uprobes/x86: Emulate unconditional relative jmp's
[deliverable/linux.git] / arch / x86 / kernel / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes) for x86
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2008-2011
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
22 */
2b144498
SD
23#include <linux/kernel.h>
24#include <linux/sched.h>
25#include <linux/ptrace.h>
26#include <linux/uprobes.h>
0326f5a9 27#include <linux/uaccess.h>
2b144498
SD
28
29#include <linux/kdebug.h>
0326f5a9 30#include <asm/processor.h>
2b144498
SD
31#include <asm/insn.h>
32
33/* Post-execution fixups. */
34
35/* No fixup needed */
0326f5a9
SD
36#define UPROBE_FIX_NONE 0x0
37
2b144498 38/* Adjust IP back to vicinity of actual insn */
900771a4 39#define UPROBE_FIX_IP 0x1
0326f5a9 40
2b144498 41/* Adjust the return address of a call insn */
900771a4 42#define UPROBE_FIX_CALL 0x2
2b144498 43
bdc1e472
SAS
44/* Instruction will modify TF, don't change it */
45#define UPROBE_FIX_SETF 0x4
46
900771a4
SD
47#define UPROBE_FIX_RIP_AX 0x8000
48#define UPROBE_FIX_RIP_CX 0x4000
2b144498 49
0326f5a9
SD
50#define UPROBE_TRAP_NR UINT_MAX
51
2b144498 52/* Adaptations for mhiramat x86 decoder v14. */
7b2d81d4
IM
53#define OPCODE1(insn) ((insn)->opcode.bytes[0])
54#define OPCODE2(insn) ((insn)->opcode.bytes[1])
55#define OPCODE3(insn) ((insn)->opcode.bytes[2])
ddb69f27 56#define MODRM_REG(insn) X86_MODRM_REG((insn)->modrm.value)
2b144498
SD
57
58#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
59 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
60 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
61 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
62 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
63 << (row % 32))
64
04a3d984
SD
65/*
66 * Good-instruction tables for 32-bit apps. This is non-const and volatile
67 * to keep gcc from statically optimizing it out, as variable_test_bit makes
68 * some versions of gcc to think only *(unsigned long*) is used.
69 */
70static volatile u32 good_insns_32[256 / 32] = {
2b144498
SD
71 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
72 /* ---------------------------------------------- */
73 W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 00 */
74 W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
75 W(0x20, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* 20 */
76 W(0x30, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) , /* 30 */
77 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
78 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
79 W(0x60, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
80 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
81 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
82 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
83 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
84 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
85 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
86 W(0xd0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
87 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
88 W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
89 /* ---------------------------------------------- */
90 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
91};
92
93/* Using this for both 64-bit and 32-bit apps */
04a3d984 94static volatile u32 good_2byte_insns[256 / 32] = {
2b144498
SD
95 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
96 /* ---------------------------------------------- */
97 W(0x00, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) | /* 00 */
98 W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
99 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
100 W(0x30, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
101 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
102 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
103 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
104 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
105 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
106 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
107 W(0xa0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
108 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
109 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
110 W(0xd0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
111 W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
112 W(0xf0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) /* f0 */
113 /* ---------------------------------------------- */
114 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
115};
116
04a3d984
SD
117#ifdef CONFIG_X86_64
118/* Good-instruction tables for 64-bit apps */
119static volatile u32 good_insns_64[256 / 32] = {
120 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
121 /* ---------------------------------------------- */
122 W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 00 */
123 W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
124 W(0x20, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 20 */
125 W(0x30, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 30 */
126 W(0x40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 40 */
127 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
128 W(0x60, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
129 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
130 W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
131 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
132 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
133 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
134 W(0xc0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
135 W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
136 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
137 W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
138 /* ---------------------------------------------- */
139 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
140};
141#endif
2b144498
SD
142#undef W
143
144/*
145 * opcodes we'll probably never support:
7b2d81d4
IM
146 *
147 * 6c-6d, e4-e5, ec-ed - in
148 * 6e-6f, e6-e7, ee-ef - out
149 * cc, cd - int3, int
150 * cf - iret
151 * d6 - illegal instruction
152 * f1 - int1/icebp
153 * f4 - hlt
154 * fa, fb - cli, sti
155 * 0f - lar, lsl, syscall, clts, sysret, sysenter, sysexit, invd, wbinvd, ud2
2b144498
SD
156 *
157 * invalid opcodes in 64-bit mode:
2b144498 158 *
7b2d81d4
IM
159 * 06, 0e, 16, 1e, 27, 2f, 37, 3f, 60-62, 82, c4-c5, d4-d5
160 * 63 - we support this opcode in x86_64 but not in i386.
2b144498
SD
161 *
162 * opcodes we may need to refine support for:
7b2d81d4
IM
163 *
164 * 0f - 2-byte instructions: For many of these instructions, the validity
165 * depends on the prefix and/or the reg field. On such instructions, we
166 * just consider the opcode combination valid if it corresponds to any
167 * valid instruction.
168 *
169 * 8f - Group 1 - only reg = 0 is OK
170 * c6-c7 - Group 11 - only reg = 0 is OK
171 * d9-df - fpu insns with some illegal encodings
172 * f2, f3 - repnz, repz prefixes. These are also the first byte for
173 * certain floating-point instructions, such as addsd.
174 *
175 * fe - Group 4 - only reg = 0 or 1 is OK
176 * ff - Group 5 - only reg = 0-6 is OK
2b144498
SD
177 *
178 * others -- Do we need to support these?
7b2d81d4
IM
179 *
180 * 0f - (floating-point?) prefetch instructions
181 * 07, 17, 1f - pop es, pop ss, pop ds
182 * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
2b144498 183 * but 64 and 65 (fs: and gs:) seem to be used, so we support them
7b2d81d4
IM
184 * 67 - addr16 prefix
185 * ce - into
186 * f0 - lock prefix
2b144498
SD
187 */
188
189/*
190 * TODO:
191 * - Where necessary, examine the modrm byte and allow only valid instructions
192 * in the different Groups and fpu instructions.
193 */
194
195static bool is_prefix_bad(struct insn *insn)
196{
197 int i;
198
199 for (i = 0; i < insn->prefixes.nbytes; i++) {
200 switch (insn->prefixes.bytes[i]) {
7b2d81d4
IM
201 case 0x26: /* INAT_PFX_ES */
202 case 0x2E: /* INAT_PFX_CS */
203 case 0x36: /* INAT_PFX_DS */
204 case 0x3E: /* INAT_PFX_SS */
205 case 0xF0: /* INAT_PFX_LOCK */
2b144498
SD
206 return true;
207 }
208 }
209 return false;
210}
211
3ff54efd 212static int validate_insn_32bits(struct arch_uprobe *auprobe, struct insn *insn)
2b144498 213{
3ff54efd 214 insn_init(insn, auprobe->insn, false);
2b144498
SD
215
216 /* Skip good instruction prefixes; reject "bad" ones. */
217 insn_get_opcode(insn);
218 if (is_prefix_bad(insn))
219 return -ENOTSUPP;
7b2d81d4 220
2b144498
SD
221 if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_32))
222 return 0;
7b2d81d4 223
2b144498
SD
224 if (insn->opcode.nbytes == 2) {
225 if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
226 return 0;
227 }
7b2d81d4 228
2b144498
SD
229 return -ENOTSUPP;
230}
231
2b144498
SD
232#ifdef CONFIG_X86_64
233/*
3ff54efd 234 * If arch_uprobe->insn doesn't use rip-relative addressing, return
2b144498
SD
235 * immediately. Otherwise, rewrite the instruction so that it accesses
236 * its memory operand indirectly through a scratch register. Set
3ff54efd 237 * arch_uprobe->fixups and arch_uprobe->rip_rela_target_address
2b144498
SD
238 * accordingly. (The contents of the scratch register will be saved
239 * before we single-step the modified instruction, and restored
240 * afterward.)
241 *
242 * We do this because a rip-relative instruction can access only a
243 * relatively small area (+/- 2 GB from the instruction), and the XOL
244 * area typically lies beyond that area. At least for instructions
245 * that store to memory, we can't execute the original instruction
246 * and "fix things up" later, because the misdirected store could be
247 * disastrous.
248 *
249 * Some useful facts about rip-relative instructions:
7b2d81d4
IM
250 *
251 * - There's always a modrm byte.
252 * - There's never a SIB byte.
253 * - The displacement is always 4 bytes.
2b144498 254 */
e3343e6a 255static void
59078d4b 256handle_riprel_insn(struct arch_uprobe *auprobe, struct insn *insn)
2b144498
SD
257{
258 u8 *cursor;
259 u8 reg;
260
2b144498
SD
261 if (!insn_rip_relative(insn))
262 return;
263
264 /*
265 * insn_rip_relative() would have decoded rex_prefix, modrm.
266 * Clear REX.b bit (extension of MODRM.rm field):
267 * we want to encode rax/rcx, not r8/r9.
268 */
269 if (insn->rex_prefix.nbytes) {
3ff54efd 270 cursor = auprobe->insn + insn_offset_rex_prefix(insn);
2b144498
SD
271 *cursor &= 0xfe; /* Clearing REX.B bit */
272 }
273
274 /*
275 * Point cursor at the modrm byte. The next 4 bytes are the
276 * displacement. Beyond the displacement, for some instructions,
277 * is the immediate operand.
278 */
3ff54efd 279 cursor = auprobe->insn + insn_offset_modrm(insn);
2b144498
SD
280 insn_get_length(insn);
281
282 /*
283 * Convert from rip-relative addressing to indirect addressing
284 * via a scratch register. Change the r/m field from 0x5 (%rip)
285 * to 0x0 (%rax) or 0x1 (%rcx), and squeeze out the offset field.
286 */
287 reg = MODRM_REG(insn);
288 if (reg == 0) {
289 /*
290 * The register operand (if any) is either the A register
291 * (%rax, %eax, etc.) or (if the 0x4 bit is set in the
292 * REX prefix) %r8. In any case, we know the C register
293 * is NOT the register operand, so we use %rcx (register
294 * #1) for the scratch register.
295 */
900771a4 296 auprobe->fixups = UPROBE_FIX_RIP_CX;
2b144498
SD
297 /* Change modrm from 00 000 101 to 00 000 001. */
298 *cursor = 0x1;
299 } else {
300 /* Use %rax (register #0) for the scratch register. */
900771a4 301 auprobe->fixups = UPROBE_FIX_RIP_AX;
2b144498
SD
302 /* Change modrm from 00 xxx 101 to 00 xxx 000 */
303 *cursor = (reg << 3);
304 }
305
306 /* Target address = address of next instruction + (signed) offset */
3ff54efd 307 auprobe->rip_rela_target_address = (long)insn->length + insn->displacement.value;
7b2d81d4 308
2b144498
SD
309 /* Displacement field is gone; slide immediate field (if any) over. */
310 if (insn->immediate.nbytes) {
311 cursor++;
7b2d81d4 312 memmove(cursor, cursor + insn->displacement.nbytes, insn->immediate.nbytes);
2b144498 313 }
2b144498
SD
314}
315
d20737c0
ON
316/*
317 * If we're emulating a rip-relative instruction, save the contents
318 * of the scratch register and store the target address in that register.
319 */
320static void
321pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
322 struct arch_uprobe_task *autask)
323{
324 if (auprobe->fixups & UPROBE_FIX_RIP_AX) {
325 autask->saved_scratch_register = regs->ax;
326 regs->ax = current->utask->vaddr;
327 regs->ax += auprobe->rip_rela_target_address;
328 } else if (auprobe->fixups & UPROBE_FIX_RIP_CX) {
329 autask->saved_scratch_register = regs->cx;
330 regs->cx = current->utask->vaddr;
331 regs->cx += auprobe->rip_rela_target_address;
332 }
333}
334
335static void
336handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction)
337{
338 if (auprobe->fixups & (UPROBE_FIX_RIP_AX | UPROBE_FIX_RIP_CX)) {
339 struct arch_uprobe_task *autask;
340
341 autask = &current->utask->autask;
342 if (auprobe->fixups & UPROBE_FIX_RIP_AX)
343 regs->ax = autask->saved_scratch_register;
344 else
345 regs->cx = autask->saved_scratch_register;
346
347 /*
348 * The original instruction includes a displacement, and so
349 * is 4 bytes longer than what we've just single-stepped.
350 * Caller may need to apply other fixups to handle stuff
351 * like "jmpq *...(%rip)" and "callq *...(%rip)".
352 */
353 if (correction)
354 *correction += 4;
355 }
356}
357
3ff54efd 358static int validate_insn_64bits(struct arch_uprobe *auprobe, struct insn *insn)
2b144498 359{
3ff54efd 360 insn_init(insn, auprobe->insn, true);
2b144498
SD
361
362 /* Skip good instruction prefixes; reject "bad" ones. */
363 insn_get_opcode(insn);
364 if (is_prefix_bad(insn))
365 return -ENOTSUPP;
7b2d81d4 366
2b144498
SD
367 if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_64))
368 return 0;
7b2d81d4 369
2b144498
SD
370 if (insn->opcode.nbytes == 2) {
371 if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
372 return 0;
373 }
374 return -ENOTSUPP;
375}
376
e3343e6a 377static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
2b144498
SD
378{
379 if (mm->context.ia32_compat)
3ff54efd
SD
380 return validate_insn_32bits(auprobe, insn);
381 return validate_insn_64bits(auprobe, insn);
2b144498 382}
7b2d81d4 383#else /* 32-bit: */
d20737c0
ON
384/*
385 * No RIP-relative addressing on 32-bit
386 */
59078d4b 387static void handle_riprel_insn(struct arch_uprobe *auprobe, struct insn *insn)
2b144498 388{
d20737c0
ON
389}
390static void pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
391 struct arch_uprobe_task *autask)
392{
393}
394static void handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs,
395 long *correction)
396{
2b144498
SD
397}
398
e3343e6a 399static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
2b144498 400{
3ff54efd 401 return validate_insn_32bits(auprobe, insn);
2b144498
SD
402}
403#endif /* CONFIG_X86_64 */
404
8ad8e9d3
ON
405struct uprobe_xol_ops {
406 bool (*emulate)(struct arch_uprobe *, struct pt_regs *);
407 int (*pre_xol)(struct arch_uprobe *, struct pt_regs *);
408 int (*post_xol)(struct arch_uprobe *, struct pt_regs *);
409};
410
8faaed1b
ON
411static inline int sizeof_long(void)
412{
413 return is_ia32_task() ? 4 : 8;
414}
415
8ad8e9d3
ON
416static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
417{
418 pre_xol_rip_insn(auprobe, regs, &current->utask->autask);
419 return 0;
420}
421
422/*
423 * Adjust the return address pushed by a call insn executed out of line.
424 */
425static int adjust_ret_addr(unsigned long sp, long correction)
426{
8faaed1b
ON
427 int rasize = sizeof_long();
428 long ra;
8ad8e9d3 429
8faaed1b 430 if (copy_from_user(&ra, (void __user *)sp, rasize))
8ad8e9d3
ON
431 return -EFAULT;
432
433 ra += correction;
8faaed1b 434 if (copy_to_user((void __user *)sp, &ra, rasize))
8ad8e9d3
ON
435 return -EFAULT;
436
437 return 0;
438}
439
440static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
441{
442 struct uprobe_task *utask = current->utask;
443 long correction = (long)(utask->vaddr - utask->xol_vaddr);
8ad8e9d3
ON
444
445 handle_riprel_post_xol(auprobe, regs, &correction);
446 if (auprobe->fixups & UPROBE_FIX_IP)
447 regs->ip += correction;
448
75f9ef0b
ON
449 if (auprobe->fixups & UPROBE_FIX_CALL) {
450 if (adjust_ret_addr(regs->sp, correction)) {
8faaed1b 451 regs->sp += sizeof_long();
75f9ef0b
ON
452 return -ERESTART;
453 }
454 }
8ad8e9d3 455
75f9ef0b 456 return 0;
8ad8e9d3
ON
457}
458
459static struct uprobe_xol_ops default_xol_ops = {
460 .pre_xol = default_pre_xol_op,
461 .post_xol = default_post_xol_op,
462};
463
7ba6db2d
ON
464static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
465{
466 regs->ip += auprobe->branch.ilen + auprobe->branch.offs;
467 return true;
468}
469
470static struct uprobe_xol_ops branch_xol_ops = {
471 .emulate = branch_emulate_op,
472};
473
474/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
475static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
476{
477
478 switch (OPCODE1(insn)) {
479 case 0xeb: /* jmp 8 */
480 case 0xe9: /* jmp 32 */
481 break;
482 default:
483 return -ENOSYS;
484 }
485
486 /* has the side-effect of processing the entire instruction */
487 insn_get_length(insn);
488 if (WARN_ON_ONCE(!insn_complete(insn)))
489 return -ENOEXEC;
490
491 auprobe->branch.ilen = insn->length;
492 auprobe->branch.offs = insn->immediate.value;
493
494 auprobe->ops = &branch_xol_ops;
495 return 0;
496}
497
2b144498 498/**
0326f5a9 499 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
2b144498 500 * @mm: the probed address space.
3ff54efd 501 * @arch_uprobe: the probepoint information.
7eb9ba5e 502 * @addr: virtual address at which to install the probepoint
2b144498
SD
503 * Return 0 on success or a -ve number on error.
504 */
7eb9ba5e 505int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
2b144498 506{
2b144498 507 struct insn insn;
ddb69f27
ON
508 bool fix_ip = true, fix_call = false;
509 int ret;
2b144498 510
e3343e6a 511 ret = validate_insn_bits(auprobe, mm, &insn);
ddb69f27 512 if (ret)
2b144498 513 return ret;
7b2d81d4 514
7ba6db2d
ON
515 ret = branch_setup_xol_ops(auprobe, &insn);
516 if (ret != -ENOSYS)
517 return ret;
518
ddb69f27
ON
519 /*
520 * Figure out which fixups arch_uprobe_post_xol() will need to perform,
521 * and annotate arch_uprobe->fixups accordingly. To start with, ->fixups
522 * is either zero or it reflects rip-related fixups.
523 */
ddb69f27
ON
524 switch (OPCODE1(&insn)) {
525 case 0x9d: /* popf */
526 auprobe->fixups |= UPROBE_FIX_SETF;
527 break;
528 case 0xc3: /* ret or lret -- ip is correct */
529 case 0xcb:
530 case 0xc2:
531 case 0xca:
532 fix_ip = false;
533 break;
534 case 0xe8: /* call relative - Fix return addr */
535 fix_call = true;
536 break;
537 case 0x9a: /* call absolute - Fix return addr, not ip */
538 fix_call = true;
539 fix_ip = false;
540 break;
541 case 0xea: /* jmp absolute -- ip is correct */
542 fix_ip = false;
543 break;
544 case 0xff:
545 insn_get_modrm(&insn);
546 switch (MODRM_REG(&insn)) {
547 case 2: case 3: /* call or lcall, indirect */
548 fix_call = true;
549 case 4: case 5: /* jmp or ljmp, indirect */
550 fix_ip = false;
551 }
e55848a4 552 /* fall through */
ddb69f27 553 default:
e55848a4 554 handle_riprel_insn(auprobe, &insn);
ddb69f27
ON
555 }
556
557 if (fix_ip)
558 auprobe->fixups |= UPROBE_FIX_IP;
559 if (fix_call)
560 auprobe->fixups |= UPROBE_FIX_CALL;
7b2d81d4 561
8ad8e9d3 562 auprobe->ops = &default_xol_ops;
2b144498
SD
563 return 0;
564}
0326f5a9 565
0326f5a9
SD
566/*
567 * arch_uprobe_pre_xol - prepare to execute out of line.
568 * @auprobe: the probepoint information.
569 * @regs: reflects the saved user state of current task.
570 */
571int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
572{
34e7317d 573 struct uprobe_task *utask = current->utask;
0326f5a9 574
34e7317d
ON
575 regs->ip = utask->xol_vaddr;
576 utask->autask.saved_trap_nr = current->thread.trap_nr;
0326f5a9 577 current->thread.trap_nr = UPROBE_TRAP_NR;
0326f5a9 578
34e7317d 579 utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
4dc316c6
ON
580 regs->flags |= X86_EFLAGS_TF;
581 if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
582 set_task_blockstep(current, false);
583
8ad8e9d3
ON
584 if (auprobe->ops->pre_xol)
585 return auprobe->ops->pre_xol(auprobe, regs);
0326f5a9
SD
586 return 0;
587}
588
0326f5a9
SD
589/*
590 * If xol insn itself traps and generates a signal(Say,
591 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
592 * instruction jumps back to its own address. It is assumed that anything
593 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
594 *
595 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
596 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
597 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
598 */
599bool arch_uprobe_xol_was_trapped(struct task_struct *t)
600{
601 if (t->thread.trap_nr != UPROBE_TRAP_NR)
602 return true;
603
604 return false;
605}
606
607/*
608 * Called after single-stepping. To avoid the SMP problems that can
609 * occur when we temporarily put back the original opcode to
610 * single-step, we single-stepped a copy of the instruction.
611 *
612 * This function prepares to resume execution after the single-step.
613 * We have to fix things up as follows:
614 *
615 * Typically, the new ip is relative to the copied instruction. We need
616 * to make it relative to the original instruction (FIX_IP). Exceptions
617 * are return instructions and absolute or indirect jump or call instructions.
618 *
619 * If the single-stepped instruction was a call, the return address that
620 * is atop the stack is the address following the copied instruction. We
621 * need to make it the address following the original instruction (FIX_CALL).
622 *
623 * If the original instruction was a rip-relative instruction such as
624 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
625 * instruction using a scratch register -- e.g., "movl %edx,(%rax)".
626 * We need to restore the contents of the scratch register and adjust
627 * the ip, keeping in mind that the instruction we executed is 4 bytes
628 * shorter than the original instruction (since we squeezed out the offset
629 * field). (FIX_RIP_AX or FIX_RIP_CX)
630 */
631int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
632{
34e7317d 633 struct uprobe_task *utask = current->utask;
0326f5a9
SD
634
635 WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
014940ba
ON
636
637 if (auprobe->ops->post_xol) {
638 int err = auprobe->ops->post_xol(auprobe, regs);
639 if (err) {
640 arch_uprobe_abort_xol(auprobe, regs);
75f9ef0b
ON
641 /*
642 * Restart the probed insn. ->post_xol() must ensure
643 * this is really possible if it returns -ERESTART.
644 */
645 if (err == -ERESTART)
646 return 0;
014940ba
ON
647 return err;
648 }
649 }
650
0326f5a9 651 current->thread.trap_nr = utask->autask.saved_trap_nr;
4dc316c6
ON
652 /*
653 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
654 * so we can get an extra SIGTRAP if we do not clear TF. We need
655 * to examine the opcode to make it right.
656 */
657 if (utask->autask.saved_tf)
658 send_sig(SIGTRAP, current, 0);
659 else if (!(auprobe->fixups & UPROBE_FIX_SETF))
660 regs->flags &= ~X86_EFLAGS_TF;
661
8ad8e9d3 662 return 0;
0326f5a9
SD
663}
664
665/* callback routine for handling exceptions. */
666int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
667{
668 struct die_args *args = data;
669 struct pt_regs *regs = args->regs;
670 int ret = NOTIFY_DONE;
671
672 /* We are only interested in userspace traps */
673 if (regs && !user_mode_vm(regs))
674 return NOTIFY_DONE;
675
676 switch (val) {
677 case DIE_INT3:
678 if (uprobe_pre_sstep_notifier(regs))
679 ret = NOTIFY_STOP;
680
681 break;
682
683 case DIE_DEBUG:
684 if (uprobe_post_sstep_notifier(regs))
685 ret = NOTIFY_STOP;
686
687 default:
688 break;
689 }
690
691 return ret;
692}
693
694/*
695 * This function gets called when XOL instruction either gets trapped or
014940ba
ON
696 * the thread has a fatal signal, or if arch_uprobe_post_xol() failed.
697 * Reset the instruction pointer to its probed address for the potential
698 * restart or for post mortem analysis.
0326f5a9
SD
699 */
700void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
701{
702 struct uprobe_task *utask = current->utask;
703
704 current->thread.trap_nr = utask->autask.saved_trap_nr;
705 handle_riprel_post_xol(auprobe, regs, NULL);
706 instruction_pointer_set(regs, utask->vaddr);
4dc316c6
ON
707
708 /* clear TF if it was set by us in arch_uprobe_pre_xol() */
709 if (!utask->autask.saved_tf)
710 regs->flags &= ~X86_EFLAGS_TF;
0326f5a9
SD
711}
712
713/*
714 * Skip these instructions as per the currently known x86 ISA.
b64b9c93 715 * rep=0x66*; nop=0x90
0326f5a9 716 */
3a4664aa 717static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
0326f5a9
SD
718{
719 int i;
720
8ad8e9d3
ON
721 if (auprobe->ops->emulate)
722 return auprobe->ops->emulate(auprobe, regs);
723
724 /* TODO: move this code into ->emulate() hook */
0326f5a9 725 for (i = 0; i < MAX_UINSN_BYTES; i++) {
b64b9c93 726 if (auprobe->insn[i] == 0x66)
0326f5a9
SD
727 continue;
728
cf31ec3f 729 if (auprobe->insn[i] == 0x90) {
cf31ec3f 730 regs->ip += i + 1;
0326f5a9 731 return true;
cf31ec3f 732 }
0326f5a9 733
0326f5a9
SD
734 break;
735 }
736 return false;
737}
bdc1e472 738
3a4664aa
ON
739bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
740{
741 bool ret = __skip_sstep(auprobe, regs);
742 if (ret && (regs->flags & X86_EFLAGS_TF))
743 send_sig(SIGTRAP, current, 0);
744 return ret;
745}
791eca10
AA
746
747unsigned long
748arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
749{
8faaed1b 750 int rasize = sizeof_long(), nleft;
791eca10
AA
751 unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
752
8faaed1b 753 if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
791eca10
AA
754 return -1;
755
756 /* check whether address has been already hijacked */
757 if (orig_ret_vaddr == trampoline_vaddr)
758 return orig_ret_vaddr;
759
8faaed1b
ON
760 nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
761 if (likely(!nleft))
791eca10
AA
762 return orig_ret_vaddr;
763
8faaed1b 764 if (nleft != rasize) {
791eca10
AA
765 pr_err("uprobe: return address clobbered: pid=%d, %%sp=%#lx, "
766 "%%ip=%#lx\n", current->pid, regs->sp, regs->ip);
767
768 force_sig_info(SIGSEGV, SEND_SIG_FORCED, current);
769 }
770
771 return -1;
772}
This page took 0.1513 seconds and 5 git commands to generate.