tracing/function-return-tracer: add a barrier to ensure return stack index is increme...
[deliverable/linux.git] / arch / x86 / kernel / ftrace.c
CommitLineData
3d083395
SR
1/*
2 * Code for replacing ftrace calls with jumps.
3 *
4 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
5 *
6 * Thanks goes to Ingo Molnar, for suggesting the idea.
7 * Mathieu Desnoyers, for suggesting postponing the modifications.
8 * Arjan van de Ven, for keeping me straight, and explaining to me
9 * the dangers of modifying code on the run.
10 */
11
12#include <linux/spinlock.h>
13#include <linux/hardirq.h>
6f93fc07 14#include <linux/uaccess.h>
3d083395
SR
15#include <linux/ftrace.h>
16#include <linux/percpu.h>
19b3e967 17#include <linux/sched.h>
3d083395
SR
18#include <linux/init.h>
19#include <linux/list.h>
20
395a59d0 21#include <asm/ftrace.h>
caf4b323 22#include <linux/ftrace.h>
732f3ca7 23#include <asm/nops.h>
caf4b323 24#include <asm/nmi.h>
3d083395 25
3d083395 26
caf4b323
FW
27
28#ifdef CONFIG_FUNCTION_RET_TRACER
29
30/*
31 * These functions are picked from those used on
32 * this page for dynamic ftrace. They have been
33 * simplified to ignore all traces in NMI context.
34 */
35static atomic_t in_nmi;
36
37void ftrace_nmi_enter(void)
38{
39 atomic_inc(&in_nmi);
40}
41
42void ftrace_nmi_exit(void)
43{
44 atomic_dec(&in_nmi);
45}
46
caf4b323
FW
47/* Add a function return address to the trace stack on thread info.*/
48static int push_return_trace(unsigned long ret, unsigned long long time,
49 unsigned long func)
50{
51 int index;
62d59d17 52 struct thread_info *ti = current_thread_info();
caf4b323 53
caf4b323 54 /* The return trace stack is full */
62d59d17
FW
55 if (ti->curr_ret_stack == FTRACE_RET_STACK_SIZE - 1)
56 return -EBUSY;
caf4b323
FW
57
58 index = ++ti->curr_ret_stack;
b01c7466 59 barrier();
caf4b323
FW
60 ti->ret_stack[index].ret = ret;
61 ti->ret_stack[index].func = func;
62 ti->ret_stack[index].calltime = time;
63
62d59d17 64 return 0;
caf4b323
FW
65}
66
67/* Retrieve a function return address to the trace stack on thread info.*/
68static void pop_return_trace(unsigned long *ret, unsigned long long *time,
69 unsigned long *func)
70{
caf4b323 71 int index;
caf4b323 72
62d59d17 73 struct thread_info *ti = current_thread_info();
caf4b323
FW
74 index = ti->curr_ret_stack;
75 *ret = ti->ret_stack[index].ret;
76 *func = ti->ret_stack[index].func;
77 *time = ti->ret_stack[index].calltime;
78 ti->curr_ret_stack--;
caf4b323
FW
79}
80
81/*
82 * Send the trace to the ring-buffer.
83 * @return the original return address.
84 */
85unsigned long ftrace_return_to_handler(void)
86{
87 struct ftrace_retfunc trace;
88 pop_return_trace(&trace.ret, &trace.calltime, &trace.func);
89 trace.rettime = cpu_clock(raw_smp_processor_id());
90 ftrace_function_return(&trace);
91
92 return trace.ret;
93}
94
95/*
96 * Hook the return address and push it in the stack of return addrs
97 * in current thread info.
98 */
caf4b323
FW
99void prepare_ftrace_return(unsigned long *parent, unsigned long self_addr)
100{
101 unsigned long old;
102 unsigned long long calltime;
103 int faulted;
104 unsigned long return_hooker = (unsigned long)
105 &return_to_handler;
106
107 /* Nmi's are currently unsupported */
108 if (atomic_read(&in_nmi))
109 return;
110
111 /*
112 * Protect against fault, even if it shouldn't
113 * happen. This tool is too much intrusive to
114 * ignore such a protection.
115 */
116 asm volatile(
117 "1: movl (%[parent_old]), %[old]\n"
118 "2: movl %[return_hooker], (%[parent_replaced])\n"
119 " movl $0, %[faulted]\n"
120
121 ".section .fixup, \"ax\"\n"
122 "3: movl $1, %[faulted]\n"
123 ".previous\n"
124
125 ".section __ex_table, \"a\"\n"
126 " .long 1b, 3b\n"
127 " .long 2b, 3b\n"
128 ".previous\n"
129
867f7fb3 130 : [parent_replaced] "=r" (parent), [old] "=r" (old),
caf4b323
FW
131 [faulted] "=r" (faulted)
132 : [parent_old] "0" (parent), [return_hooker] "r" (return_hooker)
133 : "memory"
134 );
135
136 if (WARN_ON(faulted)) {
137 unregister_ftrace_return();
138 return;
139 }
140
141 if (WARN_ON(!__kernel_text_address(old))) {
142 unregister_ftrace_return();
143 *parent = old;
144 return;
145 }
146
147 calltime = cpu_clock(raw_smp_processor_id());
148
149 if (push_return_trace(old, calltime, self_addr) == -EBUSY)
150 *parent = old;
151}
152
caf4b323
FW
153#endif
154
155#ifdef CONFIG_DYNAMIC_FTRACE
3d083395 156
3d083395 157union ftrace_code_union {
395a59d0 158 char code[MCOUNT_INSN_SIZE];
3d083395
SR
159 struct {
160 char e8;
161 int offset;
162 } __attribute__((packed));
163};
164
15adc048 165static int ftrace_calc_offset(long ip, long addr)
3c1720f0
SR
166{
167 return (int)(addr - ip);
168}
3d083395 169
31e88909 170static unsigned char *ftrace_call_replace(unsigned long ip, unsigned long addr)
3c1720f0
SR
171{
172 static union ftrace_code_union calc;
3d083395 173
3c1720f0 174 calc.e8 = 0xe8;
395a59d0 175 calc.offset = ftrace_calc_offset(ip + MCOUNT_INSN_SIZE, addr);
3c1720f0
SR
176
177 /*
178 * No locking needed, this must be called via kstop_machine
179 * which in essence is like running on a uniprocessor machine.
180 */
181 return calc.code;
3d083395
SR
182}
183
17666f02
SR
184/*
185 * Modifying code must take extra care. On an SMP machine, if
186 * the code being modified is also being executed on another CPU
187 * that CPU will have undefined results and possibly take a GPF.
188 * We use kstop_machine to stop other CPUS from exectuing code.
189 * But this does not stop NMIs from happening. We still need
190 * to protect against that. We separate out the modification of
191 * the code to take care of this.
192 *
193 * Two buffers are added: An IP buffer and a "code" buffer.
194 *
a26a2a27 195 * 1) Put the instruction pointer into the IP buffer
17666f02
SR
196 * and the new code into the "code" buffer.
197 * 2) Set a flag that says we are modifying code
198 * 3) Wait for any running NMIs to finish.
199 * 4) Write the code
200 * 5) clear the flag.
201 * 6) Wait for any running NMIs to finish.
202 *
203 * If an NMI is executed, the first thing it does is to call
204 * "ftrace_nmi_enter". This will check if the flag is set to write
205 * and if it is, it will write what is in the IP and "code" buffers.
206 *
207 * The trick is, it does not matter if everyone is writing the same
208 * content to the code location. Also, if a CPU is executing code
209 * it is OK to write to that code location if the contents being written
210 * are the same as what exists.
211 */
212
a26a2a27
SR
213static atomic_t in_nmi = ATOMIC_INIT(0);
214static int mod_code_status; /* holds return value of text write */
215static int mod_code_write; /* set when NMI should do the write */
216static void *mod_code_ip; /* holds the IP to write to */
217static void *mod_code_newcode; /* holds the text to write to the IP */
17666f02 218
a26a2a27
SR
219static unsigned nmi_wait_count;
220static atomic_t nmi_update_count = ATOMIC_INIT(0);
b807c3d0
SR
221
222int ftrace_arch_read_dyn_info(char *buf, int size)
223{
224 int r;
225
226 r = snprintf(buf, size, "%u %u",
227 nmi_wait_count,
228 atomic_read(&nmi_update_count));
229 return r;
230}
231
17666f02
SR
232static void ftrace_mod_code(void)
233{
234 /*
235 * Yes, more than one CPU process can be writing to mod_code_status.
236 * (and the code itself)
237 * But if one were to fail, then they all should, and if one were
238 * to succeed, then they all should.
239 */
240 mod_code_status = probe_kernel_write(mod_code_ip, mod_code_newcode,
241 MCOUNT_INSN_SIZE);
242
243}
244
245void ftrace_nmi_enter(void)
246{
247 atomic_inc(&in_nmi);
248 /* Must have in_nmi seen before reading write flag */
249 smp_mb();
b807c3d0 250 if (mod_code_write) {
17666f02 251 ftrace_mod_code();
b807c3d0
SR
252 atomic_inc(&nmi_update_count);
253 }
17666f02
SR
254}
255
256void ftrace_nmi_exit(void)
257{
258 /* Finish all executions before clearing in_nmi */
259 smp_wmb();
260 atomic_dec(&in_nmi);
261}
262
263static void wait_for_nmi(void)
264{
b807c3d0
SR
265 int waited = 0;
266
267 while (atomic_read(&in_nmi)) {
268 waited = 1;
17666f02 269 cpu_relax();
b807c3d0
SR
270 }
271
272 if (waited)
273 nmi_wait_count++;
17666f02
SR
274}
275
276static int
277do_ftrace_mod_code(unsigned long ip, void *new_code)
278{
279 mod_code_ip = (void *)ip;
280 mod_code_newcode = new_code;
281
282 /* The buffers need to be visible before we let NMIs write them */
283 smp_wmb();
284
285 mod_code_write = 1;
286
287 /* Make sure write bit is visible before we wait on NMIs */
288 smp_mb();
289
290 wait_for_nmi();
291
292 /* Make sure all running NMIs have finished before we write the code */
293 smp_mb();
294
295 ftrace_mod_code();
296
297 /* Make sure the write happens before clearing the bit */
298 smp_wmb();
299
300 mod_code_write = 0;
301
302 /* make sure NMIs see the cleared bit */
303 smp_mb();
304
305 wait_for_nmi();
306
307 return mod_code_status;
308}
309
310
caf4b323
FW
311
312
313static unsigned char ftrace_nop[MCOUNT_INSN_SIZE];
314
31e88909 315static unsigned char *ftrace_nop_replace(void)
caf4b323
FW
316{
317 return ftrace_nop;
318}
319
31e88909 320static int
3d083395
SR
321ftrace_modify_code(unsigned long ip, unsigned char *old_code,
322 unsigned char *new_code)
323{
6f93fc07 324 unsigned char replaced[MCOUNT_INSN_SIZE];
3d083395
SR
325
326 /*
327 * Note: Due to modules and __init, code can
328 * disappear and change, we need to protect against faulting
76aefee5 329 * as well as code changing. We do this by using the
ab9a0918 330 * probe_kernel_* functions.
3d083395
SR
331 *
332 * No real locking needed, this code is run through
6f93fc07 333 * kstop_machine, or before SMP starts.
3d083395 334 */
76aefee5
SR
335
336 /* read the text we want to modify */
ab9a0918 337 if (probe_kernel_read(replaced, (void *)ip, MCOUNT_INSN_SIZE))
593eb8a2 338 return -EFAULT;
6f93fc07 339
76aefee5 340 /* Make sure it is what we expect it to be */
6f93fc07 341 if (memcmp(replaced, old_code, MCOUNT_INSN_SIZE) != 0)
593eb8a2 342 return -EINVAL;
3d083395 343
76aefee5 344 /* replace the text with the new text */
17666f02 345 if (do_ftrace_mod_code(ip, new_code))
593eb8a2 346 return -EPERM;
6f93fc07
SR
347
348 sync_core();
3d083395 349
6f93fc07 350 return 0;
3d083395
SR
351}
352
31e88909
SR
353int ftrace_make_nop(struct module *mod,
354 struct dyn_ftrace *rec, unsigned long addr)
355{
356 unsigned char *new, *old;
357 unsigned long ip = rec->ip;
358
359 old = ftrace_call_replace(ip, addr);
360 new = ftrace_nop_replace();
361
362 return ftrace_modify_code(rec->ip, old, new);
363}
364
365int ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr)
366{
367 unsigned char *new, *old;
368 unsigned long ip = rec->ip;
369
370 old = ftrace_nop_replace();
371 new = ftrace_call_replace(ip, addr);
372
373 return ftrace_modify_code(rec->ip, old, new);
374}
375
15adc048 376int ftrace_update_ftrace_func(ftrace_func_t func)
d61f82d0
SR
377{
378 unsigned long ip = (unsigned long)(&ftrace_call);
395a59d0 379 unsigned char old[MCOUNT_INSN_SIZE], *new;
d61f82d0
SR
380 int ret;
381
395a59d0 382 memcpy(old, &ftrace_call, MCOUNT_INSN_SIZE);
d61f82d0
SR
383 new = ftrace_call_replace(ip, (unsigned long)func);
384 ret = ftrace_modify_code(ip, old, new);
385
386 return ret;
387}
388
d61f82d0 389int __init ftrace_dyn_arch_init(void *data)
3d083395 390{
732f3ca7
SR
391 extern const unsigned char ftrace_test_p6nop[];
392 extern const unsigned char ftrace_test_nop5[];
393 extern const unsigned char ftrace_test_jmp[];
394 int faulted = 0;
d61f82d0 395
732f3ca7
SR
396 /*
397 * There is no good nop for all x86 archs.
398 * We will default to using the P6_NOP5, but first we
399 * will test to make sure that the nop will actually
400 * work on this CPU. If it faults, we will then
401 * go to a lesser efficient 5 byte nop. If that fails
402 * we then just use a jmp as our nop. This isn't the most
403 * efficient nop, but we can not use a multi part nop
404 * since we would then risk being preempted in the middle
405 * of that nop, and if we enabled tracing then, it might
406 * cause a system crash.
407 *
408 * TODO: check the cpuid to determine the best nop.
409 */
410 asm volatile (
732f3ca7
SR
411 "ftrace_test_jmp:"
412 "jmp ftrace_test_p6nop\n"
8b27386a
AK
413 "nop\n"
414 "nop\n"
415 "nop\n" /* 2 byte jmp + 3 bytes */
732f3ca7
SR
416 "ftrace_test_p6nop:"
417 P6_NOP5
418 "jmp 1f\n"
419 "ftrace_test_nop5:"
420 ".byte 0x66,0x66,0x66,0x66,0x90\n"
732f3ca7
SR
421 "1:"
422 ".section .fixup, \"ax\"\n"
423 "2: movl $1, %0\n"
424 " jmp ftrace_test_nop5\n"
425 "3: movl $2, %0\n"
426 " jmp 1b\n"
427 ".previous\n"
428 _ASM_EXTABLE(ftrace_test_p6nop, 2b)
429 _ASM_EXTABLE(ftrace_test_nop5, 3b)
430 : "=r"(faulted) : "0" (faulted));
431
432 switch (faulted) {
433 case 0:
434 pr_info("ftrace: converting mcount calls to 0f 1f 44 00 00\n");
8115f3f0 435 memcpy(ftrace_nop, ftrace_test_p6nop, MCOUNT_INSN_SIZE);
732f3ca7
SR
436 break;
437 case 1:
438 pr_info("ftrace: converting mcount calls to 66 66 66 66 90\n");
8115f3f0 439 memcpy(ftrace_nop, ftrace_test_nop5, MCOUNT_INSN_SIZE);
732f3ca7
SR
440 break;
441 case 2:
8b27386a 442 pr_info("ftrace: converting mcount calls to jmp . + 5\n");
8115f3f0 443 memcpy(ftrace_nop, ftrace_test_jmp, MCOUNT_INSN_SIZE);
732f3ca7
SR
444 break;
445 }
446
447 /* The return code is retured via data */
448 *(unsigned long *)data = 0;
dfa60aba 449
3d083395
SR
450 return 0;
451}
caf4b323 452#endif
This page took 0.081975 seconds and 5 git commands to generate.