uprobes/x86: Add uprobe_init_insn(), kill validate_insn_{32,64}bits()
[deliverable/linux.git] / arch / x86 / kernel / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes) for x86
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2008-2011
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
22 */
2b144498
SD
23#include <linux/kernel.h>
24#include <linux/sched.h>
25#include <linux/ptrace.h>
26#include <linux/uprobes.h>
0326f5a9 27#include <linux/uaccess.h>
2b144498
SD
28
29#include <linux/kdebug.h>
0326f5a9 30#include <asm/processor.h>
2b144498
SD
31#include <asm/insn.h>
32
33/* Post-execution fixups. */
34
2b144498 35/* Adjust IP back to vicinity of actual insn */
900771a4 36#define UPROBE_FIX_IP 0x1
0326f5a9 37
2b144498 38/* Adjust the return address of a call insn */
900771a4 39#define UPROBE_FIX_CALL 0x2
2b144498 40
bdc1e472
SAS
41/* Instruction will modify TF, don't change it */
42#define UPROBE_FIX_SETF 0x4
43
900771a4
SD
44#define UPROBE_FIX_RIP_AX 0x8000
45#define UPROBE_FIX_RIP_CX 0x4000
2b144498 46
0326f5a9
SD
47#define UPROBE_TRAP_NR UINT_MAX
48
2b144498 49/* Adaptations for mhiramat x86 decoder v14. */
7b2d81d4
IM
50#define OPCODE1(insn) ((insn)->opcode.bytes[0])
51#define OPCODE2(insn) ((insn)->opcode.bytes[1])
52#define OPCODE3(insn) ((insn)->opcode.bytes[2])
ddb69f27 53#define MODRM_REG(insn) X86_MODRM_REG((insn)->modrm.value)
2b144498
SD
54
55#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
56 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
57 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
58 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
59 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
60 << (row % 32))
61
04a3d984
SD
62/*
63 * Good-instruction tables for 32-bit apps. This is non-const and volatile
64 * to keep gcc from statically optimizing it out, as variable_test_bit makes
65 * some versions of gcc to think only *(unsigned long*) is used.
66 */
67static volatile u32 good_insns_32[256 / 32] = {
2b144498
SD
68 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
69 /* ---------------------------------------------- */
70 W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 00 */
71 W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
72 W(0x20, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* 20 */
73 W(0x30, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) , /* 30 */
74 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
75 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
76 W(0x60, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
77 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
78 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
79 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
80 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
81 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
82 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
83 W(0xd0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
84 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
85 W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
86 /* ---------------------------------------------- */
87 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
88};
89
90/* Using this for both 64-bit and 32-bit apps */
04a3d984 91static volatile u32 good_2byte_insns[256 / 32] = {
2b144498
SD
92 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
93 /* ---------------------------------------------- */
94 W(0x00, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) | /* 00 */
95 W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
96 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
97 W(0x30, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
98 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
99 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
100 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
101 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
102 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
103 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
104 W(0xa0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
105 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
106 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
107 W(0xd0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
108 W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
109 W(0xf0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) /* f0 */
110 /* ---------------------------------------------- */
111 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
112};
113
04a3d984
SD
114/* Good-instruction tables for 64-bit apps */
115static volatile u32 good_insns_64[256 / 32] = {
116 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
117 /* ---------------------------------------------- */
118 W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 00 */
119 W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
120 W(0x20, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 20 */
121 W(0x30, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 30 */
122 W(0x40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 40 */
123 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
124 W(0x60, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
125 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
126 W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
127 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
128 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
129 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
130 W(0xc0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
131 W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
132 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
133 W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
134 /* ---------------------------------------------- */
135 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
136};
2b144498
SD
137#undef W
138
139/*
140 * opcodes we'll probably never support:
7b2d81d4
IM
141 *
142 * 6c-6d, e4-e5, ec-ed - in
143 * 6e-6f, e6-e7, ee-ef - out
144 * cc, cd - int3, int
145 * cf - iret
146 * d6 - illegal instruction
147 * f1 - int1/icebp
148 * f4 - hlt
149 * fa, fb - cli, sti
150 * 0f - lar, lsl, syscall, clts, sysret, sysenter, sysexit, invd, wbinvd, ud2
2b144498
SD
151 *
152 * invalid opcodes in 64-bit mode:
2b144498 153 *
7b2d81d4
IM
154 * 06, 0e, 16, 1e, 27, 2f, 37, 3f, 60-62, 82, c4-c5, d4-d5
155 * 63 - we support this opcode in x86_64 but not in i386.
2b144498
SD
156 *
157 * opcodes we may need to refine support for:
7b2d81d4
IM
158 *
159 * 0f - 2-byte instructions: For many of these instructions, the validity
160 * depends on the prefix and/or the reg field. On such instructions, we
161 * just consider the opcode combination valid if it corresponds to any
162 * valid instruction.
163 *
164 * 8f - Group 1 - only reg = 0 is OK
165 * c6-c7 - Group 11 - only reg = 0 is OK
166 * d9-df - fpu insns with some illegal encodings
167 * f2, f3 - repnz, repz prefixes. These are also the first byte for
168 * certain floating-point instructions, such as addsd.
169 *
170 * fe - Group 4 - only reg = 0 or 1 is OK
171 * ff - Group 5 - only reg = 0-6 is OK
2b144498
SD
172 *
173 * others -- Do we need to support these?
7b2d81d4
IM
174 *
175 * 0f - (floating-point?) prefetch instructions
176 * 07, 17, 1f - pop es, pop ss, pop ds
177 * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
2b144498 178 * but 64 and 65 (fs: and gs:) seem to be used, so we support them
7b2d81d4
IM
179 * 67 - addr16 prefix
180 * ce - into
181 * f0 - lock prefix
2b144498
SD
182 */
183
184/*
185 * TODO:
186 * - Where necessary, examine the modrm byte and allow only valid instructions
187 * in the different Groups and fpu instructions.
188 */
189
190static bool is_prefix_bad(struct insn *insn)
191{
192 int i;
193
194 for (i = 0; i < insn->prefixes.nbytes; i++) {
195 switch (insn->prefixes.bytes[i]) {
7b2d81d4
IM
196 case 0x26: /* INAT_PFX_ES */
197 case 0x2E: /* INAT_PFX_CS */
198 case 0x36: /* INAT_PFX_DS */
199 case 0x3E: /* INAT_PFX_SS */
200 case 0xF0: /* INAT_PFX_LOCK */
2b144498
SD
201 return true;
202 }
203 }
204 return false;
205}
206
73175d0d 207static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
2b144498 208{
73175d0d
ON
209 u32 volatile *good_insns;
210
211 insn_init(insn, auprobe->insn, x86_64);
2b144498 212
2b144498
SD
213 insn_get_opcode(insn);
214 if (is_prefix_bad(insn))
215 return -ENOTSUPP;
7b2d81d4 216
73175d0d
ON
217 if (x86_64)
218 good_insns = good_insns_64;
219 else
220 good_insns = good_insns_32;
221
222 if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
2b144498 223 return 0;
7b2d81d4 224
2b144498
SD
225 if (insn->opcode.nbytes == 2) {
226 if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
227 return 0;
228 }
7b2d81d4 229
2b144498
SD
230 return -ENOTSUPP;
231}
232
2b144498
SD
233#ifdef CONFIG_X86_64
234/*
3ff54efd 235 * If arch_uprobe->insn doesn't use rip-relative addressing, return
2b144498
SD
236 * immediately. Otherwise, rewrite the instruction so that it accesses
237 * its memory operand indirectly through a scratch register. Set
3ff54efd 238 * arch_uprobe->fixups and arch_uprobe->rip_rela_target_address
2b144498
SD
239 * accordingly. (The contents of the scratch register will be saved
240 * before we single-step the modified instruction, and restored
241 * afterward.)
242 *
243 * We do this because a rip-relative instruction can access only a
244 * relatively small area (+/- 2 GB from the instruction), and the XOL
245 * area typically lies beyond that area. At least for instructions
246 * that store to memory, we can't execute the original instruction
247 * and "fix things up" later, because the misdirected store could be
248 * disastrous.
249 *
250 * Some useful facts about rip-relative instructions:
7b2d81d4
IM
251 *
252 * - There's always a modrm byte.
253 * - There's never a SIB byte.
254 * - The displacement is always 4 bytes.
2b144498 255 */
e3343e6a 256static void
59078d4b 257handle_riprel_insn(struct arch_uprobe *auprobe, struct insn *insn)
2b144498
SD
258{
259 u8 *cursor;
260 u8 reg;
261
2b144498
SD
262 if (!insn_rip_relative(insn))
263 return;
264
265 /*
266 * insn_rip_relative() would have decoded rex_prefix, modrm.
267 * Clear REX.b bit (extension of MODRM.rm field):
268 * we want to encode rax/rcx, not r8/r9.
269 */
270 if (insn->rex_prefix.nbytes) {
3ff54efd 271 cursor = auprobe->insn + insn_offset_rex_prefix(insn);
2b144498
SD
272 *cursor &= 0xfe; /* Clearing REX.B bit */
273 }
274
275 /*
276 * Point cursor at the modrm byte. The next 4 bytes are the
277 * displacement. Beyond the displacement, for some instructions,
278 * is the immediate operand.
279 */
3ff54efd 280 cursor = auprobe->insn + insn_offset_modrm(insn);
2b144498
SD
281 insn_get_length(insn);
282
283 /*
284 * Convert from rip-relative addressing to indirect addressing
285 * via a scratch register. Change the r/m field from 0x5 (%rip)
286 * to 0x0 (%rax) or 0x1 (%rcx), and squeeze out the offset field.
287 */
288 reg = MODRM_REG(insn);
289 if (reg == 0) {
290 /*
291 * The register operand (if any) is either the A register
292 * (%rax, %eax, etc.) or (if the 0x4 bit is set in the
293 * REX prefix) %r8. In any case, we know the C register
294 * is NOT the register operand, so we use %rcx (register
295 * #1) for the scratch register.
296 */
900771a4 297 auprobe->fixups = UPROBE_FIX_RIP_CX;
2b144498
SD
298 /* Change modrm from 00 000 101 to 00 000 001. */
299 *cursor = 0x1;
300 } else {
301 /* Use %rax (register #0) for the scratch register. */
900771a4 302 auprobe->fixups = UPROBE_FIX_RIP_AX;
2b144498
SD
303 /* Change modrm from 00 xxx 101 to 00 xxx 000 */
304 *cursor = (reg << 3);
305 }
306
307 /* Target address = address of next instruction + (signed) offset */
3ff54efd 308 auprobe->rip_rela_target_address = (long)insn->length + insn->displacement.value;
7b2d81d4 309
2b144498
SD
310 /* Displacement field is gone; slide immediate field (if any) over. */
311 if (insn->immediate.nbytes) {
312 cursor++;
7b2d81d4 313 memmove(cursor, cursor + insn->displacement.nbytes, insn->immediate.nbytes);
2b144498 314 }
2b144498
SD
315}
316
d20737c0
ON
317/*
318 * If we're emulating a rip-relative instruction, save the contents
319 * of the scratch register and store the target address in that register.
320 */
321static void
322pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
323 struct arch_uprobe_task *autask)
324{
325 if (auprobe->fixups & UPROBE_FIX_RIP_AX) {
326 autask->saved_scratch_register = regs->ax;
327 regs->ax = current->utask->vaddr;
328 regs->ax += auprobe->rip_rela_target_address;
329 } else if (auprobe->fixups & UPROBE_FIX_RIP_CX) {
330 autask->saved_scratch_register = regs->cx;
331 regs->cx = current->utask->vaddr;
332 regs->cx += auprobe->rip_rela_target_address;
333 }
334}
335
336static void
337handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction)
338{
339 if (auprobe->fixups & (UPROBE_FIX_RIP_AX | UPROBE_FIX_RIP_CX)) {
340 struct arch_uprobe_task *autask;
341
342 autask = &current->utask->autask;
343 if (auprobe->fixups & UPROBE_FIX_RIP_AX)
344 regs->ax = autask->saved_scratch_register;
345 else
346 regs->cx = autask->saved_scratch_register;
347
348 /*
349 * The original instruction includes a displacement, and so
350 * is 4 bytes longer than what we've just single-stepped.
351 * Caller may need to apply other fixups to handle stuff
352 * like "jmpq *...(%rip)" and "callq *...(%rip)".
353 */
354 if (correction)
355 *correction += 4;
356 }
357}
358
e3343e6a 359static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
2b144498 360{
73175d0d
ON
361 bool x86_64 = !mm->context.ia32_compat;
362 return uprobe_init_insn(auprobe, insn, x86_64);
2b144498 363}
7b2d81d4 364#else /* 32-bit: */
d20737c0
ON
365/*
366 * No RIP-relative addressing on 32-bit
367 */
59078d4b 368static void handle_riprel_insn(struct arch_uprobe *auprobe, struct insn *insn)
2b144498 369{
d20737c0
ON
370}
371static void pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
372 struct arch_uprobe_task *autask)
373{
374}
375static void handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs,
376 long *correction)
377{
2b144498
SD
378}
379
e3343e6a 380static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
2b144498 381{
73175d0d 382 return uprobe_init_insn(auprobe, insn, false);
2b144498
SD
383}
384#endif /* CONFIG_X86_64 */
385
8ad8e9d3
ON
386struct uprobe_xol_ops {
387 bool (*emulate)(struct arch_uprobe *, struct pt_regs *);
388 int (*pre_xol)(struct arch_uprobe *, struct pt_regs *);
389 int (*post_xol)(struct arch_uprobe *, struct pt_regs *);
390};
391
8faaed1b
ON
392static inline int sizeof_long(void)
393{
394 return is_ia32_task() ? 4 : 8;
395}
396
8ad8e9d3
ON
397static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
398{
399 pre_xol_rip_insn(auprobe, regs, &current->utask->autask);
400 return 0;
401}
402
403/*
404 * Adjust the return address pushed by a call insn executed out of line.
405 */
406static int adjust_ret_addr(unsigned long sp, long correction)
407{
8faaed1b
ON
408 int rasize = sizeof_long();
409 long ra;
8ad8e9d3 410
8faaed1b 411 if (copy_from_user(&ra, (void __user *)sp, rasize))
8ad8e9d3
ON
412 return -EFAULT;
413
414 ra += correction;
8faaed1b 415 if (copy_to_user((void __user *)sp, &ra, rasize))
8ad8e9d3
ON
416 return -EFAULT;
417
418 return 0;
419}
420
421static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
422{
423 struct uprobe_task *utask = current->utask;
424 long correction = (long)(utask->vaddr - utask->xol_vaddr);
8ad8e9d3
ON
425
426 handle_riprel_post_xol(auprobe, regs, &correction);
427 if (auprobe->fixups & UPROBE_FIX_IP)
428 regs->ip += correction;
429
75f9ef0b
ON
430 if (auprobe->fixups & UPROBE_FIX_CALL) {
431 if (adjust_ret_addr(regs->sp, correction)) {
8faaed1b 432 regs->sp += sizeof_long();
75f9ef0b
ON
433 return -ERESTART;
434 }
435 }
8ad8e9d3 436
75f9ef0b 437 return 0;
8ad8e9d3
ON
438}
439
440static struct uprobe_xol_ops default_xol_ops = {
441 .pre_xol = default_pre_xol_op,
442 .post_xol = default_post_xol_op,
443};
444
8e89c0be
ON
445static bool branch_is_call(struct arch_uprobe *auprobe)
446{
447 return auprobe->branch.opc1 == 0xe8;
448}
449
8f95505b
ON
450#define CASE_COND \
451 COND(70, 71, XF(OF)) \
452 COND(72, 73, XF(CF)) \
453 COND(74, 75, XF(ZF)) \
454 COND(78, 79, XF(SF)) \
455 COND(7a, 7b, XF(PF)) \
456 COND(76, 77, XF(CF) || XF(ZF)) \
457 COND(7c, 7d, XF(SF) != XF(OF)) \
458 COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
459
460#define COND(op_y, op_n, expr) \
461 case 0x ## op_y: DO((expr) != 0) \
462 case 0x ## op_n: DO((expr) == 0)
463
464#define XF(xf) (!!(flags & X86_EFLAGS_ ## xf))
465
466static bool is_cond_jmp_opcode(u8 opcode)
467{
468 switch (opcode) {
469 #define DO(expr) \
470 return true;
471 CASE_COND
472 #undef DO
473
474 default:
475 return false;
476 }
477}
478
479static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
480{
481 unsigned long flags = regs->flags;
482
483 switch (auprobe->branch.opc1) {
484 #define DO(expr) \
485 return expr;
486 CASE_COND
487 #undef DO
488
489 default: /* not a conditional jmp */
490 return true;
491 }
492}
493
494#undef XF
495#undef COND
496#undef CASE_COND
497
7ba6db2d
ON
498static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
499{
8e89c0be 500 unsigned long new_ip = regs->ip += auprobe->branch.ilen;
8f95505b 501 unsigned long offs = (long)auprobe->branch.offs;
8e89c0be
ON
502
503 if (branch_is_call(auprobe)) {
504 unsigned long new_sp = regs->sp - sizeof_long();
505 /*
506 * If it fails we execute this (mangled, see the comment in
507 * branch_clear_offset) insn out-of-line. In the likely case
508 * this should trigger the trap, and the probed application
509 * should die or restart the same insn after it handles the
510 * signal, arch_uprobe_post_xol() won't be even called.
511 *
512 * But there is corner case, see the comment in ->post_xol().
513 */
514 if (copy_to_user((void __user *)new_sp, &new_ip, sizeof_long()))
515 return false;
516 regs->sp = new_sp;
8f95505b
ON
517 } else if (!check_jmp_cond(auprobe, regs)) {
518 offs = 0;
8e89c0be
ON
519 }
520
8f95505b 521 regs->ip = new_ip + offs;
7ba6db2d
ON
522 return true;
523}
524
8e89c0be
ON
525static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
526{
527 BUG_ON(!branch_is_call(auprobe));
528 /*
529 * We can only get here if branch_emulate_op() failed to push the ret
530 * address _and_ another thread expanded our stack before the (mangled)
531 * "call" insn was executed out-of-line. Just restore ->sp and restart.
532 * We could also restore ->ip and try to call branch_emulate_op() again.
533 */
534 regs->sp += sizeof_long();
535 return -ERESTART;
536}
537
538static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
539{
540 /*
541 * Turn this insn into "call 1f; 1:", this is what we will execute
542 * out-of-line if ->emulate() fails. We only need this to generate
543 * a trap, so that the probed task receives the correct signal with
544 * the properly filled siginfo.
545 *
546 * But see the comment in ->post_xol(), in the unlikely case it can
547 * succeed. So we need to ensure that the new ->ip can not fall into
548 * the non-canonical area and trigger #GP.
549 *
550 * We could turn it into (say) "pushf", but then we would need to
551 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
552 * of ->insn[] for set_orig_insn().
553 */
554 memset(auprobe->insn + insn_offset_immediate(insn),
555 0, insn->immediate.nbytes);
556}
557
7ba6db2d
ON
558static struct uprobe_xol_ops branch_xol_ops = {
559 .emulate = branch_emulate_op,
8e89c0be 560 .post_xol = branch_post_xol_op,
7ba6db2d
ON
561};
562
563/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
564static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
565{
8e89c0be 566 u8 opc1 = OPCODE1(insn);
250bbd12 567 int i;
8e89c0be
ON
568
569 /* has the side-effect of processing the entire instruction */
570 insn_get_length(insn);
571 if (WARN_ON_ONCE(!insn_complete(insn)))
572 return -ENOEXEC;
7ba6db2d 573
8e89c0be 574 switch (opc1) {
7ba6db2d
ON
575 case 0xeb: /* jmp 8 */
576 case 0xe9: /* jmp 32 */
d2410063 577 case 0x90: /* prefix* + nop; same as jmp with .offs = 0 */
7ba6db2d 578 break;
8e89c0be
ON
579
580 case 0xe8: /* call relative */
581 branch_clear_offset(auprobe, insn);
582 break;
8f95505b 583
6cc5e7ff
ON
584 case 0x0f:
585 if (insn->opcode.nbytes != 2)
586 return -ENOSYS;
587 /*
588 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
589 * OPCODE1() of the "short" jmp which checks the same condition.
590 */
591 opc1 = OPCODE2(insn) - 0x10;
7ba6db2d 592 default:
8f95505b
ON
593 if (!is_cond_jmp_opcode(opc1))
594 return -ENOSYS;
7ba6db2d
ON
595 }
596
250bbd12
DV
597 /*
598 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
599 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
600 * No one uses these insns, reject any branch insns with such prefix.
601 */
602 for (i = 0; i < insn->prefixes.nbytes; i++) {
603 if (insn->prefixes.bytes[i] == 0x66)
604 return -ENOTSUPP;
605 }
606
8e89c0be 607 auprobe->branch.opc1 = opc1;
7ba6db2d
ON
608 auprobe->branch.ilen = insn->length;
609 auprobe->branch.offs = insn->immediate.value;
610
611 auprobe->ops = &branch_xol_ops;
612 return 0;
613}
614
2b144498 615/**
0326f5a9 616 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
2b144498 617 * @mm: the probed address space.
3ff54efd 618 * @arch_uprobe: the probepoint information.
7eb9ba5e 619 * @addr: virtual address at which to install the probepoint
2b144498
SD
620 * Return 0 on success or a -ve number on error.
621 */
7eb9ba5e 622int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
2b144498 623{
2b144498 624 struct insn insn;
ddb69f27
ON
625 bool fix_ip = true, fix_call = false;
626 int ret;
2b144498 627
e3343e6a 628 ret = validate_insn_bits(auprobe, mm, &insn);
ddb69f27 629 if (ret)
2b144498 630 return ret;
7b2d81d4 631
7ba6db2d
ON
632 ret = branch_setup_xol_ops(auprobe, &insn);
633 if (ret != -ENOSYS)
634 return ret;
635
ddb69f27
ON
636 /*
637 * Figure out which fixups arch_uprobe_post_xol() will need to perform,
638 * and annotate arch_uprobe->fixups accordingly. To start with, ->fixups
639 * is either zero or it reflects rip-related fixups.
640 */
ddb69f27
ON
641 switch (OPCODE1(&insn)) {
642 case 0x9d: /* popf */
643 auprobe->fixups |= UPROBE_FIX_SETF;
644 break;
645 case 0xc3: /* ret or lret -- ip is correct */
646 case 0xcb:
647 case 0xc2:
648 case 0xca:
649 fix_ip = false;
650 break;
ddb69f27
ON
651 case 0x9a: /* call absolute - Fix return addr, not ip */
652 fix_call = true;
653 fix_ip = false;
654 break;
655 case 0xea: /* jmp absolute -- ip is correct */
656 fix_ip = false;
657 break;
658 case 0xff:
659 insn_get_modrm(&insn);
660 switch (MODRM_REG(&insn)) {
661 case 2: case 3: /* call or lcall, indirect */
662 fix_call = true;
663 case 4: case 5: /* jmp or ljmp, indirect */
664 fix_ip = false;
665 }
e55848a4 666 /* fall through */
ddb69f27 667 default:
e55848a4 668 handle_riprel_insn(auprobe, &insn);
ddb69f27
ON
669 }
670
671 if (fix_ip)
672 auprobe->fixups |= UPROBE_FIX_IP;
673 if (fix_call)
674 auprobe->fixups |= UPROBE_FIX_CALL;
7b2d81d4 675
8ad8e9d3 676 auprobe->ops = &default_xol_ops;
2b144498
SD
677 return 0;
678}
0326f5a9 679
0326f5a9
SD
680/*
681 * arch_uprobe_pre_xol - prepare to execute out of line.
682 * @auprobe: the probepoint information.
683 * @regs: reflects the saved user state of current task.
684 */
685int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
686{
34e7317d 687 struct uprobe_task *utask = current->utask;
0326f5a9 688
34e7317d
ON
689 regs->ip = utask->xol_vaddr;
690 utask->autask.saved_trap_nr = current->thread.trap_nr;
0326f5a9 691 current->thread.trap_nr = UPROBE_TRAP_NR;
0326f5a9 692
34e7317d 693 utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
4dc316c6
ON
694 regs->flags |= X86_EFLAGS_TF;
695 if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
696 set_task_blockstep(current, false);
697
8ad8e9d3
ON
698 if (auprobe->ops->pre_xol)
699 return auprobe->ops->pre_xol(auprobe, regs);
0326f5a9
SD
700 return 0;
701}
702
0326f5a9
SD
703/*
704 * If xol insn itself traps and generates a signal(Say,
705 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
706 * instruction jumps back to its own address. It is assumed that anything
707 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
708 *
709 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
710 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
711 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
712 */
713bool arch_uprobe_xol_was_trapped(struct task_struct *t)
714{
715 if (t->thread.trap_nr != UPROBE_TRAP_NR)
716 return true;
717
718 return false;
719}
720
721/*
722 * Called after single-stepping. To avoid the SMP problems that can
723 * occur when we temporarily put back the original opcode to
724 * single-step, we single-stepped a copy of the instruction.
725 *
726 * This function prepares to resume execution after the single-step.
727 * We have to fix things up as follows:
728 *
729 * Typically, the new ip is relative to the copied instruction. We need
730 * to make it relative to the original instruction (FIX_IP). Exceptions
731 * are return instructions and absolute or indirect jump or call instructions.
732 *
733 * If the single-stepped instruction was a call, the return address that
734 * is atop the stack is the address following the copied instruction. We
735 * need to make it the address following the original instruction (FIX_CALL).
736 *
737 * If the original instruction was a rip-relative instruction such as
738 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
739 * instruction using a scratch register -- e.g., "movl %edx,(%rax)".
740 * We need to restore the contents of the scratch register and adjust
741 * the ip, keeping in mind that the instruction we executed is 4 bytes
742 * shorter than the original instruction (since we squeezed out the offset
743 * field). (FIX_RIP_AX or FIX_RIP_CX)
744 */
745int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
746{
34e7317d 747 struct uprobe_task *utask = current->utask;
0326f5a9
SD
748
749 WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
014940ba
ON
750
751 if (auprobe->ops->post_xol) {
752 int err = auprobe->ops->post_xol(auprobe, regs);
753 if (err) {
754 arch_uprobe_abort_xol(auprobe, regs);
75f9ef0b
ON
755 /*
756 * Restart the probed insn. ->post_xol() must ensure
757 * this is really possible if it returns -ERESTART.
758 */
759 if (err == -ERESTART)
760 return 0;
014940ba
ON
761 return err;
762 }
763 }
764
0326f5a9 765 current->thread.trap_nr = utask->autask.saved_trap_nr;
4dc316c6
ON
766 /*
767 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
768 * so we can get an extra SIGTRAP if we do not clear TF. We need
769 * to examine the opcode to make it right.
770 */
771 if (utask->autask.saved_tf)
772 send_sig(SIGTRAP, current, 0);
773 else if (!(auprobe->fixups & UPROBE_FIX_SETF))
774 regs->flags &= ~X86_EFLAGS_TF;
775
8ad8e9d3 776 return 0;
0326f5a9
SD
777}
778
779/* callback routine for handling exceptions. */
780int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
781{
782 struct die_args *args = data;
783 struct pt_regs *regs = args->regs;
784 int ret = NOTIFY_DONE;
785
786 /* We are only interested in userspace traps */
787 if (regs && !user_mode_vm(regs))
788 return NOTIFY_DONE;
789
790 switch (val) {
791 case DIE_INT3:
792 if (uprobe_pre_sstep_notifier(regs))
793 ret = NOTIFY_STOP;
794
795 break;
796
797 case DIE_DEBUG:
798 if (uprobe_post_sstep_notifier(regs))
799 ret = NOTIFY_STOP;
800
801 default:
802 break;
803 }
804
805 return ret;
806}
807
808/*
809 * This function gets called when XOL instruction either gets trapped or
014940ba
ON
810 * the thread has a fatal signal, or if arch_uprobe_post_xol() failed.
811 * Reset the instruction pointer to its probed address for the potential
812 * restart or for post mortem analysis.
0326f5a9
SD
813 */
814void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
815{
816 struct uprobe_task *utask = current->utask;
817
818 current->thread.trap_nr = utask->autask.saved_trap_nr;
819 handle_riprel_post_xol(auprobe, regs, NULL);
820 instruction_pointer_set(regs, utask->vaddr);
4dc316c6
ON
821
822 /* clear TF if it was set by us in arch_uprobe_pre_xol() */
823 if (!utask->autask.saved_tf)
824 regs->flags &= ~X86_EFLAGS_TF;
0326f5a9
SD
825}
826
3a4664aa 827static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
0326f5a9 828{
8ad8e9d3
ON
829 if (auprobe->ops->emulate)
830 return auprobe->ops->emulate(auprobe, regs);
0326f5a9
SD
831 return false;
832}
bdc1e472 833
3a4664aa
ON
834bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
835{
836 bool ret = __skip_sstep(auprobe, regs);
837 if (ret && (regs->flags & X86_EFLAGS_TF))
838 send_sig(SIGTRAP, current, 0);
839 return ret;
840}
791eca10
AA
841
842unsigned long
843arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
844{
8faaed1b 845 int rasize = sizeof_long(), nleft;
791eca10
AA
846 unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
847
8faaed1b 848 if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
791eca10
AA
849 return -1;
850
851 /* check whether address has been already hijacked */
852 if (orig_ret_vaddr == trampoline_vaddr)
853 return orig_ret_vaddr;
854
8faaed1b
ON
855 nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
856 if (likely(!nleft))
791eca10
AA
857 return orig_ret_vaddr;
858
8faaed1b 859 if (nleft != rasize) {
791eca10
AA
860 pr_err("uprobe: return address clobbered: pid=%d, %%sp=%#lx, "
861 "%%ip=%#lx\n", current->pid, regs->sp, regs->ip);
862
863 force_sig_info(SIGSEGV, SEND_SIG_FORCED, current);
864 }
865
866 return -1;
867}
This page took 0.14989 seconds and 5 git commands to generate.