x86, mm: Move down find_early_table_space()
[deliverable/linux.git] / arch / x86 / kernel / i387.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
129f6946 8#include <linux/module.h>
44210111 9#include <linux/regset.h>
f668964e 10#include <linux/sched.h>
5a0e3ad6 11#include <linux/slab.h>
f668964e
IM
12
13#include <asm/sigcontext.h>
1da177e4 14#include <asm/processor.h>
1da177e4 15#include <asm/math_emu.h>
1da177e4 16#include <asm/uaccess.h>
f668964e
IM
17#include <asm/ptrace.h>
18#include <asm/i387.h>
1361b83a 19#include <asm/fpu-internal.h>
f668964e 20#include <asm/user.h>
1da177e4 21
8546c008
LT
22/*
23 * Were we in an interrupt that interrupted kernel mode?
24 *
5d2bd700
SS
25 * For now, with eagerfpu we will return interrupted kernel FPU
26 * state as not-idle. TBD: Ideally we can change the return value
304bceda
SS
27 * to something like __thread_has_fpu(current). But we need to
28 * be careful of doing __thread_clear_has_fpu() before saving
29 * the FPU etc for supporting nested uses etc. For now, take
30 * the simple route!
31 *
32 * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
8546c008
LT
33 * pair does nothing at all: the thread must not have fpu (so
34 * that we don't try to save the FPU state), and TS must
35 * be set (so that the clts/stts pair does nothing that is
36 * visible in the interrupted kernel thread).
37 */
38static inline bool interrupted_kernel_fpu_idle(void)
39{
5d2bd700 40 if (use_eager_fpu())
304bceda
SS
41 return 0;
42
8546c008
LT
43 return !__thread_has_fpu(current) &&
44 (read_cr0() & X86_CR0_TS);
45}
46
47/*
48 * Were we in user mode (or vm86 mode) when we were
49 * interrupted?
50 *
51 * Doing kernel_fpu_begin/end() is ok if we are running
52 * in an interrupt context from user mode - we'll just
53 * save the FPU state as required.
54 */
55static inline bool interrupted_user_mode(void)
56{
57 struct pt_regs *regs = get_irq_regs();
58 return regs && user_mode_vm(regs);
59}
60
61/*
62 * Can we use the FPU in kernel mode with the
63 * whole "kernel_fpu_begin/end()" sequence?
64 *
65 * It's always ok in process context (ie "not interrupt")
66 * but it is sometimes ok even from an irq.
67 */
68bool irq_fpu_usable(void)
69{
70 return !in_interrupt() ||
71 interrupted_user_mode() ||
72 interrupted_kernel_fpu_idle();
73}
74EXPORT_SYMBOL(irq_fpu_usable);
75
b1a74bf8 76void __kernel_fpu_begin(void)
8546c008
LT
77{
78 struct task_struct *me = current;
79
8546c008
LT
80 if (__thread_has_fpu(me)) {
81 __save_init_fpu(me);
82 __thread_clear_has_fpu(me);
b1a74bf8 83 /* We do 'stts()' in __kernel_fpu_end() */
5d2bd700 84 } else if (!use_eager_fpu()) {
c6ae41e7 85 this_cpu_write(fpu_owner_task, NULL);
8546c008
LT
86 clts();
87 }
88}
b1a74bf8 89EXPORT_SYMBOL(__kernel_fpu_begin);
8546c008 90
b1a74bf8 91void __kernel_fpu_end(void)
8546c008 92{
5d2bd700 93 if (use_eager_fpu())
304bceda
SS
94 math_state_restore();
95 else
96 stts();
8546c008 97}
b1a74bf8 98EXPORT_SYMBOL(__kernel_fpu_end);
8546c008
LT
99
100void unlazy_fpu(struct task_struct *tsk)
101{
102 preempt_disable();
103 if (__thread_has_fpu(tsk)) {
104 __save_init_fpu(tsk);
105 __thread_fpu_end(tsk);
106 } else
107 tsk->fpu_counter = 0;
108 preempt_enable();
109}
110EXPORT_SYMBOL(unlazy_fpu);
111
72a671ce 112unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu;
61c4628b 113unsigned int xstate_size;
f45755b8 114EXPORT_SYMBOL_GPL(xstate_size);
61c4628b 115static struct i387_fxsave_struct fx_scratch __cpuinitdata;
1da177e4 116
1361b83a 117static void __cpuinit mxcsr_feature_mask_init(void)
1da177e4
LT
118{
119 unsigned long mask = 0;
f668964e 120
1da177e4 121 if (cpu_has_fxsr) {
61c4628b
SS
122 memset(&fx_scratch, 0, sizeof(struct i387_fxsave_struct));
123 asm volatile("fxsave %0" : : "m" (fx_scratch));
124 mask = fx_scratch.mxcsr_mask;
3b095a04
CG
125 if (mask == 0)
126 mask = 0x0000ffbf;
127 }
1da177e4 128 mxcsr_feature_mask &= mask;
1da177e4
LT
129}
130
0e49bf66 131static void __cpuinit init_thread_xstate(void)
61c4628b 132{
0e49bf66
RR
133 /*
134 * Note that xstate_size might be overwriten later during
135 * xsave_init().
136 */
137
e8a496ac 138 if (!HAVE_HWFP) {
1f999ab5
RR
139 /*
140 * Disable xsave as we do not support it if i387
141 * emulation is enabled.
142 */
143 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
144 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
e8a496ac
SS
145 xstate_size = sizeof(struct i387_soft_struct);
146 return;
147 }
148
61c4628b
SS
149 if (cpu_has_fxsr)
150 xstate_size = sizeof(struct i387_fxsave_struct);
61c4628b
SS
151 else
152 xstate_size = sizeof(struct i387_fsave_struct);
61c4628b
SS
153}
154
44210111
RM
155/*
156 * Called at bootup to set up the initial FPU state that is later cloned
157 * into all processes.
158 */
0e49bf66 159
44210111
RM
160void __cpuinit fpu_init(void)
161{
6ac8bac2
BG
162 unsigned long cr0;
163 unsigned long cr4_mask = 0;
44210111 164
6ac8bac2
BG
165 if (cpu_has_fxsr)
166 cr4_mask |= X86_CR4_OSFXSR;
167 if (cpu_has_xmm)
168 cr4_mask |= X86_CR4_OSXMMEXCPT;
169 if (cr4_mask)
170 set_in_cr4(cr4_mask);
171
172 cr0 = read_cr0();
173 cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */
174 if (!HAVE_HWFP)
175 cr0 |= X86_CR0_EM;
176 write_cr0(cr0);
44210111 177
dc1e35c6
SS
178 if (!smp_processor_id())
179 init_thread_xstate();
dc1e35c6 180
44210111 181 mxcsr_feature_mask_init();
5d2bd700
SS
182 xsave_init();
183 eager_fpu_init();
44210111 184}
0e49bf66 185
5ee481da 186void fpu_finit(struct fpu *fpu)
1da177e4 187{
e8a496ac 188 if (!HAVE_HWFP) {
86603283
AK
189 finit_soft_fpu(&fpu->state->soft);
190 return;
e8a496ac 191 }
e8a496ac 192
1da177e4 193 if (cpu_has_fxsr) {
5d2bd700 194 fx_finit(&fpu->state->fxsave);
1da177e4 195 } else {
86603283 196 struct i387_fsave_struct *fp = &fpu->state->fsave;
61c4628b
SS
197 memset(fp, 0, xstate_size);
198 fp->cwd = 0xffff037fu;
199 fp->swd = 0xffff0000u;
200 fp->twd = 0xffffffffu;
201 fp->fos = 0xffff0000u;
1da177e4 202 }
86603283 203}
5ee481da 204EXPORT_SYMBOL_GPL(fpu_finit);
86603283
AK
205
206/*
207 * The _current_ task is using the FPU for the first time
208 * so initialize it and set the mxcsr to its default
209 * value at reset if we support XMM instructions and then
0d2eb44f 210 * remember the current task has used the FPU.
86603283
AK
211 */
212int init_fpu(struct task_struct *tsk)
213{
214 int ret;
215
216 if (tsk_used_math(tsk)) {
217 if (HAVE_HWFP && tsk == current)
218 unlazy_fpu(tsk);
089f9fba 219 tsk->thread.fpu.last_cpu = ~0;
86603283
AK
220 return 0;
221 }
222
44210111 223 /*
86603283 224 * Memory allocation at the first usage of the FPU and other state.
44210111 225 */
86603283
AK
226 ret = fpu_alloc(&tsk->thread.fpu);
227 if (ret)
228 return ret;
229
230 fpu_finit(&tsk->thread.fpu);
231
1da177e4 232 set_stopped_child_used_math(tsk);
aa283f49 233 return 0;
1da177e4 234}
e5c30142 235EXPORT_SYMBOL_GPL(init_fpu);
1da177e4 236
5b3efd50
SS
237/*
238 * The xstateregs_active() routine is the same as the fpregs_active() routine,
239 * as the "regset->n" for the xstate regset will be updated based on the feature
240 * capabilites supported by the xsave.
241 */
44210111
RM
242int fpregs_active(struct task_struct *target, const struct user_regset *regset)
243{
244 return tsk_used_math(target) ? regset->n : 0;
245}
1da177e4 246
44210111 247int xfpregs_active(struct task_struct *target, const struct user_regset *regset)
1da177e4 248{
44210111
RM
249 return (cpu_has_fxsr && tsk_used_math(target)) ? regset->n : 0;
250}
1da177e4 251
44210111
RM
252int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
253 unsigned int pos, unsigned int count,
254 void *kbuf, void __user *ubuf)
255{
aa283f49
SS
256 int ret;
257
44210111
RM
258 if (!cpu_has_fxsr)
259 return -ENODEV;
260
aa283f49
SS
261 ret = init_fpu(target);
262 if (ret)
263 return ret;
44210111 264
29104e10
SS
265 sanitize_i387_state(target);
266
44210111 267 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
86603283 268 &target->thread.fpu.state->fxsave, 0, -1);
1da177e4 269}
44210111
RM
270
271int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
272 unsigned int pos, unsigned int count,
273 const void *kbuf, const void __user *ubuf)
274{
275 int ret;
276
277 if (!cpu_has_fxsr)
278 return -ENODEV;
279
aa283f49
SS
280 ret = init_fpu(target);
281 if (ret)
282 return ret;
283
29104e10
SS
284 sanitize_i387_state(target);
285
44210111 286 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
86603283 287 &target->thread.fpu.state->fxsave, 0, -1);
44210111
RM
288
289 /*
290 * mxcsr reserved bits must be masked to zero for security reasons.
291 */
86603283 292 target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
44210111 293
42deec6f
SS
294 /*
295 * update the header bits in the xsave header, indicating the
296 * presence of FP and SSE state.
297 */
298 if (cpu_has_xsave)
86603283 299 target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FPSSE;
42deec6f 300
44210111
RM
301 return ret;
302}
303
5b3efd50
SS
304int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
305 unsigned int pos, unsigned int count,
306 void *kbuf, void __user *ubuf)
307{
308 int ret;
309
310 if (!cpu_has_xsave)
311 return -ENODEV;
312
313 ret = init_fpu(target);
314 if (ret)
315 return ret;
316
317 /*
ff7fbc72
SS
318 * Copy the 48bytes defined by the software first into the xstate
319 * memory layout in the thread struct, so that we can copy the entire
320 * xstateregs to the user using one user_regset_copyout().
5b3efd50 321 */
86603283 322 memcpy(&target->thread.fpu.state->fxsave.sw_reserved,
ff7fbc72 323 xstate_fx_sw_bytes, sizeof(xstate_fx_sw_bytes));
5b3efd50
SS
324
325 /*
ff7fbc72 326 * Copy the xstate memory layout.
5b3efd50
SS
327 */
328 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
86603283 329 &target->thread.fpu.state->xsave, 0, -1);
5b3efd50
SS
330 return ret;
331}
332
333int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
334 unsigned int pos, unsigned int count,
335 const void *kbuf, const void __user *ubuf)
336{
337 int ret;
338 struct xsave_hdr_struct *xsave_hdr;
339
340 if (!cpu_has_xsave)
341 return -ENODEV;
342
343 ret = init_fpu(target);
344 if (ret)
345 return ret;
346
347 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
86603283 348 &target->thread.fpu.state->xsave, 0, -1);
5b3efd50
SS
349
350 /*
351 * mxcsr reserved bits must be masked to zero for security reasons.
352 */
86603283 353 target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
5b3efd50 354
86603283 355 xsave_hdr = &target->thread.fpu.state->xsave.xsave_hdr;
5b3efd50
SS
356
357 xsave_hdr->xstate_bv &= pcntxt_mask;
358 /*
359 * These bits must be zero.
360 */
361 xsave_hdr->reserved1[0] = xsave_hdr->reserved1[1] = 0;
362
363 return ret;
364}
365
44210111 366#if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
1da177e4 367
1da177e4
LT
368/*
369 * FPU tag word conversions.
370 */
371
3b095a04 372static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
1da177e4
LT
373{
374 unsigned int tmp; /* to avoid 16 bit prefixes in the code */
3b095a04 375
1da177e4 376 /* Transform each pair of bits into 01 (valid) or 00 (empty) */
3b095a04 377 tmp = ~twd;
44210111 378 tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
3b095a04
CG
379 /* and move the valid bits to the lower byte. */
380 tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
381 tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
382 tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
f668964e 383
3b095a04 384 return tmp;
1da177e4
LT
385}
386
497888cf 387#define FPREG_ADDR(f, n) ((void *)&(f)->st_space + (n) * 16)
44210111
RM
388#define FP_EXP_TAG_VALID 0
389#define FP_EXP_TAG_ZERO 1
390#define FP_EXP_TAG_SPECIAL 2
391#define FP_EXP_TAG_EMPTY 3
392
393static inline u32 twd_fxsr_to_i387(struct i387_fxsave_struct *fxsave)
394{
395 struct _fpxreg *st;
396 u32 tos = (fxsave->swd >> 11) & 7;
397 u32 twd = (unsigned long) fxsave->twd;
398 u32 tag;
399 u32 ret = 0xffff0000u;
400 int i;
1da177e4 401
44210111 402 for (i = 0; i < 8; i++, twd >>= 1) {
3b095a04
CG
403 if (twd & 0x1) {
404 st = FPREG_ADDR(fxsave, (i - tos) & 7);
1da177e4 405
3b095a04 406 switch (st->exponent & 0x7fff) {
1da177e4 407 case 0x7fff:
44210111 408 tag = FP_EXP_TAG_SPECIAL;
1da177e4
LT
409 break;
410 case 0x0000:
3b095a04
CG
411 if (!st->significand[0] &&
412 !st->significand[1] &&
413 !st->significand[2] &&
44210111
RM
414 !st->significand[3])
415 tag = FP_EXP_TAG_ZERO;
416 else
417 tag = FP_EXP_TAG_SPECIAL;
1da177e4
LT
418 break;
419 default:
44210111
RM
420 if (st->significand[3] & 0x8000)
421 tag = FP_EXP_TAG_VALID;
422 else
423 tag = FP_EXP_TAG_SPECIAL;
1da177e4
LT
424 break;
425 }
426 } else {
44210111 427 tag = FP_EXP_TAG_EMPTY;
1da177e4 428 }
44210111 429 ret |= tag << (2 * i);
1da177e4
LT
430 }
431 return ret;
432}
433
434/*
44210111 435 * FXSR floating point environment conversions.
1da177e4
LT
436 */
437
72a671ce 438void
f668964e 439convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
1da177e4 440{
86603283 441 struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
44210111
RM
442 struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
443 struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
444 int i;
1da177e4 445
44210111
RM
446 env->cwd = fxsave->cwd | 0xffff0000u;
447 env->swd = fxsave->swd | 0xffff0000u;
448 env->twd = twd_fxsr_to_i387(fxsave);
449
450#ifdef CONFIG_X86_64
451 env->fip = fxsave->rip;
452 env->foo = fxsave->rdp;
10c11f30
BG
453 /*
454 * should be actually ds/cs at fpu exception time, but
455 * that information is not available in 64bit mode.
456 */
457 env->fcs = task_pt_regs(tsk)->cs;
44210111 458 if (tsk == current) {
10c11f30 459 savesegment(ds, env->fos);
1da177e4 460 } else {
10c11f30 461 env->fos = tsk->thread.ds;
1da177e4 462 }
10c11f30 463 env->fos |= 0xffff0000;
44210111
RM
464#else
465 env->fip = fxsave->fip;
609b5297 466 env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
44210111
RM
467 env->foo = fxsave->foo;
468 env->fos = fxsave->fos;
469#endif
1da177e4 470
44210111
RM
471 for (i = 0; i < 8; ++i)
472 memcpy(&to[i], &from[i], sizeof(to[0]));
1da177e4
LT
473}
474
72a671ce
SS
475void convert_to_fxsr(struct task_struct *tsk,
476 const struct user_i387_ia32_struct *env)
1da177e4 477
1da177e4 478{
86603283 479 struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
44210111
RM
480 struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
481 struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
482 int i;
1da177e4 483
44210111
RM
484 fxsave->cwd = env->cwd;
485 fxsave->swd = env->swd;
486 fxsave->twd = twd_i387_to_fxsr(env->twd);
487 fxsave->fop = (u16) ((u32) env->fcs >> 16);
488#ifdef CONFIG_X86_64
489 fxsave->rip = env->fip;
490 fxsave->rdp = env->foo;
491 /* cs and ds ignored */
492#else
493 fxsave->fip = env->fip;
494 fxsave->fcs = (env->fcs & 0xffff);
495 fxsave->foo = env->foo;
496 fxsave->fos = env->fos;
497#endif
1da177e4 498
44210111
RM
499 for (i = 0; i < 8; ++i)
500 memcpy(&to[i], &from[i], sizeof(from[0]));
1da177e4
LT
501}
502
44210111
RM
503int fpregs_get(struct task_struct *target, const struct user_regset *regset,
504 unsigned int pos, unsigned int count,
505 void *kbuf, void __user *ubuf)
1da177e4 506{
44210111 507 struct user_i387_ia32_struct env;
aa283f49 508 int ret;
1da177e4 509
aa283f49
SS
510 ret = init_fpu(target);
511 if (ret)
512 return ret;
1da177e4 513
e8a496ac
SS
514 if (!HAVE_HWFP)
515 return fpregs_soft_get(target, regset, pos, count, kbuf, ubuf);
516
f668964e 517 if (!cpu_has_fxsr) {
44210111 518 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
86603283 519 &target->thread.fpu.state->fsave, 0,
61c4628b 520 -1);
f668964e 521 }
1da177e4 522
29104e10
SS
523 sanitize_i387_state(target);
524
44210111
RM
525 if (kbuf && pos == 0 && count == sizeof(env)) {
526 convert_from_fxsr(kbuf, target);
527 return 0;
1da177e4 528 }
44210111
RM
529
530 convert_from_fxsr(&env, target);
f668964e 531
44210111 532 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
1da177e4
LT
533}
534
44210111
RM
535int fpregs_set(struct task_struct *target, const struct user_regset *regset,
536 unsigned int pos, unsigned int count,
537 const void *kbuf, const void __user *ubuf)
1da177e4 538{
44210111
RM
539 struct user_i387_ia32_struct env;
540 int ret;
1da177e4 541
aa283f49
SS
542 ret = init_fpu(target);
543 if (ret)
544 return ret;
545
29104e10
SS
546 sanitize_i387_state(target);
547
e8a496ac
SS
548 if (!HAVE_HWFP)
549 return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
550
f668964e 551 if (!cpu_has_fxsr) {
44210111 552 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
86603283 553 &target->thread.fpu.state->fsave, 0, -1);
f668964e 554 }
44210111
RM
555
556 if (pos > 0 || count < sizeof(env))
557 convert_from_fxsr(&env, target);
558
559 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
560 if (!ret)
561 convert_to_fxsr(target, &env);
562
42deec6f
SS
563 /*
564 * update the header bit in the xsave header, indicating the
565 * presence of FP.
566 */
567 if (cpu_has_xsave)
86603283 568 target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FP;
44210111 569 return ret;
1da177e4
LT
570}
571
1da177e4
LT
572/*
573 * FPU state for core dumps.
60b3b9af
RM
574 * This is only used for a.out dumps now.
575 * It is declared generically using elf_fpregset_t (which is
576 * struct user_i387_struct) but is in fact only used for 32-bit
577 * dumps, so on 64-bit it is really struct user_i387_ia32_struct.
1da177e4 578 */
3b095a04 579int dump_fpu(struct pt_regs *regs, struct user_i387_struct *fpu)
1da177e4 580{
1da177e4 581 struct task_struct *tsk = current;
f668964e 582 int fpvalid;
1da177e4
LT
583
584 fpvalid = !!used_math();
60b3b9af
RM
585 if (fpvalid)
586 fpvalid = !fpregs_get(tsk, NULL,
587 0, sizeof(struct user_i387_ia32_struct),
588 fpu, NULL);
1da177e4
LT
589
590 return fpvalid;
591}
129f6946 592EXPORT_SYMBOL(dump_fpu);
1da177e4 593
60b3b9af 594#endif /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */
This page took 0.635986 seconds and 5 git commands to generate.