Merge branches 'x86/apic', 'x86/asm', 'x86/cleanups', 'x86/debug', 'x86/kconfig'...
[deliverable/linux.git] / arch / x86 / kernel / tlb_uv.c
CommitLineData
1812924b
CW
1/*
2 * SGI UltraViolet TLB flush routines.
3 *
4 * (c) 2008 Cliff Wickman <cpw@sgi.com>, SGI.
5 *
6 * This code is released under the GNU General Public License version 2 or
7 * later.
8 */
aef8f5b8 9#include <linux/seq_file.h>
1812924b
CW
10#include <linux/proc_fs.h>
11#include <linux/kernel.h>
12
1812924b 13#include <asm/mmu_context.h>
bdbcdd48 14#include <asm/uv/uv.h>
1812924b 15#include <asm/uv/uv_mmrs.h>
b4c286e6 16#include <asm/uv/uv_hub.h>
1812924b 17#include <asm/uv/uv_bau.h>
7b6aa335 18#include <asm/apic.h>
b4c286e6 19#include <asm/idle.h>
b194b120 20#include <asm/tsc.h>
99dd8713 21#include <asm/irq_vectors.h>
1812924b 22
b4c286e6
IM
23static struct bau_control **uv_bau_table_bases __read_mostly;
24static int uv_bau_retry_limit __read_mostly;
25
26/* position of pnode (which is nasid>>1): */
27static int uv_nshift __read_mostly;
28
29static unsigned long uv_mmask __read_mostly;
1812924b 30
dc163a41
IM
31static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
32static DEFINE_PER_CPU(struct bau_control, bau_control);
1812924b
CW
33
34/*
35 * Free a software acknowledge hardware resource by clearing its Pending
36 * bit. This will return a reply to the sender.
37 * If the message has timed out, a reply has already been sent by the
38 * hardware but the resource has not been released. In that case our
39 * clear of the Timeout bit (as well) will free the resource. No reply will
40 * be sent (the hardware will only do one reply per message).
41 */
b194b120 42static void uv_reply_to_message(int resource,
b4c286e6
IM
43 struct bau_payload_queue_entry *msg,
44 struct bau_msg_status *msp)
1812924b 45{
b194b120 46 unsigned long dw;
1812924b 47
b194b120 48 dw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource);
1812924b
CW
49 msg->replied_to = 1;
50 msg->sw_ack_vector = 0;
51 if (msp)
52 msp->seen_by.bits = 0;
b194b120 53 uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
1812924b
CW
54}
55
56/*
57 * Do all the things a cpu should do for a TLB shootdown message.
58 * Other cpu's may come here at the same time for this message.
59 */
b194b120 60static void uv_bau_process_message(struct bau_payload_queue_entry *msg,
b4c286e6 61 int msg_slot, int sw_ack_slot)
1812924b 62{
1812924b
CW
63 unsigned long this_cpu_mask;
64 struct bau_msg_status *msp;
b4c286e6 65 int cpu;
1812924b
CW
66
67 msp = __get_cpu_var(bau_control).msg_statuses + msg_slot;
68 cpu = uv_blade_processor_id();
69 msg->number_of_cpus =
70 uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id()));
dc163a41 71 this_cpu_mask = 1UL << cpu;
1812924b
CW
72 if (msp->seen_by.bits & this_cpu_mask)
73 return;
74 atomic_or_long(&msp->seen_by.bits, this_cpu_mask);
75
76 if (msg->replied_to == 1)
77 return;
78
79 if (msg->address == TLB_FLUSH_ALL) {
80 local_flush_tlb();
81 __get_cpu_var(ptcstats).alltlb++;
82 } else {
83 __flush_tlb_one(msg->address);
84 __get_cpu_var(ptcstats).onetlb++;
85 }
86
87 __get_cpu_var(ptcstats).requestee++;
88
89 atomic_inc_short(&msg->acknowledge_count);
90 if (msg->number_of_cpus == msg->acknowledge_count)
91 uv_reply_to_message(sw_ack_slot, msg, msp);
1812924b
CW
92}
93
94/*
dc163a41 95 * Examine the payload queue on one distribution node to see
1812924b
CW
96 * which messages have not been seen, and which cpu(s) have not seen them.
97 *
98 * Returns the number of cpu's that have not responded.
99 */
dc163a41 100static int uv_examine_destination(struct bau_control *bau_tablesp, int sender)
1812924b 101{
1812924b
CW
102 struct bau_payload_queue_entry *msg;
103 struct bau_msg_status *msp;
b4c286e6
IM
104 int count = 0;
105 int i;
106 int j;
1812924b 107
dc163a41
IM
108 for (msg = bau_tablesp->va_queue_first, i = 0; i < DEST_Q_SIZE;
109 msg++, i++) {
110 if ((msg->sending_cpu == sender) && (!msg->replied_to)) {
111 msp = bau_tablesp->msg_statuses + i;
112 printk(KERN_DEBUG
113 "blade %d: address:%#lx %d of %d, not cpu(s): ",
114 i, msg->address, msg->acknowledge_count,
115 msg->number_of_cpus);
116 for (j = 0; j < msg->number_of_cpus; j++) {
b4c286e6 117 if (!((1L << j) & msp->seen_by.bits)) {
dc163a41
IM
118 count++;
119 printk("%d ", j);
120 }
121 }
122 printk("\n");
123 }
124 }
125 return count;
126}
127
128/*
129 * Examine the payload queue on all the distribution nodes to see
130 * which messages have not been seen, and which cpu(s) have not seen them.
131 *
132 * Returns the number of cpu's that have not responded.
133 */
134static int uv_examine_destinations(struct bau_target_nodemask *distribution)
135{
136 int sender;
137 int i;
138 int count = 0;
139
1812924b 140 sender = smp_processor_id();
b4c286e6 141 for (i = 0; i < sizeof(struct bau_target_nodemask) * BITSPERBYTE; i++) {
b194b120
CW
142 if (!bau_node_isset(i, distribution))
143 continue;
dc163a41 144 count += uv_examine_destination(uv_bau_table_bases[i], sender);
1812924b
CW
145 }
146 return count;
147}
148
b194b120
CW
149/*
150 * wait for completion of a broadcast message
151 *
152 * return COMPLETE, RETRY or GIVEUP
153 */
dc163a41 154static int uv_wait_completion(struct bau_desc *bau_desc,
b194b120
CW
155 unsigned long mmr_offset, int right_shift)
156{
157 int exams = 0;
158 long destination_timeouts = 0;
159 long source_timeouts = 0;
160 unsigned long descriptor_status;
161
162 while ((descriptor_status = (((unsigned long)
163 uv_read_local_mmr(mmr_offset) >>
164 right_shift) & UV_ACT_STATUS_MASK)) !=
165 DESC_STATUS_IDLE) {
166 if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
167 source_timeouts++;
168 if (source_timeouts > SOURCE_TIMEOUT_LIMIT)
169 source_timeouts = 0;
170 __get_cpu_var(ptcstats).s_retry++;
171 return FLUSH_RETRY;
172 }
173 /*
174 * spin here looking for progress at the destinations
175 */
176 if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) {
177 destination_timeouts++;
178 if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) {
179 /*
180 * returns number of cpus not responding
181 */
182 if (uv_examine_destinations
183 (&bau_desc->distribution) == 0) {
184 __get_cpu_var(ptcstats).d_retry++;
185 return FLUSH_RETRY;
186 }
187 exams++;
188 if (exams >= uv_bau_retry_limit) {
189 printk(KERN_DEBUG
190 "uv_flush_tlb_others");
191 printk("giving up on cpu %d\n",
192 smp_processor_id());
193 return FLUSH_GIVEUP;
194 }
195 /*
196 * delays can hang the simulator
197 udelay(1000);
198 */
199 destination_timeouts = 0;
200 }
201 }
18c07cf5 202 cpu_relax();
b194b120
CW
203 }
204 return FLUSH_COMPLETE;
205}
206
207/**
208 * uv_flush_send_and_wait
209 *
210 * Send a broadcast and wait for a broadcast message to complete.
211 *
bdbcdd48 212 * The flush_mask contains the cpus the broadcast was sent to.
b194b120 213 *
bdbcdd48
TH
214 * Returns NULL if all remote flushing was done. The mask is zeroed.
215 * Returns @flush_mask if some remote flushing remains to be done. The
216 * mask will have some bits still set.
b194b120 217 */
bdbcdd48
TH
218const struct cpumask *uv_flush_send_and_wait(int cpu, int this_blade,
219 struct bau_desc *bau_desc,
220 struct cpumask *flush_mask)
b194b120
CW
221{
222 int completion_status = 0;
223 int right_shift;
b194b120 224 int tries = 0;
b4c286e6
IM
225 int blade;
226 int bit;
b194b120 227 unsigned long mmr_offset;
b4c286e6 228 unsigned long index;
b194b120
CW
229 cycles_t time1;
230 cycles_t time2;
231
232 if (cpu < UV_CPUS_PER_ACT_STATUS) {
233 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
234 right_shift = cpu * UV_ACT_STATUS_SIZE;
235 } else {
236 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
237 right_shift =
238 ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
239 }
240 time1 = get_cycles();
241 do {
242 tries++;
dc163a41
IM
243 index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) |
244 cpu;
b194b120
CW
245 uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
246 completion_status = uv_wait_completion(bau_desc, mmr_offset,
247 right_shift);
248 } while (completion_status == FLUSH_RETRY);
249 time2 = get_cycles();
250 __get_cpu_var(ptcstats).sflush += (time2 - time1);
251 if (tries > 1)
252 __get_cpu_var(ptcstats).retriesok++;
253
254 if (completion_status == FLUSH_GIVEUP) {
255 /*
256 * Cause the caller to do an IPI-style TLB shootdown on
257 * the cpu's, all of which are still in the mask.
258 */
259 __get_cpu_var(ptcstats).ptc_i++;
2749ebe3 260 return flush_mask;
b194b120
CW
261 }
262
263 /*
264 * Success, so clear the remote cpu's from the mask so we don't
265 * use the IPI method of shootdown on them.
266 */
bdbcdd48 267 for_each_cpu(bit, flush_mask) {
b194b120
CW
268 blade = uv_cpu_to_blade_id(bit);
269 if (blade == this_blade)
270 continue;
bdbcdd48 271 cpumask_clear_cpu(bit, flush_mask);
b194b120 272 }
bdbcdd48
TH
273 if (!cpumask_empty(flush_mask))
274 return flush_mask;
275 return NULL;
b194b120
CW
276}
277
1812924b
CW
278/**
279 * uv_flush_tlb_others - globally purge translation cache of a virtual
280 * address or all TLB's
bdbcdd48 281 * @cpumask: mask of all cpu's in which the address is to be removed
1812924b
CW
282 * @mm: mm_struct containing virtual address range
283 * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
bdbcdd48 284 * @cpu: the current cpu
1812924b
CW
285 *
286 * This is the entry point for initiating any UV global TLB shootdown.
287 *
288 * Purges the translation caches of all specified processors of the given
289 * virtual address, or purges all TLB's on specified processors.
290 *
bdbcdd48
TH
291 * The caller has derived the cpumask from the mm_struct. This function
292 * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
1812924b 293 *
bdbcdd48 294 * The cpumask is converted into a nodemask of the nodes containing
1812924b 295 * the cpus.
b194b120 296 *
bdbcdd48
TH
297 * Note that this function should be called with preemption disabled.
298 *
299 * Returns NULL if all remote flushing was done.
300 * Returns pointer to cpumask if some remote flushing remains to be
301 * done. The returned pointer is valid till preemption is re-enabled.
1812924b 302 */
bdbcdd48
TH
303const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
304 struct mm_struct *mm,
305 unsigned long va, unsigned int cpu)
1812924b 306{
bdbcdd48
TH
307 static DEFINE_PER_CPU(cpumask_t, flush_tlb_mask);
308 struct cpumask *flush_mask = &__get_cpu_var(flush_tlb_mask);
1812924b 309 int i;
b194b120 310 int bit;
1812924b 311 int blade;
bdbcdd48 312 int uv_cpu;
1812924b 313 int this_blade;
b194b120 314 int locals = 0;
dc163a41 315 struct bau_desc *bau_desc;
bdbcdd48
TH
316
317 cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
318
319 uv_cpu = uv_blade_processor_id();
1812924b
CW
320 this_blade = uv_numa_blade_id();
321 bau_desc = __get_cpu_var(bau_control).descriptor_base;
bdbcdd48 322 bau_desc += UV_ITEMS_PER_DESCRIPTOR * uv_cpu;
1812924b
CW
323
324 bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
325
326 i = 0;
bdbcdd48 327 for_each_cpu(bit, flush_mask) {
1812924b 328 blade = uv_cpu_to_blade_id(bit);
dc163a41 329 BUG_ON(blade > (UV_DISTRIBUTION_SIZE - 1));
b194b120
CW
330 if (blade == this_blade) {
331 locals++;
1812924b 332 continue;
b194b120 333 }
1812924b 334 bau_node_set(blade, &bau_desc->distribution);
1812924b
CW
335 i++;
336 }
b194b120
CW
337 if (i == 0) {
338 /*
339 * no off_node flushing; return status for local node
340 */
341 if (locals)
bdbcdd48 342 return flush_mask;
b194b120 343 else
bdbcdd48 344 return NULL;
b194b120 345 }
1812924b
CW
346 __get_cpu_var(ptcstats).requestor++;
347 __get_cpu_var(ptcstats).ntargeted += i;
348
349 bau_desc->payload.address = va;
bdbcdd48 350 bau_desc->payload.sending_cpu = cpu;
1812924b 351
bdbcdd48 352 return uv_flush_send_and_wait(uv_cpu, this_blade, bau_desc, flush_mask);
1812924b
CW
353}
354
355/*
356 * The BAU message interrupt comes here. (registered by set_intr_gate)
357 * See entry_64.S
358 *
359 * We received a broadcast assist message.
360 *
361 * Interrupts may have been disabled; this interrupt could represent
362 * the receipt of several messages.
363 *
364 * All cores/threads on this node get this interrupt.
365 * The last one to see it does the s/w ack.
366 * (the resource will not be freed until noninterruptable cpus see this
367 * interrupt; hardware will timeout the s/w ack and reply ERROR)
368 */
b194b120 369void uv_bau_message_interrupt(struct pt_regs *regs)
1812924b 370{
dc163a41
IM
371 struct bau_payload_queue_entry *va_queue_first;
372 struct bau_payload_queue_entry *va_queue_last;
b4c286e6 373 struct bau_payload_queue_entry *msg;
1812924b 374 struct pt_regs *old_regs = set_irq_regs(regs);
b4c286e6
IM
375 cycles_t time1;
376 cycles_t time2;
1812924b
CW
377 int msg_slot;
378 int sw_ack_slot;
379 int fw;
380 int count = 0;
381 unsigned long local_pnode;
382
383 ack_APIC_irq();
384 exit_idle();
385 irq_enter();
386
b194b120 387 time1 = get_cycles();
1812924b
CW
388
389 local_pnode = uv_blade_to_pnode(uv_numa_blade_id());
390
b4c286e6 391 va_queue_first = __get_cpu_var(bau_control).va_queue_first;
dc163a41 392 va_queue_last = __get_cpu_var(bau_control).va_queue_last;
b4c286e6 393
1812924b
CW
394 msg = __get_cpu_var(bau_control).bau_msg_head;
395 while (msg->sw_ack_vector) {
396 count++;
397 fw = msg->sw_ack_vector;
b4c286e6 398 msg_slot = msg - va_queue_first;
1812924b
CW
399 sw_ack_slot = ffs(fw) - 1;
400
401 uv_bau_process_message(msg, msg_slot, sw_ack_slot);
402
403 msg++;
dc163a41
IM
404 if (msg > va_queue_last)
405 msg = va_queue_first;
1812924b
CW
406 __get_cpu_var(bau_control).bau_msg_head = msg;
407 }
408 if (!count)
409 __get_cpu_var(ptcstats).nomsg++;
410 else if (count > 1)
411 __get_cpu_var(ptcstats).multmsg++;
412
b194b120
CW
413 time2 = get_cycles();
414 __get_cpu_var(ptcstats).dflush += (time2 - time1);
1812924b
CW
415
416 irq_exit();
417 set_irq_regs(old_regs);
1812924b
CW
418}
419
b194b120 420static void uv_enable_timeouts(void)
1812924b
CW
421{
422 int i;
423 int blade;
424 int last_blade;
425 int pnode;
426 int cur_cpu = 0;
427 unsigned long apicid;
428
1812924b
CW
429 last_blade = -1;
430 for_each_online_node(i) {
431 blade = uv_node_to_blade_id(i);
432 if (blade == last_blade)
433 continue;
434 last_blade = blade;
435 apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
436 pnode = uv_blade_to_pnode(blade);
437 cur_cpu += uv_blade_nr_possible_cpus(i);
438 }
1812924b
CW
439}
440
b194b120 441static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
1812924b
CW
442{
443 if (*offset < num_possible_cpus())
444 return offset;
445 return NULL;
446}
447
b194b120 448static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
1812924b
CW
449{
450 (*offset)++;
451 if (*offset < num_possible_cpus())
452 return offset;
453 return NULL;
454}
455
b194b120 456static void uv_ptc_seq_stop(struct seq_file *file, void *data)
1812924b
CW
457{
458}
459
460/*
461 * Display the statistics thru /proc
462 * data points to the cpu number
463 */
b194b120 464static int uv_ptc_seq_show(struct seq_file *file, void *data)
1812924b
CW
465{
466 struct ptc_stats *stat;
467 int cpu;
468
469 cpu = *(loff_t *)data;
470
471 if (!cpu) {
472 seq_printf(file,
473 "# cpu requestor requestee one all sretry dretry ptc_i ");
474 seq_printf(file,
b194b120 475 "sw_ack sflush dflush sok dnomsg dmult starget\n");
1812924b
CW
476 }
477 if (cpu < num_possible_cpus() && cpu_online(cpu)) {
478 stat = &per_cpu(ptcstats, cpu);
479 seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ",
480 cpu, stat->requestor,
481 stat->requestee, stat->onetlb, stat->alltlb,
482 stat->s_retry, stat->d_retry, stat->ptc_i);
483 seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n",
484 uv_read_global_mmr64(uv_blade_to_pnode
485 (uv_cpu_to_blade_id(cpu)),
486 UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
b194b120 487 stat->sflush, stat->dflush,
1812924b
CW
488 stat->retriesok, stat->nomsg,
489 stat->multmsg, stat->ntargeted);
490 }
491
492 return 0;
493}
494
495/*
496 * 0: display meaning of the statistics
497 * >0: retry limit
498 */
b194b120 499static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
b4c286e6 500 size_t count, loff_t *data)
1812924b
CW
501{
502 long newmode;
503 char optstr[64];
504
e7eb8726 505 if (count == 0 || count > sizeof(optstr))
cef53278 506 return -EINVAL;
1812924b
CW
507 if (copy_from_user(optstr, user, count))
508 return -EFAULT;
509 optstr[count - 1] = '\0';
510 if (strict_strtoul(optstr, 10, &newmode) < 0) {
511 printk(KERN_DEBUG "%s is invalid\n", optstr);
512 return -EINVAL;
513 }
514
515 if (newmode == 0) {
516 printk(KERN_DEBUG "# cpu: cpu number\n");
517 printk(KERN_DEBUG
518 "requestor: times this cpu was the flush requestor\n");
519 printk(KERN_DEBUG
520 "requestee: times this cpu was requested to flush its TLBs\n");
521 printk(KERN_DEBUG
522 "one: times requested to flush a single address\n");
523 printk(KERN_DEBUG
524 "all: times requested to flush all TLB's\n");
525 printk(KERN_DEBUG
526 "sretry: number of retries of source-side timeouts\n");
527 printk(KERN_DEBUG
528 "dretry: number of retries of destination-side timeouts\n");
529 printk(KERN_DEBUG
530 "ptc_i: times UV fell through to IPI-style flushes\n");
531 printk(KERN_DEBUG
532 "sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
533 printk(KERN_DEBUG
b194b120 534 "sflush_us: cycles spent in uv_flush_tlb_others()\n");
1812924b 535 printk(KERN_DEBUG
b194b120 536 "dflush_us: cycles spent in handling flush requests\n");
1812924b
CW
537 printk(KERN_DEBUG "sok: successes on retry\n");
538 printk(KERN_DEBUG "dnomsg: interrupts with no message\n");
539 printk(KERN_DEBUG
540 "dmult: interrupts with multiple messages\n");
541 printk(KERN_DEBUG "starget: nodes targeted\n");
542 } else {
543 uv_bau_retry_limit = newmode;
544 printk(KERN_DEBUG "timeout retry limit:%d\n",
545 uv_bau_retry_limit);
546 }
547
548 return count;
549}
550
551static const struct seq_operations uv_ptc_seq_ops = {
dc163a41
IM
552 .start = uv_ptc_seq_start,
553 .next = uv_ptc_seq_next,
554 .stop = uv_ptc_seq_stop,
555 .show = uv_ptc_seq_show
1812924b
CW
556};
557
b194b120 558static int uv_ptc_proc_open(struct inode *inode, struct file *file)
1812924b
CW
559{
560 return seq_open(file, &uv_ptc_seq_ops);
561}
562
563static const struct file_operations proc_uv_ptc_operations = {
b194b120
CW
564 .open = uv_ptc_proc_open,
565 .read = seq_read,
566 .write = uv_ptc_proc_write,
567 .llseek = seq_lseek,
568 .release = seq_release,
1812924b
CW
569};
570
b194b120 571static int __init uv_ptc_init(void)
1812924b 572{
b194b120 573 struct proc_dir_entry *proc_uv_ptc;
1812924b
CW
574
575 if (!is_uv_system())
576 return 0;
577
1812924b
CW
578 proc_uv_ptc = create_proc_entry(UV_PTC_BASENAME, 0444, NULL);
579 if (!proc_uv_ptc) {
580 printk(KERN_ERR "unable to create %s proc entry\n",
581 UV_PTC_BASENAME);
582 return -EINVAL;
583 }
584 proc_uv_ptc->proc_fops = &proc_uv_ptc_operations;
585 return 0;
586}
587
b194b120
CW
588/*
589 * begin the initialization of the per-blade control structures
590 */
591static struct bau_control * __init uv_table_bases_init(int blade, int node)
1812924b 592{
b194b120 593 int i;
b194b120 594 struct bau_msg_status *msp;
dc163a41 595 struct bau_control *bau_tabp;
b194b120 596
dc163a41 597 bau_tabp =
b194b120 598 kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, node);
dc163a41 599 BUG_ON(!bau_tabp);
b4c286e6 600
dc163a41 601 bau_tabp->msg_statuses =
b194b120 602 kmalloc_node(sizeof(struct bau_msg_status) *
dc163a41
IM
603 DEST_Q_SIZE, GFP_KERNEL, node);
604 BUG_ON(!bau_tabp->msg_statuses);
b4c286e6 605
dc163a41 606 for (i = 0, msp = bau_tabp->msg_statuses; i < DEST_Q_SIZE; i++, msp++)
b194b120
CW
607 bau_cpubits_clear(&msp->seen_by, (int)
608 uv_blade_nr_possible_cpus(blade));
b4c286e6 609
dc163a41 610 uv_bau_table_bases[blade] = bau_tabp;
b4c286e6 611
d400524a 612 return bau_tabp;
1812924b
CW
613}
614
b194b120
CW
615/*
616 * finish the initialization of the per-blade control structures
617 */
b4c286e6
IM
618static void __init
619uv_table_bases_finish(int blade, int node, int cur_cpu,
620 struct bau_control *bau_tablesp,
621 struct bau_desc *adp)
b194b120 622{
b194b120 623 struct bau_control *bcp;
b4c286e6 624 int i;
b194b120 625
b4c286e6 626 for (i = cur_cpu; i < cur_cpu + uv_blade_nr_possible_cpus(blade); i++) {
b194b120 627 bcp = (struct bau_control *)&per_cpu(bau_control, i);
b4c286e6
IM
628
629 bcp->bau_msg_head = bau_tablesp->va_queue_first;
630 bcp->va_queue_first = bau_tablesp->va_queue_first;
631 bcp->va_queue_last = bau_tablesp->va_queue_last;
b4c286e6
IM
632 bcp->msg_statuses = bau_tablesp->msg_statuses;
633 bcp->descriptor_base = adp;
b194b120
CW
634 }
635}
1812924b
CW
636
637/*
b194b120 638 * initialize the sending side's sending buffers
1812924b 639 */
dc163a41 640static struct bau_desc * __init
b194b120 641uv_activation_descriptor_init(int node, int pnode)
1812924b
CW
642{
643 int i;
1812924b 644 unsigned long pa;
1812924b 645 unsigned long m;
b194b120 646 unsigned long n;
1812924b 647 unsigned long mmr_image;
dc163a41
IM
648 struct bau_desc *adp;
649 struct bau_desc *ad2;
b194b120 650
dc163a41 651 adp = (struct bau_desc *)
b194b120 652 kmalloc_node(16384, GFP_KERNEL, node);
dc163a41 653 BUG_ON(!adp);
b4c286e6 654
b194b120
CW
655 pa = __pa((unsigned long)adp);
656 n = pa >> uv_nshift;
657 m = pa & uv_mmask;
b4c286e6 658
b194b120 659 mmr_image = uv_read_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE);
b4c286e6 660 if (mmr_image) {
b194b120
CW
661 uv_write_global_mmr64(pnode, (unsigned long)
662 UVH_LB_BAU_SB_DESCRIPTOR_BASE,
663 (n << UV_DESC_BASE_PNODE_SHIFT | m));
b4c286e6
IM
664 }
665
b194b120 666 for (i = 0, ad2 = adp; i < UV_ACTIVATION_DESCRIPTOR_SIZE; i++, ad2++) {
dc163a41 667 memset(ad2, 0, sizeof(struct bau_desc));
b194b120
CW
668 ad2->header.sw_ack_flag = 1;
669 ad2->header.base_dest_nodeid =
670 uv_blade_to_pnode(uv_cpu_to_blade_id(0));
671 ad2->header.command = UV_NET_ENDPOINT_INTD;
672 ad2->header.int_both = 1;
673 /*
674 * all others need to be set to zero:
675 * fairness chaining multilevel count replied_to
676 */
677 }
678 return adp;
679}
680
681/*
682 * initialize the destination side's receiving buffers
683 */
b4c286e6
IM
684static struct bau_payload_queue_entry * __init
685uv_payload_queue_init(int node, int pnode, struct bau_control *bau_tablesp)
b194b120 686{
1812924b 687 struct bau_payload_queue_entry *pqp;
b4c286e6 688 char *cp;
1812924b 689
dc163a41
IM
690 pqp = (struct bau_payload_queue_entry *) kmalloc_node(
691 (DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry),
692 GFP_KERNEL, node);
693 BUG_ON(!pqp);
b4c286e6 694
b194b120
CW
695 cp = (char *)pqp + 31;
696 pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
697 bau_tablesp->va_queue_first = pqp;
698 uv_write_global_mmr64(pnode,
699 UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
700 ((unsigned long)pnode <<
701 UV_PAYLOADQ_PNODE_SHIFT) |
702 uv_physnodeaddr(pqp));
703 uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
704 uv_physnodeaddr(pqp));
dc163a41 705 bau_tablesp->va_queue_last = pqp + (DEST_Q_SIZE - 1);
b194b120
CW
706 uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
707 (unsigned long)
708 uv_physnodeaddr(bau_tablesp->va_queue_last));
dc163a41 709 memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE);
b4c286e6 710
b194b120
CW
711 return pqp;
712}
1812924b 713
b194b120
CW
714/*
715 * Initialization of each UV blade's structures
716 */
717static int __init uv_init_blade(int blade, int node, int cur_cpu)
718{
719 int pnode;
720 unsigned long pa;
721 unsigned long apicid;
dc163a41 722 struct bau_desc *adp;
b194b120
CW
723 struct bau_payload_queue_entry *pqp;
724 struct bau_control *bau_tablesp;
1812924b 725
b194b120
CW
726 bau_tablesp = uv_table_bases_init(blade, node);
727 pnode = uv_blade_to_pnode(blade);
728 adp = uv_activation_descriptor_init(node, pnode);
729 pqp = uv_payload_queue_init(node, pnode, bau_tablesp);
730 uv_table_bases_finish(blade, node, cur_cpu, bau_tablesp, adp);
731 /*
732 * the below initialization can't be in firmware because the
733 * messaging IRQ will be determined by the OS
734 */
735 apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
736 pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG);
737 if ((pa & 0xff) != UV_BAU_MESSAGE) {
738 uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
739 ((apicid << 32) | UV_BAU_MESSAGE));
1812924b 740 }
b194b120
CW
741 return 0;
742}
743
744/*
745 * Initialization of BAU-related structures
746 */
747static int __init uv_bau_init(void)
748{
749 int blade;
750 int node;
751 int nblades;
752 int last_blade;
753 int cur_cpu = 0;
754
755 if (!is_uv_system())
756 return 0;
1812924b 757
b194b120 758 uv_bau_retry_limit = 1;
1812924b 759 uv_nshift = uv_hub_info->n_val;
dc163a41 760 uv_mmask = (1UL << uv_hub_info->n_val) - 1;
1812924b
CW
761 nblades = 0;
762 last_blade = -1;
b194b120
CW
763 for_each_online_node(node) {
764 blade = uv_node_to_blade_id(node);
1812924b
CW
765 if (blade == last_blade)
766 continue;
767 last_blade = blade;
768 nblades++;
769 }
1812924b
CW
770 uv_bau_table_bases = (struct bau_control **)
771 kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL);
dc163a41 772 BUG_ON(!uv_bau_table_bases);
b4c286e6 773
1812924b 774 last_blade = -1;
b194b120
CW
775 for_each_online_node(node) {
776 blade = uv_node_to_blade_id(node);
1812924b
CW
777 if (blade == last_blade)
778 continue;
779 last_blade = blade;
b194b120
CW
780 uv_init_blade(blade, node, cur_cpu);
781 cur_cpu += uv_blade_nr_possible_cpus(blade);
1812924b 782 }
99dd8713 783 alloc_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1);
1812924b 784 uv_enable_timeouts();
b4c286e6 785
1812924b
CW
786 return 0;
787}
1812924b 788__initcall(uv_bau_init);
b194b120 789__initcall(uv_ptc_init);
This page took 0.148577 seconds and 5 git commands to generate.