uprobes/x86: Gather "riprel" functions together
[deliverable/linux.git] / arch / x86 / kernel / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes) for x86
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2008-2011
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
22 */
2b144498
SD
23#include <linux/kernel.h>
24#include <linux/sched.h>
25#include <linux/ptrace.h>
26#include <linux/uprobes.h>
0326f5a9 27#include <linux/uaccess.h>
2b144498
SD
28
29#include <linux/kdebug.h>
0326f5a9 30#include <asm/processor.h>
2b144498
SD
31#include <asm/insn.h>
32
33/* Post-execution fixups. */
34
35/* No fixup needed */
0326f5a9
SD
36#define UPROBE_FIX_NONE 0x0
37
2b144498 38/* Adjust IP back to vicinity of actual insn */
900771a4 39#define UPROBE_FIX_IP 0x1
0326f5a9 40
2b144498 41/* Adjust the return address of a call insn */
900771a4 42#define UPROBE_FIX_CALL 0x2
2b144498 43
bdc1e472
SAS
44/* Instruction will modify TF, don't change it */
45#define UPROBE_FIX_SETF 0x4
46
900771a4
SD
47#define UPROBE_FIX_RIP_AX 0x8000
48#define UPROBE_FIX_RIP_CX 0x4000
2b144498 49
0326f5a9
SD
50#define UPROBE_TRAP_NR UINT_MAX
51
2b144498 52/* Adaptations for mhiramat x86 decoder v14. */
7b2d81d4
IM
53#define OPCODE1(insn) ((insn)->opcode.bytes[0])
54#define OPCODE2(insn) ((insn)->opcode.bytes[1])
55#define OPCODE3(insn) ((insn)->opcode.bytes[2])
ddb69f27 56#define MODRM_REG(insn) X86_MODRM_REG((insn)->modrm.value)
2b144498
SD
57
58#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
59 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
60 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
61 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
62 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
63 << (row % 32))
64
04a3d984
SD
65/*
66 * Good-instruction tables for 32-bit apps. This is non-const and volatile
67 * to keep gcc from statically optimizing it out, as variable_test_bit makes
68 * some versions of gcc to think only *(unsigned long*) is used.
69 */
70static volatile u32 good_insns_32[256 / 32] = {
2b144498
SD
71 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
72 /* ---------------------------------------------- */
73 W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 00 */
74 W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
75 W(0x20, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* 20 */
76 W(0x30, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) , /* 30 */
77 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
78 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
79 W(0x60, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
80 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
81 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
82 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
83 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
84 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
85 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
86 W(0xd0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
87 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
88 W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
89 /* ---------------------------------------------- */
90 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
91};
92
93/* Using this for both 64-bit and 32-bit apps */
04a3d984 94static volatile u32 good_2byte_insns[256 / 32] = {
2b144498
SD
95 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
96 /* ---------------------------------------------- */
97 W(0x00, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) | /* 00 */
98 W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
99 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
100 W(0x30, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
101 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
102 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
103 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
104 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
105 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
106 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
107 W(0xa0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
108 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
109 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
110 W(0xd0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
111 W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
112 W(0xf0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) /* f0 */
113 /* ---------------------------------------------- */
114 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
115};
116
04a3d984
SD
117#ifdef CONFIG_X86_64
118/* Good-instruction tables for 64-bit apps */
119static volatile u32 good_insns_64[256 / 32] = {
120 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
121 /* ---------------------------------------------- */
122 W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 00 */
123 W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
124 W(0x20, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 20 */
125 W(0x30, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 30 */
126 W(0x40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 40 */
127 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
128 W(0x60, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
129 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
130 W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
131 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
132 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
133 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
134 W(0xc0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
135 W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
136 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
137 W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
138 /* ---------------------------------------------- */
139 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
140};
141#endif
2b144498
SD
142#undef W
143
144/*
145 * opcodes we'll probably never support:
7b2d81d4
IM
146 *
147 * 6c-6d, e4-e5, ec-ed - in
148 * 6e-6f, e6-e7, ee-ef - out
149 * cc, cd - int3, int
150 * cf - iret
151 * d6 - illegal instruction
152 * f1 - int1/icebp
153 * f4 - hlt
154 * fa, fb - cli, sti
155 * 0f - lar, lsl, syscall, clts, sysret, sysenter, sysexit, invd, wbinvd, ud2
2b144498
SD
156 *
157 * invalid opcodes in 64-bit mode:
2b144498 158 *
7b2d81d4
IM
159 * 06, 0e, 16, 1e, 27, 2f, 37, 3f, 60-62, 82, c4-c5, d4-d5
160 * 63 - we support this opcode in x86_64 but not in i386.
2b144498
SD
161 *
162 * opcodes we may need to refine support for:
7b2d81d4
IM
163 *
164 * 0f - 2-byte instructions: For many of these instructions, the validity
165 * depends on the prefix and/or the reg field. On such instructions, we
166 * just consider the opcode combination valid if it corresponds to any
167 * valid instruction.
168 *
169 * 8f - Group 1 - only reg = 0 is OK
170 * c6-c7 - Group 11 - only reg = 0 is OK
171 * d9-df - fpu insns with some illegal encodings
172 * f2, f3 - repnz, repz prefixes. These are also the first byte for
173 * certain floating-point instructions, such as addsd.
174 *
175 * fe - Group 4 - only reg = 0 or 1 is OK
176 * ff - Group 5 - only reg = 0-6 is OK
2b144498
SD
177 *
178 * others -- Do we need to support these?
7b2d81d4
IM
179 *
180 * 0f - (floating-point?) prefetch instructions
181 * 07, 17, 1f - pop es, pop ss, pop ds
182 * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
2b144498 183 * but 64 and 65 (fs: and gs:) seem to be used, so we support them
7b2d81d4
IM
184 * 67 - addr16 prefix
185 * ce - into
186 * f0 - lock prefix
2b144498
SD
187 */
188
189/*
190 * TODO:
191 * - Where necessary, examine the modrm byte and allow only valid instructions
192 * in the different Groups and fpu instructions.
193 */
194
195static bool is_prefix_bad(struct insn *insn)
196{
197 int i;
198
199 for (i = 0; i < insn->prefixes.nbytes; i++) {
200 switch (insn->prefixes.bytes[i]) {
7b2d81d4
IM
201 case 0x26: /* INAT_PFX_ES */
202 case 0x2E: /* INAT_PFX_CS */
203 case 0x36: /* INAT_PFX_DS */
204 case 0x3E: /* INAT_PFX_SS */
205 case 0xF0: /* INAT_PFX_LOCK */
2b144498
SD
206 return true;
207 }
208 }
209 return false;
210}
211
3ff54efd 212static int validate_insn_32bits(struct arch_uprobe *auprobe, struct insn *insn)
2b144498 213{
3ff54efd 214 insn_init(insn, auprobe->insn, false);
2b144498
SD
215
216 /* Skip good instruction prefixes; reject "bad" ones. */
217 insn_get_opcode(insn);
218 if (is_prefix_bad(insn))
219 return -ENOTSUPP;
7b2d81d4 220
2b144498
SD
221 if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_32))
222 return 0;
7b2d81d4 223
2b144498
SD
224 if (insn->opcode.nbytes == 2) {
225 if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
226 return 0;
227 }
7b2d81d4 228
2b144498
SD
229 return -ENOTSUPP;
230}
231
2b144498
SD
232#ifdef CONFIG_X86_64
233/*
3ff54efd 234 * If arch_uprobe->insn doesn't use rip-relative addressing, return
2b144498
SD
235 * immediately. Otherwise, rewrite the instruction so that it accesses
236 * its memory operand indirectly through a scratch register. Set
3ff54efd 237 * arch_uprobe->fixups and arch_uprobe->rip_rela_target_address
2b144498
SD
238 * accordingly. (The contents of the scratch register will be saved
239 * before we single-step the modified instruction, and restored
240 * afterward.)
241 *
242 * We do this because a rip-relative instruction can access only a
243 * relatively small area (+/- 2 GB from the instruction), and the XOL
244 * area typically lies beyond that area. At least for instructions
245 * that store to memory, we can't execute the original instruction
246 * and "fix things up" later, because the misdirected store could be
247 * disastrous.
248 *
249 * Some useful facts about rip-relative instructions:
7b2d81d4
IM
250 *
251 * - There's always a modrm byte.
252 * - There's never a SIB byte.
253 * - The displacement is always 4 bytes.
2b144498 254 */
e3343e6a 255static void
59078d4b 256handle_riprel_insn(struct arch_uprobe *auprobe, struct insn *insn)
2b144498
SD
257{
258 u8 *cursor;
259 u8 reg;
260
2b144498
SD
261 if (!insn_rip_relative(insn))
262 return;
263
264 /*
265 * insn_rip_relative() would have decoded rex_prefix, modrm.
266 * Clear REX.b bit (extension of MODRM.rm field):
267 * we want to encode rax/rcx, not r8/r9.
268 */
269 if (insn->rex_prefix.nbytes) {
3ff54efd 270 cursor = auprobe->insn + insn_offset_rex_prefix(insn);
2b144498
SD
271 *cursor &= 0xfe; /* Clearing REX.B bit */
272 }
273
274 /*
275 * Point cursor at the modrm byte. The next 4 bytes are the
276 * displacement. Beyond the displacement, for some instructions,
277 * is the immediate operand.
278 */
3ff54efd 279 cursor = auprobe->insn + insn_offset_modrm(insn);
2b144498
SD
280 insn_get_length(insn);
281
282 /*
283 * Convert from rip-relative addressing to indirect addressing
284 * via a scratch register. Change the r/m field from 0x5 (%rip)
285 * to 0x0 (%rax) or 0x1 (%rcx), and squeeze out the offset field.
286 */
287 reg = MODRM_REG(insn);
288 if (reg == 0) {
289 /*
290 * The register operand (if any) is either the A register
291 * (%rax, %eax, etc.) or (if the 0x4 bit is set in the
292 * REX prefix) %r8. In any case, we know the C register
293 * is NOT the register operand, so we use %rcx (register
294 * #1) for the scratch register.
295 */
900771a4 296 auprobe->fixups = UPROBE_FIX_RIP_CX;
2b144498
SD
297 /* Change modrm from 00 000 101 to 00 000 001. */
298 *cursor = 0x1;
299 } else {
300 /* Use %rax (register #0) for the scratch register. */
900771a4 301 auprobe->fixups = UPROBE_FIX_RIP_AX;
2b144498
SD
302 /* Change modrm from 00 xxx 101 to 00 xxx 000 */
303 *cursor = (reg << 3);
304 }
305
306 /* Target address = address of next instruction + (signed) offset */
3ff54efd 307 auprobe->rip_rela_target_address = (long)insn->length + insn->displacement.value;
7b2d81d4 308
2b144498
SD
309 /* Displacement field is gone; slide immediate field (if any) over. */
310 if (insn->immediate.nbytes) {
311 cursor++;
7b2d81d4 312 memmove(cursor, cursor + insn->displacement.nbytes, insn->immediate.nbytes);
2b144498 313 }
2b144498
SD
314}
315
d20737c0
ON
316/*
317 * If we're emulating a rip-relative instruction, save the contents
318 * of the scratch register and store the target address in that register.
319 */
320static void
321pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
322 struct arch_uprobe_task *autask)
323{
324 if (auprobe->fixups & UPROBE_FIX_RIP_AX) {
325 autask->saved_scratch_register = regs->ax;
326 regs->ax = current->utask->vaddr;
327 regs->ax += auprobe->rip_rela_target_address;
328 } else if (auprobe->fixups & UPROBE_FIX_RIP_CX) {
329 autask->saved_scratch_register = regs->cx;
330 regs->cx = current->utask->vaddr;
331 regs->cx += auprobe->rip_rela_target_address;
332 }
333}
334
335static void
336handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction)
337{
338 if (auprobe->fixups & (UPROBE_FIX_RIP_AX | UPROBE_FIX_RIP_CX)) {
339 struct arch_uprobe_task *autask;
340
341 autask = &current->utask->autask;
342 if (auprobe->fixups & UPROBE_FIX_RIP_AX)
343 regs->ax = autask->saved_scratch_register;
344 else
345 regs->cx = autask->saved_scratch_register;
346
347 /*
348 * The original instruction includes a displacement, and so
349 * is 4 bytes longer than what we've just single-stepped.
350 * Caller may need to apply other fixups to handle stuff
351 * like "jmpq *...(%rip)" and "callq *...(%rip)".
352 */
353 if (correction)
354 *correction += 4;
355 }
356}
357
3ff54efd 358static int validate_insn_64bits(struct arch_uprobe *auprobe, struct insn *insn)
2b144498 359{
3ff54efd 360 insn_init(insn, auprobe->insn, true);
2b144498
SD
361
362 /* Skip good instruction prefixes; reject "bad" ones. */
363 insn_get_opcode(insn);
364 if (is_prefix_bad(insn))
365 return -ENOTSUPP;
7b2d81d4 366
2b144498
SD
367 if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_64))
368 return 0;
7b2d81d4 369
2b144498
SD
370 if (insn->opcode.nbytes == 2) {
371 if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
372 return 0;
373 }
374 return -ENOTSUPP;
375}
376
e3343e6a 377static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
2b144498
SD
378{
379 if (mm->context.ia32_compat)
3ff54efd
SD
380 return validate_insn_32bits(auprobe, insn);
381 return validate_insn_64bits(auprobe, insn);
2b144498 382}
7b2d81d4 383#else /* 32-bit: */
d20737c0
ON
384/*
385 * No RIP-relative addressing on 32-bit
386 */
59078d4b 387static void handle_riprel_insn(struct arch_uprobe *auprobe, struct insn *insn)
2b144498 388{
d20737c0
ON
389}
390static void pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
391 struct arch_uprobe_task *autask)
392{
393}
394static void handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs,
395 long *correction)
396{
2b144498
SD
397}
398
e3343e6a 399static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
2b144498 400{
3ff54efd 401 return validate_insn_32bits(auprobe, insn);
2b144498
SD
402}
403#endif /* CONFIG_X86_64 */
404
405/**
0326f5a9 406 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
2b144498 407 * @mm: the probed address space.
3ff54efd 408 * @arch_uprobe: the probepoint information.
7eb9ba5e 409 * @addr: virtual address at which to install the probepoint
2b144498
SD
410 * Return 0 on success or a -ve number on error.
411 */
7eb9ba5e 412int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
2b144498 413{
2b144498 414 struct insn insn;
ddb69f27
ON
415 bool fix_ip = true, fix_call = false;
416 int ret;
2b144498 417
e3343e6a 418 ret = validate_insn_bits(auprobe, mm, &insn);
ddb69f27 419 if (ret)
2b144498 420 return ret;
7b2d81d4 421
ddb69f27
ON
422 /*
423 * Figure out which fixups arch_uprobe_post_xol() will need to perform,
424 * and annotate arch_uprobe->fixups accordingly. To start with, ->fixups
425 * is either zero or it reflects rip-related fixups.
426 */
59078d4b 427 handle_riprel_insn(auprobe, &insn);
ddb69f27
ON
428
429 switch (OPCODE1(&insn)) {
430 case 0x9d: /* popf */
431 auprobe->fixups |= UPROBE_FIX_SETF;
432 break;
433 case 0xc3: /* ret or lret -- ip is correct */
434 case 0xcb:
435 case 0xc2:
436 case 0xca:
437 fix_ip = false;
438 break;
439 case 0xe8: /* call relative - Fix return addr */
440 fix_call = true;
441 break;
442 case 0x9a: /* call absolute - Fix return addr, not ip */
443 fix_call = true;
444 fix_ip = false;
445 break;
446 case 0xea: /* jmp absolute -- ip is correct */
447 fix_ip = false;
448 break;
449 case 0xff:
450 insn_get_modrm(&insn);
451 switch (MODRM_REG(&insn)) {
452 case 2: case 3: /* call or lcall, indirect */
453 fix_call = true;
454 case 4: case 5: /* jmp or ljmp, indirect */
455 fix_ip = false;
456 }
457 break;
458 default:
459 break;
460 }
461
462 if (fix_ip)
463 auprobe->fixups |= UPROBE_FIX_IP;
464 if (fix_call)
465 auprobe->fixups |= UPROBE_FIX_CALL;
7b2d81d4 466
2b144498
SD
467 return 0;
468}
0326f5a9 469
0326f5a9
SD
470/*
471 * arch_uprobe_pre_xol - prepare to execute out of line.
472 * @auprobe: the probepoint information.
473 * @regs: reflects the saved user state of current task.
474 */
475int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
476{
477 struct arch_uprobe_task *autask;
478
479 autask = &current->utask->autask;
480 autask->saved_trap_nr = current->thread.trap_nr;
481 current->thread.trap_nr = UPROBE_TRAP_NR;
482 regs->ip = current->utask->xol_vaddr;
483 pre_xol_rip_insn(auprobe, regs, autask);
484
4dc316c6
ON
485 autask->saved_tf = !!(regs->flags & X86_EFLAGS_TF);
486 regs->flags |= X86_EFLAGS_TF;
487 if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
488 set_task_blockstep(current, false);
489
0326f5a9
SD
490 return 0;
491}
492
493/*
494 * This function is called by arch_uprobe_post_xol() to adjust the return
495 * address pushed by a call instruction executed out of line.
496 */
497static int adjust_ret_addr(unsigned long sp, long correction)
498{
499 int rasize, ncopied;
500 long ra = 0;
501
502 if (is_ia32_task())
503 rasize = 4;
504 else
505 rasize = 8;
506
507 ncopied = copy_from_user(&ra, (void __user *)sp, rasize);
508 if (unlikely(ncopied))
509 return -EFAULT;
510
511 ra += correction;
512 ncopied = copy_to_user((void __user *)sp, &ra, rasize);
513 if (unlikely(ncopied))
514 return -EFAULT;
515
516 return 0;
517}
518
0326f5a9
SD
519/*
520 * If xol insn itself traps and generates a signal(Say,
521 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
522 * instruction jumps back to its own address. It is assumed that anything
523 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
524 *
525 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
526 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
527 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
528 */
529bool arch_uprobe_xol_was_trapped(struct task_struct *t)
530{
531 if (t->thread.trap_nr != UPROBE_TRAP_NR)
532 return true;
533
534 return false;
535}
536
537/*
538 * Called after single-stepping. To avoid the SMP problems that can
539 * occur when we temporarily put back the original opcode to
540 * single-step, we single-stepped a copy of the instruction.
541 *
542 * This function prepares to resume execution after the single-step.
543 * We have to fix things up as follows:
544 *
545 * Typically, the new ip is relative to the copied instruction. We need
546 * to make it relative to the original instruction (FIX_IP). Exceptions
547 * are return instructions and absolute or indirect jump or call instructions.
548 *
549 * If the single-stepped instruction was a call, the return address that
550 * is atop the stack is the address following the copied instruction. We
551 * need to make it the address following the original instruction (FIX_CALL).
552 *
553 * If the original instruction was a rip-relative instruction such as
554 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
555 * instruction using a scratch register -- e.g., "movl %edx,(%rax)".
556 * We need to restore the contents of the scratch register and adjust
557 * the ip, keeping in mind that the instruction we executed is 4 bytes
558 * shorter than the original instruction (since we squeezed out the offset
559 * field). (FIX_RIP_AX or FIX_RIP_CX)
560 */
561int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
562{
563 struct uprobe_task *utask;
564 long correction;
565 int result = 0;
566
567 WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
568
569 utask = current->utask;
570 current->thread.trap_nr = utask->autask.saved_trap_nr;
571 correction = (long)(utask->vaddr - utask->xol_vaddr);
572 handle_riprel_post_xol(auprobe, regs, &correction);
573 if (auprobe->fixups & UPROBE_FIX_IP)
574 regs->ip += correction;
575
576 if (auprobe->fixups & UPROBE_FIX_CALL)
577 result = adjust_ret_addr(regs->sp, correction);
578
4dc316c6
ON
579 /*
580 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
581 * so we can get an extra SIGTRAP if we do not clear TF. We need
582 * to examine the opcode to make it right.
583 */
584 if (utask->autask.saved_tf)
585 send_sig(SIGTRAP, current, 0);
586 else if (!(auprobe->fixups & UPROBE_FIX_SETF))
587 regs->flags &= ~X86_EFLAGS_TF;
588
0326f5a9
SD
589 return result;
590}
591
592/* callback routine for handling exceptions. */
593int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
594{
595 struct die_args *args = data;
596 struct pt_regs *regs = args->regs;
597 int ret = NOTIFY_DONE;
598
599 /* We are only interested in userspace traps */
600 if (regs && !user_mode_vm(regs))
601 return NOTIFY_DONE;
602
603 switch (val) {
604 case DIE_INT3:
605 if (uprobe_pre_sstep_notifier(regs))
606 ret = NOTIFY_STOP;
607
608 break;
609
610 case DIE_DEBUG:
611 if (uprobe_post_sstep_notifier(regs))
612 ret = NOTIFY_STOP;
613
614 default:
615 break;
616 }
617
618 return ret;
619}
620
621/*
622 * This function gets called when XOL instruction either gets trapped or
623 * the thread has a fatal signal, so reset the instruction pointer to its
624 * probed address.
625 */
626void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
627{
628 struct uprobe_task *utask = current->utask;
629
630 current->thread.trap_nr = utask->autask.saved_trap_nr;
631 handle_riprel_post_xol(auprobe, regs, NULL);
632 instruction_pointer_set(regs, utask->vaddr);
4dc316c6
ON
633
634 /* clear TF if it was set by us in arch_uprobe_pre_xol() */
635 if (!utask->autask.saved_tf)
636 regs->flags &= ~X86_EFLAGS_TF;
0326f5a9
SD
637}
638
639/*
640 * Skip these instructions as per the currently known x86 ISA.
b64b9c93 641 * rep=0x66*; nop=0x90
0326f5a9 642 */
3a4664aa 643static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
0326f5a9
SD
644{
645 int i;
646
647 for (i = 0; i < MAX_UINSN_BYTES; i++) {
b64b9c93 648 if (auprobe->insn[i] == 0x66)
0326f5a9
SD
649 continue;
650
cf31ec3f 651 if (auprobe->insn[i] == 0x90) {
cf31ec3f 652 regs->ip += i + 1;
0326f5a9 653 return true;
cf31ec3f 654 }
0326f5a9 655
0326f5a9
SD
656 break;
657 }
658 return false;
659}
bdc1e472 660
3a4664aa
ON
661bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
662{
663 bool ret = __skip_sstep(auprobe, regs);
664 if (ret && (regs->flags & X86_EFLAGS_TF))
665 send_sig(SIGTRAP, current, 0);
666 return ret;
667}
791eca10
AA
668
669unsigned long
670arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
671{
672 int rasize, ncopied;
673 unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
674
675 rasize = is_ia32_task() ? 4 : 8;
676 ncopied = copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize);
677 if (unlikely(ncopied))
678 return -1;
679
680 /* check whether address has been already hijacked */
681 if (orig_ret_vaddr == trampoline_vaddr)
682 return orig_ret_vaddr;
683
684 ncopied = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
685 if (likely(!ncopied))
686 return orig_ret_vaddr;
687
688 if (ncopied != rasize) {
689 pr_err("uprobe: return address clobbered: pid=%d, %%sp=%#lx, "
690 "%%ip=%#lx\n", current->pid, regs->sp, regs->ip);
691
692 force_sig_info(SIGSEGV, SEND_SIG_FORCED, current);
693 }
694
695 return -1;
696}
This page took 0.129286 seconds and 5 git commands to generate.