kexec: load and relocate purgatory at kernel load time
[deliverable/linux.git] / arch / x86 / kernel / machine_kexec_64.c
CommitLineData
5234f5eb 1/*
835c34a1 2 * handle transition of Linux booting another kernel
5234f5eb
EB
3 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8
12db5562
VG
9#define pr_fmt(fmt) "kexec: " fmt
10
5234f5eb
EB
11#include <linux/mm.h>
12#include <linux/kexec.h>
5234f5eb 13#include <linux/string.h>
5a0e3ad6 14#include <linux/gfp.h>
5234f5eb 15#include <linux/reboot.h>
fd59d231 16#include <linux/numa.h>
f43fdad8 17#include <linux/ftrace.h>
fef3a7a1 18#include <linux/io.h>
fee7b0d8 19#include <linux/suspend.h>
f43fdad8 20
9ebdc79f 21#include <asm/init.h>
5234f5eb 22#include <asm/pgtable.h>
5234f5eb
EB
23#include <asm/tlbflush.h>
24#include <asm/mmu_context.h>
17f557e5 25#include <asm/debugreg.h>
8bf27556 26
cb105258
VG
27static struct kexec_file_ops *kexec_file_loaders[] = {
28 NULL,
29};
30
f5deb796
HY
31static void free_transition_pgtable(struct kimage *image)
32{
33 free_page((unsigned long)image->arch.pud);
34 free_page((unsigned long)image->arch.pmd);
35 free_page((unsigned long)image->arch.pte);
36}
37
38static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
39{
40 pud_t *pud;
41 pmd_t *pmd;
42 pte_t *pte;
43 unsigned long vaddr, paddr;
44 int result = -ENOMEM;
45
46 vaddr = (unsigned long)relocate_kernel;
47 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
48 pgd += pgd_index(vaddr);
49 if (!pgd_present(*pgd)) {
50 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
51 if (!pud)
52 goto err;
53 image->arch.pud = pud;
54 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
55 }
56 pud = pud_offset(pgd, vaddr);
57 if (!pud_present(*pud)) {
58 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
59 if (!pmd)
60 goto err;
61 image->arch.pmd = pmd;
62 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
63 }
64 pmd = pmd_offset(pud, vaddr);
65 if (!pmd_present(*pmd)) {
66 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
67 if (!pte)
68 goto err;
69 image->arch.pte = pte;
70 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
71 }
72 pte = pte_offset_kernel(pmd, vaddr);
73 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC));
74 return 0;
75err:
76 free_transition_pgtable(image);
77 return result;
78}
79
9ebdc79f
YL
80static void *alloc_pgt_page(void *data)
81{
82 struct kimage *image = (struct kimage *)data;
83 struct page *page;
84 void *p = NULL;
85
86 page = kimage_alloc_control_pages(image, 0);
87 if (page) {
88 p = page_address(page);
89 clear_page(p);
90 }
91
92 return p;
93}
94
5234f5eb
EB
95static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
96{
9ebdc79f
YL
97 struct x86_mapping_info info = {
98 .alloc_pgt_page = alloc_pgt_page,
99 .context = image,
100 .pmd_flag = __PAGE_KERNEL_LARGE_EXEC,
101 };
084d1283 102 unsigned long mstart, mend;
8bf27556 103 pgd_t *level4p;
f5deb796 104 int result;
084d1283
YL
105 int i;
106
8bf27556 107 level4p = (pgd_t *)__va(start_pgtable);
9ebdc79f 108 clear_page(level4p);
0e691cf8
YL
109 for (i = 0; i < nr_pfn_mapped; i++) {
110 mstart = pfn_mapped[i].start << PAGE_SHIFT;
111 mend = pfn_mapped[i].end << PAGE_SHIFT;
112
113 result = kernel_ident_mapping_init(&info,
114 level4p, mstart, mend);
115 if (result)
116 return result;
117 }
084d1283 118
53594547 119 /*
084d1283
YL
120 * segments's mem ranges could be outside 0 ~ max_pfn,
121 * for example when jump back to original kernel from kexeced kernel.
122 * or first kernel is booted with user mem map, and second kernel
123 * could be loaded out of that range.
53594547 124 */
084d1283
YL
125 for (i = 0; i < image->nr_segments; i++) {
126 mstart = image->segment[i].mem;
127 mend = mstart + image->segment[i].memsz;
128
9ebdc79f
YL
129 result = kernel_ident_mapping_init(&info,
130 level4p, mstart, mend);
084d1283
YL
131
132 if (result)
133 return result;
134 }
135
f5deb796 136 return init_transition_pgtable(image, level4p);
5234f5eb
EB
137}
138
139static void set_idt(void *newidt, u16 limit)
140{
36c4fd23 141 struct desc_ptr curidt;
5234f5eb
EB
142
143 /* x86-64 supports unaliged loads & stores */
36c4fd23
EB
144 curidt.size = limit;
145 curidt.address = (unsigned long)newidt;
5234f5eb
EB
146
147 __asm__ __volatile__ (
36c4fd23
EB
148 "lidtq %0\n"
149 : : "m" (curidt)
5234f5eb
EB
150 );
151};
152
153
154static void set_gdt(void *newgdt, u16 limit)
155{
36c4fd23 156 struct desc_ptr curgdt;
5234f5eb
EB
157
158 /* x86-64 supports unaligned loads & stores */
36c4fd23
EB
159 curgdt.size = limit;
160 curgdt.address = (unsigned long)newgdt;
5234f5eb
EB
161
162 __asm__ __volatile__ (
36c4fd23
EB
163 "lgdtq %0\n"
164 : : "m" (curgdt)
5234f5eb
EB
165 );
166};
167
168static void load_segments(void)
169{
170 __asm__ __volatile__ (
36c4fd23
EB
171 "\tmovl %0,%%ds\n"
172 "\tmovl %0,%%es\n"
173 "\tmovl %0,%%ss\n"
174 "\tmovl %0,%%fs\n"
175 "\tmovl %0,%%gs\n"
2ec5e3a8 176 : : "a" (__KERNEL_DS) : "memory"
5234f5eb 177 );
5234f5eb
EB
178}
179
5234f5eb
EB
180int machine_kexec_prepare(struct kimage *image)
181{
4bfaaef0 182 unsigned long start_pgtable;
5234f5eb
EB
183 int result;
184
185 /* Calculate the offsets */
72414d3f 186 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
5234f5eb
EB
187
188 /* Setup the identity mapped 64bit page table */
189 result = init_pgtable(image, start_pgtable);
72414d3f 190 if (result)
5234f5eb 191 return result;
5234f5eb 192
5234f5eb
EB
193 return 0;
194}
195
196void machine_kexec_cleanup(struct kimage *image)
197{
f5deb796 198 free_transition_pgtable(image);
5234f5eb
EB
199}
200
201/*
202 * Do not allocate memory (or fail in any way) in machine_kexec().
203 * We are past the point of no return, committed to rebooting now.
204 */
3ab83521 205void machine_kexec(struct kimage *image)
5234f5eb 206{
4bfaaef0
MD
207 unsigned long page_list[PAGES_NR];
208 void *control_page;
fee7b0d8 209 int save_ftrace_enabled;
5234f5eb 210
fee7b0d8 211#ifdef CONFIG_KEXEC_JUMP
6407df5c 212 if (image->preserve_context)
fee7b0d8
HY
213 save_processor_state();
214#endif
215
216 save_ftrace_enabled = __ftrace_enabled_save();
f43fdad8 217
5234f5eb
EB
218 /* Interrupts aren't acceptable while we reboot */
219 local_irq_disable();
17f557e5 220 hw_breakpoint_disable();
5234f5eb 221
fee7b0d8
HY
222 if (image->preserve_context) {
223#ifdef CONFIG_X86_IO_APIC
224 /*
225 * We need to put APICs in legacy mode so that we can
226 * get timer interrupts in second kernel. kexec/kdump
227 * paths already have calls to disable_IO_APIC() in
228 * one form or other. kexec jump path also need
229 * one.
230 */
231 disable_IO_APIC();
232#endif
233 }
234
4bfaaef0 235 control_page = page_address(image->control_code_page) + PAGE_SIZE;
fee7b0d8 236 memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
4bfaaef0 237
e3ebadd9 238 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
fee7b0d8 239 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
4bfaaef0
MD
240 page_list[PA_TABLE_PAGE] =
241 (unsigned long)__pa(page_address(image->control_code_page));
5234f5eb 242
fee7b0d8
HY
243 if (image->type == KEXEC_TYPE_DEFAULT)
244 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
245 << PAGE_SHIFT);
246
fef3a7a1
HY
247 /*
248 * The segment registers are funny things, they have both a
2a8a3d5b
EB
249 * visible and an invisible part. Whenever the visible part is
250 * set to a specific selector, the invisible part is loaded
251 * with from a table in memory. At no other time is the
252 * descriptor table in memory accessed.
5234f5eb
EB
253 *
254 * I take advantage of this here by force loading the
255 * segments, before I zap the gdt with an invalid value.
256 */
257 load_segments();
fef3a7a1
HY
258 /*
259 * The gdt & idt are now invalid.
5234f5eb
EB
260 * If you want to load them you must set up your own idt & gdt.
261 */
fef3a7a1
HY
262 set_gdt(phys_to_virt(0), 0);
263 set_idt(phys_to_virt(0), 0);
4bfaaef0 264
5234f5eb 265 /* now call it */
fee7b0d8
HY
266 image->start = relocate_kernel((unsigned long)image->head,
267 (unsigned long)page_list,
268 image->start,
269 image->preserve_context);
270
271#ifdef CONFIG_KEXEC_JUMP
6407df5c 272 if (image->preserve_context)
fee7b0d8
HY
273 restore_processor_state();
274#endif
275
276 __ftrace_enabled_restore(save_ftrace_enabled);
5234f5eb 277}
2c8c0e6b 278
fd59d231
KO
279void arch_crash_save_vmcoreinfo(void)
280{
629c8b4c 281 VMCOREINFO_SYMBOL(phys_base);
69243f91 282 VMCOREINFO_SYMBOL(init_level4_pgt);
92df5c3e
KO
283
284#ifdef CONFIG_NUMA
285 VMCOREINFO_SYMBOL(node_data);
286 VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
287#endif
b6085a86
ES
288 vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
289 (unsigned long)&_text - __START_KERNEL);
fd59d231
KO
290}
291
cb105258
VG
292/* arch-dependent functionality related to kexec file-based syscall */
293
294int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
295 unsigned long buf_len)
296{
297 int i, ret = -ENOEXEC;
298 struct kexec_file_ops *fops;
299
300 for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) {
301 fops = kexec_file_loaders[i];
302 if (!fops || !fops->probe)
303 continue;
304
305 ret = fops->probe(buf, buf_len);
306 if (!ret) {
307 image->fops = fops;
308 return ret;
309 }
310 }
311
312 return ret;
313}
314
315void *arch_kexec_kernel_image_load(struct kimage *image)
316{
317 if (!image->fops || !image->fops->load)
318 return ERR_PTR(-ENOEXEC);
319
320 return image->fops->load(image, image->kernel_buf,
321 image->kernel_buf_len, image->initrd_buf,
322 image->initrd_buf_len, image->cmdline_buf,
323 image->cmdline_buf_len);
324}
325
326int arch_kimage_file_post_load_cleanup(struct kimage *image)
327{
328 if (!image->fops || !image->fops->cleanup)
329 return 0;
330
331 return image->fops->cleanup(image);
332}
12db5562
VG
333
334/*
335 * Apply purgatory relocations.
336 *
337 * ehdr: Pointer to elf headers
338 * sechdrs: Pointer to section headers.
339 * relsec: section index of SHT_RELA section.
340 *
341 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
342 */
343int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr,
344 Elf64_Shdr *sechdrs, unsigned int relsec)
345{
346 unsigned int i;
347 Elf64_Rela *rel;
348 Elf64_Sym *sym;
349 void *location;
350 Elf64_Shdr *section, *symtabsec;
351 unsigned long address, sec_base, value;
352 const char *strtab, *name, *shstrtab;
353
354 /*
355 * ->sh_offset has been modified to keep the pointer to section
356 * contents in memory
357 */
358 rel = (void *)sechdrs[relsec].sh_offset;
359
360 /* Section to which relocations apply */
361 section = &sechdrs[sechdrs[relsec].sh_info];
362
363 pr_debug("Applying relocate section %u to %u\n", relsec,
364 sechdrs[relsec].sh_info);
365
366 /* Associated symbol table */
367 symtabsec = &sechdrs[sechdrs[relsec].sh_link];
368
369 /* String table */
370 if (symtabsec->sh_link >= ehdr->e_shnum) {
371 /* Invalid strtab section number */
372 pr_err("Invalid string table section index %d\n",
373 symtabsec->sh_link);
374 return -ENOEXEC;
375 }
376
377 strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset;
378
379 /* section header string table */
380 shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset;
381
382 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
383
384 /*
385 * rel[i].r_offset contains byte offset from beginning
386 * of section to the storage unit affected.
387 *
388 * This is location to update (->sh_offset). This is temporary
389 * buffer where section is currently loaded. This will finally
390 * be loaded to a different address later, pointed to by
391 * ->sh_addr. kexec takes care of moving it
392 * (kexec_load_segment()).
393 */
394 location = (void *)(section->sh_offset + rel[i].r_offset);
395
396 /* Final address of the location */
397 address = section->sh_addr + rel[i].r_offset;
398
399 /*
400 * rel[i].r_info contains information about symbol table index
401 * w.r.t which relocation must be made and type of relocation
402 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
403 * these respectively.
404 */
405 sym = (Elf64_Sym *)symtabsec->sh_offset +
406 ELF64_R_SYM(rel[i].r_info);
407
408 if (sym->st_name)
409 name = strtab + sym->st_name;
410 else
411 name = shstrtab + sechdrs[sym->st_shndx].sh_name;
412
413 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
414 name, sym->st_info, sym->st_shndx, sym->st_value,
415 sym->st_size);
416
417 if (sym->st_shndx == SHN_UNDEF) {
418 pr_err("Undefined symbol: %s\n", name);
419 return -ENOEXEC;
420 }
421
422 if (sym->st_shndx == SHN_COMMON) {
423 pr_err("symbol '%s' in common section\n", name);
424 return -ENOEXEC;
425 }
426
427 if (sym->st_shndx == SHN_ABS)
428 sec_base = 0;
429 else if (sym->st_shndx >= ehdr->e_shnum) {
430 pr_err("Invalid section %d for symbol %s\n",
431 sym->st_shndx, name);
432 return -ENOEXEC;
433 } else
434 sec_base = sechdrs[sym->st_shndx].sh_addr;
435
436 value = sym->st_value;
437 value += sec_base;
438 value += rel[i].r_addend;
439
440 switch (ELF64_R_TYPE(rel[i].r_info)) {
441 case R_X86_64_NONE:
442 break;
443 case R_X86_64_64:
444 *(u64 *)location = value;
445 break;
446 case R_X86_64_32:
447 *(u32 *)location = value;
448 if (value != *(u32 *)location)
449 goto overflow;
450 break;
451 case R_X86_64_32S:
452 *(s32 *)location = value;
453 if ((s64)value != *(s32 *)location)
454 goto overflow;
455 break;
456 case R_X86_64_PC32:
457 value -= (u64)address;
458 *(u32 *)location = value;
459 break;
460 default:
461 pr_err("Unknown rela relocation: %llu\n",
462 ELF64_R_TYPE(rel[i].r_info));
463 return -ENOEXEC;
464 }
465 }
466 return 0;
467
468overflow:
469 pr_err("Overflow in relocation type %d value 0x%lx\n",
470 (int)ELF64_R_TYPE(rel[i].r_info), value);
471 return -ENOEXEC;
472}
This page took 0.781235 seconds and 5 git commands to generate.