Merge tag 'for-3.8' of git://openrisc.net/~jonas/linux
[deliverable/linux.git] / arch / x86 / kernel / kprobes.c
CommitLineData
1da177e4
LT
1/*
2 * Kernel Probes (KProbes)
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2002, 2004
19 *
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
d6be29b8
MH
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
1da177e4
LT
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
d6be29b8
MH
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
3f33ab1c 33 * Added function return probes functionality
d6be29b8 34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
3f33ab1c 35 * kprobe-booster and kretprobe-booster for i386.
da07ab03 36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
3f33ab1c 37 * and kretprobe-booster for x86-64
d6be29b8 38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
3f33ab1c
MH
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
1da177e4 41 */
1da177e4
LT
42#include <linux/kprobes.h>
43#include <linux/ptrace.h>
1da177e4
LT
44#include <linux/string.h>
45#include <linux/slab.h>
b506a9d0 46#include <linux/hardirq.h>
1da177e4 47#include <linux/preempt.h>
c28f8966 48#include <linux/module.h>
1eeb66a1 49#include <linux/kdebug.h>
b46b3d70 50#include <linux/kallsyms.h>
c0f7ac3a 51#include <linux/ftrace.h>
9ec4b1f3 52
8533bbe9
MH
53#include <asm/cacheflush.h>
54#include <asm/desc.h>
1da177e4 55#include <asm/pgtable.h>
c28f8966 56#include <asm/uaccess.h>
19d36ccd 57#include <asm/alternative.h>
b46b3d70 58#include <asm/insn.h>
62edab90 59#include <asm/debugreg.h>
1da177e4 60
3f33ab1c
MH
61#include "kprobes-common.h"
62
1da177e4
LT
63void jprobe_return_end(void);
64
e7a510f9
AM
65DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
66DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
1da177e4 67
98272ed0 68#define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
8533bbe9
MH
69
70#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
71 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
72 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
73 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
74 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
75 << (row % 32))
76 /*
77 * Undefined/reserved opcodes, conditional jump, Opcode Extension
78 * Groups, and some special opcodes can not boost.
7115e3fc
LT
79 * This is non-const and volatile to keep gcc from statically
80 * optimizing it out, as variable_test_bit makes gcc think only
81 * *(unsigned long*) is used.
8533bbe9 82 */
7115e3fc 83static volatile u32 twobyte_is_boostable[256 / 32] = {
8533bbe9
MH
84 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
85 /* ---------------------------------------------- */
86 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
87 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */
88 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
89 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
90 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
91 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
92 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
93 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
94 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
95 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
96 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
97 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
98 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
99 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
100 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
101 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
102 /* ----------------------------------------------- */
103 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
104};
8533bbe9
MH
105#undef W
106
f438d914
MH
107struct kretprobe_blackpoint kretprobe_blacklist[] = {
108 {"__switch_to", }, /* This function switches only current task, but
109 doesn't switch kernel stack.*/
110 {NULL, NULL} /* Terminator */
111};
3f33ab1c 112
f438d914
MH
113const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
114
c0f7ac3a 115static void __kprobes __synthesize_relative_insn(void *from, void *to, u8 op)
aa470140 116{
c0f7ac3a
MH
117 struct __arch_relative_insn {
118 u8 op;
aa470140 119 s32 raddr;
c0f7ac3a
MH
120 } __attribute__((packed)) *insn;
121
122 insn = (struct __arch_relative_insn *)from;
123 insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
124 insn->op = op;
125}
126
127/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
3f33ab1c 128void __kprobes synthesize_reljump(void *from, void *to)
c0f7ac3a
MH
129{
130 __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
aa470140
MH
131}
132
3f33ab1c
MH
133/* Insert a call instruction at address 'from', which calls address 'to'.*/
134void __kprobes synthesize_relcall(void *from, void *to)
135{
136 __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
137}
138
9930927f 139/*
567a9fd8 140 * Skip the prefixes of the instruction.
9930927f 141 */
567a9fd8 142static kprobe_opcode_t *__kprobes skip_prefixes(kprobe_opcode_t *insn)
9930927f 143{
567a9fd8
MH
144 insn_attr_t attr;
145
146 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
147 while (inat_is_legacy_prefix(attr)) {
148 insn++;
149 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
150 }
9930927f 151#ifdef CONFIG_X86_64
567a9fd8
MH
152 if (inat_is_rex_prefix(attr))
153 insn++;
9930927f 154#endif
567a9fd8 155 return insn;
9930927f
HH
156}
157
aa470140 158/*
d6be29b8
MH
159 * Returns non-zero if opcode is boostable.
160 * RIP relative instructions are adjusted at copying time in 64 bits mode
aa470140 161 */
3f33ab1c 162int __kprobes can_boost(kprobe_opcode_t *opcodes)
aa470140 163{
aa470140
MH
164 kprobe_opcode_t opcode;
165 kprobe_opcode_t *orig_opcodes = opcodes;
166
cde5edbd 167 if (search_exception_tables((unsigned long)opcodes))
30390880
MH
168 return 0; /* Page fault may occur on this address. */
169
aa470140
MH
170retry:
171 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
172 return 0;
173 opcode = *(opcodes++);
174
175 /* 2nd-byte opcode */
176 if (opcode == 0x0f) {
177 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
178 return 0;
8533bbe9
MH
179 return test_bit(*opcodes,
180 (unsigned long *)twobyte_is_boostable);
aa470140
MH
181 }
182
183 switch (opcode & 0xf0) {
d6be29b8 184#ifdef CONFIG_X86_64
aa470140
MH
185 case 0x40:
186 goto retry; /* REX prefix is boostable */
d6be29b8 187#endif
aa470140
MH
188 case 0x60:
189 if (0x63 < opcode && opcode < 0x67)
190 goto retry; /* prefixes */
191 /* can't boost Address-size override and bound */
192 return (opcode != 0x62 && opcode != 0x67);
193 case 0x70:
194 return 0; /* can't boost conditional jump */
195 case 0xc0:
196 /* can't boost software-interruptions */
197 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
198 case 0xd0:
199 /* can boost AA* and XLAT */
200 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
201 case 0xe0:
202 /* can boost in/out and absolute jmps */
203 return ((opcode & 0x04) || opcode == 0xea);
204 case 0xf0:
205 if ((opcode & 0x0c) == 0 && opcode != 0xf1)
206 goto retry; /* lock/rep(ne) prefix */
207 /* clear and set flags are boostable */
208 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
209 default:
210 /* segment override prefixes are boostable */
211 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
212 goto retry; /* prefixes */
213 /* CS override prefix and call are not boostable */
214 return (opcode != 0x2e && opcode != 0x9a);
215 }
216}
217
3f33ab1c
MH
218static unsigned long
219__recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
b46b3d70
MH
220{
221 struct kprobe *kp;
86b4ce31 222
b46b3d70 223 kp = get_kprobe((void *)addr);
86b4ce31 224 /* There is no probe, return original address */
b46b3d70 225 if (!kp)
86b4ce31 226 return addr;
b46b3d70
MH
227
228 /*
229 * Basically, kp->ainsn.insn has an original instruction.
230 * However, RIP-relative instruction can not do single-stepping
c0f7ac3a 231 * at different place, __copy_instruction() tweaks the displacement of
b46b3d70
MH
232 * that instruction. In that case, we can't recover the instruction
233 * from the kp->ainsn.insn.
234 *
235 * On the other hand, kp->opcode has a copy of the first byte of
236 * the probed instruction, which is overwritten by int3. And
237 * the instruction at kp->addr is not modified by kprobes except
238 * for the first byte, we can recover the original instruction
239 * from it and kp->opcode.
240 */
241 memcpy(buf, kp->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
242 buf[0] = kp->opcode;
86b4ce31
MH
243 return (unsigned long)buf;
244}
245
86b4ce31
MH
246/*
247 * Recover the probed instruction at addr for further analysis.
248 * Caller must lock kprobes by kprobe_mutex, or disable preemption
249 * for preventing to release referencing kprobes.
250 */
3f33ab1c 251unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
86b4ce31
MH
252{
253 unsigned long __addr;
254
255 __addr = __recover_optprobed_insn(buf, addr);
256 if (__addr != addr)
257 return __addr;
258
259 return __recover_probed_insn(buf, addr);
b46b3d70
MH
260}
261
b46b3d70
MH
262/* Check if paddr is at an instruction boundary */
263static int __kprobes can_probe(unsigned long paddr)
264{
86b4ce31 265 unsigned long addr, __addr, offset = 0;
b46b3d70
MH
266 struct insn insn;
267 kprobe_opcode_t buf[MAX_INSN_SIZE];
268
6abded71 269 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
b46b3d70
MH
270 return 0;
271
272 /* Decode instructions */
273 addr = paddr - offset;
274 while (addr < paddr) {
b46b3d70
MH
275 /*
276 * Check if the instruction has been modified by another
277 * kprobe, in which case we replace the breakpoint by the
278 * original instruction in our buffer.
86b4ce31
MH
279 * Also, jump optimization will change the breakpoint to
280 * relative-jump. Since the relative-jump itself is
281 * normally used, we just go through if there is no kprobe.
b46b3d70 282 */
86b4ce31
MH
283 __addr = recover_probed_instruction(buf, addr);
284 kernel_insn_init(&insn, (void *)__addr);
b46b3d70 285 insn_get_length(&insn);
86b4ce31
MH
286
287 /*
288 * Another debugging subsystem might insert this breakpoint.
289 * In that case, we can't recover it.
290 */
291 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
292 return 0;
b46b3d70
MH
293 addr += insn.length;
294 }
295
296 return (addr == paddr);
297}
298
1da177e4 299/*
d6be29b8 300 * Returns non-zero if opcode modifies the interrupt flag.
1da177e4 301 */
8645419c 302static int __kprobes is_IF_modifier(kprobe_opcode_t *insn)
1da177e4 303{
567a9fd8
MH
304 /* Skip prefixes */
305 insn = skip_prefixes(insn);
306
1da177e4
LT
307 switch (*insn) {
308 case 0xfa: /* cli */
309 case 0xfb: /* sti */
310 case 0xcf: /* iret/iretd */
311 case 0x9d: /* popf/popfd */
312 return 1;
313 }
9930927f 314
1da177e4
LT
315 return 0;
316}
317
318/*
c0f7ac3a
MH
319 * Copy an instruction and adjust the displacement if the instruction
320 * uses the %rip-relative addressing mode.
aa470140 321 * If it does, Return the address of the 32-bit displacement word.
1da177e4 322 * If not, return null.
31f80e45 323 * Only applicable to 64-bit x86.
1da177e4 324 */
3f33ab1c 325int __kprobes __copy_instruction(u8 *dest, u8 *src)
1da177e4 326{
89ae465b 327 struct insn insn;
c0f7ac3a 328 kprobe_opcode_t buf[MAX_INSN_SIZE];
86b4ce31 329
46484688 330 kernel_insn_init(&insn, (void *)recover_probed_instruction(buf, (unsigned long)src));
c0f7ac3a 331 insn_get_length(&insn);
86b4ce31 332 /* Another subsystem puts a breakpoint, failed to recover */
46484688 333 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
86b4ce31 334 return 0;
c0f7ac3a
MH
335 memcpy(dest, insn.kaddr, insn.length);
336
337#ifdef CONFIG_X86_64
89ae465b
MH
338 if (insn_rip_relative(&insn)) {
339 s64 newdisp;
340 u8 *disp;
c0f7ac3a 341 kernel_insn_init(&insn, dest);
89ae465b
MH
342 insn_get_displacement(&insn);
343 /*
344 * The copied instruction uses the %rip-relative addressing
345 * mode. Adjust the displacement for the difference between
346 * the original location of this instruction and the location
347 * of the copy that will actually be run. The tricky bit here
348 * is making sure that the sign extension happens correctly in
349 * this calculation, since we need a signed 32-bit result to
350 * be sign-extended to 64 bits when it's added to the %rip
351 * value and yield the same 64-bit result that the sign-
352 * extension of the original signed 32-bit displacement would
353 * have given.
354 */
46484688 355 newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest;
89ae465b 356 BUG_ON((s64) (s32) newdisp != newdisp); /* Sanity check. */
c0f7ac3a 357 disp = (u8 *) dest + insn_offset_displacement(&insn);
89ae465b 358 *(s32 *) disp = (s32) newdisp;
1da177e4 359 }
d6be29b8 360#endif
c0f7ac3a 361 return insn.length;
31f80e45 362}
1da177e4 363
f709b122 364static void __kprobes arch_copy_kprobe(struct kprobe *p)
1da177e4 365{
46484688
MH
366 /* Copy an instruction with recovering if other optprobe modifies it.*/
367 __copy_instruction(p->ainsn.insn, p->addr);
368
c0f7ac3a 369 /*
46484688
MH
370 * __copy_instruction can modify the displacement of the instruction,
371 * but it doesn't affect boostable check.
c0f7ac3a 372 */
46484688 373 if (can_boost(p->ainsn.insn))
aa470140 374 p->ainsn.boostable = 0;
8533bbe9 375 else
aa470140 376 p->ainsn.boostable = -1;
8533bbe9 377
46484688
MH
378 /* Also, displacement change doesn't affect the first byte */
379 p->opcode = p->ainsn.insn[0];
1da177e4
LT
380}
381
8533bbe9
MH
382int __kprobes arch_prepare_kprobe(struct kprobe *p)
383{
4554dbcb
MH
384 if (alternatives_text_reserved(p->addr, p->addr))
385 return -EINVAL;
386
b46b3d70
MH
387 if (!can_probe((unsigned long)p->addr))
388 return -EILSEQ;
8533bbe9
MH
389 /* insn: must be on special executable page on x86. */
390 p->ainsn.insn = get_insn_slot();
391 if (!p->ainsn.insn)
392 return -ENOMEM;
393 arch_copy_kprobe(p);
394 return 0;
395}
396
0f2fbdcb 397void __kprobes arch_arm_kprobe(struct kprobe *p)
1da177e4 398{
19d36ccd 399 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
1da177e4
LT
400}
401
0f2fbdcb 402void __kprobes arch_disarm_kprobe(struct kprobe *p)
1da177e4 403{
19d36ccd 404 text_poke(p->addr, &p->opcode, 1);
7e1048b1
RL
405}
406
0498b635 407void __kprobes arch_remove_kprobe(struct kprobe *p)
7e1048b1 408{
12941560
MH
409 if (p->ainsn.insn) {
410 free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
411 p->ainsn.insn = NULL;
412 }
1da177e4
LT
413}
414
3b60211c 415static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 416{
e7a510f9
AM
417 kcb->prev_kprobe.kp = kprobe_running();
418 kcb->prev_kprobe.status = kcb->kprobe_status;
8533bbe9
MH
419 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
420 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
aa3d7e3d
PP
421}
422
3b60211c 423static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 424{
b76834bc 425 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
e7a510f9 426 kcb->kprobe_status = kcb->prev_kprobe.status;
8533bbe9
MH
427 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
428 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
aa3d7e3d
PP
429}
430
3b60211c 431static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
e7a510f9 432 struct kprobe_ctlblk *kcb)
aa3d7e3d 433{
b76834bc 434 __this_cpu_write(current_kprobe, p);
8533bbe9 435 kcb->kprobe_saved_flags = kcb->kprobe_old_flags
053de044 436 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
aa3d7e3d 437 if (is_IF_modifier(p->ainsn.insn))
053de044 438 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
aa3d7e3d
PP
439}
440
e7b5e11e 441static void __kprobes clear_btf(void)
1ecc798c 442{
ea8e61b7
PZ
443 if (test_thread_flag(TIF_BLOCKSTEP)) {
444 unsigned long debugctl = get_debugctlmsr();
445
446 debugctl &= ~DEBUGCTLMSR_BTF;
447 update_debugctlmsr(debugctl);
448 }
1ecc798c
RM
449}
450
e7b5e11e 451static void __kprobes restore_btf(void)
1ecc798c 452{
ea8e61b7
PZ
453 if (test_thread_flag(TIF_BLOCKSTEP)) {
454 unsigned long debugctl = get_debugctlmsr();
455
456 debugctl |= DEBUGCTLMSR_BTF;
457 update_debugctlmsr(debugctl);
458 }
1ecc798c
RM
459}
460
3f33ab1c
MH
461void __kprobes
462arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
73649dab 463{
8533bbe9 464 unsigned long *sara = stack_addr(regs);
ba8af12f 465
4c4308cb 466 ri->ret_addr = (kprobe_opcode_t *) *sara;
8533bbe9 467
4c4308cb
CH
468 /* Replace the return addr with trampoline addr */
469 *sara = (unsigned long) &kretprobe_trampoline;
73649dab 470}
f315decb 471
3f33ab1c
MH
472static void __kprobes
473setup_singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb, int reenter)
f315decb 474{
c0f7ac3a
MH
475 if (setup_detour_execution(p, regs, reenter))
476 return;
477
615d0ebb 478#if !defined(CONFIG_PREEMPT)
f315decb
AS
479 if (p->ainsn.boostable == 1 && !p->post_handler) {
480 /* Boost up -- we can execute copied instructions directly */
0f94eb63
MH
481 if (!reenter)
482 reset_current_kprobe();
483 /*
484 * Reentering boosted probe doesn't reset current_kprobe,
485 * nor set current_kprobe, because it doesn't use single
486 * stepping.
487 */
f315decb
AS
488 regs->ip = (unsigned long)p->ainsn.insn;
489 preempt_enable_no_resched();
490 return;
491 }
492#endif
0f94eb63
MH
493 if (reenter) {
494 save_previous_kprobe(kcb);
495 set_current_kprobe(p, regs, kcb);
496 kcb->kprobe_status = KPROBE_REENTER;
497 } else
498 kcb->kprobe_status = KPROBE_HIT_SS;
499 /* Prepare real single stepping */
500 clear_btf();
501 regs->flags |= X86_EFLAGS_TF;
502 regs->flags &= ~X86_EFLAGS_IF;
503 /* single step inline if the instruction is an int3 */
504 if (p->opcode == BREAKPOINT_INSTRUCTION)
505 regs->ip = (unsigned long)p->addr;
506 else
507 regs->ip = (unsigned long)p->ainsn.insn;
f315decb
AS
508}
509
40102d4a
HH
510/*
511 * We have reentered the kprobe_handler(), since another probe was hit while
512 * within the handler. We save the original kprobes variables and just single
513 * step on the instruction of the new probe without calling any user handlers.
514 */
3f33ab1c
MH
515static int __kprobes
516reenter_kprobe(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
40102d4a 517{
f315decb
AS
518 switch (kcb->kprobe_status) {
519 case KPROBE_HIT_SSDONE:
f315decb 520 case KPROBE_HIT_ACTIVE:
fb8830e7 521 kprobes_inc_nmissed_count(p);
0f94eb63 522 setup_singlestep(p, regs, kcb, 1);
f315decb
AS
523 break;
524 case KPROBE_HIT_SS:
e9afe9e1
MH
525 /* A probe has been hit in the codepath leading up to, or just
526 * after, single-stepping of a probed instruction. This entire
527 * codepath should strictly reside in .kprobes.text section.
528 * Raise a BUG or we'll continue in an endless reentering loop
529 * and eventually a stack overflow.
530 */
531 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
532 p->addr);
533 dump_kprobe(p);
534 BUG();
f315decb
AS
535 default:
536 /* impossible cases */
537 WARN_ON(1);
fb8830e7 538 return 0;
59e87cdc 539 }
f315decb 540
59e87cdc 541 return 1;
40102d4a 542}
73649dab 543
50a011f6 544#ifdef KPROBES_CAN_USE_FTRACE
c6aaf4d0 545static void __kprobes skip_singlestep(struct kprobe *p, struct pt_regs *regs,
50a011f6
BP
546 struct kprobe_ctlblk *kcb)
547{
548 /*
549 * Emulate singlestep (and also recover regs->ip)
550 * as if there is a 5byte nop
551 */
552 regs->ip = (unsigned long)p->addr + MCOUNT_INSN_SIZE;
553 if (unlikely(p->post_handler)) {
554 kcb->kprobe_status = KPROBE_HIT_SSDONE;
555 p->post_handler(p, regs, 0);
556 }
557 __this_cpu_write(current_kprobe, NULL);
558}
559#endif
560
8533bbe9
MH
561/*
562 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
af901ca1 563 * remain disabled throughout this function.
8533bbe9
MH
564 */
565static int __kprobes kprobe_handler(struct pt_regs *regs)
1da177e4 566{
8533bbe9 567 kprobe_opcode_t *addr;
f315decb 568 struct kprobe *p;
d217d545
AM
569 struct kprobe_ctlblk *kcb;
570
8533bbe9 571 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
d217d545
AM
572 /*
573 * We don't want to be preempted for the entire
f315decb
AS
574 * duration of kprobe processing. We conditionally
575 * re-enable preemption at the end of this function,
576 * and also in reenter_kprobe() and setup_singlestep().
d217d545
AM
577 */
578 preempt_disable();
1da177e4 579
f315decb 580 kcb = get_kprobe_ctlblk();
b9760156 581 p = get_kprobe(addr);
f315decb 582
b9760156 583 if (p) {
b9760156 584 if (kprobe_running()) {
f315decb
AS
585 if (reenter_kprobe(p, regs, kcb))
586 return 1;
1da177e4 587 } else {
b9760156
HH
588 set_current_kprobe(p, regs, kcb);
589 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
f315decb 590
1da177e4 591 /*
f315decb
AS
592 * If we have no pre-handler or it returned 0, we
593 * continue with normal processing. If we have a
594 * pre-handler and it returned non-zero, it prepped
595 * for calling the break_handler below on re-entry
596 * for jprobe processing, so get out doing nothing
597 * more here.
1da177e4 598 */
f315decb 599 if (!p->pre_handler || !p->pre_handler(p, regs))
0f94eb63 600 setup_singlestep(p, regs, kcb, 0);
f315decb 601 return 1;
b9760156 602 }
829e9245
MH
603 } else if (*addr != BREAKPOINT_INSTRUCTION) {
604 /*
605 * The breakpoint instruction was removed right
606 * after we hit it. Another cpu has removed
607 * either a probepoint or a debugger breakpoint
608 * at this address. In either case, no further
609 * handling of this interrupt is appropriate.
610 * Back up over the (now missing) int3 and run
611 * the original instruction.
612 */
613 regs->ip = (unsigned long)addr;
614 preempt_enable_no_resched();
615 return 1;
f315decb 616 } else if (kprobe_running()) {
b76834bc 617 p = __this_cpu_read(current_kprobe);
f315decb 618 if (p->break_handler && p->break_handler(p, regs)) {
c6aaf4d0
MH
619#ifdef KPROBES_CAN_USE_FTRACE
620 if (kprobe_ftrace(p)) {
621 skip_singlestep(p, regs, kcb);
622 return 1;
623 }
624#endif
0f94eb63 625 setup_singlestep(p, regs, kcb, 0);
f315decb 626 return 1;
1da177e4 627 }
f315decb 628 } /* else: not a kprobe fault; let the kernel handle it */
1da177e4 629
d217d545 630 preempt_enable_no_resched();
f315decb 631 return 0;
1da177e4
LT
632}
633
73649dab 634/*
da07ab03
MH
635 * When a retprobed function returns, this code saves registers and
636 * calls trampoline_handler() runs, which calls the kretprobe's handler.
73649dab 637 */
f1452d42 638static void __used __kprobes kretprobe_trampoline_holder(void)
1017579a 639{
d6be29b8
MH
640 asm volatile (
641 ".global kretprobe_trampoline\n"
da07ab03 642 "kretprobe_trampoline: \n"
d6be29b8 643#ifdef CONFIG_X86_64
da07ab03
MH
644 /* We don't bother saving the ss register */
645 " pushq %rsp\n"
646 " pushfq\n"
f007ea26 647 SAVE_REGS_STRING
da07ab03
MH
648 " movq %rsp, %rdi\n"
649 " call trampoline_handler\n"
650 /* Replace saved sp with true return address. */
651 " movq %rax, 152(%rsp)\n"
f007ea26 652 RESTORE_REGS_STRING
da07ab03 653 " popfq\n"
d6be29b8
MH
654#else
655 " pushf\n"
f007ea26 656 SAVE_REGS_STRING
d6be29b8
MH
657 " movl %esp, %eax\n"
658 " call trampoline_handler\n"
659 /* Move flags to cs */
fee039a1
MH
660 " movl 56(%esp), %edx\n"
661 " movl %edx, 52(%esp)\n"
d6be29b8 662 /* Replace saved flags with true return address. */
fee039a1 663 " movl %eax, 56(%esp)\n"
f007ea26 664 RESTORE_REGS_STRING
d6be29b8
MH
665 " popf\n"
666#endif
da07ab03 667 " ret\n");
1017579a 668}
73649dab
RL
669
670/*
da07ab03 671 * Called from kretprobe_trampoline
73649dab 672 */
f1452d42 673static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
73649dab 674{
62c27be0 675 struct kretprobe_instance *ri = NULL;
99219a3f 676 struct hlist_head *head, empty_rp;
62c27be0 677 struct hlist_node *node, *tmp;
991a51d8 678 unsigned long flags, orig_ret_address = 0;
d6be29b8 679 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
737480a0 680 kprobe_opcode_t *correct_ret_addr = NULL;
73649dab 681
99219a3f 682 INIT_HLIST_HEAD(&empty_rp);
ef53d9c5 683 kretprobe_hash_lock(current, &head, &flags);
8533bbe9 684 /* fixup registers */
d6be29b8 685#ifdef CONFIG_X86_64
da07ab03 686 regs->cs = __KERNEL_CS;
d6be29b8
MH
687#else
688 regs->cs = __KERNEL_CS | get_kernel_rpl();
fee039a1 689 regs->gs = 0;
d6be29b8 690#endif
da07ab03 691 regs->ip = trampoline_address;
8533bbe9 692 regs->orig_ax = ~0UL;
73649dab 693
ba8af12f
RL
694 /*
695 * It is possible to have multiple instances associated with a given
8533bbe9 696 * task either because multiple functions in the call path have
025dfdaf 697 * return probes installed on them, and/or more than one
ba8af12f
RL
698 * return probe was registered for a target function.
699 *
700 * We can handle this because:
8533bbe9 701 * - instances are always pushed into the head of the list
ba8af12f 702 * - when multiple return probes are registered for the same
8533bbe9
MH
703 * function, the (chronologically) first instance's ret_addr
704 * will be the real return address, and all the rest will
705 * point to kretprobe_trampoline.
ba8af12f
RL
706 */
707 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
62c27be0 708 if (ri->task != current)
ba8af12f 709 /* another task is sharing our hash bucket */
62c27be0 710 continue;
ba8af12f 711
737480a0
KS
712 orig_ret_address = (unsigned long)ri->ret_addr;
713
714 if (orig_ret_address != trampoline_address)
715 /*
716 * This is the real return address. Any other
717 * instances associated with this task are for
718 * other calls deeper on the call stack
719 */
720 break;
721 }
722
723 kretprobe_assert(ri, orig_ret_address, trampoline_address);
724
725 correct_ret_addr = ri->ret_addr;
726 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
727 if (ri->task != current)
728 /* another task is sharing our hash bucket */
729 continue;
730
731 orig_ret_address = (unsigned long)ri->ret_addr;
da07ab03 732 if (ri->rp && ri->rp->handler) {
b76834bc 733 __this_cpu_write(current_kprobe, &ri->rp->kp);
da07ab03 734 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
737480a0 735 ri->ret_addr = correct_ret_addr;
ba8af12f 736 ri->rp->handler(ri, regs);
b76834bc 737 __this_cpu_write(current_kprobe, NULL);
da07ab03 738 }
ba8af12f 739
99219a3f 740 recycle_rp_inst(ri, &empty_rp);
ba8af12f
RL
741
742 if (orig_ret_address != trampoline_address)
743 /*
744 * This is the real return address. Any other
745 * instances associated with this task are for
746 * other calls deeper on the call stack
747 */
748 break;
73649dab 749 }
ba8af12f 750
ef53d9c5 751 kretprobe_hash_unlock(current, &flags);
ba8af12f 752
99219a3f 753 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
754 hlist_del(&ri->hlist);
755 kfree(ri);
756 }
da07ab03 757 return (void *)orig_ret_address;
73649dab
RL
758}
759
1da177e4
LT
760/*
761 * Called after single-stepping. p->addr is the address of the
762 * instruction whose first byte has been replaced by the "int 3"
763 * instruction. To avoid the SMP problems that can occur when we
764 * temporarily put back the original opcode to single-step, we
765 * single-stepped a copy of the instruction. The address of this
766 * copy is p->ainsn.insn.
767 *
768 * This function prepares to return from the post-single-step
769 * interrupt. We have to fix up the stack as follows:
770 *
771 * 0) Except in the case of absolute or indirect jump or call instructions,
65ea5b03 772 * the new ip is relative to the copied instruction. We need to make
1da177e4
LT
773 * it relative to the original instruction.
774 *
775 * 1) If the single-stepped instruction was pushfl, then the TF and IF
65ea5b03 776 * flags are set in the just-pushed flags, and may need to be cleared.
1da177e4
LT
777 *
778 * 2) If the single-stepped instruction was a call, the return address
779 * that is atop the stack is the address following the copied instruction.
780 * We need to make it the address following the original instruction.
aa470140
MH
781 *
782 * If this is the first time we've single-stepped the instruction at
783 * this probepoint, and the instruction is boostable, boost it: add a
784 * jump instruction after the copied instruction, that jumps to the next
785 * instruction after the probepoint.
1da177e4 786 */
3f33ab1c
MH
787static void __kprobes
788resume_execution(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
1da177e4 789{
8533bbe9
MH
790 unsigned long *tos = stack_addr(regs);
791 unsigned long copy_ip = (unsigned long)p->ainsn.insn;
792 unsigned long orig_ip = (unsigned long)p->addr;
1da177e4
LT
793 kprobe_opcode_t *insn = p->ainsn.insn;
794
567a9fd8
MH
795 /* Skip prefixes */
796 insn = skip_prefixes(insn);
1da177e4 797
053de044 798 regs->flags &= ~X86_EFLAGS_TF;
1da177e4 799 switch (*insn) {
0b0122fa 800 case 0x9c: /* pushfl */
053de044 801 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
8533bbe9 802 *tos |= kcb->kprobe_old_flags;
1da177e4 803 break;
0b0122fa
MH
804 case 0xc2: /* iret/ret/lret */
805 case 0xc3:
0b9e2cac 806 case 0xca:
0b0122fa
MH
807 case 0xcb:
808 case 0xcf:
809 case 0xea: /* jmp absolute -- ip is correct */
810 /* ip is already adjusted, no more changes required */
aa470140 811 p->ainsn.boostable = 1;
0b0122fa
MH
812 goto no_change;
813 case 0xe8: /* call relative - Fix return addr */
8533bbe9 814 *tos = orig_ip + (*tos - copy_ip);
1da177e4 815 break;
e7b5e11e 816#ifdef CONFIG_X86_32
d6be29b8
MH
817 case 0x9a: /* call absolute -- same as call absolute, indirect */
818 *tos = orig_ip + (*tos - copy_ip);
819 goto no_change;
820#endif
1da177e4 821 case 0xff:
dc49e344 822 if ((insn[1] & 0x30) == 0x10) {
8533bbe9
MH
823 /*
824 * call absolute, indirect
825 * Fix return addr; ip is correct.
826 * But this is not boostable
827 */
828 *tos = orig_ip + (*tos - copy_ip);
0b0122fa 829 goto no_change;
8533bbe9
MH
830 } else if (((insn[1] & 0x31) == 0x20) ||
831 ((insn[1] & 0x31) == 0x21)) {
832 /*
833 * jmp near and far, absolute indirect
834 * ip is correct. And this is boostable
835 */
aa470140 836 p->ainsn.boostable = 1;
0b0122fa 837 goto no_change;
1da177e4 838 }
1da177e4
LT
839 default:
840 break;
841 }
842
aa470140 843 if (p->ainsn.boostable == 0) {
8533bbe9
MH
844 if ((regs->ip > copy_ip) &&
845 (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
aa470140
MH
846 /*
847 * These instructions can be executed directly if it
848 * jumps back to correct address.
849 */
c0f7ac3a
MH
850 synthesize_reljump((void *)regs->ip,
851 (void *)orig_ip + (regs->ip - copy_ip));
aa470140
MH
852 p->ainsn.boostable = 1;
853 } else {
854 p->ainsn.boostable = -1;
855 }
856 }
857
8533bbe9 858 regs->ip += orig_ip - copy_ip;
65ea5b03 859
0b0122fa 860no_change:
1ecc798c 861 restore_btf();
1da177e4
LT
862}
863
8533bbe9
MH
864/*
865 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
af901ca1 866 * remain disabled throughout this function.
8533bbe9
MH
867 */
868static int __kprobes post_kprobe_handler(struct pt_regs *regs)
1da177e4 869{
e7a510f9
AM
870 struct kprobe *cur = kprobe_running();
871 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
872
873 if (!cur)
1da177e4
LT
874 return 0;
875
acb5b8a2
YL
876 resume_execution(cur, regs, kcb);
877 regs->flags |= kcb->kprobe_saved_flags;
acb5b8a2 878
e7a510f9
AM
879 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
880 kcb->kprobe_status = KPROBE_HIT_SSDONE;
881 cur->post_handler(cur, regs, 0);
aa3d7e3d 882 }
1da177e4 883
8533bbe9 884 /* Restore back the original saved kprobes variables and continue. */
e7a510f9
AM
885 if (kcb->kprobe_status == KPROBE_REENTER) {
886 restore_previous_kprobe(kcb);
aa3d7e3d 887 goto out;
aa3d7e3d 888 }
e7a510f9 889 reset_current_kprobe();
aa3d7e3d 890out:
1da177e4
LT
891 preempt_enable_no_resched();
892
893 /*
65ea5b03 894 * if somebody else is singlestepping across a probe point, flags
1da177e4
LT
895 * will have TF set, in which case, continue the remaining processing
896 * of do_debug, as if this is not a probe hit.
897 */
053de044 898 if (regs->flags & X86_EFLAGS_TF)
1da177e4
LT
899 return 0;
900
901 return 1;
902}
903
0f2fbdcb 904int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1da177e4 905{
e7a510f9
AM
906 struct kprobe *cur = kprobe_running();
907 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
908
d6be29b8 909 switch (kcb->kprobe_status) {
c28f8966
PP
910 case KPROBE_HIT_SS:
911 case KPROBE_REENTER:
912 /*
913 * We are here because the instruction being single
914 * stepped caused a page fault. We reset the current
65ea5b03 915 * kprobe and the ip points back to the probe address
c28f8966
PP
916 * and allow the page fault handler to continue as a
917 * normal page fault.
918 */
65ea5b03 919 regs->ip = (unsigned long)cur->addr;
8533bbe9 920 regs->flags |= kcb->kprobe_old_flags;
c28f8966
PP
921 if (kcb->kprobe_status == KPROBE_REENTER)
922 restore_previous_kprobe(kcb);
923 else
924 reset_current_kprobe();
1da177e4 925 preempt_enable_no_resched();
c28f8966
PP
926 break;
927 case KPROBE_HIT_ACTIVE:
928 case KPROBE_HIT_SSDONE:
929 /*
930 * We increment the nmissed count for accounting,
8533bbe9 931 * we can also use npre/npostfault count for accounting
c28f8966
PP
932 * these specific fault cases.
933 */
934 kprobes_inc_nmissed_count(cur);
935
936 /*
937 * We come here because instructions in the pre/post
938 * handler caused the page_fault, this could happen
939 * if handler tries to access user space by
940 * copy_from_user(), get_user() etc. Let the
941 * user-specified handler try to fix it first.
942 */
943 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
944 return 1;
945
946 /*
947 * In case the user-specified fault handler returned
948 * zero, try to fix up.
949 */
d6be29b8
MH
950 if (fixup_exception(regs))
951 return 1;
6d48583b 952
c28f8966 953 /*
8533bbe9 954 * fixup routine could not handle it,
c28f8966
PP
955 * Let do_page_fault() fix it.
956 */
957 break;
958 default:
959 break;
1da177e4
LT
960 }
961 return 0;
962}
963
964/*
965 * Wrapper routine for handling exceptions.
966 */
3f33ab1c
MH
967int __kprobes
968kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, void *data)
1da177e4 969{
ade1af77 970 struct die_args *args = data;
66ff2d06
AM
971 int ret = NOTIFY_DONE;
972
8533bbe9 973 if (args->regs && user_mode_vm(args->regs))
2326c770 974 return ret;
975
1da177e4
LT
976 switch (val) {
977 case DIE_INT3:
978 if (kprobe_handler(args->regs))
66ff2d06 979 ret = NOTIFY_STOP;
1da177e4
LT
980 break;
981 case DIE_DEBUG:
62edab90
P
982 if (post_kprobe_handler(args->regs)) {
983 /*
984 * Reset the BS bit in dr6 (pointed by args->err) to
985 * denote completion of processing
986 */
987 (*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
66ff2d06 988 ret = NOTIFY_STOP;
62edab90 989 }
1da177e4
LT
990 break;
991 case DIE_GPF:
b506a9d0
QB
992 /*
993 * To be potentially processing a kprobe fault and to
994 * trust the result from kprobe_running(), we have
995 * be non-preemptible.
996 */
997 if (!preemptible() && kprobe_running() &&
1da177e4 998 kprobe_fault_handler(args->regs, args->trapnr))
66ff2d06 999 ret = NOTIFY_STOP;
1da177e4
LT
1000 break;
1001 default:
1002 break;
1003 }
66ff2d06 1004 return ret;
1da177e4
LT
1005}
1006
0f2fbdcb 1007int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4
LT
1008{
1009 struct jprobe *jp = container_of(p, struct jprobe, kp);
1010 unsigned long addr;
e7a510f9 1011 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1da177e4 1012
e7a510f9 1013 kcb->jprobe_saved_regs = *regs;
8533bbe9
MH
1014 kcb->jprobe_saved_sp = stack_addr(regs);
1015 addr = (unsigned long)(kcb->jprobe_saved_sp);
1016
1da177e4
LT
1017 /*
1018 * As Linus pointed out, gcc assumes that the callee
1019 * owns the argument space and could overwrite it, e.g.
1020 * tailcall optimization. So, to be absolutely safe
1021 * we also save and restore enough stack bytes to cover
1022 * the argument area.
1023 */
e7a510f9 1024 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
d6be29b8 1025 MIN_STACK_SIZE(addr));
053de044 1026 regs->flags &= ~X86_EFLAGS_IF;
58dfe883 1027 trace_hardirqs_off();
65ea5b03 1028 regs->ip = (unsigned long)(jp->entry);
1da177e4
LT
1029 return 1;
1030}
1031
0f2fbdcb 1032void __kprobes jprobe_return(void)
1da177e4 1033{
e7a510f9
AM
1034 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1035
d6be29b8
MH
1036 asm volatile (
1037#ifdef CONFIG_X86_64
1038 " xchg %%rbx,%%rsp \n"
1039#else
1040 " xchgl %%ebx,%%esp \n"
1041#endif
1042 " int3 \n"
1043 " .globl jprobe_return_end\n"
1044 " jprobe_return_end: \n"
1045 " nop \n"::"b"
1046 (kcb->jprobe_saved_sp):"memory");
1da177e4
LT
1047}
1048
0f2fbdcb 1049int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4 1050{
e7a510f9 1051 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
65ea5b03 1052 u8 *addr = (u8 *) (regs->ip - 1);
1da177e4
LT
1053 struct jprobe *jp = container_of(p, struct jprobe, kp);
1054
d6be29b8
MH
1055 if ((addr > (u8 *) jprobe_return) &&
1056 (addr < (u8 *) jprobe_return_end)) {
8533bbe9 1057 if (stack_addr(regs) != kcb->jprobe_saved_sp) {
29b6cd79 1058 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
d6be29b8
MH
1059 printk(KERN_ERR
1060 "current sp %p does not match saved sp %p\n",
8533bbe9 1061 stack_addr(regs), kcb->jprobe_saved_sp);
d6be29b8 1062 printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
57da8b96 1063 show_regs(saved_regs);
d6be29b8 1064 printk(KERN_ERR "Current registers\n");
57da8b96 1065 show_regs(regs);
1da177e4
LT
1066 BUG();
1067 }
e7a510f9 1068 *regs = kcb->jprobe_saved_regs;
8533bbe9
MH
1069 memcpy((kprobe_opcode_t *)(kcb->jprobe_saved_sp),
1070 kcb->jprobes_stack,
1071 MIN_STACK_SIZE(kcb->jprobe_saved_sp));
d217d545 1072 preempt_enable_no_resched();
1da177e4
LT
1073 return 1;
1074 }
1075 return 0;
1076}
ba8af12f 1077
e5253896
MH
1078#ifdef KPROBES_CAN_USE_FTRACE
1079/* Ftrace callback handler for kprobes */
1080void __kprobes kprobe_ftrace_handler(unsigned long ip, unsigned long parent_ip,
1081 struct ftrace_ops *ops, struct pt_regs *regs)
1082{
1083 struct kprobe *p;
1084 struct kprobe_ctlblk *kcb;
1085 unsigned long flags;
1086
1087 /* Disable irq for emulating a breakpoint and avoiding preempt */
1088 local_irq_save(flags);
1089
1090 p = get_kprobe((kprobe_opcode_t *)ip);
1091 if (unlikely(!p) || kprobe_disabled(p))
1092 goto end;
1093
1094 kcb = get_kprobe_ctlblk();
1095 if (kprobe_running()) {
1096 kprobes_inc_nmissed_count(p);
1097 } else {
4b036d54
MH
1098 /* Kprobe handler expects regs->ip = ip + 1 as breakpoint hit */
1099 regs->ip = ip + sizeof(kprobe_opcode_t);
e5253896
MH
1100
1101 __this_cpu_write(current_kprobe, p);
1102 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
c6aaf4d0
MH
1103 if (!p->pre_handler || !p->pre_handler(p, regs))
1104 skip_singlestep(p, regs, kcb);
1105 /*
1106 * If pre_handler returns !0, it sets regs->ip and
1107 * resets current kprobe.
1108 */
e5253896
MH
1109 }
1110end:
1111 local_irq_restore(flags);
1112}
1113
1114int __kprobes arch_prepare_kprobe_ftrace(struct kprobe *p)
1115{
1116 p->ainsn.insn = NULL;
1117 p->ainsn.boostable = -1;
1118 return 0;
1119}
1120#endif
1121
6772926b 1122int __init arch_init_kprobes(void)
ba8af12f 1123{
3f33ab1c 1124 return arch_init_optprobes();
ba8af12f 1125}
bf8f6e5b
AM
1126
1127int __kprobes arch_trampoline_kprobe(struct kprobe *p)
1128{
bf8f6e5b
AM
1129 return 0;
1130}
This page took 0.719826 seconds and 5 git commands to generate.