Linux 4.2-rc1
[deliverable/linux.git] / arch / x86 / kernel / tsc.c
CommitLineData
c767a54b
JP
1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
bfc0f594 3#include <linux/kernel.h>
0ef95533
AK
4#include <linux/sched.h>
5#include <linux/init.h>
6#include <linux/module.h>
7#include <linux/timer.h>
bfc0f594 8#include <linux/acpi_pmtmr.h>
2dbe06fa 9#include <linux/cpufreq.h>
8fbbc4b4
AK
10#include <linux/delay.h>
11#include <linux/clocksource.h>
12#include <linux/percpu.h>
08604bd9 13#include <linux/timex.h>
10b033d4 14#include <linux/static_key.h>
bfc0f594
AK
15
16#include <asm/hpet.h>
8fbbc4b4
AK
17#include <asm/timer.h>
18#include <asm/vgtod.h>
19#include <asm/time.h>
20#include <asm/delay.h>
88b094fb 21#include <asm/hypervisor.h>
08047c4f 22#include <asm/nmi.h>
2d826404 23#include <asm/x86_init.h>
0ef95533 24
f24ade3a 25unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
0ef95533 26EXPORT_SYMBOL(cpu_khz);
f24ade3a
IM
27
28unsigned int __read_mostly tsc_khz;
0ef95533
AK
29EXPORT_SYMBOL(tsc_khz);
30
31/*
32 * TSC can be unstable due to cpufreq or due to unsynced TSCs
33 */
f24ade3a 34static int __read_mostly tsc_unstable;
0ef95533
AK
35
36/* native_sched_clock() is called before tsc_init(), so
37 we must start with the TSC soft disabled to prevent
38 erroneous rdtsc usage on !cpu_has_tsc processors */
f24ade3a 39static int __read_mostly tsc_disabled = -1;
0ef95533 40
10b033d4
PZ
41static struct static_key __use_tsc = STATIC_KEY_INIT;
42
28a00184 43int tsc_clocksource_reliable;
57c67da2 44
20d1c86a
PZ
45/*
46 * Use a ring-buffer like data structure, where a writer advances the head by
47 * writing a new data entry and a reader advances the tail when it observes a
48 * new entry.
49 *
50 * Writers are made to wait on readers until there's space to write a new
51 * entry.
52 *
53 * This means that we can always use an {offset, mul} pair to compute a ns
54 * value that is 'roughly' in the right direction, even if we're writing a new
55 * {offset, mul} pair during the clock read.
56 *
57 * The down-side is that we can no longer guarantee strict monotonicity anymore
58 * (assuming the TSC was that to begin with), because while we compute the
59 * intersection point of the two clock slopes and make sure the time is
60 * continuous at the point of switching; we can no longer guarantee a reader is
61 * strictly before or after the switch point.
62 *
63 * It does mean a reader no longer needs to disable IRQs in order to avoid
64 * CPU-Freq updates messing with his times, and similarly an NMI reader will
65 * no longer run the risk of hitting half-written state.
66 */
67
68struct cyc2ns {
69 struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */
70 struct cyc2ns_data *head; /* 48 + 8 = 56 */
71 struct cyc2ns_data *tail; /* 56 + 8 = 64 */
72}; /* exactly fits one cacheline */
73
74static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
75
76struct cyc2ns_data *cyc2ns_read_begin(void)
77{
78 struct cyc2ns_data *head;
79
80 preempt_disable();
81
82 head = this_cpu_read(cyc2ns.head);
83 /*
84 * Ensure we observe the entry when we observe the pointer to it.
85 * matches the wmb from cyc2ns_write_end().
86 */
87 smp_read_barrier_depends();
88 head->__count++;
89 barrier();
90
91 return head;
92}
93
94void cyc2ns_read_end(struct cyc2ns_data *head)
95{
96 barrier();
97 /*
98 * If we're the outer most nested read; update the tail pointer
99 * when we're done. This notifies possible pending writers
100 * that we've observed the head pointer and that the other
101 * entry is now free.
102 */
103 if (!--head->__count) {
104 /*
105 * x86-TSO does not reorder writes with older reads;
106 * therefore once this write becomes visible to another
107 * cpu, we must be finished reading the cyc2ns_data.
108 *
109 * matches with cyc2ns_write_begin().
110 */
111 this_cpu_write(cyc2ns.tail, head);
112 }
113 preempt_enable();
114}
115
116/*
117 * Begin writing a new @data entry for @cpu.
118 *
119 * Assumes some sort of write side lock; currently 'provided' by the assumption
120 * that cpufreq will call its notifiers sequentially.
121 */
122static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
123{
124 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
125 struct cyc2ns_data *data = c2n->data;
126
127 if (data == c2n->head)
128 data++;
129
130 /* XXX send an IPI to @cpu in order to guarantee a read? */
131
132 /*
133 * When we observe the tail write from cyc2ns_read_end(),
134 * the cpu must be done with that entry and its safe
135 * to start writing to it.
136 */
137 while (c2n->tail == data)
138 cpu_relax();
139
140 return data;
141}
142
143static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
144{
145 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
146
147 /*
148 * Ensure the @data writes are visible before we publish the
149 * entry. Matches the data-depencency in cyc2ns_read_begin().
150 */
151 smp_wmb();
152
153 ACCESS_ONCE(c2n->head) = data;
154}
155
156/*
157 * Accelerators for sched_clock()
57c67da2
PZ
158 * convert from cycles(64bits) => nanoseconds (64bits)
159 * basic equation:
160 * ns = cycles / (freq / ns_per_sec)
161 * ns = cycles * (ns_per_sec / freq)
162 * ns = cycles * (10^9 / (cpu_khz * 10^3))
163 * ns = cycles * (10^6 / cpu_khz)
164 *
165 * Then we use scaling math (suggested by george@mvista.com) to get:
166 * ns = cycles * (10^6 * SC / cpu_khz) / SC
167 * ns = cycles * cyc2ns_scale / SC
168 *
169 * And since SC is a constant power of two, we can convert the div
170 * into a shift.
171 *
172 * We can use khz divisor instead of mhz to keep a better precision, since
173 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
174 * (mathieu.desnoyers@polymtl.ca)
175 *
176 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
177 */
178
57c67da2
PZ
179#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
180
20d1c86a
PZ
181static void cyc2ns_data_init(struct cyc2ns_data *data)
182{
5e3c1afd 183 data->cyc2ns_mul = 0;
20d1c86a
PZ
184 data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
185 data->cyc2ns_offset = 0;
186 data->__count = 0;
187}
188
189static void cyc2ns_init(int cpu)
190{
191 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
192
193 cyc2ns_data_init(&c2n->data[0]);
194 cyc2ns_data_init(&c2n->data[1]);
195
196 c2n->head = c2n->data;
197 c2n->tail = c2n->data;
198}
199
57c67da2
PZ
200static inline unsigned long long cycles_2_ns(unsigned long long cyc)
201{
20d1c86a
PZ
202 struct cyc2ns_data *data, *tail;
203 unsigned long long ns;
204
205 /*
206 * See cyc2ns_read_*() for details; replicated in order to avoid
207 * an extra few instructions that came with the abstraction.
208 * Notable, it allows us to only do the __count and tail update
209 * dance when its actually needed.
210 */
211
569d6557 212 preempt_disable_notrace();
20d1c86a
PZ
213 data = this_cpu_read(cyc2ns.head);
214 tail = this_cpu_read(cyc2ns.tail);
215
216 if (likely(data == tail)) {
217 ns = data->cyc2ns_offset;
218 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
219 } else {
220 data->__count++;
221
222 barrier();
223
224 ns = data->cyc2ns_offset;
225 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
226
227 barrier();
228
229 if (!--data->__count)
230 this_cpu_write(cyc2ns.tail, data);
231 }
569d6557 232 preempt_enable_notrace();
20d1c86a 233
57c67da2
PZ
234 return ns;
235}
236
237static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
238{
20d1c86a
PZ
239 unsigned long long tsc_now, ns_now;
240 struct cyc2ns_data *data;
241 unsigned long flags;
57c67da2
PZ
242
243 local_irq_save(flags);
244 sched_clock_idle_sleep_event();
245
20d1c86a
PZ
246 if (!cpu_khz)
247 goto done;
248
249 data = cyc2ns_write_begin(cpu);
57c67da2
PZ
250
251 rdtscll(tsc_now);
252 ns_now = cycles_2_ns(tsc_now);
253
20d1c86a
PZ
254 /*
255 * Compute a new multiplier as per the above comment and ensure our
256 * time function is continuous; see the comment near struct
257 * cyc2ns_data.
258 */
89171579
MN
259 data->cyc2ns_mul =
260 DIV_ROUND_CLOSEST(NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR,
261 cpu_khz);
20d1c86a
PZ
262 data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
263 data->cyc2ns_offset = ns_now -
264 mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
265
266 cyc2ns_write_end(cpu, data);
57c67da2 267
20d1c86a 268done:
57c67da2
PZ
269 sched_clock_idle_wakeup_event(0);
270 local_irq_restore(flags);
271}
0ef95533
AK
272/*
273 * Scheduler clock - returns current time in nanosec units.
274 */
275u64 native_sched_clock(void)
276{
20d1c86a 277 u64 tsc_now;
0ef95533
AK
278
279 /*
280 * Fall back to jiffies if there's no TSC available:
281 * ( But note that we still use it if the TSC is marked
282 * unstable. We do this because unlike Time Of Day,
283 * the scheduler clock tolerates small errors and it's
284 * very important for it to be as fast as the platform
3ad2f3fb 285 * can achieve it. )
0ef95533 286 */
10b033d4 287 if (!static_key_false(&__use_tsc)) {
0ef95533
AK
288 /* No locking but a rare wrong value is not a big deal: */
289 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
290 }
291
292 /* read the Time Stamp Counter: */
20d1c86a 293 rdtscll(tsc_now);
0ef95533
AK
294
295 /* return the value in ns */
20d1c86a 296 return cycles_2_ns(tsc_now);
0ef95533
AK
297}
298
299/* We need to define a real function for sched_clock, to override the
300 weak default version */
301#ifdef CONFIG_PARAVIRT
302unsigned long long sched_clock(void)
303{
304 return paravirt_sched_clock();
305}
306#else
307unsigned long long
308sched_clock(void) __attribute__((alias("native_sched_clock")));
309#endif
310
ce37f400
DV
311unsigned long long native_read_tsc(void)
312{
313 return __native_read_tsc();
314}
315EXPORT_SYMBOL(native_read_tsc);
316
0ef95533
AK
317int check_tsc_unstable(void)
318{
319 return tsc_unstable;
320}
321EXPORT_SYMBOL_GPL(check_tsc_unstable);
322
c73deb6a
AH
323int check_tsc_disabled(void)
324{
325 return tsc_disabled;
326}
327EXPORT_SYMBOL_GPL(check_tsc_disabled);
328
0ef95533
AK
329#ifdef CONFIG_X86_TSC
330int __init notsc_setup(char *str)
331{
c767a54b 332 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
0ef95533
AK
333 tsc_disabled = 1;
334 return 1;
335}
336#else
337/*
338 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
339 * in cpu/common.c
340 */
341int __init notsc_setup(char *str)
342{
343 setup_clear_cpu_cap(X86_FEATURE_TSC);
344 return 1;
345}
346#endif
347
348__setup("notsc", notsc_setup);
bfc0f594 349
e82b8e4e
VP
350static int no_sched_irq_time;
351
395628ef
AK
352static int __init tsc_setup(char *str)
353{
354 if (!strcmp(str, "reliable"))
355 tsc_clocksource_reliable = 1;
e82b8e4e
VP
356 if (!strncmp(str, "noirqtime", 9))
357 no_sched_irq_time = 1;
395628ef
AK
358 return 1;
359}
360
361__setup("tsc=", tsc_setup);
362
bfc0f594
AK
363#define MAX_RETRIES 5
364#define SMI_TRESHOLD 50000
365
366/*
367 * Read TSC and the reference counters. Take care of SMI disturbance
368 */
827014be 369static u64 tsc_read_refs(u64 *p, int hpet)
bfc0f594
AK
370{
371 u64 t1, t2;
372 int i;
373
374 for (i = 0; i < MAX_RETRIES; i++) {
375 t1 = get_cycles();
376 if (hpet)
827014be 377 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
bfc0f594 378 else
827014be 379 *p = acpi_pm_read_early();
bfc0f594
AK
380 t2 = get_cycles();
381 if ((t2 - t1) < SMI_TRESHOLD)
382 return t2;
383 }
384 return ULLONG_MAX;
385}
386
d683ef7a
TG
387/*
388 * Calculate the TSC frequency from HPET reference
bfc0f594 389 */
d683ef7a 390static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
bfc0f594 391{
d683ef7a 392 u64 tmp;
bfc0f594 393
d683ef7a
TG
394 if (hpet2 < hpet1)
395 hpet2 += 0x100000000ULL;
396 hpet2 -= hpet1;
397 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
398 do_div(tmp, 1000000);
399 do_div(deltatsc, tmp);
400
401 return (unsigned long) deltatsc;
402}
403
404/*
405 * Calculate the TSC frequency from PMTimer reference
406 */
407static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
408{
409 u64 tmp;
bfc0f594 410
d683ef7a
TG
411 if (!pm1 && !pm2)
412 return ULONG_MAX;
413
414 if (pm2 < pm1)
415 pm2 += (u64)ACPI_PM_OVRRUN;
416 pm2 -= pm1;
417 tmp = pm2 * 1000000000LL;
418 do_div(tmp, PMTMR_TICKS_PER_SEC);
419 do_div(deltatsc, tmp);
420
421 return (unsigned long) deltatsc;
422}
423
a977c400 424#define CAL_MS 10
b7743970 425#define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
a977c400
TG
426#define CAL_PIT_LOOPS 1000
427
428#define CAL2_MS 50
b7743970 429#define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
a977c400
TG
430#define CAL2_PIT_LOOPS 5000
431
cce3e057 432
ec0c15af
LT
433/*
434 * Try to calibrate the TSC against the Programmable
435 * Interrupt Timer and return the frequency of the TSC
436 * in kHz.
437 *
438 * Return ULONG_MAX on failure to calibrate.
439 */
a977c400 440static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
ec0c15af
LT
441{
442 u64 tsc, t1, t2, delta;
443 unsigned long tscmin, tscmax;
444 int pitcnt;
445
446 /* Set the Gate high, disable speaker */
447 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
448
449 /*
450 * Setup CTC channel 2* for mode 0, (interrupt on terminal
451 * count mode), binary count. Set the latch register to 50ms
452 * (LSB then MSB) to begin countdown.
453 */
454 outb(0xb0, 0x43);
a977c400
TG
455 outb(latch & 0xff, 0x42);
456 outb(latch >> 8, 0x42);
ec0c15af
LT
457
458 tsc = t1 = t2 = get_cycles();
459
460 pitcnt = 0;
461 tscmax = 0;
462 tscmin = ULONG_MAX;
463 while ((inb(0x61) & 0x20) == 0) {
464 t2 = get_cycles();
465 delta = t2 - tsc;
466 tsc = t2;
467 if ((unsigned long) delta < tscmin)
468 tscmin = (unsigned int) delta;
469 if ((unsigned long) delta > tscmax)
470 tscmax = (unsigned int) delta;
471 pitcnt++;
472 }
473
474 /*
475 * Sanity checks:
476 *
a977c400 477 * If we were not able to read the PIT more than loopmin
ec0c15af
LT
478 * times, then we have been hit by a massive SMI
479 *
480 * If the maximum is 10 times larger than the minimum,
481 * then we got hit by an SMI as well.
482 */
a977c400 483 if (pitcnt < loopmin || tscmax > 10 * tscmin)
ec0c15af
LT
484 return ULONG_MAX;
485
486 /* Calculate the PIT value */
487 delta = t2 - t1;
a977c400 488 do_div(delta, ms);
ec0c15af
LT
489 return delta;
490}
491
6ac40ed0
LT
492/*
493 * This reads the current MSB of the PIT counter, and
494 * checks if we are running on sufficiently fast and
495 * non-virtualized hardware.
496 *
497 * Our expectations are:
498 *
499 * - the PIT is running at roughly 1.19MHz
500 *
501 * - each IO is going to take about 1us on real hardware,
502 * but we allow it to be much faster (by a factor of 10) or
503 * _slightly_ slower (ie we allow up to a 2us read+counter
504 * update - anything else implies a unacceptably slow CPU
505 * or PIT for the fast calibration to work.
506 *
507 * - with 256 PIT ticks to read the value, we have 214us to
508 * see the same MSB (and overhead like doing a single TSC
509 * read per MSB value etc).
510 *
511 * - We're doing 2 reads per loop (LSB, MSB), and we expect
512 * them each to take about a microsecond on real hardware.
513 * So we expect a count value of around 100. But we'll be
514 * generous, and accept anything over 50.
515 *
516 * - if the PIT is stuck, and we see *many* more reads, we
517 * return early (and the next caller of pit_expect_msb()
518 * then consider it a failure when they don't see the
519 * next expected value).
520 *
521 * These expectations mean that we know that we have seen the
522 * transition from one expected value to another with a fairly
523 * high accuracy, and we didn't miss any events. We can thus
524 * use the TSC value at the transitions to calculate a pretty
525 * good value for the TSC frequencty.
526 */
b6e61eef
LT
527static inline int pit_verify_msb(unsigned char val)
528{
529 /* Ignore LSB */
530 inb(0x42);
531 return inb(0x42) == val;
532}
533
9e8912e0 534static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
6ac40ed0 535{
9e8912e0 536 int count;
68f30fbe 537 u64 tsc = 0, prev_tsc = 0;
bfc0f594 538
6ac40ed0 539 for (count = 0; count < 50000; count++) {
b6e61eef 540 if (!pit_verify_msb(val))
6ac40ed0 541 break;
68f30fbe 542 prev_tsc = tsc;
9e8912e0 543 tsc = get_cycles();
6ac40ed0 544 }
68f30fbe 545 *deltap = get_cycles() - prev_tsc;
9e8912e0
LT
546 *tscp = tsc;
547
548 /*
549 * We require _some_ success, but the quality control
550 * will be based on the error terms on the TSC values.
551 */
552 return count > 5;
6ac40ed0
LT
553}
554
555/*
9e8912e0
LT
556 * How many MSB values do we want to see? We aim for
557 * a maximum error rate of 500ppm (in practice the
558 * real error is much smaller), but refuse to spend
68f30fbe 559 * more than 50ms on it.
6ac40ed0 560 */
68f30fbe 561#define MAX_QUICK_PIT_MS 50
9e8912e0 562#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
bfc0f594 563
6ac40ed0
LT
564static unsigned long quick_pit_calibrate(void)
565{
9e8912e0
LT
566 int i;
567 u64 tsc, delta;
568 unsigned long d1, d2;
569
6ac40ed0 570 /* Set the Gate high, disable speaker */
bfc0f594
AK
571 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
572
6ac40ed0
LT
573 /*
574 * Counter 2, mode 0 (one-shot), binary count
575 *
576 * NOTE! Mode 2 decrements by two (and then the
577 * output is flipped each time, giving the same
578 * final output frequency as a decrement-by-one),
579 * so mode 0 is much better when looking at the
580 * individual counts.
581 */
bfc0f594 582 outb(0xb0, 0x43);
bfc0f594 583
6ac40ed0
LT
584 /* Start at 0xffff */
585 outb(0xff, 0x42);
586 outb(0xff, 0x42);
587
a6a80e1d
LT
588 /*
589 * The PIT starts counting at the next edge, so we
590 * need to delay for a microsecond. The easiest way
591 * to do that is to just read back the 16-bit counter
592 * once from the PIT.
593 */
b6e61eef 594 pit_verify_msb(0);
a6a80e1d 595
9e8912e0
LT
596 if (pit_expect_msb(0xff, &tsc, &d1)) {
597 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
598 if (!pit_expect_msb(0xff-i, &delta, &d2))
599 break;
600
601 /*
602 * Iterate until the error is less than 500 ppm
603 */
604 delta -= tsc;
b6e61eef
LT
605 if (d1+d2 >= delta >> 11)
606 continue;
607
608 /*
609 * Check the PIT one more time to verify that
610 * all TSC reads were stable wrt the PIT.
611 *
612 * This also guarantees serialization of the
613 * last cycle read ('d2') in pit_expect_msb.
614 */
615 if (!pit_verify_msb(0xfe - i))
616 break;
617 goto success;
6ac40ed0 618 }
6ac40ed0 619 }
52045217 620 pr_info("Fast TSC calibration failed\n");
6ac40ed0 621 return 0;
9e8912e0
LT
622
623success:
624 /*
625 * Ok, if we get here, then we've seen the
626 * MSB of the PIT decrement 'i' times, and the
627 * error has shrunk to less than 500 ppm.
628 *
629 * As a result, we can depend on there not being
630 * any odd delays anywhere, and the TSC reads are
68f30fbe 631 * reliable (within the error).
9e8912e0
LT
632 *
633 * kHz = ticks / time-in-seconds / 1000;
634 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
635 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
636 */
9e8912e0
LT
637 delta *= PIT_TICK_RATE;
638 do_div(delta, i*256*1000);
c767a54b 639 pr_info("Fast TSC calibration using PIT\n");
9e8912e0 640 return delta;
6ac40ed0 641}
ec0c15af 642
bfc0f594 643/**
e93ef949 644 * native_calibrate_tsc - calibrate the tsc on boot
bfc0f594 645 */
e93ef949 646unsigned long native_calibrate_tsc(void)
bfc0f594 647{
827014be 648 u64 tsc1, tsc2, delta, ref1, ref2;
fbb16e24 649 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
2d826404 650 unsigned long flags, latch, ms, fast_calibrate;
a977c400 651 int hpet = is_hpet_enabled(), i, loopmin;
bfc0f594 652
7da7c156
BG
653 /* Calibrate TSC using MSR for Intel Atom SoCs */
654 local_irq_save(flags);
5f0e0309 655 fast_calibrate = try_msr_calibrate_tsc();
7da7c156 656 local_irq_restore(flags);
5f0e0309 657 if (fast_calibrate)
7da7c156 658 return fast_calibrate;
7da7c156 659
6ac40ed0
LT
660 local_irq_save(flags);
661 fast_calibrate = quick_pit_calibrate();
bfc0f594 662 local_irq_restore(flags);
6ac40ed0
LT
663 if (fast_calibrate)
664 return fast_calibrate;
bfc0f594 665
fbb16e24
TG
666 /*
667 * Run 5 calibration loops to get the lowest frequency value
668 * (the best estimate). We use two different calibration modes
669 * here:
670 *
671 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
672 * load a timeout of 50ms. We read the time right after we
673 * started the timer and wait until the PIT count down reaches
674 * zero. In each wait loop iteration we read the TSC and check
675 * the delta to the previous read. We keep track of the min
676 * and max values of that delta. The delta is mostly defined
677 * by the IO time of the PIT access, so we can detect when a
0d2eb44f 678 * SMI/SMM disturbance happened between the two reads. If the
fbb16e24
TG
679 * maximum time is significantly larger than the minimum time,
680 * then we discard the result and have another try.
681 *
682 * 2) Reference counter. If available we use the HPET or the
683 * PMTIMER as a reference to check the sanity of that value.
684 * We use separate TSC readouts and check inside of the
685 * reference read for a SMI/SMM disturbance. We dicard
686 * disturbed values here as well. We do that around the PIT
687 * calibration delay loop as we have to wait for a certain
688 * amount of time anyway.
689 */
a977c400
TG
690
691 /* Preset PIT loop values */
692 latch = CAL_LATCH;
693 ms = CAL_MS;
694 loopmin = CAL_PIT_LOOPS;
695
696 for (i = 0; i < 3; i++) {
ec0c15af 697 unsigned long tsc_pit_khz;
fbb16e24
TG
698
699 /*
700 * Read the start value and the reference count of
ec0c15af
LT
701 * hpet/pmtimer when available. Then do the PIT
702 * calibration, which will take at least 50ms, and
703 * read the end value.
fbb16e24 704 */
ec0c15af 705 local_irq_save(flags);
827014be 706 tsc1 = tsc_read_refs(&ref1, hpet);
a977c400 707 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
827014be 708 tsc2 = tsc_read_refs(&ref2, hpet);
fbb16e24
TG
709 local_irq_restore(flags);
710
ec0c15af
LT
711 /* Pick the lowest PIT TSC calibration so far */
712 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
fbb16e24
TG
713
714 /* hpet or pmtimer available ? */
62627bec 715 if (ref1 == ref2)
fbb16e24
TG
716 continue;
717
718 /* Check, whether the sampling was disturbed by an SMI */
719 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
720 continue;
721
722 tsc2 = (tsc2 - tsc1) * 1000000LL;
d683ef7a 723 if (hpet)
827014be 724 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
d683ef7a 725 else
827014be 726 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
fbb16e24 727
fbb16e24 728 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
a977c400
TG
729
730 /* Check the reference deviation */
731 delta = ((u64) tsc_pit_min) * 100;
732 do_div(delta, tsc_ref_min);
733
734 /*
735 * If both calibration results are inside a 10% window
736 * then we can be sure, that the calibration
737 * succeeded. We break out of the loop right away. We
738 * use the reference value, as it is more precise.
739 */
740 if (delta >= 90 && delta <= 110) {
c767a54b
JP
741 pr_info("PIT calibration matches %s. %d loops\n",
742 hpet ? "HPET" : "PMTIMER", i + 1);
a977c400 743 return tsc_ref_min;
fbb16e24
TG
744 }
745
a977c400
TG
746 /*
747 * Check whether PIT failed more than once. This
748 * happens in virtualized environments. We need to
749 * give the virtual PC a slightly longer timeframe for
750 * the HPET/PMTIMER to make the result precise.
751 */
752 if (i == 1 && tsc_pit_min == ULONG_MAX) {
753 latch = CAL2_LATCH;
754 ms = CAL2_MS;
755 loopmin = CAL2_PIT_LOOPS;
756 }
fbb16e24 757 }
bfc0f594
AK
758
759 /*
fbb16e24 760 * Now check the results.
bfc0f594 761 */
fbb16e24
TG
762 if (tsc_pit_min == ULONG_MAX) {
763 /* PIT gave no useful value */
c767a54b 764 pr_warn("Unable to calibrate against PIT\n");
fbb16e24
TG
765
766 /* We don't have an alternative source, disable TSC */
827014be 767 if (!hpet && !ref1 && !ref2) {
c767a54b 768 pr_notice("No reference (HPET/PMTIMER) available\n");
fbb16e24
TG
769 return 0;
770 }
771
772 /* The alternative source failed as well, disable TSC */
773 if (tsc_ref_min == ULONG_MAX) {
c767a54b 774 pr_warn("HPET/PMTIMER calibration failed\n");
fbb16e24
TG
775 return 0;
776 }
777
778 /* Use the alternative source */
c767a54b
JP
779 pr_info("using %s reference calibration\n",
780 hpet ? "HPET" : "PMTIMER");
fbb16e24
TG
781
782 return tsc_ref_min;
783 }
bfc0f594 784
fbb16e24 785 /* We don't have an alternative source, use the PIT calibration value */
827014be 786 if (!hpet && !ref1 && !ref2) {
c767a54b 787 pr_info("Using PIT calibration value\n");
fbb16e24 788 return tsc_pit_min;
bfc0f594
AK
789 }
790
fbb16e24
TG
791 /* The alternative source failed, use the PIT calibration value */
792 if (tsc_ref_min == ULONG_MAX) {
c767a54b 793 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
fbb16e24 794 return tsc_pit_min;
bfc0f594
AK
795 }
796
fbb16e24
TG
797 /*
798 * The calibration values differ too much. In doubt, we use
799 * the PIT value as we know that there are PMTIMERs around
a977c400 800 * running at double speed. At least we let the user know:
fbb16e24 801 */
c767a54b
JP
802 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
803 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
804 pr_info("Using PIT calibration value\n");
fbb16e24 805 return tsc_pit_min;
bfc0f594
AK
806}
807
bfc0f594
AK
808int recalibrate_cpu_khz(void)
809{
810#ifndef CONFIG_SMP
811 unsigned long cpu_khz_old = cpu_khz;
812
813 if (cpu_has_tsc) {
2d826404 814 tsc_khz = x86_platform.calibrate_tsc();
e93ef949 815 cpu_khz = tsc_khz;
bfc0f594
AK
816 cpu_data(0).loops_per_jiffy =
817 cpufreq_scale(cpu_data(0).loops_per_jiffy,
818 cpu_khz_old, cpu_khz);
819 return 0;
820 } else
821 return -ENODEV;
822#else
823 return -ENODEV;
824#endif
825}
826
827EXPORT_SYMBOL(recalibrate_cpu_khz);
828
2dbe06fa 829
cd7240c0
SS
830static unsigned long long cyc2ns_suspend;
831
b74f05d6 832void tsc_save_sched_clock_state(void)
cd7240c0 833{
35af99e6 834 if (!sched_clock_stable())
cd7240c0
SS
835 return;
836
837 cyc2ns_suspend = sched_clock();
838}
839
840/*
841 * Even on processors with invariant TSC, TSC gets reset in some the
842 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
843 * arbitrary value (still sync'd across cpu's) during resume from such sleep
844 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
845 * that sched_clock() continues from the point where it was left off during
846 * suspend.
847 */
b74f05d6 848void tsc_restore_sched_clock_state(void)
cd7240c0
SS
849{
850 unsigned long long offset;
851 unsigned long flags;
852 int cpu;
853
35af99e6 854 if (!sched_clock_stable())
cd7240c0
SS
855 return;
856
857 local_irq_save(flags);
858
20d1c86a
PZ
859 /*
860 * We're comming out of suspend, there's no concurrency yet; don't
861 * bother being nice about the RCU stuff, just write to both
862 * data fields.
863 */
864
865 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
866 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
867
cd7240c0
SS
868 offset = cyc2ns_suspend - sched_clock();
869
20d1c86a
PZ
870 for_each_possible_cpu(cpu) {
871 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
872 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
873 }
cd7240c0
SS
874
875 local_irq_restore(flags);
876}
877
2dbe06fa
AK
878#ifdef CONFIG_CPU_FREQ
879
880/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
881 * changes.
882 *
883 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
884 * not that important because current Opteron setups do not support
885 * scaling on SMP anyroads.
886 *
887 * Should fix up last_tsc too. Currently gettimeofday in the
888 * first tick after the change will be slightly wrong.
889 */
890
891static unsigned int ref_freq;
892static unsigned long loops_per_jiffy_ref;
893static unsigned long tsc_khz_ref;
894
895static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
896 void *data)
897{
898 struct cpufreq_freqs *freq = data;
931db6a3 899 unsigned long *lpj;
2dbe06fa
AK
900
901 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
902 return 0;
903
931db6a3 904 lpj = &boot_cpu_data.loops_per_jiffy;
2dbe06fa 905#ifdef CONFIG_SMP
931db6a3 906 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
2dbe06fa 907 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
2dbe06fa
AK
908#endif
909
910 if (!ref_freq) {
911 ref_freq = freq->old;
912 loops_per_jiffy_ref = *lpj;
913 tsc_khz_ref = tsc_khz;
914 }
915 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
0b443ead 916 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
878f4f53 917 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
2dbe06fa
AK
918
919 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
920 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
921 mark_tsc_unstable("cpufreq changes");
2dbe06fa 922
3896c329
PZ
923 set_cyc2ns_scale(tsc_khz, freq->cpu);
924 }
2dbe06fa
AK
925
926 return 0;
927}
928
929static struct notifier_block time_cpufreq_notifier_block = {
930 .notifier_call = time_cpufreq_notifier
931};
932
933static int __init cpufreq_tsc(void)
934{
060700b5
LT
935 if (!cpu_has_tsc)
936 return 0;
937 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
938 return 0;
2dbe06fa
AK
939 cpufreq_register_notifier(&time_cpufreq_notifier_block,
940 CPUFREQ_TRANSITION_NOTIFIER);
941 return 0;
942}
943
944core_initcall(cpufreq_tsc);
945
946#endif /* CONFIG_CPU_FREQ */
8fbbc4b4
AK
947
948/* clocksource code */
949
950static struct clocksource clocksource_tsc;
951
952/*
09ec5442 953 * We used to compare the TSC to the cycle_last value in the clocksource
8fbbc4b4
AK
954 * structure to avoid a nasty time-warp. This can be observed in a
955 * very small window right after one CPU updated cycle_last under
956 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
957 * is smaller than the cycle_last reference value due to a TSC which
958 * is slighty behind. This delta is nowhere else observable, but in
959 * that case it results in a forward time jump in the range of hours
960 * due to the unsigned delta calculation of the time keeping core
961 * code, which is necessary to support wrapping clocksources like pm
962 * timer.
09ec5442
TG
963 *
964 * This sanity check is now done in the core timekeeping code.
965 * checking the result of read_tsc() - cycle_last for being negative.
966 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
8fbbc4b4 967 */
8e19608e 968static cycle_t read_tsc(struct clocksource *cs)
8fbbc4b4 969{
09ec5442 970 return (cycle_t)get_cycles();
1be39679
MS
971}
972
09ec5442
TG
973/*
974 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
975 */
8fbbc4b4
AK
976static struct clocksource clocksource_tsc = {
977 .name = "tsc",
978 .rating = 300,
979 .read = read_tsc,
980 .mask = CLOCKSOURCE_MASK(64),
8fbbc4b4
AK
981 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
982 CLOCK_SOURCE_MUST_VERIFY,
98d0ac38 983 .archdata = { .vclock_mode = VCLOCK_TSC },
8fbbc4b4
AK
984};
985
986void mark_tsc_unstable(char *reason)
987{
988 if (!tsc_unstable) {
989 tsc_unstable = 1;
35af99e6 990 clear_sched_clock_stable();
e82b8e4e 991 disable_sched_clock_irqtime();
c767a54b 992 pr_info("Marking TSC unstable due to %s\n", reason);
8fbbc4b4
AK
993 /* Change only the rating, when not registered */
994 if (clocksource_tsc.mult)
7285dd7f
TG
995 clocksource_mark_unstable(&clocksource_tsc);
996 else {
997 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
8fbbc4b4 998 clocksource_tsc.rating = 0;
7285dd7f 999 }
8fbbc4b4
AK
1000 }
1001}
1002
1003EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1004
395628ef
AK
1005static void __init check_system_tsc_reliable(void)
1006{
8fbbc4b4 1007#ifdef CONFIG_MGEODE_LX
395628ef 1008 /* RTSC counts during suspend */
8fbbc4b4 1009#define RTSC_SUSP 0x100
8fbbc4b4
AK
1010 unsigned long res_low, res_high;
1011
1012 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
00097c4f 1013 /* Geode_LX - the OLPC CPU has a very reliable TSC */
8fbbc4b4 1014 if (res_low & RTSC_SUSP)
395628ef 1015 tsc_clocksource_reliable = 1;
8fbbc4b4 1016#endif
395628ef
AK
1017 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1018 tsc_clocksource_reliable = 1;
1019}
8fbbc4b4
AK
1020
1021/*
1022 * Make an educated guess if the TSC is trustworthy and synchronized
1023 * over all CPUs.
1024 */
148f9bb8 1025int unsynchronized_tsc(void)
8fbbc4b4
AK
1026{
1027 if (!cpu_has_tsc || tsc_unstable)
1028 return 1;
1029
3e5095d1 1030#ifdef CONFIG_SMP
8fbbc4b4
AK
1031 if (apic_is_clustered_box())
1032 return 1;
1033#endif
1034
1035 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1036 return 0;
d3b8f889 1037
1038 if (tsc_clocksource_reliable)
1039 return 0;
8fbbc4b4
AK
1040 /*
1041 * Intel systems are normally all synchronized.
1042 * Exceptions must mark TSC as unstable:
1043 */
1044 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1045 /* assume multi socket systems are not synchronized: */
1046 if (num_possible_cpus() > 1)
d3b8f889 1047 return 1;
8fbbc4b4
AK
1048 }
1049
d3b8f889 1050 return 0;
8fbbc4b4
AK
1051}
1052
08ec0c58
JS
1053
1054static void tsc_refine_calibration_work(struct work_struct *work);
1055static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1056/**
1057 * tsc_refine_calibration_work - Further refine tsc freq calibration
1058 * @work - ignored.
1059 *
1060 * This functions uses delayed work over a period of a
1061 * second to further refine the TSC freq value. Since this is
1062 * timer based, instead of loop based, we don't block the boot
1063 * process while this longer calibration is done.
1064 *
0d2eb44f 1065 * If there are any calibration anomalies (too many SMIs, etc),
08ec0c58
JS
1066 * or the refined calibration is off by 1% of the fast early
1067 * calibration, we throw out the new calibration and use the
1068 * early calibration.
1069 */
1070static void tsc_refine_calibration_work(struct work_struct *work)
1071{
1072 static u64 tsc_start = -1, ref_start;
1073 static int hpet;
1074 u64 tsc_stop, ref_stop, delta;
1075 unsigned long freq;
1076
1077 /* Don't bother refining TSC on unstable systems */
1078 if (check_tsc_unstable())
1079 goto out;
1080
1081 /*
1082 * Since the work is started early in boot, we may be
1083 * delayed the first time we expire. So set the workqueue
1084 * again once we know timers are working.
1085 */
1086 if (tsc_start == -1) {
1087 /*
1088 * Only set hpet once, to avoid mixing hardware
1089 * if the hpet becomes enabled later.
1090 */
1091 hpet = is_hpet_enabled();
1092 schedule_delayed_work(&tsc_irqwork, HZ);
1093 tsc_start = tsc_read_refs(&ref_start, hpet);
1094 return;
1095 }
1096
1097 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1098
1099 /* hpet or pmtimer available ? */
62627bec 1100 if (ref_start == ref_stop)
08ec0c58
JS
1101 goto out;
1102
1103 /* Check, whether the sampling was disturbed by an SMI */
1104 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1105 goto out;
1106
1107 delta = tsc_stop - tsc_start;
1108 delta *= 1000000LL;
1109 if (hpet)
1110 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1111 else
1112 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1113
1114 /* Make sure we're within 1% */
1115 if (abs(tsc_khz - freq) > tsc_khz/100)
1116 goto out;
1117
1118 tsc_khz = freq;
c767a54b
JP
1119 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1120 (unsigned long)tsc_khz / 1000,
1121 (unsigned long)tsc_khz % 1000);
08ec0c58
JS
1122
1123out:
1124 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1125}
1126
1127
1128static int __init init_tsc_clocksource(void)
8fbbc4b4 1129{
29fe359c 1130 if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
a8760eca
TG
1131 return 0;
1132
395628ef
AK
1133 if (tsc_clocksource_reliable)
1134 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
8fbbc4b4
AK
1135 /* lower the rating if we already know its unstable: */
1136 if (check_tsc_unstable()) {
1137 clocksource_tsc.rating = 0;
1138 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1139 }
57779dc2 1140
82f9c080
FT
1141 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1142 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1143
57779dc2
AK
1144 /*
1145 * Trust the results of the earlier calibration on systems
1146 * exporting a reliable TSC.
1147 */
1148 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
1149 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1150 return 0;
1151 }
1152
08ec0c58
JS
1153 schedule_delayed_work(&tsc_irqwork, 0);
1154 return 0;
8fbbc4b4 1155}
08ec0c58
JS
1156/*
1157 * We use device_initcall here, to ensure we run after the hpet
1158 * is fully initialized, which may occur at fs_initcall time.
1159 */
1160device_initcall(init_tsc_clocksource);
8fbbc4b4
AK
1161
1162void __init tsc_init(void)
1163{
1164 u64 lpj;
1165 int cpu;
1166
845b3944
TG
1167 x86_init.timers.tsc_pre_init();
1168
b47dcbdc
AL
1169 if (!cpu_has_tsc) {
1170 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
8fbbc4b4 1171 return;
b47dcbdc 1172 }
8fbbc4b4 1173
2d826404 1174 tsc_khz = x86_platform.calibrate_tsc();
e93ef949 1175 cpu_khz = tsc_khz;
8fbbc4b4 1176
e93ef949 1177 if (!tsc_khz) {
8fbbc4b4 1178 mark_tsc_unstable("could not calculate TSC khz");
b47dcbdc 1179 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
8fbbc4b4
AK
1180 return;
1181 }
1182
c767a54b
JP
1183 pr_info("Detected %lu.%03lu MHz processor\n",
1184 (unsigned long)cpu_khz / 1000,
1185 (unsigned long)cpu_khz % 1000);
8fbbc4b4
AK
1186
1187 /*
1188 * Secondary CPUs do not run through tsc_init(), so set up
1189 * all the scale factors for all CPUs, assuming the same
1190 * speed as the bootup CPU. (cpufreq notifiers will fix this
1191 * up if their speed diverges)
1192 */
20d1c86a
PZ
1193 for_each_possible_cpu(cpu) {
1194 cyc2ns_init(cpu);
8fbbc4b4 1195 set_cyc2ns_scale(cpu_khz, cpu);
20d1c86a 1196 }
8fbbc4b4
AK
1197
1198 if (tsc_disabled > 0)
1199 return;
1200
1201 /* now allow native_sched_clock() to use rdtsc */
10b033d4 1202
8fbbc4b4 1203 tsc_disabled = 0;
10b033d4 1204 static_key_slow_inc(&__use_tsc);
8fbbc4b4 1205
e82b8e4e
VP
1206 if (!no_sched_irq_time)
1207 enable_sched_clock_irqtime();
1208
70de9a97
AK
1209 lpj = ((u64)tsc_khz * 1000);
1210 do_div(lpj, HZ);
1211 lpj_fine = lpj;
1212
8fbbc4b4 1213 use_tsc_delay();
8fbbc4b4
AK
1214
1215 if (unsynchronized_tsc())
1216 mark_tsc_unstable("TSCs unsynchronized");
1217
395628ef 1218 check_system_tsc_reliable();
8fbbc4b4
AK
1219}
1220
b565201c
JS
1221#ifdef CONFIG_SMP
1222/*
1223 * If we have a constant TSC and are using the TSC for the delay loop,
1224 * we can skip clock calibration if another cpu in the same socket has already
1225 * been calibrated. This assumes that CONSTANT_TSC applies to all
1226 * cpus in the socket - this should be a safe assumption.
1227 */
148f9bb8 1228unsigned long calibrate_delay_is_known(void)
b565201c
JS
1229{
1230 int i, cpu = smp_processor_id();
1231
1232 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1233 return 0;
1234
1235 for_each_online_cpu(i)
1236 if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
1237 return cpu_data(i).loops_per_jiffy;
1238 return 0;
1239}
1240#endif
This page took 0.868046 seconds and 5 git commands to generate.