x86: add AMD Northbridge MSR definition
[deliverable/linux.git] / arch / x86 / kernel / smp.c
CommitLineData
0941ecb5
GC
1/*
2 * Intel SMP support routines.
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
6 * (c) 2002,2003 Andi Kleen, SuSE Labs.
7 *
8 * i386 and x86_64 integration by Glauber Costa <gcosta@redhat.com>
9 *
10 * This code is released under the GNU General Public License version 2 or
11 * later.
12 */
13
f9e47a12
GC
14#include <linux/init.h>
15
16#include <linux/mm.h>
17#include <linux/delay.h>
18#include <linux/spinlock.h>
19#include <linux/kernel_stat.h>
20#include <linux/mc146818rtc.h>
21#include <linux/cache.h>
22#include <linux/interrupt.h>
23#include <linux/cpu.h>
24
25#include <asm/mtrr.h>
26#include <asm/tlbflush.h>
27#include <asm/mmu_context.h>
28#include <asm/proto.h>
29#ifdef CONFIG_X86_32
30#include <mach_apic.h>
31#include <mach_ipi.h>
32#else
33#include <asm/mach_apic.h>
34#endif
0941ecb5
GC
35/*
36 * Some notes on x86 processor bugs affecting SMP operation:
37 *
38 * Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
39 * The Linux implications for SMP are handled as follows:
40 *
41 * Pentium III / [Xeon]
42 * None of the E1AP-E3AP errata are visible to the user.
43 *
44 * E1AP. see PII A1AP
45 * E2AP. see PII A2AP
46 * E3AP. see PII A3AP
47 *
48 * Pentium II / [Xeon]
49 * None of the A1AP-A3AP errata are visible to the user.
50 *
51 * A1AP. see PPro 1AP
52 * A2AP. see PPro 2AP
53 * A3AP. see PPro 7AP
54 *
55 * Pentium Pro
56 * None of 1AP-9AP errata are visible to the normal user,
57 * except occasional delivery of 'spurious interrupt' as trap #15.
58 * This is very rare and a non-problem.
59 *
60 * 1AP. Linux maps APIC as non-cacheable
61 * 2AP. worked around in hardware
62 * 3AP. fixed in C0 and above steppings microcode update.
63 * Linux does not use excessive STARTUP_IPIs.
64 * 4AP. worked around in hardware
65 * 5AP. symmetric IO mode (normal Linux operation) not affected.
66 * 'noapic' mode has vector 0xf filled out properly.
67 * 6AP. 'noapic' mode might be affected - fixed in later steppings
68 * 7AP. We do not assume writes to the LVT deassering IRQs
69 * 8AP. We do not enable low power mode (deep sleep) during MP bootup
70 * 9AP. We do not use mixed mode
71 *
72 * Pentium
73 * There is a marginal case where REP MOVS on 100MHz SMP
74 * machines with B stepping processors can fail. XXX should provide
75 * an L1cache=Writethrough or L1cache=off option.
76 *
77 * B stepping CPUs may hang. There are hardware work arounds
78 * for this. We warn about it in case your board doesn't have the work
79 * arounds. Basically that's so I can tell anyone with a B stepping
80 * CPU and SMP problems "tough".
81 *
82 * Specific items [From Pentium Processor Specification Update]
83 *
84 * 1AP. Linux doesn't use remote read
85 * 2AP. Linux doesn't trust APIC errors
86 * 3AP. We work around this
87 * 4AP. Linux never generated 3 interrupts of the same priority
88 * to cause a lost local interrupt.
89 * 5AP. Remote read is never used
90 * 6AP. not affected - worked around in hardware
91 * 7AP. not affected - worked around in hardware
92 * 8AP. worked around in hardware - we get explicit CS errors if not
93 * 9AP. only 'noapic' mode affected. Might generate spurious
94 * interrupts, we log only the first one and count the
95 * rest silently.
96 * 10AP. not affected - worked around in hardware
97 * 11AP. Linux reads the APIC between writes to avoid this, as per
98 * the documentation. Make sure you preserve this as it affects
99 * the C stepping chips too.
100 * 12AP. not affected - worked around in hardware
101 * 13AP. not affected - worked around in hardware
102 * 14AP. we always deassert INIT during bootup
103 * 15AP. not affected - worked around in hardware
104 * 16AP. not affected - worked around in hardware
105 * 17AP. not affected - worked around in hardware
106 * 18AP. not affected - worked around in hardware
107 * 19AP. not affected - worked around in BIOS
108 *
109 * If this sounds worrying believe me these bugs are either ___RARE___,
110 * or are signal timing bugs worked around in hardware and there's
111 * about nothing of note with C stepping upwards.
112 */
f9e47a12
GC
113
114/*
115 * this function sends a 'reschedule' IPI to another CPU.
116 * it goes straight through and wastes no time serializing
117 * anything. Worst case is that we lose a reschedule ...
118 */
119static void native_smp_send_reschedule(int cpu)
120{
121 WARN_ON(cpu_is_offline(cpu));
122 send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR);
123}
124
125/*
126 * Structure and data for smp_call_function(). This is designed to minimise
127 * static memory requirements. It also looks cleaner.
128 */
129static DEFINE_SPINLOCK(call_lock);
130
131struct call_data_struct {
132 void (*func) (void *info);
133 void *info;
134 atomic_t started;
135 atomic_t finished;
136 int wait;
137};
138
139void lock_ipi_call_lock(void)
140{
141 spin_lock_irq(&call_lock);
142}
143
144void unlock_ipi_call_lock(void)
145{
146 spin_unlock_irq(&call_lock);
147}
148
149static struct call_data_struct *call_data;
150
151static void __smp_call_function(void (*func) (void *info), void *info,
152 int nonatomic, int wait)
153{
154 struct call_data_struct data;
155 int cpus = num_online_cpus() - 1;
156
157 if (!cpus)
158 return;
159
160 data.func = func;
161 data.info = info;
162 atomic_set(&data.started, 0);
163 data.wait = wait;
164 if (wait)
165 atomic_set(&data.finished, 0);
166
167 call_data = &data;
168 mb();
169
170 /* Send a message to all other CPUs and wait for them to respond */
171 send_IPI_allbutself(CALL_FUNCTION_VECTOR);
172
173 /* Wait for response */
174 while (atomic_read(&data.started) != cpus)
175 cpu_relax();
176
177 if (wait)
178 while (atomic_read(&data.finished) != cpus)
179 cpu_relax();
180}
181
182
183/**
184 * smp_call_function_mask(): Run a function on a set of other CPUs.
185 * @mask: The set of cpus to run on. Must not include the current cpu.
186 * @func: The function to run. This must be fast and non-blocking.
187 * @info: An arbitrary pointer to pass to the function.
188 * @wait: If true, wait (atomically) until function has completed on other CPUs.
189 *
190 * Returns 0 on success, else a negative status code.
191 *
192 * If @wait is true, then returns once @func has returned; otherwise
193 * it returns just before the target cpu calls @func.
194 *
195 * You must not call this function with disabled interrupts or from a
196 * hardware interrupt handler or from a bottom half handler.
197 */
198static int
199native_smp_call_function_mask(cpumask_t mask,
200 void (*func)(void *), void *info,
201 int wait)
202{
203 struct call_data_struct data;
204 cpumask_t allbutself;
205 int cpus;
206
207 /* Can deadlock when called with interrupts disabled */
208 WARN_ON(irqs_disabled());
209
210 /* Holding any lock stops cpus from going down. */
211 spin_lock(&call_lock);
212
213 allbutself = cpu_online_map;
214 cpu_clear(smp_processor_id(), allbutself);
215
216 cpus_and(mask, mask, allbutself);
217 cpus = cpus_weight(mask);
218
219 if (!cpus) {
220 spin_unlock(&call_lock);
221 return 0;
222 }
223
224 data.func = func;
225 data.info = info;
226 atomic_set(&data.started, 0);
227 data.wait = wait;
228 if (wait)
229 atomic_set(&data.finished, 0);
230
231 call_data = &data;
232 wmb();
233
234 /* Send a message to other CPUs */
235 if (cpus_equal(mask, allbutself))
236 send_IPI_allbutself(CALL_FUNCTION_VECTOR);
237 else
238 send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
239
240 /* Wait for response */
241 while (atomic_read(&data.started) != cpus)
242 cpu_relax();
243
244 if (wait)
245 while (atomic_read(&data.finished) != cpus)
246 cpu_relax();
247 spin_unlock(&call_lock);
248
249 return 0;
250}
251
252static void stop_this_cpu(void *dummy)
253{
254 local_irq_disable();
255 /*
256 * Remove this CPU:
257 */
258 cpu_clear(smp_processor_id(), cpu_online_map);
259 disable_local_APIC();
260 if (hlt_works(smp_processor_id()))
261 for (;;) halt();
262 for (;;);
263}
264
265/*
266 * this function calls the 'stop' function on all other CPUs in the system.
267 */
268
269static void native_smp_send_stop(void)
270{
271 int nolock;
272 unsigned long flags;
273
274 if (reboot_force)
275 return;
276
277 /* Don't deadlock on the call lock in panic */
278 nolock = !spin_trylock(&call_lock);
279 local_irq_save(flags);
280 __smp_call_function(stop_this_cpu, NULL, 0, 0);
281 if (!nolock)
282 spin_unlock(&call_lock);
283 disable_local_APIC();
284 local_irq_restore(flags);
285}
286
287/*
288 * Reschedule call back. Nothing to do,
289 * all the work is done automatically when
290 * we return from the interrupt.
291 */
292void smp_reschedule_interrupt(struct pt_regs *regs)
293{
294 ack_APIC_irq();
295#ifdef CONFIG_X86_32
296 __get_cpu_var(irq_stat).irq_resched_count++;
297#else
298 add_pda(irq_resched_count, 1);
299#endif
300}
301
302void smp_call_function_interrupt(struct pt_regs *regs)
303{
304 void (*func) (void *info) = call_data->func;
305 void *info = call_data->info;
306 int wait = call_data->wait;
307
308 ack_APIC_irq();
309 /*
310 * Notify initiating CPU that I've grabbed the data and am
311 * about to execute the function
312 */
313 mb();
314 atomic_inc(&call_data->started);
315 /*
316 * At this point the info structure may be out of scope unless wait==1
317 */
318 irq_enter();
319 (*func)(info);
320#ifdef CONFIG_X86_32
321 __get_cpu_var(irq_stat).irq_call_count++;
322#else
323 add_pda(irq_call_count, 1);
324#endif
325 irq_exit();
326
327 if (wait) {
328 mb();
329 atomic_inc(&call_data->finished);
330 }
331}
332
333struct smp_ops smp_ops = {
334 .smp_prepare_boot_cpu = native_smp_prepare_boot_cpu,
335 .smp_prepare_cpus = native_smp_prepare_cpus,
336 .cpu_up = native_cpu_up,
337 .smp_cpus_done = native_smp_cpus_done,
338
339 .smp_send_stop = native_smp_send_stop,
340 .smp_send_reschedule = native_smp_send_reschedule,
341 .smp_call_function_mask = native_smp_call_function_mask,
342};
343EXPORT_SYMBOL_GPL(smp_ops);
344
This page took 0.042821 seconds and 5 git commands to generate.