uprobes/x86: Fix 1-byte opcode tables
[deliverable/linux.git] / arch / x86 / kernel / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes) for x86
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2008-2011
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
22 */
2b144498
SD
23#include <linux/kernel.h>
24#include <linux/sched.h>
25#include <linux/ptrace.h>
26#include <linux/uprobes.h>
0326f5a9 27#include <linux/uaccess.h>
2b144498
SD
28
29#include <linux/kdebug.h>
0326f5a9 30#include <asm/processor.h>
2b144498
SD
31#include <asm/insn.h>
32
33/* Post-execution fixups. */
34
2b144498 35/* Adjust IP back to vicinity of actual insn */
78d9af4c 36#define UPROBE_FIX_IP 0x01
0326f5a9 37
2b144498 38/* Adjust the return address of a call insn */
78d9af4c 39#define UPROBE_FIX_CALL 0x02
2b144498 40
bdc1e472 41/* Instruction will modify TF, don't change it */
78d9af4c 42#define UPROBE_FIX_SETF 0x04
bdc1e472 43
1ea30fb6
DV
44#define UPROBE_FIX_RIP_SI 0x08
45#define UPROBE_FIX_RIP_DI 0x10
46#define UPROBE_FIX_RIP_BX 0x20
47#define UPROBE_FIX_RIP_MASK \
48 (UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
2b144498 49
0326f5a9
SD
50#define UPROBE_TRAP_NR UINT_MAX
51
2b144498 52/* Adaptations for mhiramat x86 decoder v14. */
7b2d81d4
IM
53#define OPCODE1(insn) ((insn)->opcode.bytes[0])
54#define OPCODE2(insn) ((insn)->opcode.bytes[1])
55#define OPCODE3(insn) ((insn)->opcode.bytes[2])
ddb69f27 56#define MODRM_REG(insn) X86_MODRM_REG((insn)->modrm.value)
2b144498
SD
57
58#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
59 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
60 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
61 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
62 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
63 << (row % 32))
64
04a3d984
SD
65/*
66 * Good-instruction tables for 32-bit apps. This is non-const and volatile
67 * to keep gcc from statically optimizing it out, as variable_test_bit makes
68 * some versions of gcc to think only *(unsigned long*) is used.
097f4e5e 69 *
097f4e5e
DV
70 * Opcodes we'll probably never support:
71 * 6c-6f - ins,outs. SEGVs if used in userspace
72 * e4-e7 - in,out imm. SEGVs if used in userspace
73 * ec-ef - in,out acc. SEGVs if used in userspace
74 * cc - int3. SIGTRAP if used in userspace
75 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
76 * (why we support bound (62) then? it's similar, and similarly unused...)
77 * f1 - int1. SIGTRAP if used in userspace
78 * f4 - hlt. SEGVs if used in userspace
79 * fa - cli. SEGVs if used in userspace
80 * fb - sti. SEGVs if used in userspace
81 *
82 * Opcodes which need some work to be supported:
83 * 07,17,1f - pop es/ss/ds
84 * Normally not used in userspace, but would execute if used.
85 * Can cause GP or stack exception if tries to load wrong segment descriptor.
86 * We hesitate to run them under single step since kernel's handling
87 * of userspace single-stepping (TF flag) is fragile.
88 * We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
89 * on the same grounds that they are never used.
90 * cd - int N.
91 * Used by userspace for "int 80" syscall entry. (Other "int N"
92 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
93 * Not supported since kernel's handling of userspace single-stepping
94 * (TF flag) is fragile.
95 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
04a3d984 96 */
8dbacad9 97#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
04a3d984 98static volatile u32 good_insns_32[256 / 32] = {
2b144498
SD
99 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
100 /* ---------------------------------------------- */
67fc8092 101 W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
2b144498 102 W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
67fc8092
DV
103 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
104 W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
2b144498
SD
105 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
106 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
67fc8092 107 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
2b144498
SD
108 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
109 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
110 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
111 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
112 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
113 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
67fc8092 114 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
2b144498 115 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
67fc8092 116 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
2b144498
SD
117 /* ---------------------------------------------- */
118 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
119};
8dbacad9
ON
120#else
121#define good_insns_32 NULL
122#endif
2b144498 123
097f4e5e 124/* Good-instruction tables for 64-bit apps.
097f4e5e
DV
125 *
126 * Genuinely invalid opcodes:
127 * 06,07 - formerly push/pop es
128 * 0e - formerly push cs
129 * 16,17 - formerly push/pop ss
130 * 1e,1f - formerly push/pop ds
131 * 27,2f,37,3f - formerly daa/das/aaa/aas
132 * 60,61 - formerly pusha/popa
67fc8092 133 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
097f4e5e 134 * 82 - formerly redundant encoding of Group1
67fc8092 135 * 9a - formerly call seg:ofs
097f4e5e
DV
136 * ce - formerly into
137 * d4,d5 - formerly aam/aad
138 * d6 - formerly undocumented salc
67fc8092 139 * ea - formerly jmp seg:ofs
097f4e5e
DV
140 *
141 * Opcodes we'll probably never support:
142 * 6c-6f - ins,outs. SEGVs if used in userspace
143 * e4-e7 - in,out imm. SEGVs if used in userspace
144 * ec-ef - in,out acc. SEGVs if used in userspace
145 * cc - int3. SIGTRAP if used in userspace
146 * f1 - int1. SIGTRAP if used in userspace
147 * f4 - hlt. SEGVs if used in userspace
148 * fa - cli. SEGVs if used in userspace
149 * fb - sti. SEGVs if used in userspace
150 *
151 * Opcodes which need some work to be supported:
152 * cd - int N.
153 * Used by userspace for "int 80" syscall entry. (Other "int N"
154 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
155 * Not supported since kernel's handling of userspace single-stepping
156 * (TF flag) is fragile.
157 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
158 */
8dbacad9 159#if defined(CONFIG_X86_64)
04a3d984
SD
160static volatile u32 good_insns_64[256 / 32] = {
161 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
162 /* ---------------------------------------------- */
67fc8092 163 W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
04a3d984 164 W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
67fc8092
DV
165 W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
166 W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
167 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
04a3d984 168 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
67fc8092 169 W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
04a3d984
SD
170 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
171 W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
67fc8092 172 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
04a3d984
SD
173 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
174 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
67fc8092 175 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
04a3d984 176 W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
67fc8092
DV
177 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
178 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
04a3d984
SD
179 /* ---------------------------------------------- */
180 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
181};
8dbacad9
ON
182#else
183#define good_insns_64 NULL
184#endif
185
097f4e5e
DV
186/* Using this for both 64-bit and 32-bit apps.
187 * Opcodes we don't support:
188 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
189 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
190 * Also encodes tons of other system insns if mod=11.
191 * Some are in fact non-system: xend, xtest, rdtscp, maybe more
192 * 0f 02 - lar (why? should be safe, it throws no exceptipons)
193 * 0f 03 - lsl (why? should be safe, it throws no exceptipons)
194 * 0f 04 - undefined
195 * 0f 05 - syscall
196 * 0f 06 - clts (CPL0 insn)
197 * 0f 07 - sysret
198 * 0f 08 - invd (CPL0 insn)
199 * 0f 09 - wbinvd (CPL0 insn)
200 * 0f 0a - undefined
201 * 0f 0b - ud2
202 * 0f 0c - undefined
203 * 0f 0d - prefetchFOO (amd prefetch insns)
204 * 0f 18 - prefetchBAR (intel prefetch insns)
205 * 0f 24 - mov from test regs (perhaps entire 20-27 area can be disabled (special reg ops))
206 * 0f 25 - undefined
207 * 0f 26 - mov to test regs
208 * 0f 27 - undefined
209 * 0f 30 - wrmsr (CPL0 insn)
210 * 0f 34 - sysenter
211 * 0f 35 - sysexit
212 * 0f 36 - undefined
213 * 0f 37 - getsec
214 * 0f 38-3f - 3-byte opcodes (why?? all look safe)
215 * 0f 78 - vmread
216 * 0f 79 - vmwrite
217 * 0f 7a - undefined
218 * 0f 7b - undefined
219 * 0f 7c - undefined
220 * 0f 7d - undefined
221 * 0f a6 - undefined
222 * 0f a7 - undefined
223 * 0f b8 - popcnt (why?? it's an ordinary ALU op)
224 * 0f d0 - undefined
225 * 0f f0 - lddqu (why?? it's an ordinary vector load op)
226 * 0f ff - undefined
227 */
8dbacad9
ON
228static volatile u32 good_2byte_insns[256 / 32] = {
229 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
230 /* ---------------------------------------------- */
231 W(0x00, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) | /* 00 */
232 W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
233 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
234 W(0x30, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
235 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
236 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
237 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
238 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
239 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
240 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
241 W(0xa0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
242 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
243 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
244 W(0xd0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
245 W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
246 W(0xf0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) /* f0 */
247 /* ---------------------------------------------- */
248 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
249};
2b144498
SD
250#undef W
251
252/*
2b144498 253 * opcodes we may need to refine support for:
7b2d81d4
IM
254 *
255 * 0f - 2-byte instructions: For many of these instructions, the validity
256 * depends on the prefix and/or the reg field. On such instructions, we
257 * just consider the opcode combination valid if it corresponds to any
258 * valid instruction.
259 *
260 * 8f - Group 1 - only reg = 0 is OK
261 * c6-c7 - Group 11 - only reg = 0 is OK
262 * d9-df - fpu insns with some illegal encodings
263 * f2, f3 - repnz, repz prefixes. These are also the first byte for
264 * certain floating-point instructions, such as addsd.
265 *
266 * fe - Group 4 - only reg = 0 or 1 is OK
267 * ff - Group 5 - only reg = 0-6 is OK
2b144498
SD
268 *
269 * others -- Do we need to support these?
7b2d81d4
IM
270 *
271 * 0f - (floating-point?) prefetch instructions
272 * 07, 17, 1f - pop es, pop ss, pop ds
273 * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
2b144498 274 * but 64 and 65 (fs: and gs:) seem to be used, so we support them
7b2d81d4
IM
275 * 67 - addr16 prefix
276 * ce - into
277 * f0 - lock prefix
2b144498
SD
278 */
279
280/*
281 * TODO:
282 * - Where necessary, examine the modrm byte and allow only valid instructions
283 * in the different Groups and fpu instructions.
284 */
285
286static bool is_prefix_bad(struct insn *insn)
287{
288 int i;
289
290 for (i = 0; i < insn->prefixes.nbytes; i++) {
291 switch (insn->prefixes.bytes[i]) {
7b2d81d4
IM
292 case 0x26: /* INAT_PFX_ES */
293 case 0x2E: /* INAT_PFX_CS */
294 case 0x36: /* INAT_PFX_DS */
295 case 0x3E: /* INAT_PFX_SS */
296 case 0xF0: /* INAT_PFX_LOCK */
2b144498
SD
297 return true;
298 }
299 }
300 return false;
301}
302
73175d0d 303static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
2b144498 304{
73175d0d
ON
305 u32 volatile *good_insns;
306
6ba48ff4 307 insn_init(insn, auprobe->insn, sizeof(auprobe->insn), x86_64);
ff261964
ON
308 /* has the side-effect of processing the entire instruction */
309 insn_get_length(insn);
310 if (WARN_ON_ONCE(!insn_complete(insn)))
311 return -ENOEXEC;
2b144498 312
2b144498
SD
313 if (is_prefix_bad(insn))
314 return -ENOTSUPP;
7b2d81d4 315
73175d0d
ON
316 if (x86_64)
317 good_insns = good_insns_64;
318 else
319 good_insns = good_insns_32;
320
321 if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
2b144498 322 return 0;
7b2d81d4 323
2b144498
SD
324 if (insn->opcode.nbytes == 2) {
325 if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
326 return 0;
327 }
7b2d81d4 328
2b144498
SD
329 return -ENOTSUPP;
330}
331
2b144498 332#ifdef CONFIG_X86_64
2ae1f49a
ON
333static inline bool is_64bit_mm(struct mm_struct *mm)
334{
335 return !config_enabled(CONFIG_IA32_EMULATION) ||
b24dc8da 336 !(mm->context.ia32_compat == TIF_IA32);
2ae1f49a 337}
2b144498 338/*
3ff54efd 339 * If arch_uprobe->insn doesn't use rip-relative addressing, return
2b144498
SD
340 * immediately. Otherwise, rewrite the instruction so that it accesses
341 * its memory operand indirectly through a scratch register. Set
5cdb76d6 342 * defparam->fixups accordingly. (The contents of the scratch register
50204c6f
DV
343 * will be saved before we single-step the modified instruction,
344 * and restored afterward).
2b144498
SD
345 *
346 * We do this because a rip-relative instruction can access only a
347 * relatively small area (+/- 2 GB from the instruction), and the XOL
348 * area typically lies beyond that area. At least for instructions
349 * that store to memory, we can't execute the original instruction
350 * and "fix things up" later, because the misdirected store could be
351 * disastrous.
352 *
353 * Some useful facts about rip-relative instructions:
7b2d81d4 354 *
50204c6f 355 * - There's always a modrm byte with bit layout "00 reg 101".
7b2d81d4
IM
356 * - There's never a SIB byte.
357 * - The displacement is always 4 bytes.
50204c6f
DV
358 * - REX.B=1 bit in REX prefix, which normally extends r/m field,
359 * has no effect on rip-relative mode. It doesn't make modrm byte
360 * with r/m=101 refer to register 1101 = R13.
2b144498 361 */
1475ee7f 362static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
2b144498
SD
363{
364 u8 *cursor;
365 u8 reg;
1ea30fb6 366 u8 reg2;
2b144498 367
2b144498
SD
368 if (!insn_rip_relative(insn))
369 return;
370
371 /*
1ea30fb6 372 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
2b144498 373 * Clear REX.b bit (extension of MODRM.rm field):
1ea30fb6 374 * we want to encode low numbered reg, not r8+.
2b144498
SD
375 */
376 if (insn->rex_prefix.nbytes) {
3ff54efd 377 cursor = auprobe->insn + insn_offset_rex_prefix(insn);
1ea30fb6
DV
378 /* REX byte has 0100wrxb layout, clearing REX.b bit */
379 *cursor &= 0xfe;
2b144498 380 }
1ea30fb6
DV
381 /*
382 * Similar treatment for VEX3 prefix.
383 * TODO: add XOP/EVEX treatment when insn decoder supports them
384 */
385 if (insn->vex_prefix.nbytes == 3) {
386 /*
387 * vex2: c5 rvvvvLpp (has no b bit)
388 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
389 * evex: 62 rxbR00mm wvvvv1pp zllBVaaa
390 * (evex will need setting of both b and x since
391 * in non-sib encoding evex.x is 4th bit of MODRM.rm)
392 * Setting VEX3.b (setting because it has inverted meaning):
393 */
394 cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
395 *cursor |= 0x20;
396 }
397
398 /*
399 * Convert from rip-relative addressing to register-relative addressing
400 * via a scratch register.
401 *
402 * This is tricky since there are insns with modrm byte
403 * which also use registers not encoded in modrm byte:
404 * [i]div/[i]mul: implicitly use dx:ax
405 * shift ops: implicitly use cx
406 * cmpxchg: implicitly uses ax
407 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
408 * Encoding: 0f c7/1 modrm
409 * The code below thinks that reg=1 (cx), chooses si as scratch.
410 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
411 * First appeared in Haswell (BMI2 insn). It is vex-encoded.
412 * Example where none of bx,cx,dx can be used as scratch reg:
413 * c4 e2 63 f6 0d disp32 mulx disp32(%rip),%ebx,%ecx
414 * [v]pcmpistri: implicitly uses cx, xmm0
415 * [v]pcmpistrm: implicitly uses xmm0
416 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
417 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
418 * Evil SSE4.2 string comparison ops from hell.
419 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
420 * Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
421 * Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
422 * AMD says it has no 3-operand form (vex.vvvv must be 1111)
423 * and that it can have only register operands, not mem
424 * (its modrm byte must have mode=11).
425 * If these restrictions will ever be lifted,
426 * we'll need code to prevent selection of di as scratch reg!
427 *
428 * Summary: I don't know any insns with modrm byte which
429 * use SI register implicitly. DI register is used only
430 * by one insn (maskmovq) and BX register is used
431 * only by one too (cmpxchg8b).
432 * BP is stack-segment based (may be a problem?).
433 * AX, DX, CX are off-limits (many implicit users).
434 * SP is unusable (it's stack pointer - think about "pop mem";
435 * also, rsp+disp32 needs sib encoding -> insn length change).
436 */
2b144498 437
1ea30fb6
DV
438 reg = MODRM_REG(insn); /* Fetch modrm.reg */
439 reg2 = 0xff; /* Fetch vex.vvvv */
440 if (insn->vex_prefix.nbytes == 2)
441 reg2 = insn->vex_prefix.bytes[1];
442 else if (insn->vex_prefix.nbytes == 3)
443 reg2 = insn->vex_prefix.bytes[2];
444 /*
445 * TODO: add XOP, EXEV vvvv reading.
446 *
447 * vex.vvvv field is in bits 6-3, bits are inverted.
448 * But in 32-bit mode, high-order bit may be ignored.
449 * Therefore, let's consider only 3 low-order bits.
450 */
451 reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
452 /*
453 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
454 *
455 * Choose scratch reg. Order is important: must not select bx
456 * if we can use si (cmpxchg8b case!)
457 */
458 if (reg != 6 && reg2 != 6) {
459 reg2 = 6;
5cdb76d6 460 auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
1ea30fb6
DV
461 } else if (reg != 7 && reg2 != 7) {
462 reg2 = 7;
5cdb76d6 463 auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
1ea30fb6
DV
464 /* TODO (paranoia): force maskmovq to not use di */
465 } else {
466 reg2 = 3;
5cdb76d6 467 auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
1ea30fb6 468 }
2b144498
SD
469 /*
470 * Point cursor at the modrm byte. The next 4 bytes are the
471 * displacement. Beyond the displacement, for some instructions,
472 * is the immediate operand.
473 */
3ff54efd 474 cursor = auprobe->insn + insn_offset_modrm(insn);
2b144498 475 /*
1ea30fb6
DV
476 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
477 * 89 05 disp32 mov %eax,disp32(%rip) becomes
478 * 89 86 disp32 mov %eax,disp32(%rsi)
2b144498 479 */
1ea30fb6 480 *cursor = 0x80 | (reg << 3) | reg2;
2b144498
SD
481}
482
c90a6950
ON
483static inline unsigned long *
484scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
485{
5cdb76d6 486 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
1ea30fb6 487 return &regs->si;
5cdb76d6 488 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
1ea30fb6
DV
489 return &regs->di;
490 return &regs->bx;
c90a6950
ON
491}
492
d20737c0
ON
493/*
494 * If we're emulating a rip-relative instruction, save the contents
495 * of the scratch register and store the target address in that register.
496 */
7f55e82b 497static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
d20737c0 498{
5cdb76d6 499 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
c90a6950
ON
500 struct uprobe_task *utask = current->utask;
501 unsigned long *sr = scratch_reg(auprobe, regs);
502
503 utask->autask.saved_scratch_register = *sr;
5cdb76d6 504 *sr = utask->vaddr + auprobe->defparam.ilen;
d20737c0
ON
505 }
506}
507
50204c6f 508static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
d20737c0 509{
5cdb76d6 510 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
c90a6950
ON
511 struct uprobe_task *utask = current->utask;
512 unsigned long *sr = scratch_reg(auprobe, regs);
d20737c0 513
c90a6950 514 *sr = utask->autask.saved_scratch_register;
d20737c0
ON
515 }
516}
2ae1f49a
ON
517#else /* 32-bit: */
518static inline bool is_64bit_mm(struct mm_struct *mm)
2b144498 519{
2ae1f49a 520 return false;
2b144498 521}
d20737c0
ON
522/*
523 * No RIP-relative addressing on 32-bit
524 */
1475ee7f 525static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
2b144498 526{
d20737c0 527}
7f55e82b 528static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
d20737c0
ON
529{
530}
50204c6f 531static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
d20737c0 532{
2b144498 533}
2b144498
SD
534#endif /* CONFIG_X86_64 */
535
8ad8e9d3
ON
536struct uprobe_xol_ops {
537 bool (*emulate)(struct arch_uprobe *, struct pt_regs *);
538 int (*pre_xol)(struct arch_uprobe *, struct pt_regs *);
539 int (*post_xol)(struct arch_uprobe *, struct pt_regs *);
588fbd61 540 void (*abort)(struct arch_uprobe *, struct pt_regs *);
8ad8e9d3
ON
541};
542
8faaed1b
ON
543static inline int sizeof_long(void)
544{
545 return is_ia32_task() ? 4 : 8;
546}
547
8ad8e9d3
ON
548static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
549{
7f55e82b 550 riprel_pre_xol(auprobe, regs);
8ad8e9d3
ON
551 return 0;
552}
553
2b82cadf
ON
554static int push_ret_address(struct pt_regs *regs, unsigned long ip)
555{
556 unsigned long new_sp = regs->sp - sizeof_long();
557
558 if (copy_to_user((void __user *)new_sp, &ip, sizeof_long()))
559 return -EFAULT;
560
561 regs->sp = new_sp;
562 return 0;
563}
564
1ea30fb6
DV
565/*
566 * We have to fix things up as follows:
567 *
568 * Typically, the new ip is relative to the copied instruction. We need
569 * to make it relative to the original instruction (FIX_IP). Exceptions
570 * are return instructions and absolute or indirect jump or call instructions.
571 *
572 * If the single-stepped instruction was a call, the return address that
573 * is atop the stack is the address following the copied instruction. We
574 * need to make it the address following the original instruction (FIX_CALL).
575 *
576 * If the original instruction was a rip-relative instruction such as
577 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
578 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
579 * We need to restore the contents of the scratch register
580 * (FIX_RIP_reg).
581 */
8ad8e9d3
ON
582static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
583{
584 struct uprobe_task *utask = current->utask;
8ad8e9d3 585
50204c6f 586 riprel_post_xol(auprobe, regs);
5cdb76d6 587 if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
50204c6f 588 long correction = utask->vaddr - utask->xol_vaddr;
8ad8e9d3 589 regs->ip += correction;
5cdb76d6
ON
590 } else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
591 regs->sp += sizeof_long(); /* Pop incorrect return address */
592 if (push_ret_address(regs, utask->vaddr + auprobe->defparam.ilen))
75f9ef0b 593 return -ERESTART;
75f9ef0b 594 }
220ef8dc 595 /* popf; tell the caller to not touch TF */
5cdb76d6 596 if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
220ef8dc 597 utask->autask.saved_tf = true;
8ad8e9d3 598
75f9ef0b 599 return 0;
8ad8e9d3
ON
600}
601
588fbd61
ON
602static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
603{
50204c6f 604 riprel_post_xol(auprobe, regs);
588fbd61
ON
605}
606
8ad8e9d3
ON
607static struct uprobe_xol_ops default_xol_ops = {
608 .pre_xol = default_pre_xol_op,
609 .post_xol = default_post_xol_op,
588fbd61 610 .abort = default_abort_op,
8ad8e9d3
ON
611};
612
8e89c0be
ON
613static bool branch_is_call(struct arch_uprobe *auprobe)
614{
615 return auprobe->branch.opc1 == 0xe8;
616}
617
8f95505b
ON
618#define CASE_COND \
619 COND(70, 71, XF(OF)) \
620 COND(72, 73, XF(CF)) \
621 COND(74, 75, XF(ZF)) \
622 COND(78, 79, XF(SF)) \
623 COND(7a, 7b, XF(PF)) \
624 COND(76, 77, XF(CF) || XF(ZF)) \
625 COND(7c, 7d, XF(SF) != XF(OF)) \
626 COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
627
628#define COND(op_y, op_n, expr) \
629 case 0x ## op_y: DO((expr) != 0) \
630 case 0x ## op_n: DO((expr) == 0)
631
632#define XF(xf) (!!(flags & X86_EFLAGS_ ## xf))
633
634static bool is_cond_jmp_opcode(u8 opcode)
635{
636 switch (opcode) {
637 #define DO(expr) \
638 return true;
639 CASE_COND
640 #undef DO
641
642 default:
643 return false;
644 }
645}
646
647static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
648{
649 unsigned long flags = regs->flags;
650
651 switch (auprobe->branch.opc1) {
652 #define DO(expr) \
653 return expr;
654 CASE_COND
655 #undef DO
656
657 default: /* not a conditional jmp */
658 return true;
659 }
660}
661
662#undef XF
663#undef COND
664#undef CASE_COND
665
7ba6db2d
ON
666static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
667{
8e89c0be 668 unsigned long new_ip = regs->ip += auprobe->branch.ilen;
8f95505b 669 unsigned long offs = (long)auprobe->branch.offs;
8e89c0be
ON
670
671 if (branch_is_call(auprobe)) {
8e89c0be
ON
672 /*
673 * If it fails we execute this (mangled, see the comment in
674 * branch_clear_offset) insn out-of-line. In the likely case
675 * this should trigger the trap, and the probed application
676 * should die or restart the same insn after it handles the
677 * signal, arch_uprobe_post_xol() won't be even called.
678 *
679 * But there is corner case, see the comment in ->post_xol().
680 */
2b82cadf 681 if (push_ret_address(regs, new_ip))
8e89c0be 682 return false;
8f95505b
ON
683 } else if (!check_jmp_cond(auprobe, regs)) {
684 offs = 0;
8e89c0be
ON
685 }
686
8f95505b 687 regs->ip = new_ip + offs;
7ba6db2d
ON
688 return true;
689}
690
8e89c0be
ON
691static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
692{
693 BUG_ON(!branch_is_call(auprobe));
694 /*
695 * We can only get here if branch_emulate_op() failed to push the ret
696 * address _and_ another thread expanded our stack before the (mangled)
697 * "call" insn was executed out-of-line. Just restore ->sp and restart.
698 * We could also restore ->ip and try to call branch_emulate_op() again.
699 */
700 regs->sp += sizeof_long();
701 return -ERESTART;
702}
703
704static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
705{
706 /*
707 * Turn this insn into "call 1f; 1:", this is what we will execute
708 * out-of-line if ->emulate() fails. We only need this to generate
709 * a trap, so that the probed task receives the correct signal with
710 * the properly filled siginfo.
711 *
712 * But see the comment in ->post_xol(), in the unlikely case it can
713 * succeed. So we need to ensure that the new ->ip can not fall into
714 * the non-canonical area and trigger #GP.
715 *
716 * We could turn it into (say) "pushf", but then we would need to
717 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
718 * of ->insn[] for set_orig_insn().
719 */
720 memset(auprobe->insn + insn_offset_immediate(insn),
721 0, insn->immediate.nbytes);
722}
723
7ba6db2d
ON
724static struct uprobe_xol_ops branch_xol_ops = {
725 .emulate = branch_emulate_op,
8e89c0be 726 .post_xol = branch_post_xol_op,
7ba6db2d
ON
727};
728
729/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
730static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
731{
8e89c0be 732 u8 opc1 = OPCODE1(insn);
250bbd12 733 int i;
8e89c0be 734
8e89c0be 735 switch (opc1) {
7ba6db2d
ON
736 case 0xeb: /* jmp 8 */
737 case 0xe9: /* jmp 32 */
d2410063 738 case 0x90: /* prefix* + nop; same as jmp with .offs = 0 */
7ba6db2d 739 break;
8e89c0be
ON
740
741 case 0xe8: /* call relative */
742 branch_clear_offset(auprobe, insn);
743 break;
8f95505b 744
6cc5e7ff
ON
745 case 0x0f:
746 if (insn->opcode.nbytes != 2)
747 return -ENOSYS;
748 /*
749 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
750 * OPCODE1() of the "short" jmp which checks the same condition.
751 */
752 opc1 = OPCODE2(insn) - 0x10;
7ba6db2d 753 default:
8f95505b
ON
754 if (!is_cond_jmp_opcode(opc1))
755 return -ENOSYS;
7ba6db2d
ON
756 }
757
250bbd12
DV
758 /*
759 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
760 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
761 * No one uses these insns, reject any branch insns with such prefix.
762 */
763 for (i = 0; i < insn->prefixes.nbytes; i++) {
764 if (insn->prefixes.bytes[i] == 0x66)
765 return -ENOTSUPP;
766 }
767
8e89c0be 768 auprobe->branch.opc1 = opc1;
7ba6db2d
ON
769 auprobe->branch.ilen = insn->length;
770 auprobe->branch.offs = insn->immediate.value;
771
772 auprobe->ops = &branch_xol_ops;
773 return 0;
774}
775
2b144498 776/**
0326f5a9 777 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
2b144498 778 * @mm: the probed address space.
3ff54efd 779 * @arch_uprobe: the probepoint information.
7eb9ba5e 780 * @addr: virtual address at which to install the probepoint
2b144498
SD
781 * Return 0 on success or a -ve number on error.
782 */
7eb9ba5e 783int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
2b144498 784{
2b144498 785 struct insn insn;
83cd5914 786 u8 fix_ip_or_call = UPROBE_FIX_IP;
ddb69f27 787 int ret;
2b144498 788
2ae1f49a 789 ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
ddb69f27 790 if (ret)
2b144498 791 return ret;
7b2d81d4 792
7ba6db2d
ON
793 ret = branch_setup_xol_ops(auprobe, &insn);
794 if (ret != -ENOSYS)
795 return ret;
796
ddb69f27 797 /*
97aa5cdd 798 * Figure out which fixups default_post_xol_op() will need to perform,
5cdb76d6 799 * and annotate defparam->fixups accordingly.
ddb69f27 800 */
ddb69f27
ON
801 switch (OPCODE1(&insn)) {
802 case 0x9d: /* popf */
5cdb76d6 803 auprobe->defparam.fixups |= UPROBE_FIX_SETF;
ddb69f27
ON
804 break;
805 case 0xc3: /* ret or lret -- ip is correct */
806 case 0xcb:
807 case 0xc2:
808 case 0xca:
83cd5914
ON
809 case 0xea: /* jmp absolute -- ip is correct */
810 fix_ip_or_call = 0;
ddb69f27 811 break;
ddb69f27 812 case 0x9a: /* call absolute - Fix return addr, not ip */
83cd5914 813 fix_ip_or_call = UPROBE_FIX_CALL;
ddb69f27
ON
814 break;
815 case 0xff:
ddb69f27
ON
816 switch (MODRM_REG(&insn)) {
817 case 2: case 3: /* call or lcall, indirect */
83cd5914
ON
818 fix_ip_or_call = UPROBE_FIX_CALL;
819 break;
ddb69f27 820 case 4: case 5: /* jmp or ljmp, indirect */
83cd5914
ON
821 fix_ip_or_call = 0;
822 break;
ddb69f27 823 }
e55848a4 824 /* fall through */
ddb69f27 825 default:
1475ee7f 826 riprel_analyze(auprobe, &insn);
ddb69f27
ON
827 }
828
5cdb76d6
ON
829 auprobe->defparam.ilen = insn.length;
830 auprobe->defparam.fixups |= fix_ip_or_call;
7b2d81d4 831
8ad8e9d3 832 auprobe->ops = &default_xol_ops;
2b144498
SD
833 return 0;
834}
0326f5a9 835
0326f5a9
SD
836/*
837 * arch_uprobe_pre_xol - prepare to execute out of line.
838 * @auprobe: the probepoint information.
839 * @regs: reflects the saved user state of current task.
840 */
841int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
842{
34e7317d 843 struct uprobe_task *utask = current->utask;
0326f5a9 844
dd91016d
ON
845 if (auprobe->ops->pre_xol) {
846 int err = auprobe->ops->pre_xol(auprobe, regs);
847 if (err)
848 return err;
849 }
850
34e7317d
ON
851 regs->ip = utask->xol_vaddr;
852 utask->autask.saved_trap_nr = current->thread.trap_nr;
0326f5a9 853 current->thread.trap_nr = UPROBE_TRAP_NR;
0326f5a9 854
34e7317d 855 utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
4dc316c6
ON
856 regs->flags |= X86_EFLAGS_TF;
857 if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
858 set_task_blockstep(current, false);
859
0326f5a9
SD
860 return 0;
861}
862
0326f5a9
SD
863/*
864 * If xol insn itself traps and generates a signal(Say,
865 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
866 * instruction jumps back to its own address. It is assumed that anything
867 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
868 *
869 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
870 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
871 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
872 */
873bool arch_uprobe_xol_was_trapped(struct task_struct *t)
874{
875 if (t->thread.trap_nr != UPROBE_TRAP_NR)
876 return true;
877
878 return false;
879}
880
881/*
882 * Called after single-stepping. To avoid the SMP problems that can
883 * occur when we temporarily put back the original opcode to
884 * single-step, we single-stepped a copy of the instruction.
885 *
886 * This function prepares to resume execution after the single-step.
0326f5a9
SD
887 */
888int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
889{
34e7317d 890 struct uprobe_task *utask = current->utask;
220ef8dc
ON
891 bool send_sigtrap = utask->autask.saved_tf;
892 int err = 0;
0326f5a9
SD
893
894 WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
6ded5f38 895 current->thread.trap_nr = utask->autask.saved_trap_nr;
014940ba
ON
896
897 if (auprobe->ops->post_xol) {
220ef8dc 898 err = auprobe->ops->post_xol(auprobe, regs);
014940ba 899 if (err) {
75f9ef0b 900 /*
6ded5f38
ON
901 * Restore ->ip for restart or post mortem analysis.
902 * ->post_xol() must not return -ERESTART unless this
903 * is really possible.
75f9ef0b 904 */
6ded5f38 905 regs->ip = utask->vaddr;
75f9ef0b 906 if (err == -ERESTART)
220ef8dc
ON
907 err = 0;
908 send_sigtrap = false;
014940ba
ON
909 }
910 }
4dc316c6
ON
911 /*
912 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
913 * so we can get an extra SIGTRAP if we do not clear TF. We need
914 * to examine the opcode to make it right.
915 */
220ef8dc 916 if (send_sigtrap)
4dc316c6 917 send_sig(SIGTRAP, current, 0);
220ef8dc
ON
918
919 if (!utask->autask.saved_tf)
4dc316c6
ON
920 regs->flags &= ~X86_EFLAGS_TF;
921
220ef8dc 922 return err;
0326f5a9
SD
923}
924
925/* callback routine for handling exceptions. */
926int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
927{
928 struct die_args *args = data;
929 struct pt_regs *regs = args->regs;
930 int ret = NOTIFY_DONE;
931
932 /* We are only interested in userspace traps */
933 if (regs && !user_mode_vm(regs))
934 return NOTIFY_DONE;
935
936 switch (val) {
937 case DIE_INT3:
938 if (uprobe_pre_sstep_notifier(regs))
939 ret = NOTIFY_STOP;
940
941 break;
942
943 case DIE_DEBUG:
944 if (uprobe_post_sstep_notifier(regs))
945 ret = NOTIFY_STOP;
946
947 default:
948 break;
949 }
950
951 return ret;
952}
953
954/*
955 * This function gets called when XOL instruction either gets trapped or
6ded5f38
ON
956 * the thread has a fatal signal. Reset the instruction pointer to its
957 * probed address for the potential restart or for post mortem analysis.
0326f5a9
SD
958 */
959void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
960{
961 struct uprobe_task *utask = current->utask;
962
588fbd61
ON
963 if (auprobe->ops->abort)
964 auprobe->ops->abort(auprobe, regs);
4dc316c6 965
588fbd61
ON
966 current->thread.trap_nr = utask->autask.saved_trap_nr;
967 regs->ip = utask->vaddr;
4dc316c6
ON
968 /* clear TF if it was set by us in arch_uprobe_pre_xol() */
969 if (!utask->autask.saved_tf)
970 regs->flags &= ~X86_EFLAGS_TF;
0326f5a9
SD
971}
972
3a4664aa 973static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
0326f5a9 974{
8ad8e9d3
ON
975 if (auprobe->ops->emulate)
976 return auprobe->ops->emulate(auprobe, regs);
0326f5a9
SD
977 return false;
978}
bdc1e472 979
3a4664aa
ON
980bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
981{
982 bool ret = __skip_sstep(auprobe, regs);
983 if (ret && (regs->flags & X86_EFLAGS_TF))
984 send_sig(SIGTRAP, current, 0);
985 return ret;
986}
791eca10
AA
987
988unsigned long
989arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
990{
8faaed1b 991 int rasize = sizeof_long(), nleft;
791eca10
AA
992 unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
993
8faaed1b 994 if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
791eca10
AA
995 return -1;
996
997 /* check whether address has been already hijacked */
998 if (orig_ret_vaddr == trampoline_vaddr)
999 return orig_ret_vaddr;
1000
8faaed1b
ON
1001 nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
1002 if (likely(!nleft))
791eca10
AA
1003 return orig_ret_vaddr;
1004
8faaed1b 1005 if (nleft != rasize) {
791eca10
AA
1006 pr_err("uprobe: return address clobbered: pid=%d, %%sp=%#lx, "
1007 "%%ip=%#lx\n", current->pid, regs->sp, regs->ip);
1008
1009 force_sig_info(SIGSEGV, SEND_SIG_FORCED, current);
1010 }
1011
1012 return -1;
1013}
This page took 0.174388 seconds and 5 git commands to generate.