x86/kprobes: Fix instruction recovery on optimized path
[deliverable/linux.git] / arch / x86 / kernel / kprobes.c
CommitLineData
1da177e4
LT
1/*
2 * Kernel Probes (KProbes)
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2002, 2004
19 *
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
d6be29b8
MH
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
1da177e4
LT
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
d6be29b8
MH
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
33 * Added function return probes functionality
34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35 * kprobe-booster and kretprobe-booster for i386.
da07ab03
MH
36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37 * and kretprobe-booster for x86-64
d6be29b8
MH
38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kprobes.h>
44#include <linux/ptrace.h>
1da177e4
LT
45#include <linux/string.h>
46#include <linux/slab.h>
b506a9d0 47#include <linux/hardirq.h>
1da177e4 48#include <linux/preempt.h>
c28f8966 49#include <linux/module.h>
1eeb66a1 50#include <linux/kdebug.h>
b46b3d70 51#include <linux/kallsyms.h>
c0f7ac3a 52#include <linux/ftrace.h>
9ec4b1f3 53
8533bbe9
MH
54#include <asm/cacheflush.h>
55#include <asm/desc.h>
1da177e4 56#include <asm/pgtable.h>
c28f8966 57#include <asm/uaccess.h>
19d36ccd 58#include <asm/alternative.h>
b46b3d70 59#include <asm/insn.h>
62edab90 60#include <asm/debugreg.h>
1da177e4 61
1da177e4
LT
62void jprobe_return_end(void);
63
e7a510f9
AM
64DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
65DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
1da177e4 66
98272ed0 67#define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
8533bbe9
MH
68
69#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
70 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
71 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
72 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
73 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
74 << (row % 32))
75 /*
76 * Undefined/reserved opcodes, conditional jump, Opcode Extension
77 * Groups, and some special opcodes can not boost.
7115e3fc
LT
78 * This is non-const and volatile to keep gcc from statically
79 * optimizing it out, as variable_test_bit makes gcc think only
80 * *(unsigned long*) is used.
8533bbe9 81 */
7115e3fc 82static volatile u32 twobyte_is_boostable[256 / 32] = {
8533bbe9
MH
83 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
84 /* ---------------------------------------------- */
85 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
86 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */
87 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
88 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
89 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
90 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
91 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
92 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
93 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
94 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
95 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
96 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
97 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
98 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
99 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
100 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
101 /* ----------------------------------------------- */
102 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
103};
8533bbe9
MH
104#undef W
105
f438d914
MH
106struct kretprobe_blackpoint kretprobe_blacklist[] = {
107 {"__switch_to", }, /* This function switches only current task, but
108 doesn't switch kernel stack.*/
109 {NULL, NULL} /* Terminator */
110};
111const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
112
c0f7ac3a 113static void __kprobes __synthesize_relative_insn(void *from, void *to, u8 op)
aa470140 114{
c0f7ac3a
MH
115 struct __arch_relative_insn {
116 u8 op;
aa470140 117 s32 raddr;
c0f7ac3a
MH
118 } __attribute__((packed)) *insn;
119
120 insn = (struct __arch_relative_insn *)from;
121 insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
122 insn->op = op;
123}
124
125/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
126static void __kprobes synthesize_reljump(void *from, void *to)
127{
128 __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
aa470140
MH
129}
130
9930927f 131/*
567a9fd8 132 * Skip the prefixes of the instruction.
9930927f 133 */
567a9fd8 134static kprobe_opcode_t *__kprobes skip_prefixes(kprobe_opcode_t *insn)
9930927f 135{
567a9fd8
MH
136 insn_attr_t attr;
137
138 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
139 while (inat_is_legacy_prefix(attr)) {
140 insn++;
141 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
142 }
9930927f 143#ifdef CONFIG_X86_64
567a9fd8
MH
144 if (inat_is_rex_prefix(attr))
145 insn++;
9930927f 146#endif
567a9fd8 147 return insn;
9930927f
HH
148}
149
aa470140 150/*
d6be29b8
MH
151 * Returns non-zero if opcode is boostable.
152 * RIP relative instructions are adjusted at copying time in 64 bits mode
aa470140 153 */
e7b5e11e 154static int __kprobes can_boost(kprobe_opcode_t *opcodes)
aa470140 155{
aa470140
MH
156 kprobe_opcode_t opcode;
157 kprobe_opcode_t *orig_opcodes = opcodes;
158
cde5edbd 159 if (search_exception_tables((unsigned long)opcodes))
30390880
MH
160 return 0; /* Page fault may occur on this address. */
161
aa470140
MH
162retry:
163 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
164 return 0;
165 opcode = *(opcodes++);
166
167 /* 2nd-byte opcode */
168 if (opcode == 0x0f) {
169 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
170 return 0;
8533bbe9
MH
171 return test_bit(*opcodes,
172 (unsigned long *)twobyte_is_boostable);
aa470140
MH
173 }
174
175 switch (opcode & 0xf0) {
d6be29b8 176#ifdef CONFIG_X86_64
aa470140
MH
177 case 0x40:
178 goto retry; /* REX prefix is boostable */
d6be29b8 179#endif
aa470140
MH
180 case 0x60:
181 if (0x63 < opcode && opcode < 0x67)
182 goto retry; /* prefixes */
183 /* can't boost Address-size override and bound */
184 return (opcode != 0x62 && opcode != 0x67);
185 case 0x70:
186 return 0; /* can't boost conditional jump */
187 case 0xc0:
188 /* can't boost software-interruptions */
189 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
190 case 0xd0:
191 /* can boost AA* and XLAT */
192 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
193 case 0xe0:
194 /* can boost in/out and absolute jmps */
195 return ((opcode & 0x04) || opcode == 0xea);
196 case 0xf0:
197 if ((opcode & 0x0c) == 0 && opcode != 0xf1)
198 goto retry; /* lock/rep(ne) prefix */
199 /* clear and set flags are boostable */
200 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
201 default:
202 /* segment override prefixes are boostable */
203 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
204 goto retry; /* prefixes */
205 /* CS override prefix and call are not boostable */
206 return (opcode != 0x2e && opcode != 0x9a);
207 }
208}
209
86b4ce31
MH
210static unsigned long __recover_probed_insn(kprobe_opcode_t *buf,
211 unsigned long addr)
b46b3d70
MH
212{
213 struct kprobe *kp;
86b4ce31 214
b46b3d70 215 kp = get_kprobe((void *)addr);
86b4ce31 216 /* There is no probe, return original address */
b46b3d70 217 if (!kp)
86b4ce31 218 return addr;
b46b3d70
MH
219
220 /*
221 * Basically, kp->ainsn.insn has an original instruction.
222 * However, RIP-relative instruction can not do single-stepping
c0f7ac3a 223 * at different place, __copy_instruction() tweaks the displacement of
b46b3d70
MH
224 * that instruction. In that case, we can't recover the instruction
225 * from the kp->ainsn.insn.
226 *
227 * On the other hand, kp->opcode has a copy of the first byte of
228 * the probed instruction, which is overwritten by int3. And
229 * the instruction at kp->addr is not modified by kprobes except
230 * for the first byte, we can recover the original instruction
231 * from it and kp->opcode.
232 */
233 memcpy(buf, kp->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
234 buf[0] = kp->opcode;
86b4ce31
MH
235 return (unsigned long)buf;
236}
237
238#ifdef CONFIG_OPTPROBES
239static unsigned long __recover_optprobed_insn(kprobe_opcode_t *buf,
240 unsigned long addr)
241{
242 struct optimized_kprobe *op;
243 struct kprobe *kp;
244 long offs;
245 int i;
246
247 for (i = 0; i < RELATIVEJUMP_SIZE; i++) {
248 kp = get_kprobe((void *)addr - i);
249 /* This function only handles jump-optimized kprobe */
250 if (kp && kprobe_optimized(kp)) {
251 op = container_of(kp, struct optimized_kprobe, kp);
252 /* If op->list is not empty, op is under optimizing */
253 if (list_empty(&op->list))
254 goto found;
255 }
256 }
257
258 return addr;
259found:
260 /*
261 * If the kprobe can be optimized, original bytes which can be
262 * overwritten by jump destination address. In this case, original
263 * bytes must be recovered from op->optinsn.copied_insn buffer.
264 */
265 memcpy(buf, (void *)addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
266 if (addr == (unsigned long)kp->addr) {
267 buf[0] = kp->opcode;
268 memcpy(buf + 1, op->optinsn.copied_insn, RELATIVE_ADDR_SIZE);
269 } else {
270 offs = addr - (unsigned long)kp->addr - 1;
271 memcpy(buf, op->optinsn.copied_insn + offs, RELATIVE_ADDR_SIZE - offs);
272 }
273
274 return (unsigned long)buf;
275}
276#else
277static inline unsigned long __recover_optprobed_insn(kprobe_opcode_t *buf,
278 unsigned long addr)
279{
280 return addr;
281}
282#endif
283
284/*
285 * Recover the probed instruction at addr for further analysis.
286 * Caller must lock kprobes by kprobe_mutex, or disable preemption
287 * for preventing to release referencing kprobes.
288 */
289static unsigned long recover_probed_instruction(kprobe_opcode_t *buf,
290 unsigned long addr)
291{
292 unsigned long __addr;
293
294 __addr = __recover_optprobed_insn(buf, addr);
295 if (__addr != addr)
296 return __addr;
297
298 return __recover_probed_insn(buf, addr);
b46b3d70
MH
299}
300
b46b3d70
MH
301/* Check if paddr is at an instruction boundary */
302static int __kprobes can_probe(unsigned long paddr)
303{
86b4ce31 304 unsigned long addr, __addr, offset = 0;
b46b3d70
MH
305 struct insn insn;
306 kprobe_opcode_t buf[MAX_INSN_SIZE];
307
6abded71 308 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
b46b3d70
MH
309 return 0;
310
311 /* Decode instructions */
312 addr = paddr - offset;
313 while (addr < paddr) {
b46b3d70
MH
314 /*
315 * Check if the instruction has been modified by another
316 * kprobe, in which case we replace the breakpoint by the
317 * original instruction in our buffer.
86b4ce31
MH
318 * Also, jump optimization will change the breakpoint to
319 * relative-jump. Since the relative-jump itself is
320 * normally used, we just go through if there is no kprobe.
b46b3d70 321 */
86b4ce31
MH
322 __addr = recover_probed_instruction(buf, addr);
323 kernel_insn_init(&insn, (void *)__addr);
b46b3d70 324 insn_get_length(&insn);
86b4ce31
MH
325
326 /*
327 * Another debugging subsystem might insert this breakpoint.
328 * In that case, we can't recover it.
329 */
330 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
331 return 0;
b46b3d70
MH
332 addr += insn.length;
333 }
334
335 return (addr == paddr);
336}
337
1da177e4 338/*
d6be29b8 339 * Returns non-zero if opcode modifies the interrupt flag.
1da177e4 340 */
8645419c 341static int __kprobes is_IF_modifier(kprobe_opcode_t *insn)
1da177e4 342{
567a9fd8
MH
343 /* Skip prefixes */
344 insn = skip_prefixes(insn);
345
1da177e4
LT
346 switch (*insn) {
347 case 0xfa: /* cli */
348 case 0xfb: /* sti */
349 case 0xcf: /* iret/iretd */
350 case 0x9d: /* popf/popfd */
351 return 1;
352 }
9930927f 353
1da177e4
LT
354 return 0;
355}
356
357/*
c0f7ac3a
MH
358 * Copy an instruction and adjust the displacement if the instruction
359 * uses the %rip-relative addressing mode.
aa470140 360 * If it does, Return the address of the 32-bit displacement word.
1da177e4 361 * If not, return null.
31f80e45 362 * Only applicable to 64-bit x86.
1da177e4 363 */
c0f7ac3a 364static int __kprobes __copy_instruction(u8 *dest, u8 *src, int recover)
1da177e4 365{
89ae465b 366 struct insn insn;
c0f7ac3a 367 kprobe_opcode_t buf[MAX_INSN_SIZE];
86b4ce31
MH
368 u8 *orig_src = src; /* Back up original src for RIP calculation */
369
370 if (recover)
371 src = (u8 *)recover_probed_instruction(buf, (unsigned long)src);
1da177e4 372
c0f7ac3a 373 kernel_insn_init(&insn, src);
c0f7ac3a 374 insn_get_length(&insn);
86b4ce31
MH
375 /* Another subsystem puts a breakpoint, failed to recover */
376 if (recover && insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
377 return 0;
c0f7ac3a
MH
378 memcpy(dest, insn.kaddr, insn.length);
379
380#ifdef CONFIG_X86_64
89ae465b
MH
381 if (insn_rip_relative(&insn)) {
382 s64 newdisp;
383 u8 *disp;
c0f7ac3a 384 kernel_insn_init(&insn, dest);
89ae465b
MH
385 insn_get_displacement(&insn);
386 /*
387 * The copied instruction uses the %rip-relative addressing
388 * mode. Adjust the displacement for the difference between
389 * the original location of this instruction and the location
390 * of the copy that will actually be run. The tricky bit here
391 * is making sure that the sign extension happens correctly in
392 * this calculation, since we need a signed 32-bit result to
393 * be sign-extended to 64 bits when it's added to the %rip
394 * value and yield the same 64-bit result that the sign-
395 * extension of the original signed 32-bit displacement would
396 * have given.
397 */
86b4ce31 398 newdisp = (u8 *) orig_src + (s64) insn.displacement.value - (u8 *) dest;
89ae465b 399 BUG_ON((s64) (s32) newdisp != newdisp); /* Sanity check. */
c0f7ac3a 400 disp = (u8 *) dest + insn_offset_displacement(&insn);
89ae465b 401 *(s32 *) disp = (s32) newdisp;
1da177e4 402 }
d6be29b8 403#endif
c0f7ac3a 404 return insn.length;
31f80e45 405}
1da177e4 406
f709b122 407static void __kprobes arch_copy_kprobe(struct kprobe *p)
1da177e4 408{
c0f7ac3a
MH
409 /*
410 * Copy an instruction without recovering int3, because it will be
411 * put by another subsystem.
412 */
413 __copy_instruction(p->ainsn.insn, p->addr, 0);
31f80e45 414
8533bbe9 415 if (can_boost(p->addr))
aa470140 416 p->ainsn.boostable = 0;
8533bbe9 417 else
aa470140 418 p->ainsn.boostable = -1;
8533bbe9 419
7e1048b1 420 p->opcode = *p->addr;
1da177e4
LT
421}
422
8533bbe9
MH
423int __kprobes arch_prepare_kprobe(struct kprobe *p)
424{
4554dbcb
MH
425 if (alternatives_text_reserved(p->addr, p->addr))
426 return -EINVAL;
427
b46b3d70
MH
428 if (!can_probe((unsigned long)p->addr))
429 return -EILSEQ;
8533bbe9
MH
430 /* insn: must be on special executable page on x86. */
431 p->ainsn.insn = get_insn_slot();
432 if (!p->ainsn.insn)
433 return -ENOMEM;
434 arch_copy_kprobe(p);
435 return 0;
436}
437
0f2fbdcb 438void __kprobes arch_arm_kprobe(struct kprobe *p)
1da177e4 439{
19d36ccd 440 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
1da177e4
LT
441}
442
0f2fbdcb 443void __kprobes arch_disarm_kprobe(struct kprobe *p)
1da177e4 444{
19d36ccd 445 text_poke(p->addr, &p->opcode, 1);
7e1048b1
RL
446}
447
0498b635 448void __kprobes arch_remove_kprobe(struct kprobe *p)
7e1048b1 449{
12941560
MH
450 if (p->ainsn.insn) {
451 free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
452 p->ainsn.insn = NULL;
453 }
1da177e4
LT
454}
455
3b60211c 456static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 457{
e7a510f9
AM
458 kcb->prev_kprobe.kp = kprobe_running();
459 kcb->prev_kprobe.status = kcb->kprobe_status;
8533bbe9
MH
460 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
461 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
aa3d7e3d
PP
462}
463
3b60211c 464static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 465{
b76834bc 466 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
e7a510f9 467 kcb->kprobe_status = kcb->prev_kprobe.status;
8533bbe9
MH
468 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
469 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
aa3d7e3d
PP
470}
471
3b60211c 472static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
e7a510f9 473 struct kprobe_ctlblk *kcb)
aa3d7e3d 474{
b76834bc 475 __this_cpu_write(current_kprobe, p);
8533bbe9 476 kcb->kprobe_saved_flags = kcb->kprobe_old_flags
053de044 477 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
aa3d7e3d 478 if (is_IF_modifier(p->ainsn.insn))
053de044 479 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
aa3d7e3d
PP
480}
481
e7b5e11e 482static void __kprobes clear_btf(void)
1ecc798c 483{
ea8e61b7
PZ
484 if (test_thread_flag(TIF_BLOCKSTEP)) {
485 unsigned long debugctl = get_debugctlmsr();
486
487 debugctl &= ~DEBUGCTLMSR_BTF;
488 update_debugctlmsr(debugctl);
489 }
1ecc798c
RM
490}
491
e7b5e11e 492static void __kprobes restore_btf(void)
1ecc798c 493{
ea8e61b7
PZ
494 if (test_thread_flag(TIF_BLOCKSTEP)) {
495 unsigned long debugctl = get_debugctlmsr();
496
497 debugctl |= DEBUGCTLMSR_BTF;
498 update_debugctlmsr(debugctl);
499 }
1ecc798c
RM
500}
501
4c4308cb 502void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
0f2fbdcb 503 struct pt_regs *regs)
73649dab 504{
8533bbe9 505 unsigned long *sara = stack_addr(regs);
ba8af12f 506
4c4308cb 507 ri->ret_addr = (kprobe_opcode_t *) *sara;
8533bbe9 508
4c4308cb
CH
509 /* Replace the return addr with trampoline addr */
510 *sara = (unsigned long) &kretprobe_trampoline;
73649dab 511}
f315decb 512
c0f7ac3a
MH
513#ifdef CONFIG_OPTPROBES
514static int __kprobes setup_detour_execution(struct kprobe *p,
515 struct pt_regs *regs,
516 int reenter);
517#else
518#define setup_detour_execution(p, regs, reenter) (0)
519#endif
520
f315decb 521static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs,
0f94eb63 522 struct kprobe_ctlblk *kcb, int reenter)
f315decb 523{
c0f7ac3a
MH
524 if (setup_detour_execution(p, regs, reenter))
525 return;
526
615d0ebb 527#if !defined(CONFIG_PREEMPT)
f315decb
AS
528 if (p->ainsn.boostable == 1 && !p->post_handler) {
529 /* Boost up -- we can execute copied instructions directly */
0f94eb63
MH
530 if (!reenter)
531 reset_current_kprobe();
532 /*
533 * Reentering boosted probe doesn't reset current_kprobe,
534 * nor set current_kprobe, because it doesn't use single
535 * stepping.
536 */
f315decb
AS
537 regs->ip = (unsigned long)p->ainsn.insn;
538 preempt_enable_no_resched();
539 return;
540 }
541#endif
0f94eb63
MH
542 if (reenter) {
543 save_previous_kprobe(kcb);
544 set_current_kprobe(p, regs, kcb);
545 kcb->kprobe_status = KPROBE_REENTER;
546 } else
547 kcb->kprobe_status = KPROBE_HIT_SS;
548 /* Prepare real single stepping */
549 clear_btf();
550 regs->flags |= X86_EFLAGS_TF;
551 regs->flags &= ~X86_EFLAGS_IF;
552 /* single step inline if the instruction is an int3 */
553 if (p->opcode == BREAKPOINT_INSTRUCTION)
554 regs->ip = (unsigned long)p->addr;
555 else
556 regs->ip = (unsigned long)p->ainsn.insn;
f315decb
AS
557}
558
40102d4a
HH
559/*
560 * We have reentered the kprobe_handler(), since another probe was hit while
561 * within the handler. We save the original kprobes variables and just single
562 * step on the instruction of the new probe without calling any user handlers.
563 */
59e87cdc
MH
564static int __kprobes reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
565 struct kprobe_ctlblk *kcb)
40102d4a 566{
f315decb
AS
567 switch (kcb->kprobe_status) {
568 case KPROBE_HIT_SSDONE:
f315decb 569 case KPROBE_HIT_ACTIVE:
fb8830e7 570 kprobes_inc_nmissed_count(p);
0f94eb63 571 setup_singlestep(p, regs, kcb, 1);
f315decb
AS
572 break;
573 case KPROBE_HIT_SS:
e9afe9e1
MH
574 /* A probe has been hit in the codepath leading up to, or just
575 * after, single-stepping of a probed instruction. This entire
576 * codepath should strictly reside in .kprobes.text section.
577 * Raise a BUG or we'll continue in an endless reentering loop
578 * and eventually a stack overflow.
579 */
580 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
581 p->addr);
582 dump_kprobe(p);
583 BUG();
f315decb
AS
584 default:
585 /* impossible cases */
586 WARN_ON(1);
fb8830e7 587 return 0;
59e87cdc 588 }
f315decb 589
59e87cdc 590 return 1;
40102d4a 591}
73649dab 592
8533bbe9
MH
593/*
594 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
af901ca1 595 * remain disabled throughout this function.
8533bbe9
MH
596 */
597static int __kprobes kprobe_handler(struct pt_regs *regs)
1da177e4 598{
8533bbe9 599 kprobe_opcode_t *addr;
f315decb 600 struct kprobe *p;
d217d545
AM
601 struct kprobe_ctlblk *kcb;
602
8533bbe9 603 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
d217d545
AM
604 /*
605 * We don't want to be preempted for the entire
f315decb
AS
606 * duration of kprobe processing. We conditionally
607 * re-enable preemption at the end of this function,
608 * and also in reenter_kprobe() and setup_singlestep().
d217d545
AM
609 */
610 preempt_disable();
1da177e4 611
f315decb 612 kcb = get_kprobe_ctlblk();
b9760156 613 p = get_kprobe(addr);
f315decb 614
b9760156 615 if (p) {
b9760156 616 if (kprobe_running()) {
f315decb
AS
617 if (reenter_kprobe(p, regs, kcb))
618 return 1;
1da177e4 619 } else {
b9760156
HH
620 set_current_kprobe(p, regs, kcb);
621 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
f315decb 622
1da177e4 623 /*
f315decb
AS
624 * If we have no pre-handler or it returned 0, we
625 * continue with normal processing. If we have a
626 * pre-handler and it returned non-zero, it prepped
627 * for calling the break_handler below on re-entry
628 * for jprobe processing, so get out doing nothing
629 * more here.
1da177e4 630 */
f315decb 631 if (!p->pre_handler || !p->pre_handler(p, regs))
0f94eb63 632 setup_singlestep(p, regs, kcb, 0);
f315decb 633 return 1;
b9760156 634 }
829e9245
MH
635 } else if (*addr != BREAKPOINT_INSTRUCTION) {
636 /*
637 * The breakpoint instruction was removed right
638 * after we hit it. Another cpu has removed
639 * either a probepoint or a debugger breakpoint
640 * at this address. In either case, no further
641 * handling of this interrupt is appropriate.
642 * Back up over the (now missing) int3 and run
643 * the original instruction.
644 */
645 regs->ip = (unsigned long)addr;
646 preempt_enable_no_resched();
647 return 1;
f315decb 648 } else if (kprobe_running()) {
b76834bc 649 p = __this_cpu_read(current_kprobe);
f315decb 650 if (p->break_handler && p->break_handler(p, regs)) {
0f94eb63 651 setup_singlestep(p, regs, kcb, 0);
f315decb 652 return 1;
1da177e4 653 }
f315decb 654 } /* else: not a kprobe fault; let the kernel handle it */
1da177e4 655
d217d545 656 preempt_enable_no_resched();
f315decb 657 return 0;
1da177e4
LT
658}
659
f007ea26
MH
660#ifdef CONFIG_X86_64
661#define SAVE_REGS_STRING \
662 /* Skip cs, ip, orig_ax. */ \
663 " subq $24, %rsp\n" \
664 " pushq %rdi\n" \
665 " pushq %rsi\n" \
666 " pushq %rdx\n" \
667 " pushq %rcx\n" \
668 " pushq %rax\n" \
669 " pushq %r8\n" \
670 " pushq %r9\n" \
671 " pushq %r10\n" \
672 " pushq %r11\n" \
673 " pushq %rbx\n" \
674 " pushq %rbp\n" \
675 " pushq %r12\n" \
676 " pushq %r13\n" \
677 " pushq %r14\n" \
678 " pushq %r15\n"
679#define RESTORE_REGS_STRING \
680 " popq %r15\n" \
681 " popq %r14\n" \
682 " popq %r13\n" \
683 " popq %r12\n" \
684 " popq %rbp\n" \
685 " popq %rbx\n" \
686 " popq %r11\n" \
687 " popq %r10\n" \
688 " popq %r9\n" \
689 " popq %r8\n" \
690 " popq %rax\n" \
691 " popq %rcx\n" \
692 " popq %rdx\n" \
693 " popq %rsi\n" \
694 " popq %rdi\n" \
695 /* Skip orig_ax, ip, cs */ \
696 " addq $24, %rsp\n"
697#else
698#define SAVE_REGS_STRING \
699 /* Skip cs, ip, orig_ax and gs. */ \
700 " subl $16, %esp\n" \
701 " pushl %fs\n" \
f007ea26 702 " pushl %es\n" \
a1974798 703 " pushl %ds\n" \
f007ea26
MH
704 " pushl %eax\n" \
705 " pushl %ebp\n" \
706 " pushl %edi\n" \
707 " pushl %esi\n" \
708 " pushl %edx\n" \
709 " pushl %ecx\n" \
710 " pushl %ebx\n"
711#define RESTORE_REGS_STRING \
712 " popl %ebx\n" \
713 " popl %ecx\n" \
714 " popl %edx\n" \
715 " popl %esi\n" \
716 " popl %edi\n" \
717 " popl %ebp\n" \
718 " popl %eax\n" \
719 /* Skip ds, es, fs, gs, orig_ax, and ip. Note: don't pop cs here*/\
720 " addl $24, %esp\n"
721#endif
722
73649dab 723/*
da07ab03
MH
724 * When a retprobed function returns, this code saves registers and
725 * calls trampoline_handler() runs, which calls the kretprobe's handler.
73649dab 726 */
f1452d42 727static void __used __kprobes kretprobe_trampoline_holder(void)
1017579a 728{
d6be29b8
MH
729 asm volatile (
730 ".global kretprobe_trampoline\n"
da07ab03 731 "kretprobe_trampoline: \n"
d6be29b8 732#ifdef CONFIG_X86_64
da07ab03
MH
733 /* We don't bother saving the ss register */
734 " pushq %rsp\n"
735 " pushfq\n"
f007ea26 736 SAVE_REGS_STRING
da07ab03
MH
737 " movq %rsp, %rdi\n"
738 " call trampoline_handler\n"
739 /* Replace saved sp with true return address. */
740 " movq %rax, 152(%rsp)\n"
f007ea26 741 RESTORE_REGS_STRING
da07ab03 742 " popfq\n"
d6be29b8
MH
743#else
744 " pushf\n"
f007ea26 745 SAVE_REGS_STRING
d6be29b8
MH
746 " movl %esp, %eax\n"
747 " call trampoline_handler\n"
748 /* Move flags to cs */
fee039a1
MH
749 " movl 56(%esp), %edx\n"
750 " movl %edx, 52(%esp)\n"
d6be29b8 751 /* Replace saved flags with true return address. */
fee039a1 752 " movl %eax, 56(%esp)\n"
f007ea26 753 RESTORE_REGS_STRING
d6be29b8
MH
754 " popf\n"
755#endif
da07ab03 756 " ret\n");
1017579a 757}
73649dab
RL
758
759/*
da07ab03 760 * Called from kretprobe_trampoline
73649dab 761 */
f1452d42 762static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
73649dab 763{
62c27be0 764 struct kretprobe_instance *ri = NULL;
99219a3f 765 struct hlist_head *head, empty_rp;
62c27be0 766 struct hlist_node *node, *tmp;
991a51d8 767 unsigned long flags, orig_ret_address = 0;
d6be29b8 768 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
737480a0 769 kprobe_opcode_t *correct_ret_addr = NULL;
73649dab 770
99219a3f 771 INIT_HLIST_HEAD(&empty_rp);
ef53d9c5 772 kretprobe_hash_lock(current, &head, &flags);
8533bbe9 773 /* fixup registers */
d6be29b8 774#ifdef CONFIG_X86_64
da07ab03 775 regs->cs = __KERNEL_CS;
d6be29b8
MH
776#else
777 regs->cs = __KERNEL_CS | get_kernel_rpl();
fee039a1 778 regs->gs = 0;
d6be29b8 779#endif
da07ab03 780 regs->ip = trampoline_address;
8533bbe9 781 regs->orig_ax = ~0UL;
73649dab 782
ba8af12f
RL
783 /*
784 * It is possible to have multiple instances associated with a given
8533bbe9 785 * task either because multiple functions in the call path have
025dfdaf 786 * return probes installed on them, and/or more than one
ba8af12f
RL
787 * return probe was registered for a target function.
788 *
789 * We can handle this because:
8533bbe9 790 * - instances are always pushed into the head of the list
ba8af12f 791 * - when multiple return probes are registered for the same
8533bbe9
MH
792 * function, the (chronologically) first instance's ret_addr
793 * will be the real return address, and all the rest will
794 * point to kretprobe_trampoline.
ba8af12f
RL
795 */
796 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
62c27be0 797 if (ri->task != current)
ba8af12f 798 /* another task is sharing our hash bucket */
62c27be0 799 continue;
ba8af12f 800
737480a0
KS
801 orig_ret_address = (unsigned long)ri->ret_addr;
802
803 if (orig_ret_address != trampoline_address)
804 /*
805 * This is the real return address. Any other
806 * instances associated with this task are for
807 * other calls deeper on the call stack
808 */
809 break;
810 }
811
812 kretprobe_assert(ri, orig_ret_address, trampoline_address);
813
814 correct_ret_addr = ri->ret_addr;
815 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
816 if (ri->task != current)
817 /* another task is sharing our hash bucket */
818 continue;
819
820 orig_ret_address = (unsigned long)ri->ret_addr;
da07ab03 821 if (ri->rp && ri->rp->handler) {
b76834bc 822 __this_cpu_write(current_kprobe, &ri->rp->kp);
da07ab03 823 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
737480a0 824 ri->ret_addr = correct_ret_addr;
ba8af12f 825 ri->rp->handler(ri, regs);
b76834bc 826 __this_cpu_write(current_kprobe, NULL);
da07ab03 827 }
ba8af12f 828
99219a3f 829 recycle_rp_inst(ri, &empty_rp);
ba8af12f
RL
830
831 if (orig_ret_address != trampoline_address)
832 /*
833 * This is the real return address. Any other
834 * instances associated with this task are for
835 * other calls deeper on the call stack
836 */
837 break;
73649dab 838 }
ba8af12f 839
ef53d9c5 840 kretprobe_hash_unlock(current, &flags);
ba8af12f 841
99219a3f 842 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
843 hlist_del(&ri->hlist);
844 kfree(ri);
845 }
da07ab03 846 return (void *)orig_ret_address;
73649dab
RL
847}
848
1da177e4
LT
849/*
850 * Called after single-stepping. p->addr is the address of the
851 * instruction whose first byte has been replaced by the "int 3"
852 * instruction. To avoid the SMP problems that can occur when we
853 * temporarily put back the original opcode to single-step, we
854 * single-stepped a copy of the instruction. The address of this
855 * copy is p->ainsn.insn.
856 *
857 * This function prepares to return from the post-single-step
858 * interrupt. We have to fix up the stack as follows:
859 *
860 * 0) Except in the case of absolute or indirect jump or call instructions,
65ea5b03 861 * the new ip is relative to the copied instruction. We need to make
1da177e4
LT
862 * it relative to the original instruction.
863 *
864 * 1) If the single-stepped instruction was pushfl, then the TF and IF
65ea5b03 865 * flags are set in the just-pushed flags, and may need to be cleared.
1da177e4
LT
866 *
867 * 2) If the single-stepped instruction was a call, the return address
868 * that is atop the stack is the address following the copied instruction.
869 * We need to make it the address following the original instruction.
aa470140
MH
870 *
871 * If this is the first time we've single-stepped the instruction at
872 * this probepoint, and the instruction is boostable, boost it: add a
873 * jump instruction after the copied instruction, that jumps to the next
874 * instruction after the probepoint.
1da177e4 875 */
e7a510f9
AM
876static void __kprobes resume_execution(struct kprobe *p,
877 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
1da177e4 878{
8533bbe9
MH
879 unsigned long *tos = stack_addr(regs);
880 unsigned long copy_ip = (unsigned long)p->ainsn.insn;
881 unsigned long orig_ip = (unsigned long)p->addr;
1da177e4
LT
882 kprobe_opcode_t *insn = p->ainsn.insn;
883
567a9fd8
MH
884 /* Skip prefixes */
885 insn = skip_prefixes(insn);
1da177e4 886
053de044 887 regs->flags &= ~X86_EFLAGS_TF;
1da177e4 888 switch (*insn) {
0b0122fa 889 case 0x9c: /* pushfl */
053de044 890 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
8533bbe9 891 *tos |= kcb->kprobe_old_flags;
1da177e4 892 break;
0b0122fa
MH
893 case 0xc2: /* iret/ret/lret */
894 case 0xc3:
0b9e2cac 895 case 0xca:
0b0122fa
MH
896 case 0xcb:
897 case 0xcf:
898 case 0xea: /* jmp absolute -- ip is correct */
899 /* ip is already adjusted, no more changes required */
aa470140 900 p->ainsn.boostable = 1;
0b0122fa
MH
901 goto no_change;
902 case 0xe8: /* call relative - Fix return addr */
8533bbe9 903 *tos = orig_ip + (*tos - copy_ip);
1da177e4 904 break;
e7b5e11e 905#ifdef CONFIG_X86_32
d6be29b8
MH
906 case 0x9a: /* call absolute -- same as call absolute, indirect */
907 *tos = orig_ip + (*tos - copy_ip);
908 goto no_change;
909#endif
1da177e4 910 case 0xff:
dc49e344 911 if ((insn[1] & 0x30) == 0x10) {
8533bbe9
MH
912 /*
913 * call absolute, indirect
914 * Fix return addr; ip is correct.
915 * But this is not boostable
916 */
917 *tos = orig_ip + (*tos - copy_ip);
0b0122fa 918 goto no_change;
8533bbe9
MH
919 } else if (((insn[1] & 0x31) == 0x20) ||
920 ((insn[1] & 0x31) == 0x21)) {
921 /*
922 * jmp near and far, absolute indirect
923 * ip is correct. And this is boostable
924 */
aa470140 925 p->ainsn.boostable = 1;
0b0122fa 926 goto no_change;
1da177e4 927 }
1da177e4
LT
928 default:
929 break;
930 }
931
aa470140 932 if (p->ainsn.boostable == 0) {
8533bbe9
MH
933 if ((regs->ip > copy_ip) &&
934 (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
aa470140
MH
935 /*
936 * These instructions can be executed directly if it
937 * jumps back to correct address.
938 */
c0f7ac3a
MH
939 synthesize_reljump((void *)regs->ip,
940 (void *)orig_ip + (regs->ip - copy_ip));
aa470140
MH
941 p->ainsn.boostable = 1;
942 } else {
943 p->ainsn.boostable = -1;
944 }
945 }
946
8533bbe9 947 regs->ip += orig_ip - copy_ip;
65ea5b03 948
0b0122fa 949no_change:
1ecc798c 950 restore_btf();
1da177e4
LT
951}
952
8533bbe9
MH
953/*
954 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
af901ca1 955 * remain disabled throughout this function.
8533bbe9
MH
956 */
957static int __kprobes post_kprobe_handler(struct pt_regs *regs)
1da177e4 958{
e7a510f9
AM
959 struct kprobe *cur = kprobe_running();
960 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
961
962 if (!cur)
1da177e4
LT
963 return 0;
964
acb5b8a2
YL
965 resume_execution(cur, regs, kcb);
966 regs->flags |= kcb->kprobe_saved_flags;
acb5b8a2 967
e7a510f9
AM
968 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
969 kcb->kprobe_status = KPROBE_HIT_SSDONE;
970 cur->post_handler(cur, regs, 0);
aa3d7e3d 971 }
1da177e4 972
8533bbe9 973 /* Restore back the original saved kprobes variables and continue. */
e7a510f9
AM
974 if (kcb->kprobe_status == KPROBE_REENTER) {
975 restore_previous_kprobe(kcb);
aa3d7e3d 976 goto out;
aa3d7e3d 977 }
e7a510f9 978 reset_current_kprobe();
aa3d7e3d 979out:
1da177e4
LT
980 preempt_enable_no_resched();
981
982 /*
65ea5b03 983 * if somebody else is singlestepping across a probe point, flags
1da177e4
LT
984 * will have TF set, in which case, continue the remaining processing
985 * of do_debug, as if this is not a probe hit.
986 */
053de044 987 if (regs->flags & X86_EFLAGS_TF)
1da177e4
LT
988 return 0;
989
990 return 1;
991}
992
0f2fbdcb 993int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1da177e4 994{
e7a510f9
AM
995 struct kprobe *cur = kprobe_running();
996 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
997
d6be29b8 998 switch (kcb->kprobe_status) {
c28f8966
PP
999 case KPROBE_HIT_SS:
1000 case KPROBE_REENTER:
1001 /*
1002 * We are here because the instruction being single
1003 * stepped caused a page fault. We reset the current
65ea5b03 1004 * kprobe and the ip points back to the probe address
c28f8966
PP
1005 * and allow the page fault handler to continue as a
1006 * normal page fault.
1007 */
65ea5b03 1008 regs->ip = (unsigned long)cur->addr;
8533bbe9 1009 regs->flags |= kcb->kprobe_old_flags;
c28f8966
PP
1010 if (kcb->kprobe_status == KPROBE_REENTER)
1011 restore_previous_kprobe(kcb);
1012 else
1013 reset_current_kprobe();
1da177e4 1014 preempt_enable_no_resched();
c28f8966
PP
1015 break;
1016 case KPROBE_HIT_ACTIVE:
1017 case KPROBE_HIT_SSDONE:
1018 /*
1019 * We increment the nmissed count for accounting,
8533bbe9 1020 * we can also use npre/npostfault count for accounting
c28f8966
PP
1021 * these specific fault cases.
1022 */
1023 kprobes_inc_nmissed_count(cur);
1024
1025 /*
1026 * We come here because instructions in the pre/post
1027 * handler caused the page_fault, this could happen
1028 * if handler tries to access user space by
1029 * copy_from_user(), get_user() etc. Let the
1030 * user-specified handler try to fix it first.
1031 */
1032 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
1033 return 1;
1034
1035 /*
1036 * In case the user-specified fault handler returned
1037 * zero, try to fix up.
1038 */
d6be29b8
MH
1039 if (fixup_exception(regs))
1040 return 1;
6d48583b 1041
c28f8966 1042 /*
8533bbe9 1043 * fixup routine could not handle it,
c28f8966
PP
1044 * Let do_page_fault() fix it.
1045 */
1046 break;
1047 default:
1048 break;
1da177e4
LT
1049 }
1050 return 0;
1051}
1052
1053/*
1054 * Wrapper routine for handling exceptions.
1055 */
0f2fbdcb
PP
1056int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
1057 unsigned long val, void *data)
1da177e4 1058{
ade1af77 1059 struct die_args *args = data;
66ff2d06
AM
1060 int ret = NOTIFY_DONE;
1061
8533bbe9 1062 if (args->regs && user_mode_vm(args->regs))
2326c770 1063 return ret;
1064
1da177e4
LT
1065 switch (val) {
1066 case DIE_INT3:
1067 if (kprobe_handler(args->regs))
66ff2d06 1068 ret = NOTIFY_STOP;
1da177e4
LT
1069 break;
1070 case DIE_DEBUG:
62edab90
P
1071 if (post_kprobe_handler(args->regs)) {
1072 /*
1073 * Reset the BS bit in dr6 (pointed by args->err) to
1074 * denote completion of processing
1075 */
1076 (*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
66ff2d06 1077 ret = NOTIFY_STOP;
62edab90 1078 }
1da177e4
LT
1079 break;
1080 case DIE_GPF:
b506a9d0
QB
1081 /*
1082 * To be potentially processing a kprobe fault and to
1083 * trust the result from kprobe_running(), we have
1084 * be non-preemptible.
1085 */
1086 if (!preemptible() && kprobe_running() &&
1da177e4 1087 kprobe_fault_handler(args->regs, args->trapnr))
66ff2d06 1088 ret = NOTIFY_STOP;
1da177e4
LT
1089 break;
1090 default:
1091 break;
1092 }
66ff2d06 1093 return ret;
1da177e4
LT
1094}
1095
0f2fbdcb 1096int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4
LT
1097{
1098 struct jprobe *jp = container_of(p, struct jprobe, kp);
1099 unsigned long addr;
e7a510f9 1100 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1da177e4 1101
e7a510f9 1102 kcb->jprobe_saved_regs = *regs;
8533bbe9
MH
1103 kcb->jprobe_saved_sp = stack_addr(regs);
1104 addr = (unsigned long)(kcb->jprobe_saved_sp);
1105
1da177e4
LT
1106 /*
1107 * As Linus pointed out, gcc assumes that the callee
1108 * owns the argument space and could overwrite it, e.g.
1109 * tailcall optimization. So, to be absolutely safe
1110 * we also save and restore enough stack bytes to cover
1111 * the argument area.
1112 */
e7a510f9 1113 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
d6be29b8 1114 MIN_STACK_SIZE(addr));
053de044 1115 regs->flags &= ~X86_EFLAGS_IF;
58dfe883 1116 trace_hardirqs_off();
65ea5b03 1117 regs->ip = (unsigned long)(jp->entry);
1da177e4
LT
1118 return 1;
1119}
1120
0f2fbdcb 1121void __kprobes jprobe_return(void)
1da177e4 1122{
e7a510f9
AM
1123 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1124
d6be29b8
MH
1125 asm volatile (
1126#ifdef CONFIG_X86_64
1127 " xchg %%rbx,%%rsp \n"
1128#else
1129 " xchgl %%ebx,%%esp \n"
1130#endif
1131 " int3 \n"
1132 " .globl jprobe_return_end\n"
1133 " jprobe_return_end: \n"
1134 " nop \n"::"b"
1135 (kcb->jprobe_saved_sp):"memory");
1da177e4
LT
1136}
1137
0f2fbdcb 1138int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4 1139{
e7a510f9 1140 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
65ea5b03 1141 u8 *addr = (u8 *) (regs->ip - 1);
1da177e4
LT
1142 struct jprobe *jp = container_of(p, struct jprobe, kp);
1143
d6be29b8
MH
1144 if ((addr > (u8 *) jprobe_return) &&
1145 (addr < (u8 *) jprobe_return_end)) {
8533bbe9 1146 if (stack_addr(regs) != kcb->jprobe_saved_sp) {
29b6cd79 1147 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
d6be29b8
MH
1148 printk(KERN_ERR
1149 "current sp %p does not match saved sp %p\n",
8533bbe9 1150 stack_addr(regs), kcb->jprobe_saved_sp);
d6be29b8 1151 printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1da177e4 1152 show_registers(saved_regs);
d6be29b8 1153 printk(KERN_ERR "Current registers\n");
1da177e4
LT
1154 show_registers(regs);
1155 BUG();
1156 }
e7a510f9 1157 *regs = kcb->jprobe_saved_regs;
8533bbe9
MH
1158 memcpy((kprobe_opcode_t *)(kcb->jprobe_saved_sp),
1159 kcb->jprobes_stack,
1160 MIN_STACK_SIZE(kcb->jprobe_saved_sp));
d217d545 1161 preempt_enable_no_resched();
1da177e4
LT
1162 return 1;
1163 }
1164 return 0;
1165}
ba8af12f 1166
c0f7ac3a
MH
1167
1168#ifdef CONFIG_OPTPROBES
1169
1170/* Insert a call instruction at address 'from', which calls address 'to'.*/
1171static void __kprobes synthesize_relcall(void *from, void *to)
1172{
1173 __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
1174}
1175
1176/* Insert a move instruction which sets a pointer to eax/rdi (1st arg). */
1177static void __kprobes synthesize_set_arg1(kprobe_opcode_t *addr,
1178 unsigned long val)
1179{
1180#ifdef CONFIG_X86_64
1181 *addr++ = 0x48;
1182 *addr++ = 0xbf;
1183#else
1184 *addr++ = 0xb8;
1185#endif
1186 *(unsigned long *)addr = val;
1187}
1188
6376b229 1189static void __used __kprobes kprobes_optinsn_template_holder(void)
c0f7ac3a
MH
1190{
1191 asm volatile (
1192 ".global optprobe_template_entry\n"
1193 "optprobe_template_entry: \n"
1194#ifdef CONFIG_X86_64
1195 /* We don't bother saving the ss register */
1196 " pushq %rsp\n"
1197 " pushfq\n"
1198 SAVE_REGS_STRING
1199 " movq %rsp, %rsi\n"
1200 ".global optprobe_template_val\n"
1201 "optprobe_template_val: \n"
1202 ASM_NOP5
1203 ASM_NOP5
1204 ".global optprobe_template_call\n"
1205 "optprobe_template_call: \n"
1206 ASM_NOP5
1207 /* Move flags to rsp */
1208 " movq 144(%rsp), %rdx\n"
1209 " movq %rdx, 152(%rsp)\n"
1210 RESTORE_REGS_STRING
1211 /* Skip flags entry */
1212 " addq $8, %rsp\n"
1213 " popfq\n"
1214#else /* CONFIG_X86_32 */
1215 " pushf\n"
1216 SAVE_REGS_STRING
1217 " movl %esp, %edx\n"
1218 ".global optprobe_template_val\n"
1219 "optprobe_template_val: \n"
1220 ASM_NOP5
1221 ".global optprobe_template_call\n"
1222 "optprobe_template_call: \n"
1223 ASM_NOP5
1224 RESTORE_REGS_STRING
1225 " addl $4, %esp\n" /* skip cs */
1226 " popf\n"
1227#endif
1228 ".global optprobe_template_end\n"
1229 "optprobe_template_end: \n");
1230}
1231
1232#define TMPL_MOVE_IDX \
1233 ((long)&optprobe_template_val - (long)&optprobe_template_entry)
1234#define TMPL_CALL_IDX \
1235 ((long)&optprobe_template_call - (long)&optprobe_template_entry)
1236#define TMPL_END_IDX \
1237 ((long)&optprobe_template_end - (long)&optprobe_template_entry)
1238
1239#define INT3_SIZE sizeof(kprobe_opcode_t)
1240
1241/* Optimized kprobe call back function: called from optinsn */
1242static void __kprobes optimized_callback(struct optimized_kprobe *op,
1243 struct pt_regs *regs)
1244{
1245 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
9bbeacf5 1246 unsigned long flags;
c0f7ac3a 1247
6274de49
MH
1248 /* This is possible if op is under delayed unoptimizing */
1249 if (kprobe_disabled(&op->kp))
1250 return;
1251
9bbeacf5 1252 local_irq_save(flags);
c0f7ac3a
MH
1253 if (kprobe_running()) {
1254 kprobes_inc_nmissed_count(&op->kp);
1255 } else {
1256 /* Save skipped registers */
1257#ifdef CONFIG_X86_64
1258 regs->cs = __KERNEL_CS;
1259#else
1260 regs->cs = __KERNEL_CS | get_kernel_rpl();
1261 regs->gs = 0;
1262#endif
1263 regs->ip = (unsigned long)op->kp.addr + INT3_SIZE;
1264 regs->orig_ax = ~0UL;
1265
b76834bc 1266 __this_cpu_write(current_kprobe, &op->kp);
c0f7ac3a
MH
1267 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1268 opt_pre_handler(&op->kp, regs);
b76834bc 1269 __this_cpu_write(current_kprobe, NULL);
c0f7ac3a 1270 }
9bbeacf5 1271 local_irq_restore(flags);
c0f7ac3a
MH
1272}
1273
1274static int __kprobes copy_optimized_instructions(u8 *dest, u8 *src)
1275{
1276 int len = 0, ret;
1277
1278 while (len < RELATIVEJUMP_SIZE) {
1279 ret = __copy_instruction(dest + len, src + len, 1);
1280 if (!ret || !can_boost(dest + len))
1281 return -EINVAL;
1282 len += ret;
1283 }
1284 /* Check whether the address range is reserved */
1285 if (ftrace_text_reserved(src, src + len - 1) ||
4c3ef6d7
JB
1286 alternatives_text_reserved(src, src + len - 1) ||
1287 jump_label_text_reserved(src, src + len - 1))
c0f7ac3a
MH
1288 return -EBUSY;
1289
1290 return len;
1291}
1292
1293/* Check whether insn is indirect jump */
1294static int __kprobes insn_is_indirect_jump(struct insn *insn)
1295{
1296 return ((insn->opcode.bytes[0] == 0xff &&
1297 (X86_MODRM_REG(insn->modrm.value) & 6) == 4) || /* Jump */
1298 insn->opcode.bytes[0] == 0xea); /* Segment based jump */
1299}
1300
1301/* Check whether insn jumps into specified address range */
1302static int insn_jump_into_range(struct insn *insn, unsigned long start, int len)
1303{
1304 unsigned long target = 0;
1305
1306 switch (insn->opcode.bytes[0]) {
1307 case 0xe0: /* loopne */
1308 case 0xe1: /* loope */
1309 case 0xe2: /* loop */
1310 case 0xe3: /* jcxz */
1311 case 0xe9: /* near relative jump */
1312 case 0xeb: /* short relative jump */
1313 break;
1314 case 0x0f:
1315 if ((insn->opcode.bytes[1] & 0xf0) == 0x80) /* jcc near */
1316 break;
1317 return 0;
1318 default:
1319 if ((insn->opcode.bytes[0] & 0xf0) == 0x70) /* jcc short */
1320 break;
1321 return 0;
1322 }
1323 target = (unsigned long)insn->next_byte + insn->immediate.value;
1324
1325 return (start <= target && target <= start + len);
1326}
1327
1328/* Decode whole function to ensure any instructions don't jump into target */
1329static int __kprobes can_optimize(unsigned long paddr)
1330{
86b4ce31 1331 unsigned long addr, __addr, size = 0, offset = 0;
c0f7ac3a
MH
1332 struct insn insn;
1333 kprobe_opcode_t buf[MAX_INSN_SIZE];
c0f7ac3a
MH
1334
1335 /* Lookup symbol including addr */
6abded71 1336 if (!kallsyms_lookup_size_offset(paddr, &size, &offset))
c0f7ac3a
MH
1337 return 0;
1338
2a8247a2
JO
1339 /*
1340 * Do not optimize in the entry code due to the unstable
1341 * stack handling.
1342 */
1343 if ((paddr >= (unsigned long )__entry_text_start) &&
1344 (paddr < (unsigned long )__entry_text_end))
1345 return 0;
1346
c0f7ac3a
MH
1347 /* Check there is enough space for a relative jump. */
1348 if (size - offset < RELATIVEJUMP_SIZE)
1349 return 0;
1350
1351 /* Decode instructions */
1352 addr = paddr - offset;
1353 while (addr < paddr - offset + size) { /* Decode until function end */
1354 if (search_exception_tables(addr))
1355 /*
1356 * Since some fixup code will jumps into this function,
1357 * we can't optimize kprobe in this function.
1358 */
1359 return 0;
86b4ce31
MH
1360 __addr = recover_probed_instruction(buf, addr);
1361 kernel_insn_init(&insn, (void *)__addr);
c0f7ac3a 1362 insn_get_length(&insn);
86b4ce31
MH
1363 /* Another subsystem puts a breakpoint */
1364 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
1365 return 0;
c0f7ac3a
MH
1366 /* Recover address */
1367 insn.kaddr = (void *)addr;
1368 insn.next_byte = (void *)(addr + insn.length);
1369 /* Check any instructions don't jump into target */
1370 if (insn_is_indirect_jump(&insn) ||
1371 insn_jump_into_range(&insn, paddr + INT3_SIZE,
1372 RELATIVE_ADDR_SIZE))
1373 return 0;
1374 addr += insn.length;
1375 }
1376
1377 return 1;
1378}
1379
1380/* Check optimized_kprobe can actually be optimized. */
1381int __kprobes arch_check_optimized_kprobe(struct optimized_kprobe *op)
1382{
1383 int i;
1384 struct kprobe *p;
1385
1386 for (i = 1; i < op->optinsn.size; i++) {
1387 p = get_kprobe(op->kp.addr + i);
1388 if (p && !kprobe_disabled(p))
1389 return -EEXIST;
1390 }
1391
1392 return 0;
1393}
1394
1395/* Check the addr is within the optimized instructions. */
1396int __kprobes arch_within_optimized_kprobe(struct optimized_kprobe *op,
1397 unsigned long addr)
1398{
1399 return ((unsigned long)op->kp.addr <= addr &&
1400 (unsigned long)op->kp.addr + op->optinsn.size > addr);
1401}
1402
1403/* Free optimized instruction slot */
1404static __kprobes
1405void __arch_remove_optimized_kprobe(struct optimized_kprobe *op, int dirty)
1406{
1407 if (op->optinsn.insn) {
1408 free_optinsn_slot(op->optinsn.insn, dirty);
1409 op->optinsn.insn = NULL;
1410 op->optinsn.size = 0;
1411 }
1412}
1413
1414void __kprobes arch_remove_optimized_kprobe(struct optimized_kprobe *op)
1415{
1416 __arch_remove_optimized_kprobe(op, 1);
1417}
1418
1419/*
1420 * Copy replacing target instructions
1421 * Target instructions MUST be relocatable (checked inside)
86b4ce31 1422 * This is called when new aggr(opt)probe is allocated or reused.
c0f7ac3a
MH
1423 */
1424int __kprobes arch_prepare_optimized_kprobe(struct optimized_kprobe *op)
1425{
1426 u8 *buf;
1427 int ret;
1428 long rel;
1429
1430 if (!can_optimize((unsigned long)op->kp.addr))
1431 return -EILSEQ;
1432
1433 op->optinsn.insn = get_optinsn_slot();
1434 if (!op->optinsn.insn)
1435 return -ENOMEM;
1436
1437 /*
1438 * Verify if the address gap is in 2GB range, because this uses
1439 * a relative jump.
1440 */
1441 rel = (long)op->optinsn.insn - (long)op->kp.addr + RELATIVEJUMP_SIZE;
1442 if (abs(rel) > 0x7fffffff)
1443 return -ERANGE;
1444
1445 buf = (u8 *)op->optinsn.insn;
1446
1447 /* Copy instructions into the out-of-line buffer */
1448 ret = copy_optimized_instructions(buf + TMPL_END_IDX, op->kp.addr);
1449 if (ret < 0) {
1450 __arch_remove_optimized_kprobe(op, 0);
1451 return ret;
1452 }
1453 op->optinsn.size = ret;
1454
1455 /* Copy arch-dep-instance from template */
1456 memcpy(buf, &optprobe_template_entry, TMPL_END_IDX);
1457
1458 /* Set probe information */
1459 synthesize_set_arg1(buf + TMPL_MOVE_IDX, (unsigned long)op);
1460
1461 /* Set probe function call */
1462 synthesize_relcall(buf + TMPL_CALL_IDX, optimized_callback);
1463
1464 /* Set returning jmp instruction at the tail of out-of-line buffer */
1465 synthesize_reljump(buf + TMPL_END_IDX + op->optinsn.size,
1466 (u8 *)op->kp.addr + op->optinsn.size);
1467
1468 flush_icache_range((unsigned long) buf,
1469 (unsigned long) buf + TMPL_END_IDX +
1470 op->optinsn.size + RELATIVEJUMP_SIZE);
1471 return 0;
1472}
1473
cd7ebe22
MH
1474#define MAX_OPTIMIZE_PROBES 256
1475static struct text_poke_param *jump_poke_params;
1476static struct jump_poke_buffer {
1477 u8 buf[RELATIVEJUMP_SIZE];
1478} *jump_poke_bufs;
1479
1480static void __kprobes setup_optimize_kprobe(struct text_poke_param *tprm,
1481 u8 *insn_buf,
1482 struct optimized_kprobe *op)
c0f7ac3a 1483{
c0f7ac3a
MH
1484 s32 rel = (s32)((long)op->optinsn.insn -
1485 ((long)op->kp.addr + RELATIVEJUMP_SIZE));
1486
1487 /* Backup instructions which will be replaced by jump address */
1488 memcpy(op->optinsn.copied_insn, op->kp.addr + INT3_SIZE,
1489 RELATIVE_ADDR_SIZE);
1490
cd7ebe22
MH
1491 insn_buf[0] = RELATIVEJUMP_OPCODE;
1492 *(s32 *)(&insn_buf[1]) = rel;
1493
1494 tprm->addr = op->kp.addr;
1495 tprm->opcode = insn_buf;
1496 tprm->len = RELATIVEJUMP_SIZE;
1497}
1498
1499/*
1500 * Replace breakpoints (int3) with relative jumps.
1501 * Caller must call with locking kprobe_mutex and text_mutex.
1502 */
1503void __kprobes arch_optimize_kprobes(struct list_head *oplist)
1504{
1505 struct optimized_kprobe *op, *tmp;
1506 int c = 0;
1507
1508 list_for_each_entry_safe(op, tmp, oplist, list) {
1509 WARN_ON(kprobe_disabled(&op->kp));
1510 /* Setup param */
1511 setup_optimize_kprobe(&jump_poke_params[c],
1512 jump_poke_bufs[c].buf, op);
1513 list_del_init(&op->list);
1514 if (++c >= MAX_OPTIMIZE_PROBES)
1515 break;
1516 }
c0f7ac3a
MH
1517
1518 /*
1519 * text_poke_smp doesn't support NMI/MCE code modifying.
1520 * However, since kprobes itself also doesn't support NMI/MCE
1521 * code probing, it's not a problem.
1522 */
cd7ebe22 1523 text_poke_smp_batch(jump_poke_params, c);
c0f7ac3a
MH
1524}
1525
f984ba4e
MH
1526static void __kprobes setup_unoptimize_kprobe(struct text_poke_param *tprm,
1527 u8 *insn_buf,
1528 struct optimized_kprobe *op)
1529{
1530 /* Set int3 to first byte for kprobes */
1531 insn_buf[0] = BREAKPOINT_INSTRUCTION;
1532 memcpy(insn_buf + 1, op->optinsn.copied_insn, RELATIVE_ADDR_SIZE);
1533
1534 tprm->addr = op->kp.addr;
1535 tprm->opcode = insn_buf;
1536 tprm->len = RELATIVEJUMP_SIZE;
1537}
1538
1539/*
1540 * Recover original instructions and breakpoints from relative jumps.
1541 * Caller must call with locking kprobe_mutex.
1542 */
1543extern void arch_unoptimize_kprobes(struct list_head *oplist,
1544 struct list_head *done_list)
1545{
1546 struct optimized_kprobe *op, *tmp;
1547 int c = 0;
1548
1549 list_for_each_entry_safe(op, tmp, oplist, list) {
1550 /* Setup param */
1551 setup_unoptimize_kprobe(&jump_poke_params[c],
1552 jump_poke_bufs[c].buf, op);
1553 list_move(&op->list, done_list);
1554 if (++c >= MAX_OPTIMIZE_PROBES)
1555 break;
1556 }
1557
1558 /*
1559 * text_poke_smp doesn't support NMI/MCE code modifying.
1560 * However, since kprobes itself also doesn't support NMI/MCE
1561 * code probing, it's not a problem.
1562 */
1563 text_poke_smp_batch(jump_poke_params, c);
1564}
1565
c0f7ac3a
MH
1566/* Replace a relative jump with a breakpoint (int3). */
1567void __kprobes arch_unoptimize_kprobe(struct optimized_kprobe *op)
1568{
1569 u8 buf[RELATIVEJUMP_SIZE];
1570
1571 /* Set int3 to first byte for kprobes */
1572 buf[0] = BREAKPOINT_INSTRUCTION;
1573 memcpy(buf + 1, op->optinsn.copied_insn, RELATIVE_ADDR_SIZE);
1574 text_poke_smp(op->kp.addr, buf, RELATIVEJUMP_SIZE);
1575}
1576
1577static int __kprobes setup_detour_execution(struct kprobe *p,
1578 struct pt_regs *regs,
1579 int reenter)
1580{
1581 struct optimized_kprobe *op;
1582
1583 if (p->flags & KPROBE_FLAG_OPTIMIZED) {
1584 /* This kprobe is really able to run optimized path. */
1585 op = container_of(p, struct optimized_kprobe, kp);
1586 /* Detour through copied instructions */
1587 regs->ip = (unsigned long)op->optinsn.insn + TMPL_END_IDX;
1588 if (!reenter)
1589 reset_current_kprobe();
1590 preempt_enable_no_resched();
1591 return 1;
1592 }
1593 return 0;
1594}
cd7ebe22
MH
1595
1596static int __kprobes init_poke_params(void)
1597{
1598 /* Allocate code buffer and parameter array */
1599 jump_poke_bufs = kmalloc(sizeof(struct jump_poke_buffer) *
1600 MAX_OPTIMIZE_PROBES, GFP_KERNEL);
1601 if (!jump_poke_bufs)
1602 return -ENOMEM;
1603
1604 jump_poke_params = kmalloc(sizeof(struct text_poke_param) *
1605 MAX_OPTIMIZE_PROBES, GFP_KERNEL);
1606 if (!jump_poke_params) {
1607 kfree(jump_poke_bufs);
1608 jump_poke_bufs = NULL;
1609 return -ENOMEM;
1610 }
1611
1612 return 0;
1613}
1614#else /* !CONFIG_OPTPROBES */
1615static int __kprobes init_poke_params(void)
1616{
1617 return 0;
1618}
c0f7ac3a
MH
1619#endif
1620
6772926b 1621int __init arch_init_kprobes(void)
ba8af12f 1622{
cd7ebe22 1623 return init_poke_params();
ba8af12f 1624}
bf8f6e5b
AM
1625
1626int __kprobes arch_trampoline_kprobe(struct kprobe *p)
1627{
bf8f6e5b
AM
1628 return 0;
1629}
This page took 0.649513 seconds and 5 git commands to generate.