compat_ptr(ss_base + regs->bp);
257ef9d2
TE
1948 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1949 unsigned long bytes;
1950 frame.next_frame = 0;
1951 frame.return_address = 0;
1952
1953 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1954 if (bytes != sizeof(frame))
1955 break;
74193ef0 1956
bc6ca7b3
AS
1957 if (!valid_user_frame(fp, sizeof(frame)))
1958 break;
1959
d07bdfd3
PZ
1960 perf_callchain_store(entry, cs_base + frame.return_address);
1961 fp = compat_ptr(ss_base + frame.next_frame);
257ef9d2
TE
1962 }
1963 return 1;
d7d59fb3 1964}
257ef9d2
TE
1965#else
1966static inline int
1967perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1968{
1969 return 0;
1970}
1971#endif
d7d59fb3 1972
56962b44
FW
1973void
1974perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
d7d59fb3
PZ
1975{
1976 struct stack_frame frame;
1977 const void __user *fp;
1978
927c7a9e
FW
1979 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1980 /* TODO: We don't support guest os callchain now */
ed805261 1981 return;
927c7a9e 1982 }
5a6cec3a 1983
d07bdfd3
PZ
1984 /*
1985 * We don't know what to do with VM86 stacks.. ignore them for now.
1986 */
1987 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
1988 return;
1989
74193ef0 1990 fp = (void __user *)regs->bp;
d7d59fb3 1991
70791ce9 1992 perf_callchain_store(entry, regs->ip);
d7d59fb3 1993
20afc60f
AV
1994 if (!current->mm)
1995 return;
1996
257ef9d2
TE
1997 if (perf_callchain_user32(regs, entry))
1998 return;
1999
f9188e02 2000 while (entry->nr < PERF_MAX_STACK_DEPTH) {
257ef9d2 2001 unsigned long bytes;
038e836e 2002 frame.next_frame = NULL;
d7d59fb3
PZ
2003 frame.return_address = 0;
2004
257ef9d2
TE
2005 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2006 if (bytes != sizeof(frame))
d7d59fb3
PZ
2007 break;
2008
bc6ca7b3
AS
2009 if (!valid_user_frame(fp, sizeof(frame)))
2010 break;
2011
70791ce9 2012 perf_callchain_store(entry, frame.return_address);
038e836e 2013 fp = frame.next_frame;
d7d59fb3
PZ
2014 }
2015}
2016
d07bdfd3
PZ
2017/*
2018 * Deal with code segment offsets for the various execution modes:
2019 *
2020 * VM86 - the good olde 16 bit days, where the linear address is
2021 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2022 *
2023 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2024 * to figure out what the 32bit base address is.
2025 *
2026 * X32 - has TIF_X32 set, but is running in x86_64
2027 *
2028 * X86_64 - CS,DS,SS,ES are all zero based.
2029 */
2030static unsigned long code_segment_base(struct pt_regs *regs)
39447b38 2031{
d07bdfd3
PZ
2032 /*
2033 * If we are in VM86 mode, add the segment offset to convert to a
2034 * linear address.
2035 */
2036 if (regs->flags & X86_VM_MASK)
2037 return 0x10 * regs->cs;
2038
2039 /*
2040 * For IA32 we look at the GDT/LDT segment base to convert the
2041 * effective IP to a linear address.
2042 */
2043#ifdef CONFIG_X86_32
2044 if (user_mode(regs) && regs->cs != __USER_CS)
2045 return get_segment_base(regs->cs);
2046#else
2047 if (test_thread_flag(TIF_IA32)) {
2048 if (user_mode(regs) && regs->cs != __USER32_CS)
2049 return get_segment_base(regs->cs);
2050 }
2051#endif
2052 return 0;
2053}
dcf46b94 2054
d07bdfd3
PZ
2055unsigned long perf_instruction_pointer(struct pt_regs *regs)
2056{
39447b38 2057 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
d07bdfd3 2058 return perf_guest_cbs->get_guest_ip();
dcf46b94 2059
d07bdfd3 2060 return regs->ip + code_segment_base(regs);
39447b38
ZY
2061}
2062
2063unsigned long perf_misc_flags(struct pt_regs *regs)
2064{
2065 int misc = 0;
dcf46b94 2066
39447b38 2067 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
dcf46b94
ZY
2068 if (perf_guest_cbs->is_user_mode())
2069 misc |= PERF_RECORD_MISC_GUEST_USER;
2070 else
2071 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2072 } else {
d07bdfd3 2073 if (user_mode(regs))
dcf46b94
ZY
2074 misc |= PERF_RECORD_MISC_USER;
2075 else
2076 misc |= PERF_RECORD_MISC_KERNEL;
2077 }
2078
39447b38 2079 if (regs->flags & PERF_EFLAGS_EXACT)
ab608344 2080 misc |= PERF_RECORD_MISC_EXACT_IP;
39447b38
ZY
2081
2082 return misc;
2083}
b3d9468a
GN
2084
2085void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2086{
2087 cap->version = x86_pmu.version;
2088 cap->num_counters_gp = x86_pmu.num_counters;
2089 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2090 cap->bit_width_gp = x86_pmu.cntval_bits;
2091 cap->bit_width_fixed = x86_pmu.cntval_bits;
2092 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2093 cap->events_mask_len = x86_pmu.events_mask_len;
2094}
2095EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
This page took 0.342665 seconds and 5 git commands to generate.