perf/x86/intel: Remove intel_excl_states::init_state
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_event.c
CommitLineData
241771ef 1/*
cdd6c482 2 * Performance events x86 architecture code
241771ef 3 *
98144511
IM
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
30dd568c 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
1da53e02 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
241771ef
IM
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
cdd6c482 15#include <linux/perf_event.h>
241771ef
IM
16#include <linux/capability.h>
17#include <linux/notifier.h>
18#include <linux/hardirq.h>
19#include <linux/kprobes.h>
4ac13294 20#include <linux/module.h>
241771ef
IM
21#include <linux/kdebug.h>
22#include <linux/sched.h>
d7d59fb3 23#include <linux/uaccess.h>
5a0e3ad6 24#include <linux/slab.h>
30dd568c 25#include <linux/cpu.h>
272d30be 26#include <linux/bitops.h>
0c9d42ed 27#include <linux/device.h>
241771ef 28
241771ef 29#include <asm/apic.h>
d7d59fb3 30#include <asm/stacktrace.h>
4e935e47 31#include <asm/nmi.h>
69092624 32#include <asm/smp.h>
c8e5910e 33#include <asm/alternative.h>
7911d3f7 34#include <asm/mmu_context.h>
375074cc 35#include <asm/tlbflush.h>
e3f3541c 36#include <asm/timer.h>
d07bdfd3
PZ
37#include <asm/desc.h>
38#include <asm/ldt.h>
241771ef 39
de0428a7
KW
40#include "perf_event.h"
41
de0428a7 42struct x86_pmu x86_pmu __read_mostly;
efc9f05d 43
de0428a7 44DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
b0f3f28e
PZ
45 .enabled = 1,
46};
241771ef 47
a6673429
AL
48struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
49
de0428a7 50u64 __read_mostly hw_cache_event_ids
8326f44d
IM
51 [PERF_COUNT_HW_CACHE_MAX]
52 [PERF_COUNT_HW_CACHE_OP_MAX]
53 [PERF_COUNT_HW_CACHE_RESULT_MAX];
de0428a7 54u64 __read_mostly hw_cache_extra_regs
e994d7d2
AK
55 [PERF_COUNT_HW_CACHE_MAX]
56 [PERF_COUNT_HW_CACHE_OP_MAX]
57 [PERF_COUNT_HW_CACHE_RESULT_MAX];
8326f44d 58
ee06094f 59/*
cdd6c482
IM
60 * Propagate event elapsed time into the generic event.
61 * Can only be executed on the CPU where the event is active.
ee06094f
IM
62 * Returns the delta events processed.
63 */
de0428a7 64u64 x86_perf_event_update(struct perf_event *event)
ee06094f 65{
cc2ad4ba 66 struct hw_perf_event *hwc = &event->hw;
948b1bb8 67 int shift = 64 - x86_pmu.cntval_bits;
ec3232bd 68 u64 prev_raw_count, new_raw_count;
cc2ad4ba 69 int idx = hwc->idx;
ec3232bd 70 s64 delta;
ee06094f 71
15c7ad51 72 if (idx == INTEL_PMC_IDX_FIXED_BTS)
30dd568c
MM
73 return 0;
74
ee06094f 75 /*
cdd6c482 76 * Careful: an NMI might modify the previous event value.
ee06094f
IM
77 *
78 * Our tactic to handle this is to first atomically read and
79 * exchange a new raw count - then add that new-prev delta
cdd6c482 80 * count to the generic event atomically:
ee06094f
IM
81 */
82again:
e7850595 83 prev_raw_count = local64_read(&hwc->prev_count);
c48b6053 84 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
ee06094f 85
e7850595 86 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
ee06094f
IM
87 new_raw_count) != prev_raw_count)
88 goto again;
89
90 /*
91 * Now we have the new raw value and have updated the prev
92 * timestamp already. We can now calculate the elapsed delta
cdd6c482 93 * (event-)time and add that to the generic event.
ee06094f
IM
94 *
95 * Careful, not all hw sign-extends above the physical width
ec3232bd 96 * of the count.
ee06094f 97 */
ec3232bd
PZ
98 delta = (new_raw_count << shift) - (prev_raw_count << shift);
99 delta >>= shift;
ee06094f 100
e7850595
PZ
101 local64_add(delta, &event->count);
102 local64_sub(delta, &hwc->period_left);
4b7bfd0d
RR
103
104 return new_raw_count;
ee06094f
IM
105}
106
a7e3ed1e
AK
107/*
108 * Find and validate any extra registers to set up.
109 */
110static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
111{
efc9f05d 112 struct hw_perf_event_extra *reg;
a7e3ed1e
AK
113 struct extra_reg *er;
114
efc9f05d 115 reg = &event->hw.extra_reg;
a7e3ed1e
AK
116
117 if (!x86_pmu.extra_regs)
118 return 0;
119
120 for (er = x86_pmu.extra_regs; er->msr; er++) {
121 if (er->event != (config & er->config_mask))
122 continue;
123 if (event->attr.config1 & ~er->valid_mask)
124 return -EINVAL;
338b522c
KL
125 /* Check if the extra msrs can be safely accessed*/
126 if (!er->extra_msr_access)
127 return -ENXIO;
efc9f05d
SE
128
129 reg->idx = er->idx;
130 reg->config = event->attr.config1;
131 reg->reg = er->msr;
a7e3ed1e
AK
132 break;
133 }
134 return 0;
135}
136
cdd6c482 137static atomic_t active_events;
4e935e47
PZ
138static DEFINE_MUTEX(pmc_reserve_mutex);
139
b27ea29c
RR
140#ifdef CONFIG_X86_LOCAL_APIC
141
4e935e47
PZ
142static bool reserve_pmc_hardware(void)
143{
144 int i;
145
948b1bb8 146 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 147 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
4e935e47
PZ
148 goto perfctr_fail;
149 }
150
948b1bb8 151 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 152 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
4e935e47
PZ
153 goto eventsel_fail;
154 }
155
156 return true;
157
158eventsel_fail:
159 for (i--; i >= 0; i--)
41bf4989 160 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 161
948b1bb8 162 i = x86_pmu.num_counters;
4e935e47
PZ
163
164perfctr_fail:
165 for (i--; i >= 0; i--)
41bf4989 166 release_perfctr_nmi(x86_pmu_event_addr(i));
4e935e47 167
4e935e47
PZ
168 return false;
169}
170
171static void release_pmc_hardware(void)
172{
173 int i;
174
948b1bb8 175 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989
RR
176 release_perfctr_nmi(x86_pmu_event_addr(i));
177 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 178 }
4e935e47
PZ
179}
180
b27ea29c
RR
181#else
182
183static bool reserve_pmc_hardware(void) { return true; }
184static void release_pmc_hardware(void) {}
185
186#endif
187
33c6d6a7
DZ
188static bool check_hw_exists(void)
189{
a5ebe0ba
GD
190 u64 val, val_fail, val_new= ~0;
191 int i, reg, reg_fail, ret = 0;
192 int bios_fail = 0;
68ab7476 193 int reg_safe = -1;
33c6d6a7 194
4407204c
PZ
195 /*
196 * Check to see if the BIOS enabled any of the counters, if so
197 * complain and bail.
198 */
199 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 200 reg = x86_pmu_config_addr(i);
4407204c
PZ
201 ret = rdmsrl_safe(reg, &val);
202 if (ret)
203 goto msr_fail;
a5ebe0ba
GD
204 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
205 bios_fail = 1;
206 val_fail = val;
207 reg_fail = reg;
68ab7476
DZ
208 } else {
209 reg_safe = i;
a5ebe0ba 210 }
4407204c
PZ
211 }
212
213 if (x86_pmu.num_counters_fixed) {
214 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
215 ret = rdmsrl_safe(reg, &val);
216 if (ret)
217 goto msr_fail;
218 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
a5ebe0ba
GD
219 if (val & (0x03 << i*4)) {
220 bios_fail = 1;
221 val_fail = val;
222 reg_fail = reg;
223 }
4407204c
PZ
224 }
225 }
226
68ab7476
DZ
227 /*
228 * If all the counters are enabled, the below test will always
229 * fail. The tools will also become useless in this scenario.
230 * Just fail and disable the hardware counters.
231 */
232
233 if (reg_safe == -1) {
234 reg = reg_safe;
235 goto msr_fail;
236 }
237
4407204c 238 /*
bffd5fc2
AP
239 * Read the current value, change it and read it back to see if it
240 * matches, this is needed to detect certain hardware emulators
241 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4407204c 242 */
68ab7476 243 reg = x86_pmu_event_addr(reg_safe);
bffd5fc2
AP
244 if (rdmsrl_safe(reg, &val))
245 goto msr_fail;
246 val ^= 0xffffUL;
f285f92f
RR
247 ret = wrmsrl_safe(reg, val);
248 ret |= rdmsrl_safe(reg, &val_new);
33c6d6a7 249 if (ret || val != val_new)
4407204c 250 goto msr_fail;
33c6d6a7 251
45daae57
IM
252 /*
253 * We still allow the PMU driver to operate:
254 */
a5ebe0ba
GD
255 if (bios_fail) {
256 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
257 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail, val_fail);
258 }
45daae57
IM
259
260 return true;
4407204c
PZ
261
262msr_fail:
263 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
65d71fe1
PZI
264 printk("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
265 boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR,
266 reg, val_new);
45daae57 267
4407204c 268 return false;
33c6d6a7
DZ
269}
270
cdd6c482 271static void hw_perf_event_destroy(struct perf_event *event)
4e935e47 272{
cdd6c482 273 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
4e935e47 274 release_pmc_hardware();
ca037701 275 release_ds_buffers();
4e935e47
PZ
276 mutex_unlock(&pmc_reserve_mutex);
277 }
278}
279
48070342
AS
280void hw_perf_lbr_event_destroy(struct perf_event *event)
281{
282 hw_perf_event_destroy(event);
283
284 /* undo the lbr/bts event accounting */
285 x86_del_exclusive(x86_lbr_exclusive_lbr);
286}
287
85cf9dba
RR
288static inline int x86_pmu_initialized(void)
289{
290 return x86_pmu.handle_irq != NULL;
291}
292
8326f44d 293static inline int
e994d7d2 294set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
8326f44d 295{
e994d7d2 296 struct perf_event_attr *attr = &event->attr;
8326f44d
IM
297 unsigned int cache_type, cache_op, cache_result;
298 u64 config, val;
299
300 config = attr->config;
301
302 cache_type = (config >> 0) & 0xff;
303 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
304 return -EINVAL;
305
306 cache_op = (config >> 8) & 0xff;
307 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
308 return -EINVAL;
309
310 cache_result = (config >> 16) & 0xff;
311 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
312 return -EINVAL;
313
314 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
315
316 if (val == 0)
317 return -ENOENT;
318
319 if (val == -1)
320 return -EINVAL;
321
322 hwc->config |= val;
e994d7d2
AK
323 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
324 return x86_pmu_extra_regs(val, event);
8326f44d
IM
325}
326
48070342
AS
327/*
328 * Check if we can create event of a certain type (that no conflicting events
329 * are present).
330 */
331int x86_add_exclusive(unsigned int what)
332{
333 int ret = -EBUSY, i;
334
335 if (atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what]))
336 return 0;
337
338 mutex_lock(&pmc_reserve_mutex);
339 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++)
340 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
341 goto out;
342
343 atomic_inc(&x86_pmu.lbr_exclusive[what]);
344 ret = 0;
345
346out:
347 mutex_unlock(&pmc_reserve_mutex);
348 return ret;
349}
350
351void x86_del_exclusive(unsigned int what)
352{
353 atomic_dec(&x86_pmu.lbr_exclusive[what]);
354}
355
de0428a7 356int x86_setup_perfctr(struct perf_event *event)
c1726f34
RR
357{
358 struct perf_event_attr *attr = &event->attr;
359 struct hw_perf_event *hwc = &event->hw;
360 u64 config;
361
6c7e550f 362 if (!is_sampling_event(event)) {
c1726f34
RR
363 hwc->sample_period = x86_pmu.max_period;
364 hwc->last_period = hwc->sample_period;
e7850595 365 local64_set(&hwc->period_left, hwc->sample_period);
c1726f34
RR
366 }
367
368 if (attr->type == PERF_TYPE_RAW)
ed13ec58 369 return x86_pmu_extra_regs(event->attr.config, event);
c1726f34
RR
370
371 if (attr->type == PERF_TYPE_HW_CACHE)
e994d7d2 372 return set_ext_hw_attr(hwc, event);
c1726f34
RR
373
374 if (attr->config >= x86_pmu.max_events)
375 return -EINVAL;
376
377 /*
378 * The generic map:
379 */
380 config = x86_pmu.event_map(attr->config);
381
382 if (config == 0)
383 return -ENOENT;
384
385 if (config == -1LL)
386 return -EINVAL;
387
388 /*
389 * Branch tracing:
390 */
18a073a3
PZ
391 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
392 !attr->freq && hwc->sample_period == 1) {
c1726f34 393 /* BTS is not supported by this architecture. */
6809b6ea 394 if (!x86_pmu.bts_active)
c1726f34
RR
395 return -EOPNOTSUPP;
396
397 /* BTS is currently only allowed for user-mode. */
398 if (!attr->exclude_kernel)
399 return -EOPNOTSUPP;
48070342
AS
400
401 /* disallow bts if conflicting events are present */
402 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
403 return -EBUSY;
404
405 event->destroy = hw_perf_lbr_event_destroy;
c1726f34
RR
406 }
407
408 hwc->config |= config;
409
410 return 0;
411}
4261e0e0 412
ff3fb511
SE
413/*
414 * check that branch_sample_type is compatible with
415 * settings needed for precise_ip > 1 which implies
416 * using the LBR to capture ALL taken branches at the
417 * priv levels of the measurement
418 */
419static inline int precise_br_compat(struct perf_event *event)
420{
421 u64 m = event->attr.branch_sample_type;
422 u64 b = 0;
423
424 /* must capture all branches */
425 if (!(m & PERF_SAMPLE_BRANCH_ANY))
426 return 0;
427
428 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
429
430 if (!event->attr.exclude_user)
431 b |= PERF_SAMPLE_BRANCH_USER;
432
433 if (!event->attr.exclude_kernel)
434 b |= PERF_SAMPLE_BRANCH_KERNEL;
435
436 /*
437 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
438 */
439
440 return m == b;
441}
442
de0428a7 443int x86_pmu_hw_config(struct perf_event *event)
a072738e 444{
ab608344
PZ
445 if (event->attr.precise_ip) {
446 int precise = 0;
447
448 /* Support for constant skid */
c93dc84c 449 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
ab608344
PZ
450 precise++;
451
5553be26 452 /* Support for IP fixup */
03de874a 453 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
5553be26
PZ
454 precise++;
455 }
ab608344
PZ
456
457 if (event->attr.precise_ip > precise)
458 return -EOPNOTSUPP;
4b854900
YZ
459 }
460 /*
461 * check that PEBS LBR correction does not conflict with
462 * whatever the user is asking with attr->branch_sample_type
463 */
464 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
465 u64 *br_type = &event->attr.branch_sample_type;
466
467 if (has_branch_stack(event)) {
468 if (!precise_br_compat(event))
469 return -EOPNOTSUPP;
470
471 /* branch_sample_type is compatible */
472
473 } else {
474 /*
475 * user did not specify branch_sample_type
476 *
477 * For PEBS fixups, we capture all
478 * the branches at the priv level of the
479 * event.
480 */
481 *br_type = PERF_SAMPLE_BRANCH_ANY;
482
483 if (!event->attr.exclude_user)
484 *br_type |= PERF_SAMPLE_BRANCH_USER;
485
486 if (!event->attr.exclude_kernel)
487 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
ff3fb511 488 }
ab608344
PZ
489 }
490
e18bf526
YZ
491 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
492 event->attach_state |= PERF_ATTACH_TASK_DATA;
493
a072738e
CG
494 /*
495 * Generate PMC IRQs:
496 * (keep 'enabled' bit clear for now)
497 */
b4cdc5c2 498 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
a072738e
CG
499
500 /*
501 * Count user and OS events unless requested not to
502 */
b4cdc5c2
PZ
503 if (!event->attr.exclude_user)
504 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
505 if (!event->attr.exclude_kernel)
506 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
a072738e 507
b4cdc5c2
PZ
508 if (event->attr.type == PERF_TYPE_RAW)
509 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
a072738e 510
294fe0f5
AK
511 if (event->attr.sample_period && x86_pmu.limit_period) {
512 if (x86_pmu.limit_period(event, event->attr.sample_period) >
513 event->attr.sample_period)
514 return -EINVAL;
515 }
516
9d0fcba6 517 return x86_setup_perfctr(event);
a098f448
RR
518}
519
241771ef 520/*
0d48696f 521 * Setup the hardware configuration for a given attr_type
241771ef 522 */
b0a873eb 523static int __x86_pmu_event_init(struct perf_event *event)
241771ef 524{
4e935e47 525 int err;
241771ef 526
85cf9dba
RR
527 if (!x86_pmu_initialized())
528 return -ENODEV;
241771ef 529
4e935e47 530 err = 0;
cdd6c482 531 if (!atomic_inc_not_zero(&active_events)) {
4e935e47 532 mutex_lock(&pmc_reserve_mutex);
cdd6c482 533 if (atomic_read(&active_events) == 0) {
30dd568c
MM
534 if (!reserve_pmc_hardware())
535 err = -EBUSY;
f80c9e30
PZ
536 else
537 reserve_ds_buffers();
30dd568c
MM
538 }
539 if (!err)
cdd6c482 540 atomic_inc(&active_events);
4e935e47
PZ
541 mutex_unlock(&pmc_reserve_mutex);
542 }
543 if (err)
544 return err;
545
cdd6c482 546 event->destroy = hw_perf_event_destroy;
a1792cda 547
4261e0e0
RR
548 event->hw.idx = -1;
549 event->hw.last_cpu = -1;
550 event->hw.last_tag = ~0ULL;
b690081d 551
efc9f05d
SE
552 /* mark unused */
553 event->hw.extra_reg.idx = EXTRA_REG_NONE;
b36817e8
SE
554 event->hw.branch_reg.idx = EXTRA_REG_NONE;
555
9d0fcba6 556 return x86_pmu.hw_config(event);
4261e0e0
RR
557}
558
de0428a7 559void x86_pmu_disable_all(void)
f87ad35d 560{
89cbc767 561 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
9e35ad38
PZ
562 int idx;
563
948b1bb8 564 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
b0f3f28e
PZ
565 u64 val;
566
43f6201a 567 if (!test_bit(idx, cpuc->active_mask))
4295ee62 568 continue;
41bf4989 569 rdmsrl(x86_pmu_config_addr(idx), val);
bb1165d6 570 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
4295ee62 571 continue;
bb1165d6 572 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
41bf4989 573 wrmsrl(x86_pmu_config_addr(idx), val);
f87ad35d 574 }
f87ad35d
JSR
575}
576
a4eaf7f1 577static void x86_pmu_disable(struct pmu *pmu)
b56a3802 578{
89cbc767 579 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02 580
85cf9dba 581 if (!x86_pmu_initialized())
9e35ad38 582 return;
1da53e02 583
1a6e21f7
PZ
584 if (!cpuc->enabled)
585 return;
586
587 cpuc->n_added = 0;
588 cpuc->enabled = 0;
589 barrier();
1da53e02
SE
590
591 x86_pmu.disable_all();
b56a3802 592}
241771ef 593
de0428a7 594void x86_pmu_enable_all(int added)
f87ad35d 595{
89cbc767 596 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
f87ad35d
JSR
597 int idx;
598
948b1bb8 599 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
d45dd923 600 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
b0f3f28e 601
43f6201a 602 if (!test_bit(idx, cpuc->active_mask))
4295ee62 603 continue;
984b838c 604
d45dd923 605 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
f87ad35d
JSR
606 }
607}
608
51b0fe39 609static struct pmu pmu;
1da53e02
SE
610
611static inline int is_x86_event(struct perf_event *event)
612{
613 return event->pmu == &pmu;
614}
615
1e2ad28f
RR
616/*
617 * Event scheduler state:
618 *
619 * Assign events iterating over all events and counters, beginning
620 * with events with least weights first. Keep the current iterator
621 * state in struct sched_state.
622 */
623struct sched_state {
624 int weight;
625 int event; /* event index */
626 int counter; /* counter index */
627 int unassigned; /* number of events to be assigned left */
cc1790cf 628 int nr_gp; /* number of GP counters used */
1e2ad28f
RR
629 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
630};
631
bc1738f6
RR
632/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
633#define SCHED_STATES_MAX 2
634
1e2ad28f
RR
635struct perf_sched {
636 int max_weight;
637 int max_events;
cc1790cf
PZ
638 int max_gp;
639 int saved_states;
b371b594 640 struct event_constraint **constraints;
1e2ad28f 641 struct sched_state state;
bc1738f6 642 struct sched_state saved[SCHED_STATES_MAX];
1e2ad28f
RR
643};
644
645/*
646 * Initialize interator that runs through all events and counters.
647 */
b371b594 648static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
cc1790cf 649 int num, int wmin, int wmax, int gpmax)
1e2ad28f
RR
650{
651 int idx;
652
653 memset(sched, 0, sizeof(*sched));
654 sched->max_events = num;
655 sched->max_weight = wmax;
cc1790cf 656 sched->max_gp = gpmax;
b371b594 657 sched->constraints = constraints;
1e2ad28f
RR
658
659 for (idx = 0; idx < num; idx++) {
b371b594 660 if (constraints[idx]->weight == wmin)
1e2ad28f
RR
661 break;
662 }
663
664 sched->state.event = idx; /* start with min weight */
665 sched->state.weight = wmin;
666 sched->state.unassigned = num;
667}
668
bc1738f6
RR
669static void perf_sched_save_state(struct perf_sched *sched)
670{
671 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
672 return;
673
674 sched->saved[sched->saved_states] = sched->state;
675 sched->saved_states++;
676}
677
678static bool perf_sched_restore_state(struct perf_sched *sched)
679{
680 if (!sched->saved_states)
681 return false;
682
683 sched->saved_states--;
684 sched->state = sched->saved[sched->saved_states];
685
686 /* continue with next counter: */
687 clear_bit(sched->state.counter++, sched->state.used);
688
689 return true;
690}
691
1e2ad28f
RR
692/*
693 * Select a counter for the current event to schedule. Return true on
694 * success.
695 */
bc1738f6 696static bool __perf_sched_find_counter(struct perf_sched *sched)
1e2ad28f
RR
697{
698 struct event_constraint *c;
699 int idx;
700
701 if (!sched->state.unassigned)
702 return false;
703
704 if (sched->state.event >= sched->max_events)
705 return false;
706
b371b594 707 c = sched->constraints[sched->state.event];
4defea85 708 /* Prefer fixed purpose counters */
15c7ad51
RR
709 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
710 idx = INTEL_PMC_IDX_FIXED;
307b1cd7 711 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
4defea85
PZ
712 if (!__test_and_set_bit(idx, sched->state.used))
713 goto done;
714 }
715 }
cc1790cf 716
1e2ad28f
RR
717 /* Grab the first unused counter starting with idx */
718 idx = sched->state.counter;
15c7ad51 719 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
cc1790cf
PZ
720 if (!__test_and_set_bit(idx, sched->state.used)) {
721 if (sched->state.nr_gp++ >= sched->max_gp)
722 return false;
723
4defea85 724 goto done;
cc1790cf 725 }
1e2ad28f 726 }
1e2ad28f 727
4defea85
PZ
728 return false;
729
730done:
731 sched->state.counter = idx;
1e2ad28f 732
bc1738f6
RR
733 if (c->overlap)
734 perf_sched_save_state(sched);
735
736 return true;
737}
738
739static bool perf_sched_find_counter(struct perf_sched *sched)
740{
741 while (!__perf_sched_find_counter(sched)) {
742 if (!perf_sched_restore_state(sched))
743 return false;
744 }
745
1e2ad28f
RR
746 return true;
747}
748
749/*
750 * Go through all unassigned events and find the next one to schedule.
751 * Take events with the least weight first. Return true on success.
752 */
753static bool perf_sched_next_event(struct perf_sched *sched)
754{
755 struct event_constraint *c;
756
757 if (!sched->state.unassigned || !--sched->state.unassigned)
758 return false;
759
760 do {
761 /* next event */
762 sched->state.event++;
763 if (sched->state.event >= sched->max_events) {
764 /* next weight */
765 sched->state.event = 0;
766 sched->state.weight++;
767 if (sched->state.weight > sched->max_weight)
768 return false;
769 }
b371b594 770 c = sched->constraints[sched->state.event];
1e2ad28f
RR
771 } while (c->weight != sched->state.weight);
772
773 sched->state.counter = 0; /* start with first counter */
774
775 return true;
776}
777
778/*
779 * Assign a counter for each event.
780 */
b371b594 781int perf_assign_events(struct event_constraint **constraints, int n,
cc1790cf 782 int wmin, int wmax, int gpmax, int *assign)
1e2ad28f
RR
783{
784 struct perf_sched sched;
785
cc1790cf 786 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
1e2ad28f
RR
787
788 do {
789 if (!perf_sched_find_counter(&sched))
790 break; /* failed */
791 if (assign)
792 assign[sched.state.event] = sched.state.counter;
793 } while (perf_sched_next_event(&sched));
794
795 return sched.state.unassigned;
796}
4a3dc121 797EXPORT_SYMBOL_GPL(perf_assign_events);
1e2ad28f 798
de0428a7 799int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
1da53e02 800{
43b45780 801 struct event_constraint *c;
1da53e02 802 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
2f7f73a5 803 struct perf_event *e;
e979121b 804 int i, wmin, wmax, unsched = 0;
1da53e02
SE
805 struct hw_perf_event *hwc;
806
807 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
808
c5362c0c
MD
809 if (x86_pmu.start_scheduling)
810 x86_pmu.start_scheduling(cpuc);
811
1e2ad28f 812 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
b371b594 813 cpuc->event_constraint[i] = NULL;
79cba822 814 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
b371b594 815 cpuc->event_constraint[i] = c;
43b45780 816
1e2ad28f
RR
817 wmin = min(wmin, c->weight);
818 wmax = max(wmax, c->weight);
1da53e02
SE
819 }
820
8113070d
SE
821 /*
822 * fastpath, try to reuse previous register
823 */
c933c1a6 824 for (i = 0; i < n; i++) {
8113070d 825 hwc = &cpuc->event_list[i]->hw;
b371b594 826 c = cpuc->event_constraint[i];
8113070d
SE
827
828 /* never assigned */
829 if (hwc->idx == -1)
830 break;
831
832 /* constraint still honored */
63b14649 833 if (!test_bit(hwc->idx, c->idxmsk))
8113070d
SE
834 break;
835
836 /* not already used */
837 if (test_bit(hwc->idx, used_mask))
838 break;
839
34538ee7 840 __set_bit(hwc->idx, used_mask);
8113070d
SE
841 if (assign)
842 assign[i] = hwc->idx;
843 }
8113070d 844
1e2ad28f 845 /* slow path */
b371b594 846 if (i != n) {
cc1790cf
PZ
847 int gpmax = x86_pmu.num_counters;
848
849 /*
850 * Do not allow scheduling of more than half the available
851 * generic counters.
852 *
853 * This helps avoid counter starvation of sibling thread by
854 * ensuring at most half the counters cannot be in exclusive
855 * mode. There is no designated counters for the limits. Any
856 * N/2 counters can be used. This helps with events with
857 * specific counter constraints.
858 */
859 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
860 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
861 gpmax /= 2;
862
b371b594 863 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
cc1790cf 864 wmax, gpmax, assign);
b371b594 865 }
8113070d 866
2f7f73a5 867 /*
e979121b
MD
868 * In case of success (unsched = 0), mark events as committed,
869 * so we do not put_constraint() in case new events are added
870 * and fail to be scheduled
871 *
872 * We invoke the lower level commit callback to lock the resource
873 *
874 * We do not need to do all of this in case we are called to
875 * validate an event group (assign == NULL)
2f7f73a5 876 */
e979121b 877 if (!unsched && assign) {
2f7f73a5
SE
878 for (i = 0; i < n; i++) {
879 e = cpuc->event_list[i];
880 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
c5362c0c 881 if (x86_pmu.commit_scheduling)
b371b594 882 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
2f7f73a5
SE
883 }
884 }
e979121b
MD
885
886 if (!assign || unsched) {
1da53e02 887 for (i = 0; i < n; i++) {
2f7f73a5
SE
888 e = cpuc->event_list[i];
889 /*
890 * do not put_constraint() on comitted events,
891 * because they are good to go
892 */
893 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
894 continue;
895
e979121b
MD
896 /*
897 * release events that failed scheduling
898 */
1da53e02 899 if (x86_pmu.put_event_constraints)
2f7f73a5 900 x86_pmu.put_event_constraints(cpuc, e);
1da53e02
SE
901 }
902 }
c5362c0c
MD
903
904 if (x86_pmu.stop_scheduling)
905 x86_pmu.stop_scheduling(cpuc);
906
e979121b 907 return unsched ? -EINVAL : 0;
1da53e02
SE
908}
909
910/*
911 * dogrp: true if must collect siblings events (group)
912 * returns total number of events and error code
913 */
914static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
915{
916 struct perf_event *event;
917 int n, max_count;
918
948b1bb8 919 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1da53e02
SE
920
921 /* current number of events already accepted */
922 n = cpuc->n_events;
923
924 if (is_x86_event(leader)) {
925 if (n >= max_count)
aa2bc1ad 926 return -EINVAL;
1da53e02
SE
927 cpuc->event_list[n] = leader;
928 n++;
929 }
930 if (!dogrp)
931 return n;
932
933 list_for_each_entry(event, &leader->sibling_list, group_entry) {
934 if (!is_x86_event(event) ||
8113070d 935 event->state <= PERF_EVENT_STATE_OFF)
1da53e02
SE
936 continue;
937
938 if (n >= max_count)
aa2bc1ad 939 return -EINVAL;
1da53e02
SE
940
941 cpuc->event_list[n] = event;
942 n++;
943 }
944 return n;
945}
946
1da53e02 947static inline void x86_assign_hw_event(struct perf_event *event,
447a194b 948 struct cpu_hw_events *cpuc, int i)
1da53e02 949{
447a194b
SE
950 struct hw_perf_event *hwc = &event->hw;
951
952 hwc->idx = cpuc->assign[i];
953 hwc->last_cpu = smp_processor_id();
954 hwc->last_tag = ++cpuc->tags[i];
1da53e02 955
15c7ad51 956 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1da53e02
SE
957 hwc->config_base = 0;
958 hwc->event_base = 0;
15c7ad51 959 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1da53e02 960 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
15c7ad51
RR
961 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
962 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1da53e02 963 } else {
73d6e522
RR
964 hwc->config_base = x86_pmu_config_addr(hwc->idx);
965 hwc->event_base = x86_pmu_event_addr(hwc->idx);
0fbdad07 966 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1da53e02
SE
967 }
968}
969
447a194b
SE
970static inline int match_prev_assignment(struct hw_perf_event *hwc,
971 struct cpu_hw_events *cpuc,
972 int i)
973{
974 return hwc->idx == cpuc->assign[i] &&
975 hwc->last_cpu == smp_processor_id() &&
976 hwc->last_tag == cpuc->tags[i];
977}
978
a4eaf7f1 979static void x86_pmu_start(struct perf_event *event, int flags);
2e841873 980
a4eaf7f1 981static void x86_pmu_enable(struct pmu *pmu)
ee06094f 982{
89cbc767 983 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02
SE
984 struct perf_event *event;
985 struct hw_perf_event *hwc;
11164cd4 986 int i, added = cpuc->n_added;
1da53e02 987
85cf9dba 988 if (!x86_pmu_initialized())
2b9ff0db 989 return;
1a6e21f7
PZ
990
991 if (cpuc->enabled)
992 return;
993
1da53e02 994 if (cpuc->n_added) {
19925ce7 995 int n_running = cpuc->n_events - cpuc->n_added;
1da53e02
SE
996 /*
997 * apply assignment obtained either from
998 * hw_perf_group_sched_in() or x86_pmu_enable()
999 *
1000 * step1: save events moving to new counters
1da53e02 1001 */
19925ce7 1002 for (i = 0; i < n_running; i++) {
1da53e02
SE
1003 event = cpuc->event_list[i];
1004 hwc = &event->hw;
1005
447a194b
SE
1006 /*
1007 * we can avoid reprogramming counter if:
1008 * - assigned same counter as last time
1009 * - running on same CPU as last time
1010 * - no other event has used the counter since
1011 */
1012 if (hwc->idx == -1 ||
1013 match_prev_assignment(hwc, cpuc, i))
1da53e02
SE
1014 continue;
1015
a4eaf7f1
PZ
1016 /*
1017 * Ensure we don't accidentally enable a stopped
1018 * counter simply because we rescheduled.
1019 */
1020 if (hwc->state & PERF_HES_STOPPED)
1021 hwc->state |= PERF_HES_ARCH;
1022
1023 x86_pmu_stop(event, PERF_EF_UPDATE);
1da53e02
SE
1024 }
1025
c347a2f1
PZ
1026 /*
1027 * step2: reprogram moved events into new counters
1028 */
1da53e02 1029 for (i = 0; i < cpuc->n_events; i++) {
1da53e02
SE
1030 event = cpuc->event_list[i];
1031 hwc = &event->hw;
1032
45e16a68 1033 if (!match_prev_assignment(hwc, cpuc, i))
447a194b 1034 x86_assign_hw_event(event, cpuc, i);
45e16a68
PZ
1035 else if (i < n_running)
1036 continue;
1da53e02 1037
a4eaf7f1
PZ
1038 if (hwc->state & PERF_HES_ARCH)
1039 continue;
1040
1041 x86_pmu_start(event, PERF_EF_RELOAD);
1da53e02
SE
1042 }
1043 cpuc->n_added = 0;
1044 perf_events_lapic_init();
1045 }
1a6e21f7
PZ
1046
1047 cpuc->enabled = 1;
1048 barrier();
1049
11164cd4 1050 x86_pmu.enable_all(added);
ee06094f 1051}
ee06094f 1052
245b2e70 1053static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
241771ef 1054
ee06094f
IM
1055/*
1056 * Set the next IRQ period, based on the hwc->period_left value.
cdd6c482 1057 * To be called with the event disabled in hw:
ee06094f 1058 */
de0428a7 1059int x86_perf_event_set_period(struct perf_event *event)
241771ef 1060{
07088edb 1061 struct hw_perf_event *hwc = &event->hw;
e7850595 1062 s64 left = local64_read(&hwc->period_left);
e4abb5d4 1063 s64 period = hwc->sample_period;
7645a24c 1064 int ret = 0, idx = hwc->idx;
ee06094f 1065
15c7ad51 1066 if (idx == INTEL_PMC_IDX_FIXED_BTS)
30dd568c
MM
1067 return 0;
1068
ee06094f 1069 /*
af901ca1 1070 * If we are way outside a reasonable range then just skip forward:
ee06094f
IM
1071 */
1072 if (unlikely(left <= -period)) {
1073 left = period;
e7850595 1074 local64_set(&hwc->period_left, left);
9e350de3 1075 hwc->last_period = period;
e4abb5d4 1076 ret = 1;
ee06094f
IM
1077 }
1078
1079 if (unlikely(left <= 0)) {
1080 left += period;
e7850595 1081 local64_set(&hwc->period_left, left);
9e350de3 1082 hwc->last_period = period;
e4abb5d4 1083 ret = 1;
ee06094f 1084 }
1c80f4b5 1085 /*
dfc65094 1086 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1c80f4b5
IM
1087 */
1088 if (unlikely(left < 2))
1089 left = 2;
241771ef 1090
e4abb5d4
PZ
1091 if (left > x86_pmu.max_period)
1092 left = x86_pmu.max_period;
1093
294fe0f5
AK
1094 if (x86_pmu.limit_period)
1095 left = x86_pmu.limit_period(event, left);
1096
245b2e70 1097 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
ee06094f
IM
1098
1099 /*
cdd6c482 1100 * The hw event starts counting from this event offset,
ee06094f
IM
1101 * mark it to be able to extra future deltas:
1102 */
e7850595 1103 local64_set(&hwc->prev_count, (u64)-left);
ee06094f 1104
73d6e522 1105 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
68aa00ac
CG
1106
1107 /*
1108 * Due to erratum on certan cpu we need
1109 * a second write to be sure the register
1110 * is updated properly
1111 */
1112 if (x86_pmu.perfctr_second_write) {
73d6e522 1113 wrmsrl(hwc->event_base,
948b1bb8 1114 (u64)(-left) & x86_pmu.cntval_mask);
68aa00ac 1115 }
e4abb5d4 1116
cdd6c482 1117 perf_event_update_userpage(event);
194002b2 1118
e4abb5d4 1119 return ret;
2f18d1e8
IM
1120}
1121
de0428a7 1122void x86_pmu_enable_event(struct perf_event *event)
7c90cc45 1123{
0a3aee0d 1124 if (__this_cpu_read(cpu_hw_events.enabled))
31fa58af
RR
1125 __x86_pmu_enable_event(&event->hw,
1126 ARCH_PERFMON_EVENTSEL_ENABLE);
241771ef
IM
1127}
1128
b690081d 1129/*
a4eaf7f1 1130 * Add a single event to the PMU.
1da53e02
SE
1131 *
1132 * The event is added to the group of enabled events
1133 * but only if it can be scehduled with existing events.
fe9081cc 1134 */
a4eaf7f1 1135static int x86_pmu_add(struct perf_event *event, int flags)
fe9081cc 1136{
89cbc767 1137 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02
SE
1138 struct hw_perf_event *hwc;
1139 int assign[X86_PMC_IDX_MAX];
1140 int n, n0, ret;
fe9081cc 1141
1da53e02 1142 hwc = &event->hw;
fe9081cc 1143
1da53e02 1144 n0 = cpuc->n_events;
24cd7f54
PZ
1145 ret = n = collect_events(cpuc, event, false);
1146 if (ret < 0)
1147 goto out;
53b441a5 1148
a4eaf7f1
PZ
1149 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1150 if (!(flags & PERF_EF_START))
1151 hwc->state |= PERF_HES_ARCH;
1152
4d1c52b0
LM
1153 /*
1154 * If group events scheduling transaction was started,
0d2eb44f 1155 * skip the schedulability test here, it will be performed
c347a2f1 1156 * at commit time (->commit_txn) as a whole.
4d1c52b0 1157 */
8d2cacbb 1158 if (cpuc->group_flag & PERF_EVENT_TXN)
24cd7f54 1159 goto done_collect;
4d1c52b0 1160
a072738e 1161 ret = x86_pmu.schedule_events(cpuc, n, assign);
1da53e02 1162 if (ret)
24cd7f54 1163 goto out;
1da53e02
SE
1164 /*
1165 * copy new assignment, now we know it is possible
1166 * will be used by hw_perf_enable()
1167 */
1168 memcpy(cpuc->assign, assign, n*sizeof(int));
7e2ae347 1169
24cd7f54 1170done_collect:
c347a2f1
PZ
1171 /*
1172 * Commit the collect_events() state. See x86_pmu_del() and
1173 * x86_pmu_*_txn().
1174 */
1da53e02 1175 cpuc->n_events = n;
356e1f2e 1176 cpuc->n_added += n - n0;
90151c35 1177 cpuc->n_txn += n - n0;
95cdd2e7 1178
24cd7f54
PZ
1179 ret = 0;
1180out:
24cd7f54 1181 return ret;
241771ef
IM
1182}
1183
a4eaf7f1 1184static void x86_pmu_start(struct perf_event *event, int flags)
d76a0812 1185{
89cbc767 1186 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
c08053e6
PZ
1187 int idx = event->hw.idx;
1188
a4eaf7f1
PZ
1189 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1190 return;
1191
1192 if (WARN_ON_ONCE(idx == -1))
1193 return;
1194
1195 if (flags & PERF_EF_RELOAD) {
1196 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1197 x86_perf_event_set_period(event);
1198 }
1199
1200 event->hw.state = 0;
d76a0812 1201
c08053e6
PZ
1202 cpuc->events[idx] = event;
1203 __set_bit(idx, cpuc->active_mask);
63e6be6d 1204 __set_bit(idx, cpuc->running);
aff3d91a 1205 x86_pmu.enable(event);
c08053e6 1206 perf_event_update_userpage(event);
a78ac325
PZ
1207}
1208
cdd6c482 1209void perf_event_print_debug(void)
241771ef 1210{
2f18d1e8 1211 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
da3e606d 1212 u64 pebs, debugctl;
cdd6c482 1213 struct cpu_hw_events *cpuc;
5bb9efe3 1214 unsigned long flags;
1e125676
IM
1215 int cpu, idx;
1216
948b1bb8 1217 if (!x86_pmu.num_counters)
1e125676 1218 return;
241771ef 1219
5bb9efe3 1220 local_irq_save(flags);
241771ef
IM
1221
1222 cpu = smp_processor_id();
cdd6c482 1223 cpuc = &per_cpu(cpu_hw_events, cpu);
241771ef 1224
faa28ae0 1225 if (x86_pmu.version >= 2) {
a1ef58f4
JSR
1226 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1227 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1228 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1229 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1230
1231 pr_info("\n");
1232 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1233 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1234 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1235 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
15fde110
AK
1236 if (x86_pmu.pebs_constraints) {
1237 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1238 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1239 }
da3e606d
AK
1240 if (x86_pmu.lbr_nr) {
1241 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1242 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1243 }
f87ad35d 1244 }
7645a24c 1245 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
241771ef 1246
948b1bb8 1247 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
41bf4989
RR
1248 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1249 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
241771ef 1250
245b2e70 1251 prev_left = per_cpu(pmc_prev_left[idx], cpu);
241771ef 1252
a1ef58f4 1253 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
241771ef 1254 cpu, idx, pmc_ctrl);
a1ef58f4 1255 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
241771ef 1256 cpu, idx, pmc_count);
a1ef58f4 1257 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
ee06094f 1258 cpu, idx, prev_left);
241771ef 1259 }
948b1bb8 1260 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
2f18d1e8
IM
1261 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1262
a1ef58f4 1263 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
2f18d1e8
IM
1264 cpu, idx, pmc_count);
1265 }
5bb9efe3 1266 local_irq_restore(flags);
241771ef
IM
1267}
1268
de0428a7 1269void x86_pmu_stop(struct perf_event *event, int flags)
241771ef 1270{
89cbc767 1271 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
cdd6c482 1272 struct hw_perf_event *hwc = &event->hw;
241771ef 1273
a4eaf7f1
PZ
1274 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1275 x86_pmu.disable(event);
1276 cpuc->events[hwc->idx] = NULL;
1277 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1278 hwc->state |= PERF_HES_STOPPED;
1279 }
30dd568c 1280
a4eaf7f1
PZ
1281 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1282 /*
1283 * Drain the remaining delta count out of a event
1284 * that we are disabling:
1285 */
1286 x86_perf_event_update(event);
1287 hwc->state |= PERF_HES_UPTODATE;
1288 }
2e841873
PZ
1289}
1290
a4eaf7f1 1291static void x86_pmu_del(struct perf_event *event, int flags)
2e841873 1292{
89cbc767 1293 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2e841873
PZ
1294 int i;
1295
2f7f73a5
SE
1296 /*
1297 * event is descheduled
1298 */
1299 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1300
90151c35
SE
1301 /*
1302 * If we're called during a txn, we don't need to do anything.
1303 * The events never got scheduled and ->cancel_txn will truncate
1304 * the event_list.
c347a2f1
PZ
1305 *
1306 * XXX assumes any ->del() called during a TXN will only be on
1307 * an event added during that same TXN.
90151c35 1308 */
8d2cacbb 1309 if (cpuc->group_flag & PERF_EVENT_TXN)
90151c35
SE
1310 return;
1311
c347a2f1
PZ
1312 /*
1313 * Not a TXN, therefore cleanup properly.
1314 */
a4eaf7f1 1315 x86_pmu_stop(event, PERF_EF_UPDATE);
194002b2 1316
1da53e02 1317 for (i = 0; i < cpuc->n_events; i++) {
c347a2f1
PZ
1318 if (event == cpuc->event_list[i])
1319 break;
1320 }
1da53e02 1321
c347a2f1
PZ
1322 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1323 return;
26e61e89 1324
c347a2f1
PZ
1325 /* If we have a newly added event; make sure to decrease n_added. */
1326 if (i >= cpuc->n_events - cpuc->n_added)
1327 --cpuc->n_added;
1da53e02 1328
c347a2f1
PZ
1329 if (x86_pmu.put_event_constraints)
1330 x86_pmu.put_event_constraints(cpuc, event);
1331
1332 /* Delete the array entry. */
b371b594 1333 while (++i < cpuc->n_events) {
c347a2f1 1334 cpuc->event_list[i-1] = cpuc->event_list[i];
b371b594
PZ
1335 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1336 }
c347a2f1 1337 --cpuc->n_events;
1da53e02 1338
cdd6c482 1339 perf_event_update_userpage(event);
241771ef
IM
1340}
1341
de0428a7 1342int x86_pmu_handle_irq(struct pt_regs *regs)
a29aa8a7 1343{
df1a132b 1344 struct perf_sample_data data;
cdd6c482
IM
1345 struct cpu_hw_events *cpuc;
1346 struct perf_event *event;
11d1578f 1347 int idx, handled = 0;
9029a5e3
IM
1348 u64 val;
1349
89cbc767 1350 cpuc = this_cpu_ptr(&cpu_hw_events);
962bf7a6 1351
2bce5dac
DZ
1352 /*
1353 * Some chipsets need to unmask the LVTPC in a particular spot
1354 * inside the nmi handler. As a result, the unmasking was pushed
1355 * into all the nmi handlers.
1356 *
1357 * This generic handler doesn't seem to have any issues where the
1358 * unmasking occurs so it was left at the top.
1359 */
1360 apic_write(APIC_LVTPC, APIC_DM_NMI);
1361
948b1bb8 1362 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
63e6be6d
RR
1363 if (!test_bit(idx, cpuc->active_mask)) {
1364 /*
1365 * Though we deactivated the counter some cpus
1366 * might still deliver spurious interrupts still
1367 * in flight. Catch them:
1368 */
1369 if (__test_and_clear_bit(idx, cpuc->running))
1370 handled++;
a29aa8a7 1371 continue;
63e6be6d 1372 }
962bf7a6 1373
cdd6c482 1374 event = cpuc->events[idx];
a4016a79 1375
cc2ad4ba 1376 val = x86_perf_event_update(event);
948b1bb8 1377 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
48e22d56 1378 continue;
962bf7a6 1379
9e350de3 1380 /*
cdd6c482 1381 * event overflow
9e350de3 1382 */
4177c42a 1383 handled++;
fd0d000b 1384 perf_sample_data_init(&data, 0, event->hw.last_period);
9e350de3 1385
07088edb 1386 if (!x86_perf_event_set_period(event))
e4abb5d4
PZ
1387 continue;
1388
a8b0ca17 1389 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 1390 x86_pmu_stop(event, 0);
a29aa8a7 1391 }
962bf7a6 1392
9e350de3
PZ
1393 if (handled)
1394 inc_irq_stat(apic_perf_irqs);
1395
a29aa8a7
RR
1396 return handled;
1397}
39d81eab 1398
cdd6c482 1399void perf_events_lapic_init(void)
241771ef 1400{
04da8a43 1401 if (!x86_pmu.apic || !x86_pmu_initialized())
241771ef 1402 return;
85cf9dba 1403
241771ef 1404 /*
c323d95f 1405 * Always use NMI for PMU
241771ef 1406 */
c323d95f 1407 apic_write(APIC_LVTPC, APIC_DM_NMI);
241771ef
IM
1408}
1409
9326638c 1410static int
9c48f1c6 1411perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
241771ef 1412{
14c63f17
DH
1413 u64 start_clock;
1414 u64 finish_clock;
e8a923cc 1415 int ret;
14c63f17 1416
cdd6c482 1417 if (!atomic_read(&active_events))
9c48f1c6 1418 return NMI_DONE;
4177c42a 1419
e8a923cc 1420 start_clock = sched_clock();
14c63f17 1421 ret = x86_pmu.handle_irq(regs);
e8a923cc 1422 finish_clock = sched_clock();
14c63f17
DH
1423
1424 perf_sample_event_took(finish_clock - start_clock);
1425
1426 return ret;
241771ef 1427}
9326638c 1428NOKPROBE_SYMBOL(perf_event_nmi_handler);
241771ef 1429
de0428a7
KW
1430struct event_constraint emptyconstraint;
1431struct event_constraint unconstrained;
f87ad35d 1432
148f9bb8 1433static int
3f6da390
PZ
1434x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1435{
1436 unsigned int cpu = (long)hcpu;
7fdba1ca 1437 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
90413464 1438 int i, ret = NOTIFY_OK;
3f6da390
PZ
1439
1440 switch (action & ~CPU_TASKS_FROZEN) {
1441 case CPU_UP_PREPARE:
90413464
SE
1442 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1443 cpuc->kfree_on_online[i] = NULL;
3f6da390 1444 if (x86_pmu.cpu_prepare)
b38b24ea 1445 ret = x86_pmu.cpu_prepare(cpu);
3f6da390
PZ
1446 break;
1447
1448 case CPU_STARTING:
1449 if (x86_pmu.cpu_starting)
1450 x86_pmu.cpu_starting(cpu);
1451 break;
1452
7fdba1ca 1453 case CPU_ONLINE:
90413464
SE
1454 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1455 kfree(cpuc->kfree_on_online[i]);
1456 cpuc->kfree_on_online[i] = NULL;
1457 }
7fdba1ca
PZ
1458 break;
1459
3f6da390
PZ
1460 case CPU_DYING:
1461 if (x86_pmu.cpu_dying)
1462 x86_pmu.cpu_dying(cpu);
1463 break;
1464
b38b24ea 1465 case CPU_UP_CANCELED:
3f6da390
PZ
1466 case CPU_DEAD:
1467 if (x86_pmu.cpu_dead)
1468 x86_pmu.cpu_dead(cpu);
1469 break;
1470
1471 default:
1472 break;
1473 }
1474
b38b24ea 1475 return ret;
3f6da390
PZ
1476}
1477
12558038
CG
1478static void __init pmu_check_apic(void)
1479{
1480 if (cpu_has_apic)
1481 return;
1482
1483 x86_pmu.apic = 0;
1484 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1485 pr_info("no hardware sampling interrupt available.\n");
c184c980
VW
1486
1487 /*
1488 * If we have a PMU initialized but no APIC
1489 * interrupts, we cannot sample hardware
1490 * events (user-space has to fall back and
1491 * sample via a hrtimer based software event):
1492 */
1493 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1494
12558038
CG
1495}
1496
641cc938
JO
1497static struct attribute_group x86_pmu_format_group = {
1498 .name = "format",
1499 .attrs = NULL,
1500};
1501
8300daa2
JO
1502/*
1503 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1504 * out of events_attr attributes.
1505 */
1506static void __init filter_events(struct attribute **attrs)
1507{
3a54aaa0
SE
1508 struct device_attribute *d;
1509 struct perf_pmu_events_attr *pmu_attr;
8300daa2
JO
1510 int i, j;
1511
1512 for (i = 0; attrs[i]; i++) {
3a54aaa0
SE
1513 d = (struct device_attribute *)attrs[i];
1514 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1515 /* str trumps id */
1516 if (pmu_attr->event_str)
1517 continue;
8300daa2
JO
1518 if (x86_pmu.event_map(i))
1519 continue;
1520
1521 for (j = i; attrs[j]; j++)
1522 attrs[j] = attrs[j + 1];
1523
1524 /* Check the shifted attr. */
1525 i--;
1526 }
1527}
1528
1a6461b1
AK
1529/* Merge two pointer arrays */
1530static __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1531{
1532 struct attribute **new;
1533 int j, i;
1534
1535 for (j = 0; a[j]; j++)
1536 ;
1537 for (i = 0; b[i]; i++)
1538 j++;
1539 j++;
1540
1541 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1542 if (!new)
1543 return NULL;
1544
1545 j = 0;
1546 for (i = 0; a[i]; i++)
1547 new[j++] = a[i];
1548 for (i = 0; b[i]; i++)
1549 new[j++] = b[i];
1550 new[j] = NULL;
1551
1552 return new;
1553}
1554
f20093ee 1555ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
a4747393
JO
1556 char *page)
1557{
1558 struct perf_pmu_events_attr *pmu_attr = \
1559 container_of(attr, struct perf_pmu_events_attr, attr);
a4747393 1560 u64 config = x86_pmu.event_map(pmu_attr->id);
a4747393 1561
3a54aaa0
SE
1562 /* string trumps id */
1563 if (pmu_attr->event_str)
1564 return sprintf(page, "%s", pmu_attr->event_str);
a4747393 1565
3a54aaa0
SE
1566 return x86_pmu.events_sysfs_show(page, config);
1567}
a4747393
JO
1568
1569EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1570EVENT_ATTR(instructions, INSTRUCTIONS );
1571EVENT_ATTR(cache-references, CACHE_REFERENCES );
1572EVENT_ATTR(cache-misses, CACHE_MISSES );
1573EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1574EVENT_ATTR(branch-misses, BRANCH_MISSES );
1575EVENT_ATTR(bus-cycles, BUS_CYCLES );
1576EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1577EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1578EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1579
1580static struct attribute *empty_attrs;
1581
95d18aa2 1582static struct attribute *events_attr[] = {
a4747393
JO
1583 EVENT_PTR(CPU_CYCLES),
1584 EVENT_PTR(INSTRUCTIONS),
1585 EVENT_PTR(CACHE_REFERENCES),
1586 EVENT_PTR(CACHE_MISSES),
1587 EVENT_PTR(BRANCH_INSTRUCTIONS),
1588 EVENT_PTR(BRANCH_MISSES),
1589 EVENT_PTR(BUS_CYCLES),
1590 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1591 EVENT_PTR(STALLED_CYCLES_BACKEND),
1592 EVENT_PTR(REF_CPU_CYCLES),
1593 NULL,
1594};
1595
1596static struct attribute_group x86_pmu_events_group = {
1597 .name = "events",
1598 .attrs = events_attr,
1599};
1600
0bf79d44 1601ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
43c032fe 1602{
43c032fe
JO
1603 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1604 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1605 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1606 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1607 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1608 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1609 ssize_t ret;
1610
1611 /*
1612 * We have whole page size to spend and just little data
1613 * to write, so we can safely use sprintf.
1614 */
1615 ret = sprintf(page, "event=0x%02llx", event);
1616
1617 if (umask)
1618 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1619
1620 if (edge)
1621 ret += sprintf(page + ret, ",edge");
1622
1623 if (pc)
1624 ret += sprintf(page + ret, ",pc");
1625
1626 if (any)
1627 ret += sprintf(page + ret, ",any");
1628
1629 if (inv)
1630 ret += sprintf(page + ret, ",inv");
1631
1632 if (cmask)
1633 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1634
1635 ret += sprintf(page + ret, "\n");
1636
1637 return ret;
1638}
1639
dda99116 1640static int __init init_hw_perf_events(void)
b56a3802 1641{
c1d6f42f 1642 struct x86_pmu_quirk *quirk;
72eae04d
RR
1643 int err;
1644
cdd6c482 1645 pr_info("Performance Events: ");
1123e3ad 1646
b56a3802
JSR
1647 switch (boot_cpu_data.x86_vendor) {
1648 case X86_VENDOR_INTEL:
72eae04d 1649 err = intel_pmu_init();
b56a3802 1650 break;
f87ad35d 1651 case X86_VENDOR_AMD:
72eae04d 1652 err = amd_pmu_init();
f87ad35d 1653 break;
4138960a 1654 default:
8a3da6c7 1655 err = -ENOTSUPP;
b56a3802 1656 }
1123e3ad 1657 if (err != 0) {
cdd6c482 1658 pr_cont("no PMU driver, software events only.\n");
004417a6 1659 return 0;
1123e3ad 1660 }
b56a3802 1661
12558038
CG
1662 pmu_check_apic();
1663
33c6d6a7 1664 /* sanity check that the hardware exists or is emulated */
4407204c 1665 if (!check_hw_exists())
004417a6 1666 return 0;
33c6d6a7 1667
1123e3ad 1668 pr_cont("%s PMU driver.\n", x86_pmu.name);
faa28ae0 1669
e97df763
PZ
1670 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1671
c1d6f42f
PZ
1672 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1673 quirk->func();
3c44780b 1674
a1eac7ac
RR
1675 if (!x86_pmu.intel_ctrl)
1676 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
241771ef 1677
cdd6c482 1678 perf_events_lapic_init();
9c48f1c6 1679 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1123e3ad 1680
63b14649 1681 unconstrained = (struct event_constraint)
948b1bb8 1682 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
9fac2cf3 1683 0, x86_pmu.num_counters, 0, 0);
63b14649 1684
641cc938 1685 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
0c9d42ed 1686
f20093ee
SE
1687 if (x86_pmu.event_attrs)
1688 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1689
a4747393
JO
1690 if (!x86_pmu.events_sysfs_show)
1691 x86_pmu_events_group.attrs = &empty_attrs;
8300daa2
JO
1692 else
1693 filter_events(x86_pmu_events_group.attrs);
a4747393 1694
1a6461b1
AK
1695 if (x86_pmu.cpu_events) {
1696 struct attribute **tmp;
1697
1698 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1699 if (!WARN_ON(!tmp))
1700 x86_pmu_events_group.attrs = tmp;
1701 }
1702
57c0c15b 1703 pr_info("... version: %d\n", x86_pmu.version);
948b1bb8
RR
1704 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1705 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1706 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
57c0c15b 1707 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
948b1bb8 1708 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
d6dc0b4e 1709 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
3f6da390 1710
2e80a82a 1711 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
3f6da390 1712 perf_cpu_notifier(x86_pmu_notifier);
004417a6
PZ
1713
1714 return 0;
241771ef 1715}
004417a6 1716early_initcall(init_hw_perf_events);
621a01ea 1717
cdd6c482 1718static inline void x86_pmu_read(struct perf_event *event)
ee06094f 1719{
cc2ad4ba 1720 x86_perf_event_update(event);
ee06094f
IM
1721}
1722
4d1c52b0
LM
1723/*
1724 * Start group events scheduling transaction
1725 * Set the flag to make pmu::enable() not perform the
1726 * schedulability test, it will be performed at commit time
1727 */
51b0fe39 1728static void x86_pmu_start_txn(struct pmu *pmu)
4d1c52b0 1729{
33696fc0 1730 perf_pmu_disable(pmu);
0a3aee0d
TH
1731 __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1732 __this_cpu_write(cpu_hw_events.n_txn, 0);
4d1c52b0
LM
1733}
1734
1735/*
1736 * Stop group events scheduling transaction
1737 * Clear the flag and pmu::enable() will perform the
1738 * schedulability test.
1739 */
51b0fe39 1740static void x86_pmu_cancel_txn(struct pmu *pmu)
4d1c52b0 1741{
0a3aee0d 1742 __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
90151c35 1743 /*
c347a2f1
PZ
1744 * Truncate collected array by the number of events added in this
1745 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
90151c35 1746 */
0a3aee0d
TH
1747 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1748 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
33696fc0 1749 perf_pmu_enable(pmu);
4d1c52b0
LM
1750}
1751
1752/*
1753 * Commit group events scheduling transaction
1754 * Perform the group schedulability test as a whole
1755 * Return 0 if success
c347a2f1
PZ
1756 *
1757 * Does not cancel the transaction on failure; expects the caller to do this.
4d1c52b0 1758 */
51b0fe39 1759static int x86_pmu_commit_txn(struct pmu *pmu)
4d1c52b0 1760{
89cbc767 1761 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4d1c52b0
LM
1762 int assign[X86_PMC_IDX_MAX];
1763 int n, ret;
1764
1765 n = cpuc->n_events;
1766
1767 if (!x86_pmu_initialized())
1768 return -EAGAIN;
1769
1770 ret = x86_pmu.schedule_events(cpuc, n, assign);
1771 if (ret)
1772 return ret;
1773
1774 /*
1775 * copy new assignment, now we know it is possible
1776 * will be used by hw_perf_enable()
1777 */
1778 memcpy(cpuc->assign, assign, n*sizeof(int));
1779
8d2cacbb 1780 cpuc->group_flag &= ~PERF_EVENT_TXN;
33696fc0 1781 perf_pmu_enable(pmu);
4d1c52b0
LM
1782 return 0;
1783}
cd8a38d3
SE
1784/*
1785 * a fake_cpuc is used to validate event groups. Due to
1786 * the extra reg logic, we need to also allocate a fake
1787 * per_core and per_cpu structure. Otherwise, group events
1788 * using extra reg may conflict without the kernel being
1789 * able to catch this when the last event gets added to
1790 * the group.
1791 */
1792static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1793{
1794 kfree(cpuc->shared_regs);
1795 kfree(cpuc);
1796}
1797
1798static struct cpu_hw_events *allocate_fake_cpuc(void)
1799{
1800 struct cpu_hw_events *cpuc;
1801 int cpu = raw_smp_processor_id();
1802
1803 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1804 if (!cpuc)
1805 return ERR_PTR(-ENOMEM);
1806
1807 /* only needed, if we have extra_regs */
1808 if (x86_pmu.extra_regs) {
1809 cpuc->shared_regs = allocate_shared_regs(cpu);
1810 if (!cpuc->shared_regs)
1811 goto error;
1812 }
b430f7c4 1813 cpuc->is_fake = 1;
cd8a38d3
SE
1814 return cpuc;
1815error:
1816 free_fake_cpuc(cpuc);
1817 return ERR_PTR(-ENOMEM);
1818}
4d1c52b0 1819
ca037701
PZ
1820/*
1821 * validate that we can schedule this event
1822 */
1823static int validate_event(struct perf_event *event)
1824{
1825 struct cpu_hw_events *fake_cpuc;
1826 struct event_constraint *c;
1827 int ret = 0;
1828
cd8a38d3
SE
1829 fake_cpuc = allocate_fake_cpuc();
1830 if (IS_ERR(fake_cpuc))
1831 return PTR_ERR(fake_cpuc);
ca037701 1832
79cba822 1833 c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
ca037701
PZ
1834
1835 if (!c || !c->weight)
aa2bc1ad 1836 ret = -EINVAL;
ca037701
PZ
1837
1838 if (x86_pmu.put_event_constraints)
1839 x86_pmu.put_event_constraints(fake_cpuc, event);
1840
cd8a38d3 1841 free_fake_cpuc(fake_cpuc);
ca037701
PZ
1842
1843 return ret;
1844}
1845
1da53e02
SE
1846/*
1847 * validate a single event group
1848 *
1849 * validation include:
184f412c
IM
1850 * - check events are compatible which each other
1851 * - events do not compete for the same counter
1852 * - number of events <= number of counters
1da53e02
SE
1853 *
1854 * validation ensures the group can be loaded onto the
1855 * PMU if it was the only group available.
1856 */
fe9081cc
PZ
1857static int validate_group(struct perf_event *event)
1858{
1da53e02 1859 struct perf_event *leader = event->group_leader;
502568d5 1860 struct cpu_hw_events *fake_cpuc;
aa2bc1ad 1861 int ret = -EINVAL, n;
fe9081cc 1862
cd8a38d3
SE
1863 fake_cpuc = allocate_fake_cpuc();
1864 if (IS_ERR(fake_cpuc))
1865 return PTR_ERR(fake_cpuc);
1da53e02
SE
1866 /*
1867 * the event is not yet connected with its
1868 * siblings therefore we must first collect
1869 * existing siblings, then add the new event
1870 * before we can simulate the scheduling
1871 */
502568d5 1872 n = collect_events(fake_cpuc, leader, true);
1da53e02 1873 if (n < 0)
cd8a38d3 1874 goto out;
fe9081cc 1875
502568d5
PZ
1876 fake_cpuc->n_events = n;
1877 n = collect_events(fake_cpuc, event, false);
1da53e02 1878 if (n < 0)
cd8a38d3 1879 goto out;
fe9081cc 1880
502568d5 1881 fake_cpuc->n_events = n;
1da53e02 1882
a072738e 1883 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
502568d5 1884
502568d5 1885out:
cd8a38d3 1886 free_fake_cpuc(fake_cpuc);
502568d5 1887 return ret;
fe9081cc
PZ
1888}
1889
dda99116 1890static int x86_pmu_event_init(struct perf_event *event)
621a01ea 1891{
51b0fe39 1892 struct pmu *tmp;
621a01ea
IM
1893 int err;
1894
b0a873eb
PZ
1895 switch (event->attr.type) {
1896 case PERF_TYPE_RAW:
1897 case PERF_TYPE_HARDWARE:
1898 case PERF_TYPE_HW_CACHE:
1899 break;
1900
1901 default:
1902 return -ENOENT;
1903 }
1904
1905 err = __x86_pmu_event_init(event);
fe9081cc 1906 if (!err) {
8113070d
SE
1907 /*
1908 * we temporarily connect event to its pmu
1909 * such that validate_group() can classify
1910 * it as an x86 event using is_x86_event()
1911 */
1912 tmp = event->pmu;
1913 event->pmu = &pmu;
1914
fe9081cc
PZ
1915 if (event->group_leader != event)
1916 err = validate_group(event);
ca037701
PZ
1917 else
1918 err = validate_event(event);
8113070d
SE
1919
1920 event->pmu = tmp;
fe9081cc 1921 }
a1792cda 1922 if (err) {
cdd6c482
IM
1923 if (event->destroy)
1924 event->destroy(event);
a1792cda 1925 }
621a01ea 1926
7911d3f7
AL
1927 if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
1928 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
1929
b0a873eb 1930 return err;
621a01ea 1931}
d7d59fb3 1932
7911d3f7
AL
1933static void refresh_pce(void *ignored)
1934{
1935 if (current->mm)
1936 load_mm_cr4(current->mm);
1937}
1938
1939static void x86_pmu_event_mapped(struct perf_event *event)
1940{
1941 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
1942 return;
1943
1944 if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
1945 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
1946}
1947
1948static void x86_pmu_event_unmapped(struct perf_event *event)
1949{
1950 if (!current->mm)
1951 return;
1952
1953 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
1954 return;
1955
1956 if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
1957 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
1958}
1959
fe4a3308
PZ
1960static int x86_pmu_event_idx(struct perf_event *event)
1961{
1962 int idx = event->hw.idx;
1963
7911d3f7 1964 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
c7206205
PZ
1965 return 0;
1966
15c7ad51
RR
1967 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
1968 idx -= INTEL_PMC_IDX_FIXED;
fe4a3308
PZ
1969 idx |= 1 << 30;
1970 }
1971
1972 return idx + 1;
1973}
1974
0c9d42ed
PZ
1975static ssize_t get_attr_rdpmc(struct device *cdev,
1976 struct device_attribute *attr,
1977 char *buf)
1978{
1979 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
1980}
1981
0c9d42ed
PZ
1982static ssize_t set_attr_rdpmc(struct device *cdev,
1983 struct device_attribute *attr,
1984 const char *buf, size_t count)
1985{
e2b297fc
SK
1986 unsigned long val;
1987 ssize_t ret;
1988
1989 ret = kstrtoul(buf, 0, &val);
1990 if (ret)
1991 return ret;
e97df763 1992
a6673429
AL
1993 if (val > 2)
1994 return -EINVAL;
1995
e97df763
PZ
1996 if (x86_pmu.attr_rdpmc_broken)
1997 return -ENOTSUPP;
0c9d42ed 1998
a6673429
AL
1999 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2000 /*
2001 * Changing into or out of always available, aka
2002 * perf-event-bypassing mode. This path is extremely slow,
2003 * but only root can trigger it, so it's okay.
2004 */
2005 if (val == 2)
2006 static_key_slow_inc(&rdpmc_always_available);
2007 else
2008 static_key_slow_dec(&rdpmc_always_available);
2009 on_each_cpu(refresh_pce, NULL, 1);
2010 }
2011
2012 x86_pmu.attr_rdpmc = val;
2013
0c9d42ed
PZ
2014 return count;
2015}
2016
2017static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2018
2019static struct attribute *x86_pmu_attrs[] = {
2020 &dev_attr_rdpmc.attr,
2021 NULL,
2022};
2023
2024static struct attribute_group x86_pmu_attr_group = {
2025 .attrs = x86_pmu_attrs,
2026};
2027
2028static const struct attribute_group *x86_pmu_attr_groups[] = {
2029 &x86_pmu_attr_group,
641cc938 2030 &x86_pmu_format_group,
a4747393 2031 &x86_pmu_events_group,
0c9d42ed
PZ
2032 NULL,
2033};
2034
ba532500 2035static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
d010b332 2036{
ba532500
YZ
2037 if (x86_pmu.sched_task)
2038 x86_pmu.sched_task(ctx, sched_in);
d010b332
SE
2039}
2040
c93dc84c
PZ
2041void perf_check_microcode(void)
2042{
2043 if (x86_pmu.check_microcode)
2044 x86_pmu.check_microcode();
2045}
2046EXPORT_SYMBOL_GPL(perf_check_microcode);
2047
b0a873eb 2048static struct pmu pmu = {
d010b332
SE
2049 .pmu_enable = x86_pmu_enable,
2050 .pmu_disable = x86_pmu_disable,
a4eaf7f1 2051
c93dc84c 2052 .attr_groups = x86_pmu_attr_groups,
0c9d42ed 2053
c93dc84c 2054 .event_init = x86_pmu_event_init,
a4eaf7f1 2055
7911d3f7
AL
2056 .event_mapped = x86_pmu_event_mapped,
2057 .event_unmapped = x86_pmu_event_unmapped,
2058
d010b332
SE
2059 .add = x86_pmu_add,
2060 .del = x86_pmu_del,
2061 .start = x86_pmu_start,
2062 .stop = x86_pmu_stop,
2063 .read = x86_pmu_read,
a4eaf7f1 2064
c93dc84c
PZ
2065 .start_txn = x86_pmu_start_txn,
2066 .cancel_txn = x86_pmu_cancel_txn,
2067 .commit_txn = x86_pmu_commit_txn,
fe4a3308 2068
c93dc84c 2069 .event_idx = x86_pmu_event_idx,
ba532500 2070 .sched_task = x86_pmu_sched_task,
e18bf526 2071 .task_ctx_size = sizeof(struct x86_perf_task_context),
b0a873eb
PZ
2072};
2073
c1317ec2
AL
2074void arch_perf_update_userpage(struct perf_event *event,
2075 struct perf_event_mmap_page *userpg, u64 now)
e3f3541c 2076{
20d1c86a
PZ
2077 struct cyc2ns_data *data;
2078
fa731587
PZ
2079 userpg->cap_user_time = 0;
2080 userpg->cap_user_time_zero = 0;
7911d3f7
AL
2081 userpg->cap_user_rdpmc =
2082 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
c7206205
PZ
2083 userpg->pmc_width = x86_pmu.cntval_bits;
2084
35af99e6 2085 if (!sched_clock_stable())
e3f3541c
PZ
2086 return;
2087
20d1c86a
PZ
2088 data = cyc2ns_read_begin();
2089
34f43927
PZ
2090 /*
2091 * Internal timekeeping for enabled/running/stopped times
2092 * is always in the local_clock domain.
2093 */
fa731587 2094 userpg->cap_user_time = 1;
20d1c86a
PZ
2095 userpg->time_mult = data->cyc2ns_mul;
2096 userpg->time_shift = data->cyc2ns_shift;
2097 userpg->time_offset = data->cyc2ns_offset - now;
c73deb6a 2098
34f43927
PZ
2099 /*
2100 * cap_user_time_zero doesn't make sense when we're using a different
2101 * time base for the records.
2102 */
2103 if (event->clock == &local_clock) {
2104 userpg->cap_user_time_zero = 1;
2105 userpg->time_zero = data->cyc2ns_offset;
2106 }
20d1c86a
PZ
2107
2108 cyc2ns_read_end(data);
e3f3541c
PZ
2109}
2110
d7d59fb3
PZ
2111/*
2112 * callchain support
2113 */
2114
d7d59fb3
PZ
2115static int backtrace_stack(void *data, char *name)
2116{
038e836e 2117 return 0;
d7d59fb3
PZ
2118}
2119
2120static void backtrace_address(void *data, unsigned long addr, int reliable)
2121{
2122 struct perf_callchain_entry *entry = data;
2123
70791ce9 2124 perf_callchain_store(entry, addr);
d7d59fb3
PZ
2125}
2126
2127static const struct stacktrace_ops backtrace_ops = {
d7d59fb3
PZ
2128 .stack = backtrace_stack,
2129 .address = backtrace_address,
06d65bda 2130 .walk_stack = print_context_stack_bp,
d7d59fb3
PZ
2131};
2132
56962b44
FW
2133void
2134perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
d7d59fb3 2135{
927c7a9e
FW
2136 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2137 /* TODO: We don't support guest os callchain now */
ed805261 2138 return;
927c7a9e
FW
2139 }
2140
70791ce9 2141 perf_callchain_store(entry, regs->ip);
d7d59fb3 2142
e8e999cf 2143 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
d7d59fb3
PZ
2144}
2145
bc6ca7b3
AS
2146static inline int
2147valid_user_frame(const void __user *fp, unsigned long size)
2148{
2149 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2150}
2151
d07bdfd3
PZ
2152static unsigned long get_segment_base(unsigned int segment)
2153{
2154 struct desc_struct *desc;
2155 int idx = segment >> 3;
2156
2157 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2158 if (idx > LDT_ENTRIES)
2159 return 0;
2160
2161 if (idx > current->active_mm->context.size)
2162 return 0;
2163
2164 desc = current->active_mm->context.ldt;
2165 } else {
2166 if (idx > GDT_ENTRIES)
2167 return 0;
2168
89cbc767 2169 desc = raw_cpu_ptr(gdt_page.gdt);
d07bdfd3
PZ
2170 }
2171
2172 return get_desc_base(desc + idx);
2173}
2174
257ef9d2 2175#ifdef CONFIG_COMPAT
d1a797f3
PA
2176
2177#include <asm/compat.h>
2178
257ef9d2
TE
2179static inline int
2180perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
74193ef0 2181{
257ef9d2 2182 /* 32-bit process in 64-bit kernel. */
d07bdfd3 2183 unsigned long ss_base, cs_base;
257ef9d2
TE
2184 struct stack_frame_ia32 frame;
2185 const void __user *fp;
74193ef0 2186
257ef9d2
TE
2187 if (!test_thread_flag(TIF_IA32))
2188 return 0;
2189
d07bdfd3
PZ
2190 cs_base = get_segment_base(regs->cs);
2191 ss_base = get_segment_base(regs->ss);
2192
2193 fp = compat_ptr(ss_base + regs->bp);
257ef9d2
TE
2194 while (entry->nr < PERF_MAX_STACK_DEPTH) {
2195 unsigned long bytes;
2196 frame.next_frame = 0;
2197 frame.return_address = 0;
2198
2199 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
0a196848 2200 if (bytes != 0)
257ef9d2 2201 break;
74193ef0 2202
bc6ca7b3
AS
2203 if (!valid_user_frame(fp, sizeof(frame)))
2204 break;
2205
d07bdfd3
PZ
2206 perf_callchain_store(entry, cs_base + frame.return_address);
2207 fp = compat_ptr(ss_base + frame.next_frame);
257ef9d2
TE
2208 }
2209 return 1;
d7d59fb3 2210}
257ef9d2
TE
2211#else
2212static inline int
2213perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2214{
2215 return 0;
2216}
2217#endif
d7d59fb3 2218
56962b44
FW
2219void
2220perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
d7d59fb3
PZ
2221{
2222 struct stack_frame frame;
2223 const void __user *fp;
2224
927c7a9e
FW
2225 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2226 /* TODO: We don't support guest os callchain now */
ed805261 2227 return;
927c7a9e 2228 }
5a6cec3a 2229
d07bdfd3
PZ
2230 /*
2231 * We don't know what to do with VM86 stacks.. ignore them for now.
2232 */
2233 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2234 return;
2235
74193ef0 2236 fp = (void __user *)regs->bp;
d7d59fb3 2237
70791ce9 2238 perf_callchain_store(entry, regs->ip);
d7d59fb3 2239
20afc60f
AV
2240 if (!current->mm)
2241 return;
2242
257ef9d2
TE
2243 if (perf_callchain_user32(regs, entry))
2244 return;
2245
f9188e02 2246 while (entry->nr < PERF_MAX_STACK_DEPTH) {
257ef9d2 2247 unsigned long bytes;
038e836e 2248 frame.next_frame = NULL;
d7d59fb3
PZ
2249 frame.return_address = 0;
2250
257ef9d2 2251 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
0a196848 2252 if (bytes != 0)
d7d59fb3
PZ
2253 break;
2254
bc6ca7b3
AS
2255 if (!valid_user_frame(fp, sizeof(frame)))
2256 break;
2257
70791ce9 2258 perf_callchain_store(entry, frame.return_address);
038e836e 2259 fp = frame.next_frame;
d7d59fb3
PZ
2260 }
2261}
2262
d07bdfd3
PZ
2263/*
2264 * Deal with code segment offsets for the various execution modes:
2265 *
2266 * VM86 - the good olde 16 bit days, where the linear address is
2267 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2268 *
2269 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2270 * to figure out what the 32bit base address is.
2271 *
2272 * X32 - has TIF_X32 set, but is running in x86_64
2273 *
2274 * X86_64 - CS,DS,SS,ES are all zero based.
2275 */
2276static unsigned long code_segment_base(struct pt_regs *regs)
39447b38 2277{
383f3af3
AL
2278 /*
2279 * For IA32 we look at the GDT/LDT segment base to convert the
2280 * effective IP to a linear address.
2281 */
2282
2283#ifdef CONFIG_X86_32
d07bdfd3
PZ
2284 /*
2285 * If we are in VM86 mode, add the segment offset to convert to a
2286 * linear address.
2287 */
2288 if (regs->flags & X86_VM_MASK)
2289 return 0x10 * regs->cs;
2290
55474c48 2291 if (user_mode(regs) && regs->cs != __USER_CS)
d07bdfd3
PZ
2292 return get_segment_base(regs->cs);
2293#else
c56716af
AL
2294 if (user_mode(regs) && !user_64bit_mode(regs) &&
2295 regs->cs != __USER32_CS)
2296 return get_segment_base(regs->cs);
d07bdfd3
PZ
2297#endif
2298 return 0;
2299}
dcf46b94 2300
d07bdfd3
PZ
2301unsigned long perf_instruction_pointer(struct pt_regs *regs)
2302{
39447b38 2303 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
d07bdfd3 2304 return perf_guest_cbs->get_guest_ip();
dcf46b94 2305
d07bdfd3 2306 return regs->ip + code_segment_base(regs);
39447b38
ZY
2307}
2308
2309unsigned long perf_misc_flags(struct pt_regs *regs)
2310{
2311 int misc = 0;
dcf46b94 2312
39447b38 2313 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
dcf46b94
ZY
2314 if (perf_guest_cbs->is_user_mode())
2315 misc |= PERF_RECORD_MISC_GUEST_USER;
2316 else
2317 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2318 } else {
d07bdfd3 2319 if (user_mode(regs))
dcf46b94
ZY
2320 misc |= PERF_RECORD_MISC_USER;
2321 else
2322 misc |= PERF_RECORD_MISC_KERNEL;
2323 }
2324
39447b38 2325 if (regs->flags & PERF_EFLAGS_EXACT)
ab608344 2326 misc |= PERF_RECORD_MISC_EXACT_IP;
39447b38
ZY
2327
2328 return misc;
2329}
b3d9468a
GN
2330
2331void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2332{
2333 cap->version = x86_pmu.version;
2334 cap->num_counters_gp = x86_pmu.num_counters;
2335 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2336 cap->bit_width_gp = x86_pmu.cntval_bits;
2337 cap->bit_width_fixed = x86_pmu.cntval_bits;
2338 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2339 cap->events_mask_len = x86_pmu.events_mask_len;
2340}
2341EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
This page took 0.497104 seconds and 5 git commands to generate.