x86, sched_clock(): mark variables read-mostly
[deliverable/linux.git] / arch / x86 / kernel / tsc.c
CommitLineData
bfc0f594 1#include <linux/kernel.h>
0ef95533
AK
2#include <linux/sched.h>
3#include <linux/init.h>
4#include <linux/module.h>
5#include <linux/timer.h>
bfc0f594 6#include <linux/acpi_pmtmr.h>
2dbe06fa 7#include <linux/cpufreq.h>
8fbbc4b4
AK
8#include <linux/dmi.h>
9#include <linux/delay.h>
10#include <linux/clocksource.h>
11#include <linux/percpu.h>
bfc0f594
AK
12
13#include <asm/hpet.h>
8fbbc4b4
AK
14#include <asm/timer.h>
15#include <asm/vgtod.h>
16#include <asm/time.h>
17#include <asm/delay.h>
88b094fb 18#include <asm/hypervisor.h>
0ef95533 19
f24ade3a 20unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
0ef95533 21EXPORT_SYMBOL(cpu_khz);
f24ade3a
IM
22
23unsigned int __read_mostly tsc_khz;
0ef95533
AK
24EXPORT_SYMBOL(tsc_khz);
25
26/*
27 * TSC can be unstable due to cpufreq or due to unsynced TSCs
28 */
f24ade3a 29static int __read_mostly tsc_unstable;
0ef95533
AK
30
31/* native_sched_clock() is called before tsc_init(), so
32 we must start with the TSC soft disabled to prevent
33 erroneous rdtsc usage on !cpu_has_tsc processors */
f24ade3a 34static int __read_mostly tsc_disabled = -1;
0ef95533 35
395628ef 36static int tsc_clocksource_reliable;
0ef95533
AK
37/*
38 * Scheduler clock - returns current time in nanosec units.
39 */
40u64 native_sched_clock(void)
41{
42 u64 this_offset;
43
44 /*
45 * Fall back to jiffies if there's no TSC available:
46 * ( But note that we still use it if the TSC is marked
47 * unstable. We do this because unlike Time Of Day,
48 * the scheduler clock tolerates small errors and it's
49 * very important for it to be as fast as the platform
50 * can achive it. )
51 */
52 if (unlikely(tsc_disabled)) {
53 /* No locking but a rare wrong value is not a big deal: */
54 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
55 }
56
57 /* read the Time Stamp Counter: */
58 rdtscll(this_offset);
59
60 /* return the value in ns */
7cbaef9c 61 return __cycles_2_ns(this_offset);
0ef95533
AK
62}
63
64/* We need to define a real function for sched_clock, to override the
65 weak default version */
66#ifdef CONFIG_PARAVIRT
67unsigned long long sched_clock(void)
68{
69 return paravirt_sched_clock();
70}
71#else
72unsigned long long
73sched_clock(void) __attribute__((alias("native_sched_clock")));
74#endif
75
76int check_tsc_unstable(void)
77{
78 return tsc_unstable;
79}
80EXPORT_SYMBOL_GPL(check_tsc_unstable);
81
82#ifdef CONFIG_X86_TSC
83int __init notsc_setup(char *str)
84{
85 printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
86 "cannot disable TSC completely.\n");
87 tsc_disabled = 1;
88 return 1;
89}
90#else
91/*
92 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
93 * in cpu/common.c
94 */
95int __init notsc_setup(char *str)
96{
97 setup_clear_cpu_cap(X86_FEATURE_TSC);
98 return 1;
99}
100#endif
101
102__setup("notsc", notsc_setup);
bfc0f594 103
395628ef
AK
104static int __init tsc_setup(char *str)
105{
106 if (!strcmp(str, "reliable"))
107 tsc_clocksource_reliable = 1;
108 return 1;
109}
110
111__setup("tsc=", tsc_setup);
112
bfc0f594
AK
113#define MAX_RETRIES 5
114#define SMI_TRESHOLD 50000
115
116/*
117 * Read TSC and the reference counters. Take care of SMI disturbance
118 */
827014be 119static u64 tsc_read_refs(u64 *p, int hpet)
bfc0f594
AK
120{
121 u64 t1, t2;
122 int i;
123
124 for (i = 0; i < MAX_RETRIES; i++) {
125 t1 = get_cycles();
126 if (hpet)
827014be 127 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
bfc0f594 128 else
827014be 129 *p = acpi_pm_read_early();
bfc0f594
AK
130 t2 = get_cycles();
131 if ((t2 - t1) < SMI_TRESHOLD)
132 return t2;
133 }
134 return ULLONG_MAX;
135}
136
d683ef7a
TG
137/*
138 * Calculate the TSC frequency from HPET reference
bfc0f594 139 */
d683ef7a 140static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
bfc0f594 141{
d683ef7a 142 u64 tmp;
bfc0f594 143
d683ef7a
TG
144 if (hpet2 < hpet1)
145 hpet2 += 0x100000000ULL;
146 hpet2 -= hpet1;
147 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
148 do_div(tmp, 1000000);
149 do_div(deltatsc, tmp);
150
151 return (unsigned long) deltatsc;
152}
153
154/*
155 * Calculate the TSC frequency from PMTimer reference
156 */
157static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
158{
159 u64 tmp;
bfc0f594 160
d683ef7a
TG
161 if (!pm1 && !pm2)
162 return ULONG_MAX;
163
164 if (pm2 < pm1)
165 pm2 += (u64)ACPI_PM_OVRRUN;
166 pm2 -= pm1;
167 tmp = pm2 * 1000000000LL;
168 do_div(tmp, PMTMR_TICKS_PER_SEC);
169 do_div(deltatsc, tmp);
170
171 return (unsigned long) deltatsc;
172}
173
a977c400 174#define CAL_MS 10
cce3e057 175#define CAL_LATCH (CLOCK_TICK_RATE / (1000 / CAL_MS))
a977c400
TG
176#define CAL_PIT_LOOPS 1000
177
178#define CAL2_MS 50
179#define CAL2_LATCH (CLOCK_TICK_RATE / (1000 / CAL2_MS))
180#define CAL2_PIT_LOOPS 5000
181
cce3e057 182
ec0c15af
LT
183/*
184 * Try to calibrate the TSC against the Programmable
185 * Interrupt Timer and return the frequency of the TSC
186 * in kHz.
187 *
188 * Return ULONG_MAX on failure to calibrate.
189 */
a977c400 190static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
ec0c15af
LT
191{
192 u64 tsc, t1, t2, delta;
193 unsigned long tscmin, tscmax;
194 int pitcnt;
195
196 /* Set the Gate high, disable speaker */
197 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
198
199 /*
200 * Setup CTC channel 2* for mode 0, (interrupt on terminal
201 * count mode), binary count. Set the latch register to 50ms
202 * (LSB then MSB) to begin countdown.
203 */
204 outb(0xb0, 0x43);
a977c400
TG
205 outb(latch & 0xff, 0x42);
206 outb(latch >> 8, 0x42);
ec0c15af
LT
207
208 tsc = t1 = t2 = get_cycles();
209
210 pitcnt = 0;
211 tscmax = 0;
212 tscmin = ULONG_MAX;
213 while ((inb(0x61) & 0x20) == 0) {
214 t2 = get_cycles();
215 delta = t2 - tsc;
216 tsc = t2;
217 if ((unsigned long) delta < tscmin)
218 tscmin = (unsigned int) delta;
219 if ((unsigned long) delta > tscmax)
220 tscmax = (unsigned int) delta;
221 pitcnt++;
222 }
223
224 /*
225 * Sanity checks:
226 *
a977c400 227 * If we were not able to read the PIT more than loopmin
ec0c15af
LT
228 * times, then we have been hit by a massive SMI
229 *
230 * If the maximum is 10 times larger than the minimum,
231 * then we got hit by an SMI as well.
232 */
a977c400 233 if (pitcnt < loopmin || tscmax > 10 * tscmin)
ec0c15af
LT
234 return ULONG_MAX;
235
236 /* Calculate the PIT value */
237 delta = t2 - t1;
a977c400 238 do_div(delta, ms);
ec0c15af
LT
239 return delta;
240}
241
6ac40ed0
LT
242/*
243 * This reads the current MSB of the PIT counter, and
244 * checks if we are running on sufficiently fast and
245 * non-virtualized hardware.
246 *
247 * Our expectations are:
248 *
249 * - the PIT is running at roughly 1.19MHz
250 *
251 * - each IO is going to take about 1us on real hardware,
252 * but we allow it to be much faster (by a factor of 10) or
253 * _slightly_ slower (ie we allow up to a 2us read+counter
254 * update - anything else implies a unacceptably slow CPU
255 * or PIT for the fast calibration to work.
256 *
257 * - with 256 PIT ticks to read the value, we have 214us to
258 * see the same MSB (and overhead like doing a single TSC
259 * read per MSB value etc).
260 *
261 * - We're doing 2 reads per loop (LSB, MSB), and we expect
262 * them each to take about a microsecond on real hardware.
263 * So we expect a count value of around 100. But we'll be
264 * generous, and accept anything over 50.
265 *
266 * - if the PIT is stuck, and we see *many* more reads, we
267 * return early (and the next caller of pit_expect_msb()
268 * then consider it a failure when they don't see the
269 * next expected value).
270 *
271 * These expectations mean that we know that we have seen the
272 * transition from one expected value to another with a fairly
273 * high accuracy, and we didn't miss any events. We can thus
274 * use the TSC value at the transitions to calculate a pretty
275 * good value for the TSC frequencty.
276 */
277static inline int pit_expect_msb(unsigned char val)
278{
279 int count = 0;
bfc0f594 280
6ac40ed0
LT
281 for (count = 0; count < 50000; count++) {
282 /* Ignore LSB */
283 inb(0x42);
284 if (inb(0x42) != val)
285 break;
286 }
287 return count > 50;
288}
289
290/*
291 * How many MSB values do we want to see? We aim for a
292 * 15ms calibration, which assuming a 2us counter read
293 * error should give us roughly 150 ppm precision for
294 * the calibration.
295 */
296#define QUICK_PIT_MS 15
297#define QUICK_PIT_ITERATIONS (QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
bfc0f594 298
6ac40ed0
LT
299static unsigned long quick_pit_calibrate(void)
300{
301 /* Set the Gate high, disable speaker */
bfc0f594
AK
302 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
303
6ac40ed0
LT
304 /*
305 * Counter 2, mode 0 (one-shot), binary count
306 *
307 * NOTE! Mode 2 decrements by two (and then the
308 * output is flipped each time, giving the same
309 * final output frequency as a decrement-by-one),
310 * so mode 0 is much better when looking at the
311 * individual counts.
312 */
bfc0f594 313 outb(0xb0, 0x43);
bfc0f594 314
6ac40ed0
LT
315 /* Start at 0xffff */
316 outb(0xff, 0x42);
317 outb(0xff, 0x42);
318
319 if (pit_expect_msb(0xff)) {
320 int i;
321 u64 t1, t2, delta;
322 unsigned char expect = 0xfe;
323
324 t1 = get_cycles();
325 for (i = 0; i < QUICK_PIT_ITERATIONS; i++, expect--) {
326 if (!pit_expect_msb(expect))
327 goto failed;
328 }
329 t2 = get_cycles();
330
4156e9a8
IM
331 /*
332 * Make sure we can rely on the second TSC timestamp:
333 */
5df45515 334 if (!pit_expect_msb(expect))
4156e9a8
IM
335 goto failed;
336
6ac40ed0
LT
337 /*
338 * Ok, if we get here, then we've seen the
339 * MSB of the PIT decrement QUICK_PIT_ITERATIONS
340 * times, and each MSB had many hits, so we never
341 * had any sudden jumps.
342 *
343 * As a result, we can depend on there not being
344 * any odd delays anywhere, and the TSC reads are
345 * reliable.
346 *
347 * kHz = ticks / time-in-seconds / 1000;
348 * kHz = (t2 - t1) / (QPI * 256 / PIT_TICK_RATE) / 1000
349 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (QPI * 256 * 1000)
350 */
351 delta = (t2 - t1)*PIT_TICK_RATE;
352 do_div(delta, QUICK_PIT_ITERATIONS*256*1000);
353 printk("Fast TSC calibration using PIT\n");
354 return delta;
355 }
356failed:
357 return 0;
358}
ec0c15af 359
bfc0f594 360/**
e93ef949 361 * native_calibrate_tsc - calibrate the tsc on boot
bfc0f594 362 */
e93ef949 363unsigned long native_calibrate_tsc(void)
bfc0f594 364{
827014be 365 u64 tsc1, tsc2, delta, ref1, ref2;
fbb16e24 366 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
88b094fb 367 unsigned long flags, latch, ms, fast_calibrate, tsc_khz;
a977c400 368 int hpet = is_hpet_enabled(), i, loopmin;
bfc0f594 369
88b094fb
AK
370 tsc_khz = get_hypervisor_tsc_freq();
371 if (tsc_khz) {
372 printk(KERN_INFO "TSC: Frequency read from the hypervisor\n");
373 return tsc_khz;
374 }
375
6ac40ed0
LT
376 local_irq_save(flags);
377 fast_calibrate = quick_pit_calibrate();
bfc0f594 378 local_irq_restore(flags);
6ac40ed0
LT
379 if (fast_calibrate)
380 return fast_calibrate;
bfc0f594 381
fbb16e24
TG
382 /*
383 * Run 5 calibration loops to get the lowest frequency value
384 * (the best estimate). We use two different calibration modes
385 * here:
386 *
387 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
388 * load a timeout of 50ms. We read the time right after we
389 * started the timer and wait until the PIT count down reaches
390 * zero. In each wait loop iteration we read the TSC and check
391 * the delta to the previous read. We keep track of the min
392 * and max values of that delta. The delta is mostly defined
393 * by the IO time of the PIT access, so we can detect when a
394 * SMI/SMM disturbance happend between the two reads. If the
395 * maximum time is significantly larger than the minimum time,
396 * then we discard the result and have another try.
397 *
398 * 2) Reference counter. If available we use the HPET or the
399 * PMTIMER as a reference to check the sanity of that value.
400 * We use separate TSC readouts and check inside of the
401 * reference read for a SMI/SMM disturbance. We dicard
402 * disturbed values here as well. We do that around the PIT
403 * calibration delay loop as we have to wait for a certain
404 * amount of time anyway.
405 */
a977c400
TG
406
407 /* Preset PIT loop values */
408 latch = CAL_LATCH;
409 ms = CAL_MS;
410 loopmin = CAL_PIT_LOOPS;
411
412 for (i = 0; i < 3; i++) {
ec0c15af 413 unsigned long tsc_pit_khz;
fbb16e24
TG
414
415 /*
416 * Read the start value and the reference count of
ec0c15af
LT
417 * hpet/pmtimer when available. Then do the PIT
418 * calibration, which will take at least 50ms, and
419 * read the end value.
fbb16e24 420 */
ec0c15af 421 local_irq_save(flags);
827014be 422 tsc1 = tsc_read_refs(&ref1, hpet);
a977c400 423 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
827014be 424 tsc2 = tsc_read_refs(&ref2, hpet);
fbb16e24
TG
425 local_irq_restore(flags);
426
ec0c15af
LT
427 /* Pick the lowest PIT TSC calibration so far */
428 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
fbb16e24
TG
429
430 /* hpet or pmtimer available ? */
827014be 431 if (!hpet && !ref1 && !ref2)
fbb16e24
TG
432 continue;
433
434 /* Check, whether the sampling was disturbed by an SMI */
435 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
436 continue;
437
438 tsc2 = (tsc2 - tsc1) * 1000000LL;
d683ef7a 439 if (hpet)
827014be 440 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
d683ef7a 441 else
827014be 442 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
fbb16e24 443
fbb16e24 444 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
a977c400
TG
445
446 /* Check the reference deviation */
447 delta = ((u64) tsc_pit_min) * 100;
448 do_div(delta, tsc_ref_min);
449
450 /*
451 * If both calibration results are inside a 10% window
452 * then we can be sure, that the calibration
453 * succeeded. We break out of the loop right away. We
454 * use the reference value, as it is more precise.
455 */
456 if (delta >= 90 && delta <= 110) {
457 printk(KERN_INFO
458 "TSC: PIT calibration matches %s. %d loops\n",
459 hpet ? "HPET" : "PMTIMER", i + 1);
460 return tsc_ref_min;
fbb16e24
TG
461 }
462
a977c400
TG
463 /*
464 * Check whether PIT failed more than once. This
465 * happens in virtualized environments. We need to
466 * give the virtual PC a slightly longer timeframe for
467 * the HPET/PMTIMER to make the result precise.
468 */
469 if (i == 1 && tsc_pit_min == ULONG_MAX) {
470 latch = CAL2_LATCH;
471 ms = CAL2_MS;
472 loopmin = CAL2_PIT_LOOPS;
473 }
fbb16e24 474 }
bfc0f594
AK
475
476 /*
fbb16e24 477 * Now check the results.
bfc0f594 478 */
fbb16e24
TG
479 if (tsc_pit_min == ULONG_MAX) {
480 /* PIT gave no useful value */
de014d61 481 printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
fbb16e24
TG
482
483 /* We don't have an alternative source, disable TSC */
827014be 484 if (!hpet && !ref1 && !ref2) {
fbb16e24
TG
485 printk("TSC: No reference (HPET/PMTIMER) available\n");
486 return 0;
487 }
488
489 /* The alternative source failed as well, disable TSC */
490 if (tsc_ref_min == ULONG_MAX) {
491 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
a977c400 492 "failed.\n");
fbb16e24
TG
493 return 0;
494 }
495
496 /* Use the alternative source */
497 printk(KERN_INFO "TSC: using %s reference calibration\n",
498 hpet ? "HPET" : "PMTIMER");
499
500 return tsc_ref_min;
501 }
bfc0f594 502
fbb16e24 503 /* We don't have an alternative source, use the PIT calibration value */
827014be 504 if (!hpet && !ref1 && !ref2) {
fbb16e24
TG
505 printk(KERN_INFO "TSC: Using PIT calibration value\n");
506 return tsc_pit_min;
bfc0f594
AK
507 }
508
fbb16e24
TG
509 /* The alternative source failed, use the PIT calibration value */
510 if (tsc_ref_min == ULONG_MAX) {
a977c400
TG
511 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
512 "Using PIT calibration\n");
fbb16e24 513 return tsc_pit_min;
bfc0f594
AK
514 }
515
fbb16e24
TG
516 /*
517 * The calibration values differ too much. In doubt, we use
518 * the PIT value as we know that there are PMTIMERs around
a977c400 519 * running at double speed. At least we let the user know:
fbb16e24 520 */
a977c400
TG
521 printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
522 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
fbb16e24
TG
523 printk(KERN_INFO "TSC: Using PIT calibration value\n");
524 return tsc_pit_min;
bfc0f594
AK
525}
526
bfc0f594
AK
527#ifdef CONFIG_X86_32
528/* Only called from the Powernow K7 cpu freq driver */
529int recalibrate_cpu_khz(void)
530{
531#ifndef CONFIG_SMP
532 unsigned long cpu_khz_old = cpu_khz;
533
534 if (cpu_has_tsc) {
e93ef949
AK
535 tsc_khz = calibrate_tsc();
536 cpu_khz = tsc_khz;
bfc0f594
AK
537 cpu_data(0).loops_per_jiffy =
538 cpufreq_scale(cpu_data(0).loops_per_jiffy,
539 cpu_khz_old, cpu_khz);
540 return 0;
541 } else
542 return -ENODEV;
543#else
544 return -ENODEV;
545#endif
546}
547
548EXPORT_SYMBOL(recalibrate_cpu_khz);
549
550#endif /* CONFIG_X86_32 */
2dbe06fa
AK
551
552/* Accelerators for sched_clock()
553 * convert from cycles(64bits) => nanoseconds (64bits)
554 * basic equation:
555 * ns = cycles / (freq / ns_per_sec)
556 * ns = cycles * (ns_per_sec / freq)
557 * ns = cycles * (10^9 / (cpu_khz * 10^3))
558 * ns = cycles * (10^6 / cpu_khz)
559 *
560 * Then we use scaling math (suggested by george@mvista.com) to get:
561 * ns = cycles * (10^6 * SC / cpu_khz) / SC
562 * ns = cycles * cyc2ns_scale / SC
563 *
564 * And since SC is a constant power of two, we can convert the div
565 * into a shift.
566 *
567 * We can use khz divisor instead of mhz to keep a better precision, since
568 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
569 * (mathieu.desnoyers@polymtl.ca)
570 *
571 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
572 */
573
574DEFINE_PER_CPU(unsigned long, cyc2ns);
575
8fbbc4b4 576static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
2dbe06fa
AK
577{
578 unsigned long long tsc_now, ns_now;
579 unsigned long flags, *scale;
580
581 local_irq_save(flags);
582 sched_clock_idle_sleep_event();
583
584 scale = &per_cpu(cyc2ns, cpu);
585
586 rdtscll(tsc_now);
587 ns_now = __cycles_2_ns(tsc_now);
588
589 if (cpu_khz)
590 *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
591
592 sched_clock_idle_wakeup_event(0);
593 local_irq_restore(flags);
594}
595
596#ifdef CONFIG_CPU_FREQ
597
598/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
599 * changes.
600 *
601 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
602 * not that important because current Opteron setups do not support
603 * scaling on SMP anyroads.
604 *
605 * Should fix up last_tsc too. Currently gettimeofday in the
606 * first tick after the change will be slightly wrong.
607 */
608
609static unsigned int ref_freq;
610static unsigned long loops_per_jiffy_ref;
611static unsigned long tsc_khz_ref;
612
613static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
614 void *data)
615{
616 struct cpufreq_freqs *freq = data;
617 unsigned long *lpj, dummy;
618
619 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
620 return 0;
621
622 lpj = &dummy;
623 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
624#ifdef CONFIG_SMP
625 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
626#else
627 lpj = &boot_cpu_data.loops_per_jiffy;
628#endif
629
630 if (!ref_freq) {
631 ref_freq = freq->old;
632 loops_per_jiffy_ref = *lpj;
633 tsc_khz_ref = tsc_khz;
634 }
635 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
636 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
637 (val == CPUFREQ_RESUMECHANGE)) {
638 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
639
640 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
641 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
642 mark_tsc_unstable("cpufreq changes");
643 }
644
52a8968c 645 set_cyc2ns_scale(tsc_khz, freq->cpu);
2dbe06fa
AK
646
647 return 0;
648}
649
650static struct notifier_block time_cpufreq_notifier_block = {
651 .notifier_call = time_cpufreq_notifier
652};
653
654static int __init cpufreq_tsc(void)
655{
060700b5
LT
656 if (!cpu_has_tsc)
657 return 0;
658 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
659 return 0;
2dbe06fa
AK
660 cpufreq_register_notifier(&time_cpufreq_notifier_block,
661 CPUFREQ_TRANSITION_NOTIFIER);
662 return 0;
663}
664
665core_initcall(cpufreq_tsc);
666
667#endif /* CONFIG_CPU_FREQ */
8fbbc4b4
AK
668
669/* clocksource code */
670
671static struct clocksource clocksource_tsc;
672
673/*
674 * We compare the TSC to the cycle_last value in the clocksource
675 * structure to avoid a nasty time-warp. This can be observed in a
676 * very small window right after one CPU updated cycle_last under
677 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
678 * is smaller than the cycle_last reference value due to a TSC which
679 * is slighty behind. This delta is nowhere else observable, but in
680 * that case it results in a forward time jump in the range of hours
681 * due to the unsigned delta calculation of the time keeping core
682 * code, which is necessary to support wrapping clocksources like pm
683 * timer.
684 */
685static cycle_t read_tsc(void)
686{
687 cycle_t ret = (cycle_t)get_cycles();
688
689 return ret >= clocksource_tsc.cycle_last ?
690 ret : clocksource_tsc.cycle_last;
691}
692
431ceb83 693#ifdef CONFIG_X86_64
8fbbc4b4
AK
694static cycle_t __vsyscall_fn vread_tsc(void)
695{
696 cycle_t ret = (cycle_t)vget_cycles();
697
698 return ret >= __vsyscall_gtod_data.clock.cycle_last ?
699 ret : __vsyscall_gtod_data.clock.cycle_last;
700}
431ceb83 701#endif
8fbbc4b4
AK
702
703static struct clocksource clocksource_tsc = {
704 .name = "tsc",
705 .rating = 300,
706 .read = read_tsc,
707 .mask = CLOCKSOURCE_MASK(64),
708 .shift = 22,
709 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
710 CLOCK_SOURCE_MUST_VERIFY,
711#ifdef CONFIG_X86_64
712 .vread = vread_tsc,
713#endif
714};
715
716void mark_tsc_unstable(char *reason)
717{
718 if (!tsc_unstable) {
719 tsc_unstable = 1;
720 printk("Marking TSC unstable due to %s\n", reason);
721 /* Change only the rating, when not registered */
722 if (clocksource_tsc.mult)
723 clocksource_change_rating(&clocksource_tsc, 0);
724 else
725 clocksource_tsc.rating = 0;
726 }
727}
728
729EXPORT_SYMBOL_GPL(mark_tsc_unstable);
730
731static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
732{
733 printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
734 d->ident);
735 tsc_unstable = 1;
736 return 0;
737}
738
739/* List of systems that have known TSC problems */
740static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
741 {
742 .callback = dmi_mark_tsc_unstable,
743 .ident = "IBM Thinkpad 380XD",
744 .matches = {
745 DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
746 DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
747 },
748 },
749 {}
750};
751
395628ef
AK
752static void __init check_system_tsc_reliable(void)
753{
8fbbc4b4 754#ifdef CONFIG_MGEODE_LX
395628ef 755 /* RTSC counts during suspend */
8fbbc4b4 756#define RTSC_SUSP 0x100
8fbbc4b4
AK
757 unsigned long res_low, res_high;
758
759 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
395628ef 760 /* Geode_LX - the OLPC CPU has a possibly a very reliable TSC */
8fbbc4b4 761 if (res_low & RTSC_SUSP)
395628ef 762 tsc_clocksource_reliable = 1;
8fbbc4b4 763#endif
395628ef
AK
764 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
765 tsc_clocksource_reliable = 1;
766}
8fbbc4b4
AK
767
768/*
769 * Make an educated guess if the TSC is trustworthy and synchronized
770 * over all CPUs.
771 */
772__cpuinit int unsynchronized_tsc(void)
773{
774 if (!cpu_has_tsc || tsc_unstable)
775 return 1;
776
017d9d20 777#ifdef CONFIG_X86_SMP
8fbbc4b4
AK
778 if (apic_is_clustered_box())
779 return 1;
780#endif
781
782 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
783 return 0;
784 /*
785 * Intel systems are normally all synchronized.
786 * Exceptions must mark TSC as unstable:
787 */
788 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
789 /* assume multi socket systems are not synchronized: */
790 if (num_possible_cpus() > 1)
791 tsc_unstable = 1;
792 }
793
794 return tsc_unstable;
795}
796
797static void __init init_tsc_clocksource(void)
798{
799 clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
800 clocksource_tsc.shift);
395628ef
AK
801 if (tsc_clocksource_reliable)
802 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
8fbbc4b4
AK
803 /* lower the rating if we already know its unstable: */
804 if (check_tsc_unstable()) {
805 clocksource_tsc.rating = 0;
806 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
807 }
808 clocksource_register(&clocksource_tsc);
809}
810
811void __init tsc_init(void)
812{
813 u64 lpj;
814 int cpu;
815
816 if (!cpu_has_tsc)
817 return;
818
e93ef949
AK
819 tsc_khz = calibrate_tsc();
820 cpu_khz = tsc_khz;
8fbbc4b4 821
e93ef949 822 if (!tsc_khz) {
8fbbc4b4
AK
823 mark_tsc_unstable("could not calculate TSC khz");
824 return;
825 }
826
827#ifdef CONFIG_X86_64
828 if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
829 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
830 cpu_khz = calibrate_cpu();
831#endif
832
8fbbc4b4
AK
833 printk("Detected %lu.%03lu MHz processor.\n",
834 (unsigned long)cpu_khz / 1000,
835 (unsigned long)cpu_khz % 1000);
836
837 /*
838 * Secondary CPUs do not run through tsc_init(), so set up
839 * all the scale factors for all CPUs, assuming the same
840 * speed as the bootup CPU. (cpufreq notifiers will fix this
841 * up if their speed diverges)
842 */
843 for_each_possible_cpu(cpu)
844 set_cyc2ns_scale(cpu_khz, cpu);
845
846 if (tsc_disabled > 0)
847 return;
848
849 /* now allow native_sched_clock() to use rdtsc */
850 tsc_disabled = 0;
851
70de9a97
AK
852 lpj = ((u64)tsc_khz * 1000);
853 do_div(lpj, HZ);
854 lpj_fine = lpj;
855
8fbbc4b4
AK
856 use_tsc_delay();
857 /* Check and install the TSC clocksource */
858 dmi_check_system(bad_tsc_dmi_table);
859
860 if (unsynchronized_tsc())
861 mark_tsc_unstable("TSCs unsynchronized");
862
395628ef 863 check_system_tsc_reliable();
8fbbc4b4
AK
864 init_tsc_clocksource();
865}
866
This page took 0.233602 seconds and 5 git commands to generate.