x86/fpu: Move math_state_restore() to fpu/core.c
[deliverable/linux.git] / arch / x86 / kernel / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes) for x86
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2008-2011
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
22 */
2b144498
SD
23#include <linux/kernel.h>
24#include <linux/sched.h>
25#include <linux/ptrace.h>
26#include <linux/uprobes.h>
0326f5a9 27#include <linux/uaccess.h>
2b144498
SD
28
29#include <linux/kdebug.h>
0326f5a9 30#include <asm/processor.h>
2b144498
SD
31#include <asm/insn.h>
32
33/* Post-execution fixups. */
34
2b144498 35/* Adjust IP back to vicinity of actual insn */
78d9af4c 36#define UPROBE_FIX_IP 0x01
0326f5a9 37
2b144498 38/* Adjust the return address of a call insn */
78d9af4c 39#define UPROBE_FIX_CALL 0x02
2b144498 40
bdc1e472 41/* Instruction will modify TF, don't change it */
78d9af4c 42#define UPROBE_FIX_SETF 0x04
bdc1e472 43
1ea30fb6
DV
44#define UPROBE_FIX_RIP_SI 0x08
45#define UPROBE_FIX_RIP_DI 0x10
46#define UPROBE_FIX_RIP_BX 0x20
47#define UPROBE_FIX_RIP_MASK \
48 (UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
2b144498 49
0326f5a9
SD
50#define UPROBE_TRAP_NR UINT_MAX
51
2b144498 52/* Adaptations for mhiramat x86 decoder v14. */
7b2d81d4
IM
53#define OPCODE1(insn) ((insn)->opcode.bytes[0])
54#define OPCODE2(insn) ((insn)->opcode.bytes[1])
55#define OPCODE3(insn) ((insn)->opcode.bytes[2])
ddb69f27 56#define MODRM_REG(insn) X86_MODRM_REG((insn)->modrm.value)
2b144498
SD
57
58#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
59 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
60 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
61 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
62 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
63 << (row % 32))
64
04a3d984
SD
65/*
66 * Good-instruction tables for 32-bit apps. This is non-const and volatile
67 * to keep gcc from statically optimizing it out, as variable_test_bit makes
68 * some versions of gcc to think only *(unsigned long*) is used.
097f4e5e 69 *
097f4e5e
DV
70 * Opcodes we'll probably never support:
71 * 6c-6f - ins,outs. SEGVs if used in userspace
72 * e4-e7 - in,out imm. SEGVs if used in userspace
73 * ec-ef - in,out acc. SEGVs if used in userspace
74 * cc - int3. SIGTRAP if used in userspace
75 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
76 * (why we support bound (62) then? it's similar, and similarly unused...)
77 * f1 - int1. SIGTRAP if used in userspace
78 * f4 - hlt. SEGVs if used in userspace
79 * fa - cli. SEGVs if used in userspace
80 * fb - sti. SEGVs if used in userspace
81 *
82 * Opcodes which need some work to be supported:
83 * 07,17,1f - pop es/ss/ds
84 * Normally not used in userspace, but would execute if used.
85 * Can cause GP or stack exception if tries to load wrong segment descriptor.
86 * We hesitate to run them under single step since kernel's handling
87 * of userspace single-stepping (TF flag) is fragile.
88 * We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
89 * on the same grounds that they are never used.
90 * cd - int N.
91 * Used by userspace for "int 80" syscall entry. (Other "int N"
92 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
93 * Not supported since kernel's handling of userspace single-stepping
94 * (TF flag) is fragile.
95 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
04a3d984 96 */
8dbacad9 97#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
04a3d984 98static volatile u32 good_insns_32[256 / 32] = {
2b144498
SD
99 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
100 /* ---------------------------------------------- */
67fc8092 101 W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
2b144498 102 W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
67fc8092
DV
103 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
104 W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
2b144498
SD
105 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
106 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
67fc8092 107 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
2b144498
SD
108 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
109 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
110 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
111 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
112 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
113 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
67fc8092 114 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
2b144498 115 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
67fc8092 116 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
2b144498
SD
117 /* ---------------------------------------------- */
118 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
119};
8dbacad9
ON
120#else
121#define good_insns_32 NULL
122#endif
2b144498 123
097f4e5e 124/* Good-instruction tables for 64-bit apps.
097f4e5e
DV
125 *
126 * Genuinely invalid opcodes:
127 * 06,07 - formerly push/pop es
128 * 0e - formerly push cs
129 * 16,17 - formerly push/pop ss
130 * 1e,1f - formerly push/pop ds
131 * 27,2f,37,3f - formerly daa/das/aaa/aas
132 * 60,61 - formerly pusha/popa
67fc8092 133 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
097f4e5e 134 * 82 - formerly redundant encoding of Group1
67fc8092 135 * 9a - formerly call seg:ofs
097f4e5e
DV
136 * ce - formerly into
137 * d4,d5 - formerly aam/aad
138 * d6 - formerly undocumented salc
67fc8092 139 * ea - formerly jmp seg:ofs
097f4e5e
DV
140 *
141 * Opcodes we'll probably never support:
142 * 6c-6f - ins,outs. SEGVs if used in userspace
143 * e4-e7 - in,out imm. SEGVs if used in userspace
144 * ec-ef - in,out acc. SEGVs if used in userspace
145 * cc - int3. SIGTRAP if used in userspace
146 * f1 - int1. SIGTRAP if used in userspace
147 * f4 - hlt. SEGVs if used in userspace
148 * fa - cli. SEGVs if used in userspace
149 * fb - sti. SEGVs if used in userspace
150 *
151 * Opcodes which need some work to be supported:
152 * cd - int N.
153 * Used by userspace for "int 80" syscall entry. (Other "int N"
154 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
155 * Not supported since kernel's handling of userspace single-stepping
156 * (TF flag) is fragile.
157 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
158 */
8dbacad9 159#if defined(CONFIG_X86_64)
04a3d984
SD
160static volatile u32 good_insns_64[256 / 32] = {
161 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
162 /* ---------------------------------------------- */
67fc8092 163 W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
04a3d984 164 W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
67fc8092
DV
165 W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
166 W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
167 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
04a3d984 168 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
67fc8092 169 W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
04a3d984
SD
170 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
171 W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
67fc8092 172 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
04a3d984
SD
173 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
174 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
67fc8092 175 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
04a3d984 176 W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
67fc8092
DV
177 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
178 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
04a3d984
SD
179 /* ---------------------------------------------- */
180 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
181};
8dbacad9
ON
182#else
183#define good_insns_64 NULL
184#endif
185
097f4e5e
DV
186/* Using this for both 64-bit and 32-bit apps.
187 * Opcodes we don't support:
188 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
189 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
190 * Also encodes tons of other system insns if mod=11.
191 * Some are in fact non-system: xend, xtest, rdtscp, maybe more
097f4e5e
DV
192 * 0f 05 - syscall
193 * 0f 06 - clts (CPL0 insn)
194 * 0f 07 - sysret
195 * 0f 08 - invd (CPL0 insn)
196 * 0f 09 - wbinvd (CPL0 insn)
097f4e5e 197 * 0f 0b - ud2
5154d4f2 198 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
097f4e5e
DV
199 * 0f 34 - sysenter
200 * 0f 35 - sysexit
097f4e5e 201 * 0f 37 - getsec
5154d4f2
DV
202 * 0f 78 - vmread (Intel VMX. CPL0 insn)
203 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
204 * Note: with prefixes, these two opcodes are
205 * extrq/insertq/AVX512 convert vector ops.
206 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
207 * {rd,wr}{fs,gs}base,{s,l,m}fence.
208 * Why? They are all user-executable.
097f4e5e 209 */
8dbacad9
ON
210static volatile u32 good_2byte_insns[256 / 32] = {
211 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
212 /* ---------------------------------------------- */
5154d4f2
DV
213 W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
214 W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
215 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
216 W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
8dbacad9
ON
217 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
218 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
219 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
5154d4f2 220 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
8dbacad9
ON
221 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
222 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
5154d4f2
DV
223 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
224 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
8dbacad9 225 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
5154d4f2 226 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
8dbacad9 227 W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
5154d4f2 228 W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /* f0 */
8dbacad9
ON
229 /* ---------------------------------------------- */
230 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
231};
2b144498
SD
232#undef W
233
234/*
2b144498 235 * opcodes we may need to refine support for:
7b2d81d4
IM
236 *
237 * 0f - 2-byte instructions: For many of these instructions, the validity
238 * depends on the prefix and/or the reg field. On such instructions, we
239 * just consider the opcode combination valid if it corresponds to any
240 * valid instruction.
241 *
242 * 8f - Group 1 - only reg = 0 is OK
243 * c6-c7 - Group 11 - only reg = 0 is OK
244 * d9-df - fpu insns with some illegal encodings
245 * f2, f3 - repnz, repz prefixes. These are also the first byte for
246 * certain floating-point instructions, such as addsd.
247 *
248 * fe - Group 4 - only reg = 0 or 1 is OK
249 * ff - Group 5 - only reg = 0-6 is OK
2b144498
SD
250 *
251 * others -- Do we need to support these?
7b2d81d4
IM
252 *
253 * 0f - (floating-point?) prefetch instructions
254 * 07, 17, 1f - pop es, pop ss, pop ds
255 * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
2b144498 256 * but 64 and 65 (fs: and gs:) seem to be used, so we support them
7b2d81d4
IM
257 * 67 - addr16 prefix
258 * ce - into
259 * f0 - lock prefix
2b144498
SD
260 */
261
262/*
263 * TODO:
264 * - Where necessary, examine the modrm byte and allow only valid instructions
265 * in the different Groups and fpu instructions.
266 */
267
268static bool is_prefix_bad(struct insn *insn)
269{
270 int i;
271
272 for (i = 0; i < insn->prefixes.nbytes; i++) {
273 switch (insn->prefixes.bytes[i]) {
7b2d81d4
IM
274 case 0x26: /* INAT_PFX_ES */
275 case 0x2E: /* INAT_PFX_CS */
276 case 0x36: /* INAT_PFX_DS */
277 case 0x3E: /* INAT_PFX_SS */
278 case 0xF0: /* INAT_PFX_LOCK */
2b144498
SD
279 return true;
280 }
281 }
282 return false;
283}
284
73175d0d 285static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
2b144498 286{
73175d0d
ON
287 u32 volatile *good_insns;
288
6ba48ff4 289 insn_init(insn, auprobe->insn, sizeof(auprobe->insn), x86_64);
ff261964
ON
290 /* has the side-effect of processing the entire instruction */
291 insn_get_length(insn);
292 if (WARN_ON_ONCE(!insn_complete(insn)))
293 return -ENOEXEC;
2b144498 294
2b144498
SD
295 if (is_prefix_bad(insn))
296 return -ENOTSUPP;
7b2d81d4 297
73175d0d
ON
298 if (x86_64)
299 good_insns = good_insns_64;
300 else
301 good_insns = good_insns_32;
302
303 if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
2b144498 304 return 0;
7b2d81d4 305
2b144498
SD
306 if (insn->opcode.nbytes == 2) {
307 if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
308 return 0;
309 }
7b2d81d4 310
2b144498
SD
311 return -ENOTSUPP;
312}
313
2b144498 314#ifdef CONFIG_X86_64
2ae1f49a
ON
315static inline bool is_64bit_mm(struct mm_struct *mm)
316{
317 return !config_enabled(CONFIG_IA32_EMULATION) ||
b24dc8da 318 !(mm->context.ia32_compat == TIF_IA32);
2ae1f49a 319}
2b144498 320/*
3ff54efd 321 * If arch_uprobe->insn doesn't use rip-relative addressing, return
2b144498
SD
322 * immediately. Otherwise, rewrite the instruction so that it accesses
323 * its memory operand indirectly through a scratch register. Set
5cdb76d6 324 * defparam->fixups accordingly. (The contents of the scratch register
50204c6f
DV
325 * will be saved before we single-step the modified instruction,
326 * and restored afterward).
2b144498
SD
327 *
328 * We do this because a rip-relative instruction can access only a
329 * relatively small area (+/- 2 GB from the instruction), and the XOL
330 * area typically lies beyond that area. At least for instructions
331 * that store to memory, we can't execute the original instruction
332 * and "fix things up" later, because the misdirected store could be
333 * disastrous.
334 *
335 * Some useful facts about rip-relative instructions:
7b2d81d4 336 *
50204c6f 337 * - There's always a modrm byte with bit layout "00 reg 101".
7b2d81d4
IM
338 * - There's never a SIB byte.
339 * - The displacement is always 4 bytes.
50204c6f
DV
340 * - REX.B=1 bit in REX prefix, which normally extends r/m field,
341 * has no effect on rip-relative mode. It doesn't make modrm byte
342 * with r/m=101 refer to register 1101 = R13.
2b144498 343 */
1475ee7f 344static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
2b144498
SD
345{
346 u8 *cursor;
347 u8 reg;
1ea30fb6 348 u8 reg2;
2b144498 349
2b144498
SD
350 if (!insn_rip_relative(insn))
351 return;
352
353 /*
1ea30fb6 354 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
2b144498 355 * Clear REX.b bit (extension of MODRM.rm field):
1ea30fb6 356 * we want to encode low numbered reg, not r8+.
2b144498
SD
357 */
358 if (insn->rex_prefix.nbytes) {
3ff54efd 359 cursor = auprobe->insn + insn_offset_rex_prefix(insn);
1ea30fb6
DV
360 /* REX byte has 0100wrxb layout, clearing REX.b bit */
361 *cursor &= 0xfe;
2b144498 362 }
1ea30fb6
DV
363 /*
364 * Similar treatment for VEX3 prefix.
365 * TODO: add XOP/EVEX treatment when insn decoder supports them
366 */
367 if (insn->vex_prefix.nbytes == 3) {
368 /*
369 * vex2: c5 rvvvvLpp (has no b bit)
370 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
371 * evex: 62 rxbR00mm wvvvv1pp zllBVaaa
372 * (evex will need setting of both b and x since
373 * in non-sib encoding evex.x is 4th bit of MODRM.rm)
374 * Setting VEX3.b (setting because it has inverted meaning):
375 */
376 cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
377 *cursor |= 0x20;
378 }
379
380 /*
381 * Convert from rip-relative addressing to register-relative addressing
382 * via a scratch register.
383 *
384 * This is tricky since there are insns with modrm byte
385 * which also use registers not encoded in modrm byte:
386 * [i]div/[i]mul: implicitly use dx:ax
387 * shift ops: implicitly use cx
388 * cmpxchg: implicitly uses ax
389 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
390 * Encoding: 0f c7/1 modrm
391 * The code below thinks that reg=1 (cx), chooses si as scratch.
392 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
393 * First appeared in Haswell (BMI2 insn). It is vex-encoded.
394 * Example where none of bx,cx,dx can be used as scratch reg:
395 * c4 e2 63 f6 0d disp32 mulx disp32(%rip),%ebx,%ecx
396 * [v]pcmpistri: implicitly uses cx, xmm0
397 * [v]pcmpistrm: implicitly uses xmm0
398 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
399 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
400 * Evil SSE4.2 string comparison ops from hell.
401 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
402 * Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
403 * Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
404 * AMD says it has no 3-operand form (vex.vvvv must be 1111)
405 * and that it can have only register operands, not mem
406 * (its modrm byte must have mode=11).
407 * If these restrictions will ever be lifted,
408 * we'll need code to prevent selection of di as scratch reg!
409 *
410 * Summary: I don't know any insns with modrm byte which
411 * use SI register implicitly. DI register is used only
412 * by one insn (maskmovq) and BX register is used
413 * only by one too (cmpxchg8b).
414 * BP is stack-segment based (may be a problem?).
415 * AX, DX, CX are off-limits (many implicit users).
416 * SP is unusable (it's stack pointer - think about "pop mem";
417 * also, rsp+disp32 needs sib encoding -> insn length change).
418 */
2b144498 419
1ea30fb6
DV
420 reg = MODRM_REG(insn); /* Fetch modrm.reg */
421 reg2 = 0xff; /* Fetch vex.vvvv */
422 if (insn->vex_prefix.nbytes == 2)
423 reg2 = insn->vex_prefix.bytes[1];
424 else if (insn->vex_prefix.nbytes == 3)
425 reg2 = insn->vex_prefix.bytes[2];
426 /*
427 * TODO: add XOP, EXEV vvvv reading.
428 *
429 * vex.vvvv field is in bits 6-3, bits are inverted.
430 * But in 32-bit mode, high-order bit may be ignored.
431 * Therefore, let's consider only 3 low-order bits.
432 */
433 reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
434 /*
435 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
436 *
437 * Choose scratch reg. Order is important: must not select bx
438 * if we can use si (cmpxchg8b case!)
439 */
440 if (reg != 6 && reg2 != 6) {
441 reg2 = 6;
5cdb76d6 442 auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
1ea30fb6
DV
443 } else if (reg != 7 && reg2 != 7) {
444 reg2 = 7;
5cdb76d6 445 auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
1ea30fb6
DV
446 /* TODO (paranoia): force maskmovq to not use di */
447 } else {
448 reg2 = 3;
5cdb76d6 449 auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
1ea30fb6 450 }
2b144498
SD
451 /*
452 * Point cursor at the modrm byte. The next 4 bytes are the
453 * displacement. Beyond the displacement, for some instructions,
454 * is the immediate operand.
455 */
3ff54efd 456 cursor = auprobe->insn + insn_offset_modrm(insn);
2b144498 457 /*
1ea30fb6
DV
458 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
459 * 89 05 disp32 mov %eax,disp32(%rip) becomes
460 * 89 86 disp32 mov %eax,disp32(%rsi)
2b144498 461 */
1ea30fb6 462 *cursor = 0x80 | (reg << 3) | reg2;
2b144498
SD
463}
464
c90a6950
ON
465static inline unsigned long *
466scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
467{
5cdb76d6 468 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
1ea30fb6 469 return &regs->si;
5cdb76d6 470 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
1ea30fb6
DV
471 return &regs->di;
472 return &regs->bx;
c90a6950
ON
473}
474
d20737c0
ON
475/*
476 * If we're emulating a rip-relative instruction, save the contents
477 * of the scratch register and store the target address in that register.
478 */
7f55e82b 479static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
d20737c0 480{
5cdb76d6 481 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
c90a6950
ON
482 struct uprobe_task *utask = current->utask;
483 unsigned long *sr = scratch_reg(auprobe, regs);
484
485 utask->autask.saved_scratch_register = *sr;
5cdb76d6 486 *sr = utask->vaddr + auprobe->defparam.ilen;
d20737c0
ON
487 }
488}
489
50204c6f 490static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
d20737c0 491{
5cdb76d6 492 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
c90a6950
ON
493 struct uprobe_task *utask = current->utask;
494 unsigned long *sr = scratch_reg(auprobe, regs);
d20737c0 495
c90a6950 496 *sr = utask->autask.saved_scratch_register;
d20737c0
ON
497 }
498}
2ae1f49a
ON
499#else /* 32-bit: */
500static inline bool is_64bit_mm(struct mm_struct *mm)
2b144498 501{
2ae1f49a 502 return false;
2b144498 503}
d20737c0
ON
504/*
505 * No RIP-relative addressing on 32-bit
506 */
1475ee7f 507static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
2b144498 508{
d20737c0 509}
7f55e82b 510static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
d20737c0
ON
511{
512}
50204c6f 513static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
d20737c0 514{
2b144498 515}
2b144498
SD
516#endif /* CONFIG_X86_64 */
517
8ad8e9d3
ON
518struct uprobe_xol_ops {
519 bool (*emulate)(struct arch_uprobe *, struct pt_regs *);
520 int (*pre_xol)(struct arch_uprobe *, struct pt_regs *);
521 int (*post_xol)(struct arch_uprobe *, struct pt_regs *);
588fbd61 522 void (*abort)(struct arch_uprobe *, struct pt_regs *);
8ad8e9d3
ON
523};
524
8faaed1b
ON
525static inline int sizeof_long(void)
526{
527 return is_ia32_task() ? 4 : 8;
528}
529
8ad8e9d3
ON
530static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
531{
7f55e82b 532 riprel_pre_xol(auprobe, regs);
8ad8e9d3
ON
533 return 0;
534}
535
2b82cadf
ON
536static int push_ret_address(struct pt_regs *regs, unsigned long ip)
537{
538 unsigned long new_sp = regs->sp - sizeof_long();
539
540 if (copy_to_user((void __user *)new_sp, &ip, sizeof_long()))
541 return -EFAULT;
542
543 regs->sp = new_sp;
544 return 0;
545}
546
1ea30fb6
DV
547/*
548 * We have to fix things up as follows:
549 *
550 * Typically, the new ip is relative to the copied instruction. We need
551 * to make it relative to the original instruction (FIX_IP). Exceptions
552 * are return instructions and absolute or indirect jump or call instructions.
553 *
554 * If the single-stepped instruction was a call, the return address that
555 * is atop the stack is the address following the copied instruction. We
556 * need to make it the address following the original instruction (FIX_CALL).
557 *
558 * If the original instruction was a rip-relative instruction such as
559 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
560 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
561 * We need to restore the contents of the scratch register
562 * (FIX_RIP_reg).
563 */
8ad8e9d3
ON
564static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
565{
566 struct uprobe_task *utask = current->utask;
8ad8e9d3 567
50204c6f 568 riprel_post_xol(auprobe, regs);
5cdb76d6 569 if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
50204c6f 570 long correction = utask->vaddr - utask->xol_vaddr;
8ad8e9d3 571 regs->ip += correction;
5cdb76d6
ON
572 } else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
573 regs->sp += sizeof_long(); /* Pop incorrect return address */
574 if (push_ret_address(regs, utask->vaddr + auprobe->defparam.ilen))
75f9ef0b 575 return -ERESTART;
75f9ef0b 576 }
220ef8dc 577 /* popf; tell the caller to not touch TF */
5cdb76d6 578 if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
220ef8dc 579 utask->autask.saved_tf = true;
8ad8e9d3 580
75f9ef0b 581 return 0;
8ad8e9d3
ON
582}
583
588fbd61
ON
584static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
585{
50204c6f 586 riprel_post_xol(auprobe, regs);
588fbd61
ON
587}
588
8ad8e9d3
ON
589static struct uprobe_xol_ops default_xol_ops = {
590 .pre_xol = default_pre_xol_op,
591 .post_xol = default_post_xol_op,
588fbd61 592 .abort = default_abort_op,
8ad8e9d3
ON
593};
594
8e89c0be
ON
595static bool branch_is_call(struct arch_uprobe *auprobe)
596{
597 return auprobe->branch.opc1 == 0xe8;
598}
599
8f95505b
ON
600#define CASE_COND \
601 COND(70, 71, XF(OF)) \
602 COND(72, 73, XF(CF)) \
603 COND(74, 75, XF(ZF)) \
604 COND(78, 79, XF(SF)) \
605 COND(7a, 7b, XF(PF)) \
606 COND(76, 77, XF(CF) || XF(ZF)) \
607 COND(7c, 7d, XF(SF) != XF(OF)) \
608 COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
609
610#define COND(op_y, op_n, expr) \
611 case 0x ## op_y: DO((expr) != 0) \
612 case 0x ## op_n: DO((expr) == 0)
613
614#define XF(xf) (!!(flags & X86_EFLAGS_ ## xf))
615
616static bool is_cond_jmp_opcode(u8 opcode)
617{
618 switch (opcode) {
619 #define DO(expr) \
620 return true;
621 CASE_COND
622 #undef DO
623
624 default:
625 return false;
626 }
627}
628
629static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
630{
631 unsigned long flags = regs->flags;
632
633 switch (auprobe->branch.opc1) {
634 #define DO(expr) \
635 return expr;
636 CASE_COND
637 #undef DO
638
639 default: /* not a conditional jmp */
640 return true;
641 }
642}
643
644#undef XF
645#undef COND
646#undef CASE_COND
647
7ba6db2d
ON
648static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
649{
8e89c0be 650 unsigned long new_ip = regs->ip += auprobe->branch.ilen;
8f95505b 651 unsigned long offs = (long)auprobe->branch.offs;
8e89c0be
ON
652
653 if (branch_is_call(auprobe)) {
8e89c0be
ON
654 /*
655 * If it fails we execute this (mangled, see the comment in
656 * branch_clear_offset) insn out-of-line. In the likely case
657 * this should trigger the trap, and the probed application
658 * should die or restart the same insn after it handles the
659 * signal, arch_uprobe_post_xol() won't be even called.
660 *
661 * But there is corner case, see the comment in ->post_xol().
662 */
2b82cadf 663 if (push_ret_address(regs, new_ip))
8e89c0be 664 return false;
8f95505b
ON
665 } else if (!check_jmp_cond(auprobe, regs)) {
666 offs = 0;
8e89c0be
ON
667 }
668
8f95505b 669 regs->ip = new_ip + offs;
7ba6db2d
ON
670 return true;
671}
672
8e89c0be
ON
673static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
674{
675 BUG_ON(!branch_is_call(auprobe));
676 /*
677 * We can only get here if branch_emulate_op() failed to push the ret
678 * address _and_ another thread expanded our stack before the (mangled)
679 * "call" insn was executed out-of-line. Just restore ->sp and restart.
680 * We could also restore ->ip and try to call branch_emulate_op() again.
681 */
682 regs->sp += sizeof_long();
683 return -ERESTART;
684}
685
686static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
687{
688 /*
689 * Turn this insn into "call 1f; 1:", this is what we will execute
690 * out-of-line if ->emulate() fails. We only need this to generate
691 * a trap, so that the probed task receives the correct signal with
692 * the properly filled siginfo.
693 *
694 * But see the comment in ->post_xol(), in the unlikely case it can
695 * succeed. So we need to ensure that the new ->ip can not fall into
696 * the non-canonical area and trigger #GP.
697 *
698 * We could turn it into (say) "pushf", but then we would need to
699 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
700 * of ->insn[] for set_orig_insn().
701 */
702 memset(auprobe->insn + insn_offset_immediate(insn),
703 0, insn->immediate.nbytes);
704}
705
7ba6db2d
ON
706static struct uprobe_xol_ops branch_xol_ops = {
707 .emulate = branch_emulate_op,
8e89c0be 708 .post_xol = branch_post_xol_op,
7ba6db2d
ON
709};
710
711/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
712static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
713{
8e89c0be 714 u8 opc1 = OPCODE1(insn);
250bbd12 715 int i;
8e89c0be 716
8e89c0be 717 switch (opc1) {
7ba6db2d
ON
718 case 0xeb: /* jmp 8 */
719 case 0xe9: /* jmp 32 */
d2410063 720 case 0x90: /* prefix* + nop; same as jmp with .offs = 0 */
7ba6db2d 721 break;
8e89c0be
ON
722
723 case 0xe8: /* call relative */
724 branch_clear_offset(auprobe, insn);
725 break;
8f95505b 726
6cc5e7ff
ON
727 case 0x0f:
728 if (insn->opcode.nbytes != 2)
729 return -ENOSYS;
730 /*
731 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
732 * OPCODE1() of the "short" jmp which checks the same condition.
733 */
734 opc1 = OPCODE2(insn) - 0x10;
7ba6db2d 735 default:
8f95505b
ON
736 if (!is_cond_jmp_opcode(opc1))
737 return -ENOSYS;
7ba6db2d
ON
738 }
739
250bbd12
DV
740 /*
741 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
742 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
743 * No one uses these insns, reject any branch insns with such prefix.
744 */
745 for (i = 0; i < insn->prefixes.nbytes; i++) {
746 if (insn->prefixes.bytes[i] == 0x66)
747 return -ENOTSUPP;
748 }
749
8e89c0be 750 auprobe->branch.opc1 = opc1;
7ba6db2d
ON
751 auprobe->branch.ilen = insn->length;
752 auprobe->branch.offs = insn->immediate.value;
753
754 auprobe->ops = &branch_xol_ops;
755 return 0;
756}
757
2b144498 758/**
0326f5a9 759 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
2b144498 760 * @mm: the probed address space.
3ff54efd 761 * @arch_uprobe: the probepoint information.
7eb9ba5e 762 * @addr: virtual address at which to install the probepoint
2b144498
SD
763 * Return 0 on success or a -ve number on error.
764 */
7eb9ba5e 765int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
2b144498 766{
2b144498 767 struct insn insn;
83cd5914 768 u8 fix_ip_or_call = UPROBE_FIX_IP;
ddb69f27 769 int ret;
2b144498 770
2ae1f49a 771 ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
ddb69f27 772 if (ret)
2b144498 773 return ret;
7b2d81d4 774
7ba6db2d
ON
775 ret = branch_setup_xol_ops(auprobe, &insn);
776 if (ret != -ENOSYS)
777 return ret;
778
ddb69f27 779 /*
97aa5cdd 780 * Figure out which fixups default_post_xol_op() will need to perform,
5cdb76d6 781 * and annotate defparam->fixups accordingly.
ddb69f27 782 */
ddb69f27
ON
783 switch (OPCODE1(&insn)) {
784 case 0x9d: /* popf */
5cdb76d6 785 auprobe->defparam.fixups |= UPROBE_FIX_SETF;
ddb69f27
ON
786 break;
787 case 0xc3: /* ret or lret -- ip is correct */
788 case 0xcb:
789 case 0xc2:
790 case 0xca:
83cd5914
ON
791 case 0xea: /* jmp absolute -- ip is correct */
792 fix_ip_or_call = 0;
ddb69f27 793 break;
ddb69f27 794 case 0x9a: /* call absolute - Fix return addr, not ip */
83cd5914 795 fix_ip_or_call = UPROBE_FIX_CALL;
ddb69f27
ON
796 break;
797 case 0xff:
ddb69f27
ON
798 switch (MODRM_REG(&insn)) {
799 case 2: case 3: /* call or lcall, indirect */
83cd5914
ON
800 fix_ip_or_call = UPROBE_FIX_CALL;
801 break;
ddb69f27 802 case 4: case 5: /* jmp or ljmp, indirect */
83cd5914
ON
803 fix_ip_or_call = 0;
804 break;
ddb69f27 805 }
e55848a4 806 /* fall through */
ddb69f27 807 default:
1475ee7f 808 riprel_analyze(auprobe, &insn);
ddb69f27
ON
809 }
810
5cdb76d6
ON
811 auprobe->defparam.ilen = insn.length;
812 auprobe->defparam.fixups |= fix_ip_or_call;
7b2d81d4 813
8ad8e9d3 814 auprobe->ops = &default_xol_ops;
2b144498
SD
815 return 0;
816}
0326f5a9 817
0326f5a9
SD
818/*
819 * arch_uprobe_pre_xol - prepare to execute out of line.
820 * @auprobe: the probepoint information.
821 * @regs: reflects the saved user state of current task.
822 */
823int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
824{
34e7317d 825 struct uprobe_task *utask = current->utask;
0326f5a9 826
dd91016d
ON
827 if (auprobe->ops->pre_xol) {
828 int err = auprobe->ops->pre_xol(auprobe, regs);
829 if (err)
830 return err;
831 }
832
34e7317d
ON
833 regs->ip = utask->xol_vaddr;
834 utask->autask.saved_trap_nr = current->thread.trap_nr;
0326f5a9 835 current->thread.trap_nr = UPROBE_TRAP_NR;
0326f5a9 836
34e7317d 837 utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
4dc316c6
ON
838 regs->flags |= X86_EFLAGS_TF;
839 if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
840 set_task_blockstep(current, false);
841
0326f5a9
SD
842 return 0;
843}
844
0326f5a9
SD
845/*
846 * If xol insn itself traps and generates a signal(Say,
847 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
848 * instruction jumps back to its own address. It is assumed that anything
849 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
850 *
851 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
852 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
853 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
854 */
855bool arch_uprobe_xol_was_trapped(struct task_struct *t)
856{
857 if (t->thread.trap_nr != UPROBE_TRAP_NR)
858 return true;
859
860 return false;
861}
862
863/*
864 * Called after single-stepping. To avoid the SMP problems that can
865 * occur when we temporarily put back the original opcode to
866 * single-step, we single-stepped a copy of the instruction.
867 *
868 * This function prepares to resume execution after the single-step.
0326f5a9
SD
869 */
870int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
871{
34e7317d 872 struct uprobe_task *utask = current->utask;
220ef8dc
ON
873 bool send_sigtrap = utask->autask.saved_tf;
874 int err = 0;
0326f5a9
SD
875
876 WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
6ded5f38 877 current->thread.trap_nr = utask->autask.saved_trap_nr;
014940ba
ON
878
879 if (auprobe->ops->post_xol) {
220ef8dc 880 err = auprobe->ops->post_xol(auprobe, regs);
014940ba 881 if (err) {
75f9ef0b 882 /*
6ded5f38
ON
883 * Restore ->ip for restart or post mortem analysis.
884 * ->post_xol() must not return -ERESTART unless this
885 * is really possible.
75f9ef0b 886 */
6ded5f38 887 regs->ip = utask->vaddr;
75f9ef0b 888 if (err == -ERESTART)
220ef8dc
ON
889 err = 0;
890 send_sigtrap = false;
014940ba
ON
891 }
892 }
4dc316c6
ON
893 /*
894 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
895 * so we can get an extra SIGTRAP if we do not clear TF. We need
896 * to examine the opcode to make it right.
897 */
220ef8dc 898 if (send_sigtrap)
4dc316c6 899 send_sig(SIGTRAP, current, 0);
220ef8dc
ON
900
901 if (!utask->autask.saved_tf)
4dc316c6
ON
902 regs->flags &= ~X86_EFLAGS_TF;
903
220ef8dc 904 return err;
0326f5a9
SD
905}
906
907/* callback routine for handling exceptions. */
908int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
909{
910 struct die_args *args = data;
911 struct pt_regs *regs = args->regs;
912 int ret = NOTIFY_DONE;
913
914 /* We are only interested in userspace traps */
f39b6f0e 915 if (regs && !user_mode(regs))
0326f5a9
SD
916 return NOTIFY_DONE;
917
918 switch (val) {
919 case DIE_INT3:
920 if (uprobe_pre_sstep_notifier(regs))
921 ret = NOTIFY_STOP;
922
923 break;
924
925 case DIE_DEBUG:
926 if (uprobe_post_sstep_notifier(regs))
927 ret = NOTIFY_STOP;
928
929 default:
930 break;
931 }
932
933 return ret;
934}
935
936/*
937 * This function gets called when XOL instruction either gets trapped or
6ded5f38
ON
938 * the thread has a fatal signal. Reset the instruction pointer to its
939 * probed address for the potential restart or for post mortem analysis.
0326f5a9
SD
940 */
941void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
942{
943 struct uprobe_task *utask = current->utask;
944
588fbd61
ON
945 if (auprobe->ops->abort)
946 auprobe->ops->abort(auprobe, regs);
4dc316c6 947
588fbd61
ON
948 current->thread.trap_nr = utask->autask.saved_trap_nr;
949 regs->ip = utask->vaddr;
4dc316c6
ON
950 /* clear TF if it was set by us in arch_uprobe_pre_xol() */
951 if (!utask->autask.saved_tf)
952 regs->flags &= ~X86_EFLAGS_TF;
0326f5a9
SD
953}
954
3a4664aa 955static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
0326f5a9 956{
8ad8e9d3
ON
957 if (auprobe->ops->emulate)
958 return auprobe->ops->emulate(auprobe, regs);
0326f5a9
SD
959 return false;
960}
bdc1e472 961
3a4664aa
ON
962bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
963{
964 bool ret = __skip_sstep(auprobe, regs);
965 if (ret && (regs->flags & X86_EFLAGS_TF))
966 send_sig(SIGTRAP, current, 0);
967 return ret;
968}
791eca10
AA
969
970unsigned long
971arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
972{
8faaed1b 973 int rasize = sizeof_long(), nleft;
791eca10
AA
974 unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
975
8faaed1b 976 if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
791eca10
AA
977 return -1;
978
979 /* check whether address has been already hijacked */
980 if (orig_ret_vaddr == trampoline_vaddr)
981 return orig_ret_vaddr;
982
8faaed1b
ON
983 nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
984 if (likely(!nleft))
791eca10
AA
985 return orig_ret_vaddr;
986
8faaed1b 987 if (nleft != rasize) {
791eca10
AA
988 pr_err("uprobe: return address clobbered: pid=%d, %%sp=%#lx, "
989 "%%ip=%#lx\n", current->pid, regs->sp, regs->ip);
990
991 force_sig_info(SIGSEGV, SEND_SIG_FORCED, current);
992 }
993
994 return -1;
995}
This page took 0.18893 seconds and 5 git commands to generate.