KVM: MMU: apply page track notifier
[deliverable/linux.git] / arch / x86 / kvm / i8254.c
CommitLineData
7837699f
SY
1/*
2 * 8253/8254 interval timer emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2006 Intel Corporation
6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
7 * Copyright (c) 2008 Intel Corporation
9611c187 8 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
7837699f
SY
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 *
28 * Authors:
29 * Sheng Yang <sheng.yang@intel.com>
30 * Based on QEMU and Xen.
31 */
32
a78d9626
JP
33#define pr_fmt(fmt) "pit: " fmt
34
7837699f 35#include <linux/kvm_host.h>
5a0e3ad6 36#include <linux/slab.h>
7837699f 37
49df6397 38#include "ioapic.h"
7837699f
SY
39#include "irq.h"
40#include "i8254.h"
9ed96e87 41#include "x86.h"
7837699f
SY
42
43#ifndef CONFIG_X86_64
6f6d6a1a 44#define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
7837699f
SY
45#else
46#define mod_64(x, y) ((x) % (y))
47#endif
48
49#define RW_STATE_LSB 1
50#define RW_STATE_MSB 2
51#define RW_STATE_WORD0 3
52#define RW_STATE_WORD1 4
53
54/* Compute with 96 bit intermediate result: (a*b)/c */
55static u64 muldiv64(u64 a, u32 b, u32 c)
56{
57 union {
58 u64 ll;
59 struct {
60 u32 low, high;
61 } l;
62 } u, res;
63 u64 rl, rh;
64
65 u.ll = a;
66 rl = (u64)u.l.low * (u64)b;
67 rh = (u64)u.l.high * (u64)b;
68 rh += (rl >> 32);
6f6d6a1a
RZ
69 res.l.high = div64_u64(rh, c);
70 res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
7837699f
SY
71 return res.ll;
72}
73
74static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
75{
76 struct kvm_kpit_channel_state *c =
77 &kvm->arch.vpit->pit_state.channels[channel];
78
79 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
80
81 switch (c->mode) {
82 default:
83 case 0:
84 case 4:
85 /* XXX: just disable/enable counting */
86 break;
87 case 1:
88 case 2:
89 case 3:
90 case 5:
91 /* Restart counting on rising edge. */
92 if (c->gate < val)
93 c->count_load_time = ktime_get();
94 break;
95 }
96
97 c->gate = val;
98}
99
8b2cf73c 100static int pit_get_gate(struct kvm *kvm, int channel)
7837699f
SY
101{
102 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
103
104 return kvm->arch.vpit->pit_state.channels[channel].gate;
105}
106
fd668423
MT
107static s64 __kpit_elapsed(struct kvm *kvm)
108{
109 s64 elapsed;
110 ktime_t remaining;
111 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
112
26ef1924 113 if (!ps->period)
0ff77873
MT
114 return 0;
115
ede2ccc5
MT
116 /*
117 * The Counter does not stop when it reaches zero. In
118 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
119 * the highest count, either FFFF hex for binary counting
120 * or 9999 for BCD counting, and continues counting.
121 * Modes 2 and 3 are periodic; the Counter reloads
122 * itself with the initial count and continues counting
123 * from there.
124 */
26ef1924
AK
125 remaining = hrtimer_get_remaining(&ps->timer);
126 elapsed = ps->period - ktime_to_ns(remaining);
fd668423
MT
127
128 return elapsed;
129}
130
131static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
132 int channel)
133{
134 if (channel == 0)
135 return __kpit_elapsed(kvm);
136
137 return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
138}
139
7837699f
SY
140static int pit_get_count(struct kvm *kvm, int channel)
141{
142 struct kvm_kpit_channel_state *c =
143 &kvm->arch.vpit->pit_state.channels[channel];
144 s64 d, t;
145 int counter;
146
147 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
148
fd668423 149 t = kpit_elapsed(kvm, c, channel);
7837699f
SY
150 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
151
152 switch (c->mode) {
153 case 0:
154 case 1:
155 case 4:
156 case 5:
157 counter = (c->count - d) & 0xffff;
158 break;
159 case 3:
160 /* XXX: may be incorrect for odd counts */
161 counter = c->count - (mod_64((2 * d), c->count));
162 break;
163 default:
164 counter = c->count - mod_64(d, c->count);
165 break;
166 }
167 return counter;
168}
169
170static int pit_get_out(struct kvm *kvm, int channel)
171{
172 struct kvm_kpit_channel_state *c =
173 &kvm->arch.vpit->pit_state.channels[channel];
174 s64 d, t;
175 int out;
176
177 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
178
fd668423 179 t = kpit_elapsed(kvm, c, channel);
7837699f
SY
180 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
181
182 switch (c->mode) {
183 default:
184 case 0:
185 out = (d >= c->count);
186 break;
187 case 1:
188 out = (d < c->count);
189 break;
190 case 2:
191 out = ((mod_64(d, c->count) == 0) && (d != 0));
192 break;
193 case 3:
194 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
195 break;
196 case 4:
197 case 5:
198 out = (d == c->count);
199 break;
200 }
201
202 return out;
203}
204
205static void pit_latch_count(struct kvm *kvm, int channel)
206{
207 struct kvm_kpit_channel_state *c =
208 &kvm->arch.vpit->pit_state.channels[channel];
209
210 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
211
212 if (!c->count_latched) {
213 c->latched_count = pit_get_count(kvm, channel);
214 c->count_latched = c->rw_mode;
215 }
216}
217
218static void pit_latch_status(struct kvm *kvm, int channel)
219{
220 struct kvm_kpit_channel_state *c =
221 &kvm->arch.vpit->pit_state.channels[channel];
222
223 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
224
225 if (!c->status_latched) {
226 /* TODO: Return NULL COUNT (bit 6). */
227 c->status = ((pit_get_out(kvm, channel) << 7) |
228 (c->rw_mode << 4) |
229 (c->mode << 1) |
230 c->bcd);
231 c->status_latched = 1;
232 }
233}
234
ee032c99 235static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
3cf57fed
MT
236{
237 struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
238 irq_ack_notifier);
33572ac0
CL
239 int value;
240
241 spin_lock(&ps->inject_lock);
26ef1924 242 value = atomic_dec_return(&ps->pending);
33572ac0
CL
243 if (value < 0)
244 /* spurious acks can be generated if, for example, the
245 * PIC is being reset. Handle it gracefully here
246 */
26ef1924 247 atomic_inc(&ps->pending);
33572ac0
CL
248 else if (value > 0)
249 /* in this case, we had multiple outstanding pit interrupts
250 * that we needed to inject. Reinject
251 */
b6ddf05f 252 queue_kthread_work(&ps->pit->worker, &ps->pit->expired);
3cf57fed 253 ps->irq_ack = 1;
33572ac0 254 spin_unlock(&ps->inject_lock);
3cf57fed
MT
255}
256
2f599714
MT
257void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
258{
259 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
260 struct hrtimer *timer;
261
c5af89b6 262 if (!kvm_vcpu_is_bsp(vcpu) || !pit)
2f599714
MT
263 return;
264
26ef1924 265 timer = &pit->pit_state.timer;
2febc839 266 mutex_lock(&pit->pit_state.lock);
2f599714 267 if (hrtimer_cancel(timer))
beb20d52 268 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
2febc839 269 mutex_unlock(&pit->pit_state.lock);
2f599714
MT
270}
271
33572ac0 272static void destroy_pit_timer(struct kvm_pit *pit)
7837699f 273{
26ef1924 274 hrtimer_cancel(&pit->pit_state.timer);
b6ddf05f 275 flush_kthread_work(&pit->expired);
7837699f
SY
276}
277
b6ddf05f 278static void pit_do_work(struct kthread_work *work)
33572ac0
CL
279{
280 struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
281 struct kvm *kvm = pit->kvm;
282 struct kvm_vcpu *vcpu;
283 int i;
284 struct kvm_kpit_state *ps = &pit->pit_state;
285 int inject = 0;
286
287 /* Try to inject pending interrupts when
288 * last one has been acked.
289 */
290 spin_lock(&ps->inject_lock);
291 if (ps->irq_ack) {
292 ps->irq_ack = 0;
293 inject = 1;
294 }
295 spin_unlock(&ps->inject_lock);
296 if (inject) {
aa2fbe6d
YZ
297 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1, false);
298 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0, false);
33572ac0
CL
299
300 /*
301 * Provides NMI watchdog support via Virtual Wire mode.
302 * The route is: PIT -> PIC -> LVT0 in NMI mode.
303 *
304 * Note: Our Virtual Wire implementation is simplified, only
305 * propagating PIT interrupts to all VCPUs when they have set
306 * LVT0 to NMI delivery. Other PIC interrupts are just sent to
307 * VCPU0, and only if its LVT0 is in EXTINT mode.
308 */
42720138 309 if (atomic_read(&kvm->arch.vapics_in_nmi_mode) > 0)
33572ac0
CL
310 kvm_for_each_vcpu(i, vcpu, kvm)
311 kvm_apic_nmi_wd_deliver(vcpu);
312 }
313}
314
315static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
316{
26ef1924
AK
317 struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer);
318 struct kvm_pit *pt = ps->kvm->arch.vpit;
33572ac0 319
26ef1924
AK
320 if (ps->reinject || !atomic_read(&ps->pending)) {
321 atomic_inc(&ps->pending);
b6ddf05f 322 queue_kthread_work(&pt->worker, &pt->expired);
33572ac0
CL
323 }
324
26ef1924
AK
325 if (ps->is_periodic) {
326 hrtimer_add_expires_ns(&ps->timer, ps->period);
33572ac0
CL
327 return HRTIMER_RESTART;
328 } else
329 return HRTIMER_NORESTART;
330}
331
0924ab2c 332static void create_pit_timer(struct kvm *kvm, u32 val, int is_period)
7837699f 333{
0924ab2c 334 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
7837699f
SY
335 s64 interval;
336
49df6397
SR
337 if (!ioapic_in_kernel(kvm) ||
338 ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
0924ab2c
JK
339 return;
340
7837699f
SY
341 interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
342
a78d9626 343 pr_debug("create pit timer, interval is %llu nsec\n", interval);
7837699f
SY
344
345 /* TODO The new value only affected after the retriggered */
26ef1924 346 hrtimer_cancel(&ps->timer);
b6ddf05f 347 flush_kthread_work(&ps->pit->expired);
26ef1924 348 ps->period = interval;
d3c7b77d
MT
349 ps->is_periodic = is_period;
350
26ef1924
AK
351 ps->timer.function = pit_timer_fn;
352 ps->kvm = ps->pit->kvm;
d3c7b77d 353
26ef1924 354 atomic_set(&ps->pending, 0);
3cf57fed 355 ps->irq_ack = 1;
7837699f 356
9ed96e87
MT
357 /*
358 * Do not allow the guest to program periodic timers with small
359 * interval, since the hrtimers are not throttled by the host
360 * scheduler.
361 */
362 if (ps->is_periodic) {
363 s64 min_period = min_timer_period_us * 1000LL;
364
365 if (ps->period < min_period) {
366 pr_info_ratelimited(
367 "kvm: requested %lld ns "
368 "i8254 timer period limited to %lld ns\n",
369 ps->period, min_period);
370 ps->period = min_period;
371 }
372 }
373
26ef1924 374 hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval),
7837699f
SY
375 HRTIMER_MODE_ABS);
376}
377
378static void pit_load_count(struct kvm *kvm, int channel, u32 val)
379{
380 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
381
382 WARN_ON(!mutex_is_locked(&ps->lock));
383
a78d9626 384 pr_debug("load_count val is %d, channel is %d\n", val, channel);
7837699f
SY
385
386 /*
ede2ccc5
MT
387 * The largest possible initial count is 0; this is equivalent
388 * to 216 for binary counting and 104 for BCD counting.
7837699f
SY
389 */
390 if (val == 0)
391 val = 0x10000;
392
7837699f
SY
393 ps->channels[channel].count = val;
394
fd668423
MT
395 if (channel != 0) {
396 ps->channels[channel].count_load_time = ktime_get();
7837699f 397 return;
fd668423 398 }
7837699f
SY
399
400 /* Two types of timer
401 * mode 1 is one shot, mode 2 is period, otherwise del timer */
402 switch (ps->channels[0].mode) {
ede2ccc5 403 case 0:
7837699f 404 case 1:
ece15bab
MT
405 /* FIXME: enhance mode 4 precision */
406 case 4:
a647795e 407 create_pit_timer(kvm, val, 0);
7837699f
SY
408 break;
409 case 2:
f6975545 410 case 3:
a647795e 411 create_pit_timer(kvm, val, 1);
7837699f
SY
412 break;
413 default:
33572ac0 414 destroy_pit_timer(kvm->arch.vpit);
7837699f
SY
415 }
416}
417
e9f42757 418void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start)
e0f63cb9 419{
e9f42757
BK
420 u8 saved_mode;
421 if (hpet_legacy_start) {
422 /* save existing mode for later reenablement */
e5e57e7a 423 WARN_ON(channel != 0);
e9f42757
BK
424 saved_mode = kvm->arch.vpit->pit_state.channels[0].mode;
425 kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */
426 pit_load_count(kvm, channel, val);
427 kvm->arch.vpit->pit_state.channels[0].mode = saved_mode;
428 } else {
429 pit_load_count(kvm, channel, val);
430 }
e0f63cb9
SY
431}
432
d76685c4
GH
433static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
434{
435 return container_of(dev, struct kvm_pit, dev);
436}
437
438static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
439{
440 return container_of(dev, struct kvm_pit, speaker_dev);
441}
442
bda9020e
MT
443static inline int pit_in_range(gpa_t addr)
444{
445 return ((addr >= KVM_PIT_BASE_ADDRESS) &&
446 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
447}
448
e32edf4f
NN
449static int pit_ioport_write(struct kvm_vcpu *vcpu,
450 struct kvm_io_device *this,
bda9020e 451 gpa_t addr, int len, const void *data)
7837699f 452{
d76685c4 453 struct kvm_pit *pit = dev_to_pit(this);
7837699f
SY
454 struct kvm_kpit_state *pit_state = &pit->pit_state;
455 struct kvm *kvm = pit->kvm;
456 int channel, access;
457 struct kvm_kpit_channel_state *s;
458 u32 val = *(u32 *) data;
bda9020e
MT
459 if (!pit_in_range(addr))
460 return -EOPNOTSUPP;
7837699f
SY
461
462 val &= 0xff;
463 addr &= KVM_PIT_CHANNEL_MASK;
464
465 mutex_lock(&pit_state->lock);
466
467 if (val != 0)
a78d9626
JP
468 pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
469 (unsigned int)addr, len, val);
7837699f
SY
470
471 if (addr == 3) {
472 channel = val >> 6;
473 if (channel == 3) {
474 /* Read-Back Command. */
475 for (channel = 0; channel < 3; channel++) {
476 s = &pit_state->channels[channel];
477 if (val & (2 << channel)) {
478 if (!(val & 0x20))
479 pit_latch_count(kvm, channel);
480 if (!(val & 0x10))
481 pit_latch_status(kvm, channel);
482 }
483 }
484 } else {
485 /* Select Counter <channel>. */
486 s = &pit_state->channels[channel];
487 access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
488 if (access == 0) {
489 pit_latch_count(kvm, channel);
490 } else {
491 s->rw_mode = access;
492 s->read_state = access;
493 s->write_state = access;
494 s->mode = (val >> 1) & 7;
495 if (s->mode > 5)
496 s->mode -= 4;
497 s->bcd = val & 1;
498 }
499 }
500 } else {
501 /* Write Count. */
502 s = &pit_state->channels[addr];
503 switch (s->write_state) {
504 default:
505 case RW_STATE_LSB:
506 pit_load_count(kvm, addr, val);
507 break;
508 case RW_STATE_MSB:
509 pit_load_count(kvm, addr, val << 8);
510 break;
511 case RW_STATE_WORD0:
512 s->write_latch = val;
513 s->write_state = RW_STATE_WORD1;
514 break;
515 case RW_STATE_WORD1:
516 pit_load_count(kvm, addr, s->write_latch | (val << 8));
517 s->write_state = RW_STATE_WORD0;
518 break;
519 }
520 }
521
522 mutex_unlock(&pit_state->lock);
bda9020e 523 return 0;
7837699f
SY
524}
525
e32edf4f
NN
526static int pit_ioport_read(struct kvm_vcpu *vcpu,
527 struct kvm_io_device *this,
bda9020e 528 gpa_t addr, int len, void *data)
7837699f 529{
d76685c4 530 struct kvm_pit *pit = dev_to_pit(this);
7837699f
SY
531 struct kvm_kpit_state *pit_state = &pit->pit_state;
532 struct kvm *kvm = pit->kvm;
533 int ret, count;
534 struct kvm_kpit_channel_state *s;
bda9020e
MT
535 if (!pit_in_range(addr))
536 return -EOPNOTSUPP;
7837699f
SY
537
538 addr &= KVM_PIT_CHANNEL_MASK;
ee73f656
MT
539 if (addr == 3)
540 return 0;
541
7837699f
SY
542 s = &pit_state->channels[addr];
543
544 mutex_lock(&pit_state->lock);
545
546 if (s->status_latched) {
547 s->status_latched = 0;
548 ret = s->status;
549 } else if (s->count_latched) {
550 switch (s->count_latched) {
551 default:
552 case RW_STATE_LSB:
553 ret = s->latched_count & 0xff;
554 s->count_latched = 0;
555 break;
556 case RW_STATE_MSB:
557 ret = s->latched_count >> 8;
558 s->count_latched = 0;
559 break;
560 case RW_STATE_WORD0:
561 ret = s->latched_count & 0xff;
562 s->count_latched = RW_STATE_MSB;
563 break;
564 }
565 } else {
566 switch (s->read_state) {
567 default:
568 case RW_STATE_LSB:
569 count = pit_get_count(kvm, addr);
570 ret = count & 0xff;
571 break;
572 case RW_STATE_MSB:
573 count = pit_get_count(kvm, addr);
574 ret = (count >> 8) & 0xff;
575 break;
576 case RW_STATE_WORD0:
577 count = pit_get_count(kvm, addr);
578 ret = count & 0xff;
579 s->read_state = RW_STATE_WORD1;
580 break;
581 case RW_STATE_WORD1:
582 count = pit_get_count(kvm, addr);
583 ret = (count >> 8) & 0xff;
584 s->read_state = RW_STATE_WORD0;
585 break;
586 }
587 }
588
589 if (len > sizeof(ret))
590 len = sizeof(ret);
591 memcpy(data, (char *)&ret, len);
592
593 mutex_unlock(&pit_state->lock);
bda9020e 594 return 0;
7837699f
SY
595}
596
e32edf4f
NN
597static int speaker_ioport_write(struct kvm_vcpu *vcpu,
598 struct kvm_io_device *this,
bda9020e 599 gpa_t addr, int len, const void *data)
7837699f 600{
d76685c4 601 struct kvm_pit *pit = speaker_to_pit(this);
7837699f
SY
602 struct kvm_kpit_state *pit_state = &pit->pit_state;
603 struct kvm *kvm = pit->kvm;
604 u32 val = *(u32 *) data;
bda9020e
MT
605 if (addr != KVM_SPEAKER_BASE_ADDRESS)
606 return -EOPNOTSUPP;
7837699f
SY
607
608 mutex_lock(&pit_state->lock);
609 pit_state->speaker_data_on = (val >> 1) & 1;
610 pit_set_gate(kvm, 2, val & 1);
611 mutex_unlock(&pit_state->lock);
bda9020e 612 return 0;
7837699f
SY
613}
614
e32edf4f
NN
615static int speaker_ioport_read(struct kvm_vcpu *vcpu,
616 struct kvm_io_device *this,
617 gpa_t addr, int len, void *data)
7837699f 618{
d76685c4 619 struct kvm_pit *pit = speaker_to_pit(this);
7837699f
SY
620 struct kvm_kpit_state *pit_state = &pit->pit_state;
621 struct kvm *kvm = pit->kvm;
622 unsigned int refresh_clock;
623 int ret;
bda9020e
MT
624 if (addr != KVM_SPEAKER_BASE_ADDRESS)
625 return -EOPNOTSUPP;
7837699f
SY
626
627 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
628 refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
629
630 mutex_lock(&pit_state->lock);
631 ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
632 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
633 if (len > sizeof(ret))
634 len = sizeof(ret);
635 memcpy(data, (char *)&ret, len);
636 mutex_unlock(&pit_state->lock);
bda9020e 637 return 0;
7837699f
SY
638}
639
308b0f23 640void kvm_pit_reset(struct kvm_pit *pit)
7837699f
SY
641{
642 int i;
308b0f23
SY
643 struct kvm_kpit_channel_state *c;
644
645 mutex_lock(&pit->pit_state.lock);
e9f42757 646 pit->pit_state.flags = 0;
308b0f23
SY
647 for (i = 0; i < 3; i++) {
648 c = &pit->pit_state.channels[i];
649 c->mode = 0xff;
650 c->gate = (i != 2);
651 pit_load_count(pit->kvm, i, 0);
652 }
653 mutex_unlock(&pit->pit_state.lock);
654
26ef1924 655 atomic_set(&pit->pit_state.pending, 0);
3cf57fed 656 pit->pit_state.irq_ack = 1;
308b0f23
SY
657}
658
4780c659
AK
659static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
660{
661 struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
662
663 if (!mask) {
26ef1924 664 atomic_set(&pit->pit_state.pending, 0);
4780c659
AK
665 pit->pit_state.irq_ack = 1;
666 }
667}
668
d76685c4
GH
669static const struct kvm_io_device_ops pit_dev_ops = {
670 .read = pit_ioport_read,
671 .write = pit_ioport_write,
d76685c4
GH
672};
673
674static const struct kvm_io_device_ops speaker_dev_ops = {
675 .read = speaker_ioport_read,
676 .write = speaker_ioport_write,
d76685c4
GH
677};
678
79fac95e 679/* Caller must hold slots_lock */
c5ff41ce 680struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
308b0f23 681{
7837699f
SY
682 struct kvm_pit *pit;
683 struct kvm_kpit_state *pit_state;
b6ddf05f
JK
684 struct pid *pid;
685 pid_t pid_nr;
090b7aff 686 int ret;
7837699f
SY
687
688 pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
689 if (!pit)
690 return NULL;
691
5550af4d 692 pit->irq_source_id = kvm_request_irq_source_id(kvm);
e17d1dc0
AK
693 if (pit->irq_source_id < 0) {
694 kfree(pit);
5550af4d 695 return NULL;
e17d1dc0 696 }
5550af4d 697
7837699f
SY
698 mutex_init(&pit->pit_state.lock);
699 mutex_lock(&pit->pit_state.lock);
33572ac0
CL
700 spin_lock_init(&pit->pit_state.inject_lock);
701
b6ddf05f
JK
702 pid = get_pid(task_tgid(current));
703 pid_nr = pid_vnr(pid);
704 put_pid(pid);
705
706 init_kthread_worker(&pit->worker);
707 pit->worker_task = kthread_run(kthread_worker_fn, &pit->worker,
708 "kvm-pit/%d", pid_nr);
709 if (IS_ERR(pit->worker_task)) {
673813e8 710 mutex_unlock(&pit->pit_state.lock);
6b5d7a9f 711 kvm_free_irq_source_id(kvm, pit->irq_source_id);
33572ac0
CL
712 kfree(pit);
713 return NULL;
714 }
b6ddf05f 715 init_kthread_work(&pit->expired, pit_do_work);
7837699f 716
7837699f
SY
717 kvm->arch.vpit = pit;
718 pit->kvm = kvm;
719
720 pit_state = &pit->pit_state;
721 pit_state->pit = pit;
26ef1924 722 hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
3cf57fed
MT
723 pit_state->irq_ack_notifier.gsi = 0;
724 pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
725 kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
26ef1924 726 pit_state->reinject = true;
7837699f
SY
727 mutex_unlock(&pit->pit_state.lock);
728
308b0f23 729 kvm_pit_reset(pit);
7837699f 730
4780c659
AK
731 pit->mask_notifier.func = pit_mask_notifer;
732 kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
733
6b66ac1a 734 kvm_iodevice_init(&pit->dev, &pit_dev_ops);
743eeb0b
SL
735 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
736 KVM_PIT_MEM_LENGTH, &pit->dev);
090b7aff
GH
737 if (ret < 0)
738 goto fail;
6b66ac1a
GH
739
740 if (flags & KVM_PIT_SPEAKER_DUMMY) {
741 kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
e93f8a0f 742 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
743eeb0b
SL
743 KVM_SPEAKER_BASE_ADDRESS, 4,
744 &pit->speaker_dev);
090b7aff
GH
745 if (ret < 0)
746 goto fail_unregister;
6b66ac1a
GH
747 }
748
7837699f 749 return pit;
090b7aff
GH
750
751fail_unregister:
e93f8a0f 752 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
090b7aff
GH
753
754fail:
d225f53b
WY
755 kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
756 kvm_unregister_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
757 kvm_free_irq_source_id(kvm, pit->irq_source_id);
b6ddf05f 758 kthread_stop(pit->worker_task);
090b7aff
GH
759 kfree(pit);
760 return NULL;
7837699f
SY
761}
762
763void kvm_free_pit(struct kvm *kvm)
764{
765 struct hrtimer *timer;
766
767 if (kvm->arch.vpit) {
aea924f6
XG
768 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &kvm->arch.vpit->dev);
769 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
770 &kvm->arch.vpit->speaker_dev);
4780c659
AK
771 kvm_unregister_irq_mask_notifier(kvm, 0,
772 &kvm->arch.vpit->mask_notifier);
84fde248
GN
773 kvm_unregister_irq_ack_notifier(kvm,
774 &kvm->arch.vpit->pit_state.irq_ack_notifier);
7837699f 775 mutex_lock(&kvm->arch.vpit->pit_state.lock);
26ef1924 776 timer = &kvm->arch.vpit->pit_state.timer;
7837699f 777 hrtimer_cancel(timer);
b6ddf05f
JK
778 flush_kthread_work(&kvm->arch.vpit->expired);
779 kthread_stop(kvm->arch.vpit->worker_task);
5550af4d 780 kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
7837699f
SY
781 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
782 kfree(kvm->arch.vpit);
783 }
784}
This page took 0.455223 seconds and 5 git commands to generate.