KVM: x86: mmu: remove argument to kvm_init_shadow_mmu and kvm_init_shadow_ept_mmu
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
448353ca 33#include <linux/swap.h>
05da4558 34#include <linux/hugetlb.h>
2f333bcb 35#include <linux/compiler.h>
bc6678a3 36#include <linux/srcu.h>
5a0e3ad6 37#include <linux/slab.h>
bf998156 38#include <linux/uaccess.h>
6aa8b732 39
e495606d
AK
40#include <asm/page.h>
41#include <asm/cmpxchg.h>
4e542370 42#include <asm/io.h>
13673a90 43#include <asm/vmx.h>
6aa8b732 44
18552672
JR
45/*
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
51 */
2f333bcb 52bool tdp_enabled = false;
18552672 53
8b1fe17c
XG
54enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
6903074c
XG
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
8b1fe17c 61};
37a7d8b0 62
8b1fe17c 63#undef MMU_DEBUG
37a7d8b0
AK
64
65#ifdef MMU_DEBUG
66
67#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
68#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
69
70#else
71
72#define pgprintk(x...) do { } while (0)
73#define rmap_printk(x...) do { } while (0)
74
75#endif
76
8b1fe17c 77#ifdef MMU_DEBUG
476bc001 78static bool dbg = 0;
6ada8cca 79module_param(dbg, bool, 0644);
37a7d8b0 80#endif
6aa8b732 81
d6c69ee9
YD
82#ifndef MMU_DEBUG
83#define ASSERT(x) do { } while (0)
84#else
6aa8b732
AK
85#define ASSERT(x) \
86 if (!(x)) { \
87 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
88 __FILE__, __LINE__, #x); \
89 }
d6c69ee9 90#endif
6aa8b732 91
957ed9ef
XG
92#define PTE_PREFETCH_NUM 8
93
00763e41 94#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
95#define PT64_SECOND_AVAIL_BITS_SHIFT 52
96
6aa8b732
AK
97#define PT64_LEVEL_BITS 9
98
99#define PT64_LEVEL_SHIFT(level) \
d77c26fc 100 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 101
6aa8b732
AK
102#define PT64_INDEX(address, level)\
103 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
104
105
106#define PT32_LEVEL_BITS 10
107
108#define PT32_LEVEL_SHIFT(level) \
d77c26fc 109 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 110
e04da980
JR
111#define PT32_LVL_OFFSET_MASK(level) \
112 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
114
115#define PT32_INDEX(address, level)\
116 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
117
118
27aba766 119#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
120#define PT64_DIR_BASE_ADDR_MASK \
121 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
122#define PT64_LVL_ADDR_MASK(level) \
123 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
124 * PT64_LEVEL_BITS))) - 1))
125#define PT64_LVL_OFFSET_MASK(level) \
126 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
127 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
128
129#define PT32_BASE_ADDR_MASK PAGE_MASK
130#define PT32_DIR_BASE_ADDR_MASK \
131 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
132#define PT32_LVL_ADDR_MASK(level) \
133 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
134 * PT32_LEVEL_BITS))) - 1))
6aa8b732 135
53166229
GN
136#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
137 | shadow_x_mask | shadow_nx_mask)
6aa8b732 138
fe135d2c
AK
139#define ACC_EXEC_MASK 1
140#define ACC_WRITE_MASK PT_WRITABLE_MASK
141#define ACC_USER_MASK PT_USER_MASK
142#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
143
90bb6fc5
AK
144#include <trace/events/kvm.h>
145
07420171
AK
146#define CREATE_TRACE_POINTS
147#include "mmutrace.h"
148
49fde340
XG
149#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
150#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 151
135f8c2b
AK
152#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
153
220f773a
TY
154/* make pte_list_desc fit well in cache line */
155#define PTE_LIST_EXT 3
156
53c07b18
XG
157struct pte_list_desc {
158 u64 *sptes[PTE_LIST_EXT];
159 struct pte_list_desc *more;
cd4a4e53
AK
160};
161
2d11123a
AK
162struct kvm_shadow_walk_iterator {
163 u64 addr;
164 hpa_t shadow_addr;
2d11123a 165 u64 *sptep;
dd3bfd59 166 int level;
2d11123a
AK
167 unsigned index;
168};
169
170#define for_each_shadow_entry(_vcpu, _addr, _walker) \
171 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
172 shadow_walk_okay(&(_walker)); \
173 shadow_walk_next(&(_walker)))
174
c2a2ac2b
XG
175#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
176 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
177 shadow_walk_okay(&(_walker)) && \
178 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
179 __shadow_walk_next(&(_walker), spte))
180
53c07b18 181static struct kmem_cache *pte_list_desc_cache;
d3d25b04 182static struct kmem_cache *mmu_page_header_cache;
45221ab6 183static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 184
7b52345e
SY
185static u64 __read_mostly shadow_nx_mask;
186static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
187static u64 __read_mostly shadow_user_mask;
188static u64 __read_mostly shadow_accessed_mask;
189static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
190static u64 __read_mostly shadow_mmio_mask;
191
192static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 193static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
194
195void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
196{
197 shadow_mmio_mask = mmio_mask;
198}
199EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
200
f2fd125d 201/*
ee3d1570
DM
202 * the low bit of the generation number is always presumed to be zero.
203 * This disables mmio caching during memslot updates. The concept is
204 * similar to a seqcount but instead of retrying the access we just punt
205 * and ignore the cache.
206 *
207 * spte bits 3-11 are used as bits 1-9 of the generation number,
208 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 209 */
ee3d1570 210#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
211#define MMIO_SPTE_GEN_HIGH_SHIFT 52
212
ee3d1570
DM
213#define MMIO_GEN_SHIFT 20
214#define MMIO_GEN_LOW_SHIFT 10
215#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942 216#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
217
218static u64 generation_mmio_spte_mask(unsigned int gen)
219{
220 u64 mask;
221
842bb26a 222 WARN_ON(gen & ~MMIO_GEN_MASK);
f2fd125d
XG
223
224 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
225 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
226 return mask;
227}
228
229static unsigned int get_mmio_spte_generation(u64 spte)
230{
231 unsigned int gen;
232
233 spte &= ~shadow_mmio_mask;
234
235 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
236 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
237 return gen;
238}
239
f8f55942
XG
240static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
241{
00f034a1 242 return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
f8f55942
XG
243}
244
f2fd125d
XG
245static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
246 unsigned access)
ce88decf 247{
f8f55942
XG
248 unsigned int gen = kvm_current_mmio_generation(kvm);
249 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 250
ce88decf 251 access &= ACC_WRITE_MASK | ACC_USER_MASK;
f2fd125d 252 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
f2fd125d 253
f8f55942 254 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 255 mmu_spte_set(sptep, mask);
ce88decf
XG
256}
257
258static bool is_mmio_spte(u64 spte)
259{
260 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
261}
262
263static gfn_t get_mmio_spte_gfn(u64 spte)
264{
842bb26a 265 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 266 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
267}
268
269static unsigned get_mmio_spte_access(u64 spte)
270{
842bb26a 271 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 272 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
273}
274
f2fd125d
XG
275static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
276 pfn_t pfn, unsigned access)
ce88decf
XG
277{
278 if (unlikely(is_noslot_pfn(pfn))) {
f2fd125d 279 mark_mmio_spte(kvm, sptep, gfn, access);
ce88decf
XG
280 return true;
281 }
282
283 return false;
284}
c7addb90 285
f8f55942
XG
286static bool check_mmio_spte(struct kvm *kvm, u64 spte)
287{
089504c0
XG
288 unsigned int kvm_gen, spte_gen;
289
290 kvm_gen = kvm_current_mmio_generation(kvm);
291 spte_gen = get_mmio_spte_generation(spte);
292
293 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
294 return likely(kvm_gen == spte_gen);
f8f55942
XG
295}
296
7b52345e 297void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 298 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
299{
300 shadow_user_mask = user_mask;
301 shadow_accessed_mask = accessed_mask;
302 shadow_dirty_mask = dirty_mask;
303 shadow_nx_mask = nx_mask;
304 shadow_x_mask = x_mask;
305}
306EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
307
6aa8b732
AK
308static int is_cpuid_PSE36(void)
309{
310 return 1;
311}
312
73b1087e
AK
313static int is_nx(struct kvm_vcpu *vcpu)
314{
f6801dff 315 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
316}
317
c7addb90
AK
318static int is_shadow_present_pte(u64 pte)
319{
ce88decf 320 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
321}
322
05da4558
MT
323static int is_large_pte(u64 pte)
324{
325 return pte & PT_PAGE_SIZE_MASK;
326}
327
43a3795a 328static int is_rmap_spte(u64 pte)
cd4a4e53 329{
4b1a80fa 330 return is_shadow_present_pte(pte);
cd4a4e53
AK
331}
332
776e6633
MT
333static int is_last_spte(u64 pte, int level)
334{
335 if (level == PT_PAGE_TABLE_LEVEL)
336 return 1;
852e3c19 337 if (is_large_pte(pte))
776e6633
MT
338 return 1;
339 return 0;
340}
341
35149e21 342static pfn_t spte_to_pfn(u64 pte)
0b49ea86 343{
35149e21 344 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
345}
346
da928521
AK
347static gfn_t pse36_gfn_delta(u32 gpte)
348{
349 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
350
351 return (gpte & PT32_DIR_PSE36_MASK) << shift;
352}
353
603e0651 354#ifdef CONFIG_X86_64
d555c333 355static void __set_spte(u64 *sptep, u64 spte)
e663ee64 356{
603e0651 357 *sptep = spte;
e663ee64
AK
358}
359
603e0651 360static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 361{
603e0651
XG
362 *sptep = spte;
363}
364
365static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
366{
367 return xchg(sptep, spte);
368}
c2a2ac2b
XG
369
370static u64 __get_spte_lockless(u64 *sptep)
371{
372 return ACCESS_ONCE(*sptep);
373}
ce88decf
XG
374
375static bool __check_direct_spte_mmio_pf(u64 spte)
376{
377 /* It is valid if the spte is zapped. */
378 return spte == 0ull;
379}
a9221dd5 380#else
603e0651
XG
381union split_spte {
382 struct {
383 u32 spte_low;
384 u32 spte_high;
385 };
386 u64 spte;
387};
a9221dd5 388
c2a2ac2b
XG
389static void count_spte_clear(u64 *sptep, u64 spte)
390{
391 struct kvm_mmu_page *sp = page_header(__pa(sptep));
392
393 if (is_shadow_present_pte(spte))
394 return;
395
396 /* Ensure the spte is completely set before we increase the count */
397 smp_wmb();
398 sp->clear_spte_count++;
399}
400
603e0651
XG
401static void __set_spte(u64 *sptep, u64 spte)
402{
403 union split_spte *ssptep, sspte;
a9221dd5 404
603e0651
XG
405 ssptep = (union split_spte *)sptep;
406 sspte = (union split_spte)spte;
407
408 ssptep->spte_high = sspte.spte_high;
409
410 /*
411 * If we map the spte from nonpresent to present, We should store
412 * the high bits firstly, then set present bit, so cpu can not
413 * fetch this spte while we are setting the spte.
414 */
415 smp_wmb();
416
417 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
418}
419
603e0651
XG
420static void __update_clear_spte_fast(u64 *sptep, u64 spte)
421{
422 union split_spte *ssptep, sspte;
423
424 ssptep = (union split_spte *)sptep;
425 sspte = (union split_spte)spte;
426
427 ssptep->spte_low = sspte.spte_low;
428
429 /*
430 * If we map the spte from present to nonpresent, we should clear
431 * present bit firstly to avoid vcpu fetch the old high bits.
432 */
433 smp_wmb();
434
435 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 436 count_spte_clear(sptep, spte);
603e0651
XG
437}
438
439static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
440{
441 union split_spte *ssptep, sspte, orig;
442
443 ssptep = (union split_spte *)sptep;
444 sspte = (union split_spte)spte;
445
446 /* xchg acts as a barrier before the setting of the high bits */
447 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
448 orig.spte_high = ssptep->spte_high;
449 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 450 count_spte_clear(sptep, spte);
603e0651
XG
451
452 return orig.spte;
453}
c2a2ac2b
XG
454
455/*
456 * The idea using the light way get the spte on x86_32 guest is from
457 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
458 *
459 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
460 * coalesces them and we are running out of the MMU lock. Therefore
461 * we need to protect against in-progress updates of the spte.
462 *
463 * Reading the spte while an update is in progress may get the old value
464 * for the high part of the spte. The race is fine for a present->non-present
465 * change (because the high part of the spte is ignored for non-present spte),
466 * but for a present->present change we must reread the spte.
467 *
468 * All such changes are done in two steps (present->non-present and
469 * non-present->present), hence it is enough to count the number of
470 * present->non-present updates: if it changed while reading the spte,
471 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
472 */
473static u64 __get_spte_lockless(u64 *sptep)
474{
475 struct kvm_mmu_page *sp = page_header(__pa(sptep));
476 union split_spte spte, *orig = (union split_spte *)sptep;
477 int count;
478
479retry:
480 count = sp->clear_spte_count;
481 smp_rmb();
482
483 spte.spte_low = orig->spte_low;
484 smp_rmb();
485
486 spte.spte_high = orig->spte_high;
487 smp_rmb();
488
489 if (unlikely(spte.spte_low != orig->spte_low ||
490 count != sp->clear_spte_count))
491 goto retry;
492
493 return spte.spte;
494}
ce88decf
XG
495
496static bool __check_direct_spte_mmio_pf(u64 spte)
497{
498 union split_spte sspte = (union split_spte)spte;
499 u32 high_mmio_mask = shadow_mmio_mask >> 32;
500
501 /* It is valid if the spte is zapped. */
502 if (spte == 0ull)
503 return true;
504
505 /* It is valid if the spte is being zapped. */
506 if (sspte.spte_low == 0ull &&
507 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
508 return true;
509
510 return false;
511}
603e0651
XG
512#endif
513
c7ba5b48
XG
514static bool spte_is_locklessly_modifiable(u64 spte)
515{
feb3eb70
GN
516 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
517 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
518}
519
8672b721
XG
520static bool spte_has_volatile_bits(u64 spte)
521{
c7ba5b48
XG
522 /*
523 * Always atomicly update spte if it can be updated
524 * out of mmu-lock, it can ensure dirty bit is not lost,
525 * also, it can help us to get a stable is_writable_pte()
526 * to ensure tlb flush is not missed.
527 */
528 if (spte_is_locklessly_modifiable(spte))
529 return true;
530
8672b721
XG
531 if (!shadow_accessed_mask)
532 return false;
533
534 if (!is_shadow_present_pte(spte))
535 return false;
536
4132779b
XG
537 if ((spte & shadow_accessed_mask) &&
538 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
539 return false;
540
541 return true;
542}
543
4132779b
XG
544static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
545{
546 return (old_spte & bit_mask) && !(new_spte & bit_mask);
547}
548
1df9f2dc
XG
549/* Rules for using mmu_spte_set:
550 * Set the sptep from nonpresent to present.
551 * Note: the sptep being assigned *must* be either not present
552 * or in a state where the hardware will not attempt to update
553 * the spte.
554 */
555static void mmu_spte_set(u64 *sptep, u64 new_spte)
556{
557 WARN_ON(is_shadow_present_pte(*sptep));
558 __set_spte(sptep, new_spte);
559}
560
561/* Rules for using mmu_spte_update:
562 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
563 *
564 * Whenever we overwrite a writable spte with a read-only one we
565 * should flush remote TLBs. Otherwise rmap_write_protect
566 * will find a read-only spte, even though the writable spte
567 * might be cached on a CPU's TLB, the return value indicates this
568 * case.
1df9f2dc 569 */
6e7d0354 570static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 571{
c7ba5b48 572 u64 old_spte = *sptep;
6e7d0354 573 bool ret = false;
4132779b
XG
574
575 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 576
6e7d0354
XG
577 if (!is_shadow_present_pte(old_spte)) {
578 mmu_spte_set(sptep, new_spte);
579 return ret;
580 }
4132779b 581
c7ba5b48 582 if (!spte_has_volatile_bits(old_spte))
603e0651 583 __update_clear_spte_fast(sptep, new_spte);
4132779b 584 else
603e0651 585 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 586
c7ba5b48
XG
587 /*
588 * For the spte updated out of mmu-lock is safe, since
589 * we always atomicly update it, see the comments in
590 * spte_has_volatile_bits().
591 */
7f31c959
XG
592 if (spte_is_locklessly_modifiable(old_spte) &&
593 !is_writable_pte(new_spte))
6e7d0354
XG
594 ret = true;
595
4132779b 596 if (!shadow_accessed_mask)
6e7d0354 597 return ret;
4132779b
XG
598
599 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
600 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
601 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
602 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
603
604 return ret;
b79b93f9
AK
605}
606
1df9f2dc
XG
607/*
608 * Rules for using mmu_spte_clear_track_bits:
609 * It sets the sptep from present to nonpresent, and track the
610 * state bits, it is used to clear the last level sptep.
611 */
612static int mmu_spte_clear_track_bits(u64 *sptep)
613{
614 pfn_t pfn;
615 u64 old_spte = *sptep;
616
617 if (!spte_has_volatile_bits(old_spte))
603e0651 618 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 619 else
603e0651 620 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
621
622 if (!is_rmap_spte(old_spte))
623 return 0;
624
625 pfn = spte_to_pfn(old_spte);
86fde74c
XG
626
627 /*
628 * KVM does not hold the refcount of the page used by
629 * kvm mmu, before reclaiming the page, we should
630 * unmap it from mmu first.
631 */
bf4bea8e 632 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 633
1df9f2dc
XG
634 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
635 kvm_set_pfn_accessed(pfn);
636 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
637 kvm_set_pfn_dirty(pfn);
638 return 1;
639}
640
641/*
642 * Rules for using mmu_spte_clear_no_track:
643 * Directly clear spte without caring the state bits of sptep,
644 * it is used to set the upper level spte.
645 */
646static void mmu_spte_clear_no_track(u64 *sptep)
647{
603e0651 648 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
649}
650
c2a2ac2b
XG
651static u64 mmu_spte_get_lockless(u64 *sptep)
652{
653 return __get_spte_lockless(sptep);
654}
655
656static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
657{
c142786c
AK
658 /*
659 * Prevent page table teardown by making any free-er wait during
660 * kvm_flush_remote_tlbs() IPI to all active vcpus.
661 */
662 local_irq_disable();
663 vcpu->mode = READING_SHADOW_PAGE_TABLES;
664 /*
665 * Make sure a following spte read is not reordered ahead of the write
666 * to vcpu->mode.
667 */
668 smp_mb();
c2a2ac2b
XG
669}
670
671static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
672{
c142786c
AK
673 /*
674 * Make sure the write to vcpu->mode is not reordered in front of
675 * reads to sptes. If it does, kvm_commit_zap_page() can see us
676 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
677 */
678 smp_mb();
679 vcpu->mode = OUTSIDE_GUEST_MODE;
680 local_irq_enable();
c2a2ac2b
XG
681}
682
e2dec939 683static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 684 struct kmem_cache *base_cache, int min)
714b93da
AK
685{
686 void *obj;
687
688 if (cache->nobjs >= min)
e2dec939 689 return 0;
714b93da 690 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 691 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 692 if (!obj)
e2dec939 693 return -ENOMEM;
714b93da
AK
694 cache->objects[cache->nobjs++] = obj;
695 }
e2dec939 696 return 0;
714b93da
AK
697}
698
f759e2b4
XG
699static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
700{
701 return cache->nobjs;
702}
703
e8ad9a70
XG
704static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
705 struct kmem_cache *cache)
714b93da
AK
706{
707 while (mc->nobjs)
e8ad9a70 708 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
709}
710
c1158e63 711static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 712 int min)
c1158e63 713{
842f22ed 714 void *page;
c1158e63
AK
715
716 if (cache->nobjs >= min)
717 return 0;
718 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 719 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
720 if (!page)
721 return -ENOMEM;
842f22ed 722 cache->objects[cache->nobjs++] = page;
c1158e63
AK
723 }
724 return 0;
725}
726
727static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
728{
729 while (mc->nobjs)
c4d198d5 730 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
731}
732
2e3e5882 733static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 734{
e2dec939
AK
735 int r;
736
53c07b18 737 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 738 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
739 if (r)
740 goto out;
ad312c7c 741 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
742 if (r)
743 goto out;
ad312c7c 744 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 745 mmu_page_header_cache, 4);
e2dec939
AK
746out:
747 return r;
714b93da
AK
748}
749
750static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
751{
53c07b18
XG
752 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
753 pte_list_desc_cache);
ad312c7c 754 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
755 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
756 mmu_page_header_cache);
714b93da
AK
757}
758
80feb89a 759static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
760{
761 void *p;
762
763 BUG_ON(!mc->nobjs);
764 p = mc->objects[--mc->nobjs];
714b93da
AK
765 return p;
766}
767
53c07b18 768static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 769{
80feb89a 770 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
771}
772
53c07b18 773static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 774{
53c07b18 775 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
776}
777
2032a93d
LJ
778static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
779{
780 if (!sp->role.direct)
781 return sp->gfns[index];
782
783 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
784}
785
786static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
787{
788 if (sp->role.direct)
789 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
790 else
791 sp->gfns[index] = gfn;
792}
793
05da4558 794/*
d4dbf470
TY
795 * Return the pointer to the large page information for a given gfn,
796 * handling slots that are not large page aligned.
05da4558 797 */
d4dbf470
TY
798static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
799 struct kvm_memory_slot *slot,
800 int level)
05da4558
MT
801{
802 unsigned long idx;
803
fb03cb6f 804 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 805 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
806}
807
808static void account_shadowed(struct kvm *kvm, gfn_t gfn)
809{
d25797b2 810 struct kvm_memory_slot *slot;
d4dbf470 811 struct kvm_lpage_info *linfo;
d25797b2 812 int i;
05da4558 813
a1f4d395 814 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
815 for (i = PT_DIRECTORY_LEVEL;
816 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
817 linfo = lpage_info_slot(gfn, slot, i);
818 linfo->write_count += 1;
d25797b2 819 }
332b207d 820 kvm->arch.indirect_shadow_pages++;
05da4558
MT
821}
822
823static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
824{
d25797b2 825 struct kvm_memory_slot *slot;
d4dbf470 826 struct kvm_lpage_info *linfo;
d25797b2 827 int i;
05da4558 828
a1f4d395 829 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
830 for (i = PT_DIRECTORY_LEVEL;
831 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
832 linfo = lpage_info_slot(gfn, slot, i);
833 linfo->write_count -= 1;
834 WARN_ON(linfo->write_count < 0);
d25797b2 835 }
332b207d 836 kvm->arch.indirect_shadow_pages--;
05da4558
MT
837}
838
d25797b2
JR
839static int has_wrprotected_page(struct kvm *kvm,
840 gfn_t gfn,
841 int level)
05da4558 842{
2843099f 843 struct kvm_memory_slot *slot;
d4dbf470 844 struct kvm_lpage_info *linfo;
05da4558 845
a1f4d395 846 slot = gfn_to_memslot(kvm, gfn);
05da4558 847 if (slot) {
d4dbf470
TY
848 linfo = lpage_info_slot(gfn, slot, level);
849 return linfo->write_count;
05da4558
MT
850 }
851
852 return 1;
853}
854
d25797b2 855static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 856{
8f0b1ab6 857 unsigned long page_size;
d25797b2 858 int i, ret = 0;
05da4558 859
8f0b1ab6 860 page_size = kvm_host_page_size(kvm, gfn);
05da4558 861
d25797b2
JR
862 for (i = PT_PAGE_TABLE_LEVEL;
863 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
864 if (page_size >= KVM_HPAGE_SIZE(i))
865 ret = i;
866 else
867 break;
868 }
869
4c2155ce 870 return ret;
05da4558
MT
871}
872
5d163b1c
XG
873static struct kvm_memory_slot *
874gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
875 bool no_dirty_log)
05da4558
MT
876{
877 struct kvm_memory_slot *slot;
5d163b1c
XG
878
879 slot = gfn_to_memslot(vcpu->kvm, gfn);
880 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
881 (no_dirty_log && slot->dirty_bitmap))
882 slot = NULL;
883
884 return slot;
885}
886
887static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
888{
a0a8eaba 889 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
890}
891
892static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
893{
894 int host_level, level, max_level;
05da4558 895
d25797b2
JR
896 host_level = host_mapping_level(vcpu->kvm, large_gfn);
897
898 if (host_level == PT_PAGE_TABLE_LEVEL)
899 return host_level;
900
55dd98c3 901 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
902
903 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
904 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
905 break;
d25797b2
JR
906
907 return level - 1;
05da4558
MT
908}
909
290fc38d 910/*
53c07b18 911 * Pte mapping structures:
cd4a4e53 912 *
53c07b18 913 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 914 *
53c07b18
XG
915 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
916 * pte_list_desc containing more mappings.
53a27b39 917 *
53c07b18 918 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
919 * the spte was not added.
920 *
cd4a4e53 921 */
53c07b18
XG
922static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
923 unsigned long *pte_list)
cd4a4e53 924{
53c07b18 925 struct pte_list_desc *desc;
53a27b39 926 int i, count = 0;
cd4a4e53 927
53c07b18
XG
928 if (!*pte_list) {
929 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
930 *pte_list = (unsigned long)spte;
931 } else if (!(*pte_list & 1)) {
932 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
933 desc = mmu_alloc_pte_list_desc(vcpu);
934 desc->sptes[0] = (u64 *)*pte_list;
d555c333 935 desc->sptes[1] = spte;
53c07b18 936 *pte_list = (unsigned long)desc | 1;
cb16a7b3 937 ++count;
cd4a4e53 938 } else {
53c07b18
XG
939 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
940 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
941 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 942 desc = desc->more;
53c07b18 943 count += PTE_LIST_EXT;
53a27b39 944 }
53c07b18
XG
945 if (desc->sptes[PTE_LIST_EXT-1]) {
946 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
947 desc = desc->more;
948 }
d555c333 949 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 950 ++count;
d555c333 951 desc->sptes[i] = spte;
cd4a4e53 952 }
53a27b39 953 return count;
cd4a4e53
AK
954}
955
53c07b18
XG
956static void
957pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
958 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
959{
960 int j;
961
53c07b18 962 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 963 ;
d555c333
AK
964 desc->sptes[i] = desc->sptes[j];
965 desc->sptes[j] = NULL;
cd4a4e53
AK
966 if (j != 0)
967 return;
968 if (!prev_desc && !desc->more)
53c07b18 969 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
970 else
971 if (prev_desc)
972 prev_desc->more = desc->more;
973 else
53c07b18
XG
974 *pte_list = (unsigned long)desc->more | 1;
975 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
976}
977
53c07b18 978static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 979{
53c07b18
XG
980 struct pte_list_desc *desc;
981 struct pte_list_desc *prev_desc;
cd4a4e53
AK
982 int i;
983
53c07b18
XG
984 if (!*pte_list) {
985 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 986 BUG();
53c07b18
XG
987 } else if (!(*pte_list & 1)) {
988 rmap_printk("pte_list_remove: %p 1->0\n", spte);
989 if ((u64 *)*pte_list != spte) {
990 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
991 BUG();
992 }
53c07b18 993 *pte_list = 0;
cd4a4e53 994 } else {
53c07b18
XG
995 rmap_printk("pte_list_remove: %p many->many\n", spte);
996 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
997 prev_desc = NULL;
998 while (desc) {
53c07b18 999 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 1000 if (desc->sptes[i] == spte) {
53c07b18 1001 pte_list_desc_remove_entry(pte_list,
714b93da 1002 desc, i,
cd4a4e53
AK
1003 prev_desc);
1004 return;
1005 }
1006 prev_desc = desc;
1007 desc = desc->more;
1008 }
53c07b18 1009 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1010 BUG();
1011 }
1012}
1013
67052b35
XG
1014typedef void (*pte_list_walk_fn) (u64 *spte);
1015static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1016{
1017 struct pte_list_desc *desc;
1018 int i;
1019
1020 if (!*pte_list)
1021 return;
1022
1023 if (!(*pte_list & 1))
1024 return fn((u64 *)*pte_list);
1025
1026 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1027 while (desc) {
1028 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1029 fn(desc->sptes[i]);
1030 desc = desc->more;
1031 }
1032}
1033
9373e2c0 1034static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 1035 struct kvm_memory_slot *slot)
53c07b18 1036{
77d11309 1037 unsigned long idx;
53c07b18 1038
77d11309 1039 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1040 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1041}
1042
9b9b1492
TY
1043/*
1044 * Take gfn and return the reverse mapping to it.
1045 */
1046static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1047{
1048 struct kvm_memory_slot *slot;
1049
1050 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 1051 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
1052}
1053
f759e2b4
XG
1054static bool rmap_can_add(struct kvm_vcpu *vcpu)
1055{
1056 struct kvm_mmu_memory_cache *cache;
1057
1058 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1059 return mmu_memory_cache_free_objects(cache);
1060}
1061
53c07b18
XG
1062static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1063{
1064 struct kvm_mmu_page *sp;
1065 unsigned long *rmapp;
1066
53c07b18
XG
1067 sp = page_header(__pa(spte));
1068 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1069 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1070 return pte_list_add(vcpu, spte, rmapp);
1071}
1072
53c07b18
XG
1073static void rmap_remove(struct kvm *kvm, u64 *spte)
1074{
1075 struct kvm_mmu_page *sp;
1076 gfn_t gfn;
1077 unsigned long *rmapp;
1078
1079 sp = page_header(__pa(spte));
1080 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1081 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1082 pte_list_remove(spte, rmapp);
1083}
1084
1e3f42f0
TY
1085/*
1086 * Used by the following functions to iterate through the sptes linked by a
1087 * rmap. All fields are private and not assumed to be used outside.
1088 */
1089struct rmap_iterator {
1090 /* private fields */
1091 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1092 int pos; /* index of the sptep */
1093};
1094
1095/*
1096 * Iteration must be started by this function. This should also be used after
1097 * removing/dropping sptes from the rmap link because in such cases the
1098 * information in the itererator may not be valid.
1099 *
1100 * Returns sptep if found, NULL otherwise.
1101 */
1102static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1103{
1104 if (!rmap)
1105 return NULL;
1106
1107 if (!(rmap & 1)) {
1108 iter->desc = NULL;
1109 return (u64 *)rmap;
1110 }
1111
1112 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1113 iter->pos = 0;
1114 return iter->desc->sptes[iter->pos];
1115}
1116
1117/*
1118 * Must be used with a valid iterator: e.g. after rmap_get_first().
1119 *
1120 * Returns sptep if found, NULL otherwise.
1121 */
1122static u64 *rmap_get_next(struct rmap_iterator *iter)
1123{
1124 if (iter->desc) {
1125 if (iter->pos < PTE_LIST_EXT - 1) {
1126 u64 *sptep;
1127
1128 ++iter->pos;
1129 sptep = iter->desc->sptes[iter->pos];
1130 if (sptep)
1131 return sptep;
1132 }
1133
1134 iter->desc = iter->desc->more;
1135
1136 if (iter->desc) {
1137 iter->pos = 0;
1138 /* desc->sptes[0] cannot be NULL */
1139 return iter->desc->sptes[iter->pos];
1140 }
1141 }
1142
1143 return NULL;
1144}
1145
c3707958 1146static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1147{
1df9f2dc 1148 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1149 rmap_remove(kvm, sptep);
be38d276
AK
1150}
1151
8e22f955
XG
1152
1153static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1154{
1155 if (is_large_pte(*sptep)) {
1156 WARN_ON(page_header(__pa(sptep))->role.level ==
1157 PT_PAGE_TABLE_LEVEL);
1158 drop_spte(kvm, sptep);
1159 --kvm->stat.lpages;
1160 return true;
1161 }
1162
1163 return false;
1164}
1165
1166static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1167{
1168 if (__drop_large_spte(vcpu->kvm, sptep))
1169 kvm_flush_remote_tlbs(vcpu->kvm);
1170}
1171
1172/*
49fde340 1173 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1174 * spte write-protection is caused by protecting shadow page table.
49fde340 1175 *
b4619660 1176 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1177 * protection:
1178 * - for dirty logging, the spte can be set to writable at anytime if
1179 * its dirty bitmap is properly set.
1180 * - for spte protection, the spte can be writable only after unsync-ing
1181 * shadow page.
8e22f955 1182 *
c126d94f 1183 * Return true if tlb need be flushed.
8e22f955 1184 */
c126d94f 1185static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
d13bc5b5
XG
1186{
1187 u64 spte = *sptep;
1188
49fde340
XG
1189 if (!is_writable_pte(spte) &&
1190 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1191 return false;
1192
1193 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1194
49fde340
XG
1195 if (pt_protect)
1196 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1197 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1198
c126d94f 1199 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1200}
1201
49fde340 1202static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
245c3912 1203 bool pt_protect)
98348e95 1204{
1e3f42f0
TY
1205 u64 *sptep;
1206 struct rmap_iterator iter;
d13bc5b5 1207 bool flush = false;
374cbac0 1208
1e3f42f0
TY
1209 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1210 BUG_ON(!(*sptep & PT_PRESENT_MASK));
a0ed4607 1211
c126d94f 1212 flush |= spte_write_protect(kvm, sptep, pt_protect);
d13bc5b5 1213 sptep = rmap_get_next(&iter);
374cbac0 1214 }
855149aa 1215
d13bc5b5 1216 return flush;
a0ed4607
TY
1217}
1218
5dc99b23
TY
1219/**
1220 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1221 * @kvm: kvm instance
1222 * @slot: slot to protect
1223 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1224 * @mask: indicates which pages we should protect
1225 *
1226 * Used when we do not need to care about huge page mappings: e.g. during dirty
1227 * logging we do not have any such mappings.
1228 */
1229void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1230 struct kvm_memory_slot *slot,
1231 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1232{
1233 unsigned long *rmapp;
a0ed4607 1234
5dc99b23 1235 while (mask) {
65fbe37c
TY
1236 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1237 PT_PAGE_TABLE_LEVEL, slot);
245c3912 1238 __rmap_write_protect(kvm, rmapp, false);
05da4558 1239
5dc99b23
TY
1240 /* clear the first set bit */
1241 mask &= mask - 1;
1242 }
374cbac0
AK
1243}
1244
2f84569f 1245static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1246{
1247 struct kvm_memory_slot *slot;
5dc99b23
TY
1248 unsigned long *rmapp;
1249 int i;
2f84569f 1250 bool write_protected = false;
95d4c16c
TY
1251
1252 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1253
1254 for (i = PT_PAGE_TABLE_LEVEL;
1255 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1256 rmapp = __gfn_to_rmap(gfn, i, slot);
245c3912 1257 write_protected |= __rmap_write_protect(kvm, rmapp, true);
5dc99b23
TY
1258 }
1259
1260 return write_protected;
95d4c16c
TY
1261}
1262
8a8365c5 1263static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1264 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1265 unsigned long data)
e930bffe 1266{
1e3f42f0
TY
1267 u64 *sptep;
1268 struct rmap_iterator iter;
e930bffe
AA
1269 int need_tlb_flush = 0;
1270
1e3f42f0
TY
1271 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1272 BUG_ON(!(*sptep & PT_PRESENT_MASK));
8a9522d2
ALC
1273 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx gfn %llx (%d)\n",
1274 sptep, *sptep, gfn, level);
1e3f42f0
TY
1275
1276 drop_spte(kvm, sptep);
e930bffe
AA
1277 need_tlb_flush = 1;
1278 }
1e3f42f0 1279
e930bffe
AA
1280 return need_tlb_flush;
1281}
1282
8a8365c5 1283static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1284 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1285 unsigned long data)
3da0dd43 1286{
1e3f42f0
TY
1287 u64 *sptep;
1288 struct rmap_iterator iter;
3da0dd43 1289 int need_flush = 0;
1e3f42f0 1290 u64 new_spte;
3da0dd43
IE
1291 pte_t *ptep = (pte_t *)data;
1292 pfn_t new_pfn;
1293
1294 WARN_ON(pte_huge(*ptep));
1295 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1296
1297 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1298 BUG_ON(!is_shadow_present_pte(*sptep));
8a9522d2
ALC
1299 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1300 sptep, *sptep, gfn, level);
1e3f42f0 1301
3da0dd43 1302 need_flush = 1;
1e3f42f0 1303
3da0dd43 1304 if (pte_write(*ptep)) {
1e3f42f0
TY
1305 drop_spte(kvm, sptep);
1306 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1307 } else {
1e3f42f0 1308 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1309 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1310
1311 new_spte &= ~PT_WRITABLE_MASK;
1312 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1313 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1314
1315 mmu_spte_clear_track_bits(sptep);
1316 mmu_spte_set(sptep, new_spte);
1317 sptep = rmap_get_next(&iter);
3da0dd43
IE
1318 }
1319 }
1e3f42f0 1320
3da0dd43
IE
1321 if (need_flush)
1322 kvm_flush_remote_tlbs(kvm);
1323
1324 return 0;
1325}
1326
84504ef3
TY
1327static int kvm_handle_hva_range(struct kvm *kvm,
1328 unsigned long start,
1329 unsigned long end,
1330 unsigned long data,
1331 int (*handler)(struct kvm *kvm,
1332 unsigned long *rmapp,
048212d0 1333 struct kvm_memory_slot *slot,
8a9522d2
ALC
1334 gfn_t gfn,
1335 int level,
84504ef3 1336 unsigned long data))
e930bffe 1337{
be6ba0f0 1338 int j;
f395302e 1339 int ret = 0;
bc6678a3 1340 struct kvm_memslots *slots;
be6ba0f0 1341 struct kvm_memory_slot *memslot;
bc6678a3 1342
90d83dc3 1343 slots = kvm_memslots(kvm);
e930bffe 1344
be6ba0f0 1345 kvm_for_each_memslot(memslot, slots) {
84504ef3 1346 unsigned long hva_start, hva_end;
bcd3ef58 1347 gfn_t gfn_start, gfn_end;
e930bffe 1348
84504ef3
TY
1349 hva_start = max(start, memslot->userspace_addr);
1350 hva_end = min(end, memslot->userspace_addr +
1351 (memslot->npages << PAGE_SHIFT));
1352 if (hva_start >= hva_end)
1353 continue;
1354 /*
1355 * {gfn(page) | page intersects with [hva_start, hva_end)} =
bcd3ef58 1356 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
84504ef3 1357 */
bcd3ef58 1358 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
84504ef3 1359 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
852e3c19 1360
bcd3ef58
TY
1361 for (j = PT_PAGE_TABLE_LEVEL;
1362 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1363 unsigned long idx, idx_end;
1364 unsigned long *rmapp;
8a9522d2 1365 gfn_t gfn = gfn_start;
d4dbf470 1366
bcd3ef58
TY
1367 /*
1368 * {idx(page_j) | page_j intersects with
1369 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1370 */
1371 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1372 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
852e3c19 1373
bcd3ef58 1374 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
d4dbf470 1375
8a9522d2
ALC
1376 for (; idx <= idx_end;
1377 ++idx, gfn += (1UL << KVM_HPAGE_GFN_SHIFT(j)))
1378 ret |= handler(kvm, rmapp++, memslot,
1379 gfn, j, data);
e930bffe
AA
1380 }
1381 }
1382
f395302e 1383 return ret;
e930bffe
AA
1384}
1385
84504ef3
TY
1386static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1387 unsigned long data,
1388 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1389 struct kvm_memory_slot *slot,
8a9522d2 1390 gfn_t gfn, int level,
84504ef3
TY
1391 unsigned long data))
1392{
1393 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1394}
1395
1396int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1397{
3da0dd43
IE
1398 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1399}
1400
b3ae2096
TY
1401int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1402{
1403 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1404}
1405
3da0dd43
IE
1406void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1407{
8a8365c5 1408 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1409}
1410
8a8365c5 1411static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1412 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1413 unsigned long data)
e930bffe 1414{
1e3f42f0 1415 u64 *sptep;
79f702a6 1416 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1417 int young = 0;
1418
57128468 1419 BUG_ON(!shadow_accessed_mask);
534e38b4 1420
1e3f42f0
TY
1421 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1422 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1423 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1424
3f6d8c8a 1425 if (*sptep & shadow_accessed_mask) {
e930bffe 1426 young = 1;
3f6d8c8a
XH
1427 clear_bit((ffs(shadow_accessed_mask) - 1),
1428 (unsigned long *)sptep);
e930bffe 1429 }
e930bffe 1430 }
8a9522d2 1431 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1432 return young;
1433}
1434
8ee53820 1435static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1436 struct kvm_memory_slot *slot, gfn_t gfn,
1437 int level, unsigned long data)
8ee53820 1438{
1e3f42f0
TY
1439 u64 *sptep;
1440 struct rmap_iterator iter;
8ee53820
AA
1441 int young = 0;
1442
1443 /*
1444 * If there's no access bit in the secondary pte set by the
1445 * hardware it's up to gup-fast/gup to set the access bit in
1446 * the primary pte or in the page structure.
1447 */
1448 if (!shadow_accessed_mask)
1449 goto out;
1450
1e3f42f0
TY
1451 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1452 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1453 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1454
3f6d8c8a 1455 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1456 young = 1;
1457 break;
1458 }
8ee53820
AA
1459 }
1460out:
1461 return young;
1462}
1463
53a27b39
MT
1464#define RMAP_RECYCLE_THRESHOLD 1000
1465
852e3c19 1466static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1467{
1468 unsigned long *rmapp;
852e3c19
JR
1469 struct kvm_mmu_page *sp;
1470
1471 sp = page_header(__pa(spte));
53a27b39 1472
852e3c19 1473 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1474
8a9522d2 1475 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
53a27b39
MT
1476 kvm_flush_remote_tlbs(vcpu->kvm);
1477}
1478
57128468 1479int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1480{
57128468
ALC
1481 /*
1482 * In case of absence of EPT Access and Dirty Bits supports,
1483 * emulate the accessed bit for EPT, by checking if this page has
1484 * an EPT mapping, and clearing it if it does. On the next access,
1485 * a new EPT mapping will be established.
1486 * This has some overhead, but not as much as the cost of swapping
1487 * out actively used pages or breaking up actively used hugepages.
1488 */
1489 if (!shadow_accessed_mask) {
1490 /*
1491 * We are holding the kvm->mmu_lock, and we are blowing up
1492 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1493 * This is correct as long as we don't decouple the mmu_lock
1494 * protected regions (like invalidate_range_start|end does).
1495 */
1496 kvm->mmu_notifier_seq++;
1497 return kvm_handle_hva_range(kvm, start, end, 0,
1498 kvm_unmap_rmapp);
1499 }
1500
1501 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1502}
1503
8ee53820
AA
1504int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1505{
1506 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1507}
1508
d6c69ee9 1509#ifdef MMU_DEBUG
47ad8e68 1510static int is_empty_shadow_page(u64 *spt)
6aa8b732 1511{
139bdb2d
AK
1512 u64 *pos;
1513 u64 *end;
1514
47ad8e68 1515 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1516 if (is_shadow_present_pte(*pos)) {
b8688d51 1517 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1518 pos, *pos);
6aa8b732 1519 return 0;
139bdb2d 1520 }
6aa8b732
AK
1521 return 1;
1522}
d6c69ee9 1523#endif
6aa8b732 1524
45221ab6
DH
1525/*
1526 * This value is the sum of all of the kvm instances's
1527 * kvm->arch.n_used_mmu_pages values. We need a global,
1528 * aggregate version in order to make the slab shrinker
1529 * faster
1530 */
1531static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1532{
1533 kvm->arch.n_used_mmu_pages += nr;
1534 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1535}
1536
834be0d8 1537static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1538{
4db35314 1539 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1540 hlist_del(&sp->hash_link);
bd4c86ea
XG
1541 list_del(&sp->link);
1542 free_page((unsigned long)sp->spt);
834be0d8
GN
1543 if (!sp->role.direct)
1544 free_page((unsigned long)sp->gfns);
e8ad9a70 1545 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1546}
1547
cea0f0e7
AK
1548static unsigned kvm_page_table_hashfn(gfn_t gfn)
1549{
1ae0a13d 1550 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1551}
1552
714b93da 1553static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1554 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1555{
cea0f0e7
AK
1556 if (!parent_pte)
1557 return;
cea0f0e7 1558
67052b35 1559 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1560}
1561
4db35314 1562static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1563 u64 *parent_pte)
1564{
67052b35 1565 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1566}
1567
bcdd9a93
XG
1568static void drop_parent_pte(struct kvm_mmu_page *sp,
1569 u64 *parent_pte)
1570{
1571 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1572 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1573}
1574
67052b35
XG
1575static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1576 u64 *parent_pte, int direct)
ad8cfbe3 1577{
67052b35 1578 struct kvm_mmu_page *sp;
7ddca7e4 1579
80feb89a
TY
1580 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1581 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1582 if (!direct)
80feb89a 1583 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1584 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1585
1586 /*
1587 * The active_mmu_pages list is the FIFO list, do not move the
1588 * page until it is zapped. kvm_zap_obsolete_pages depends on
1589 * this feature. See the comments in kvm_zap_obsolete_pages().
1590 */
67052b35 1591 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1592 sp->parent_ptes = 0;
1593 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1594 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1595 return sp;
ad8cfbe3
MT
1596}
1597
67052b35 1598static void mark_unsync(u64 *spte);
1047df1f 1599static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1600{
67052b35 1601 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1602}
1603
67052b35 1604static void mark_unsync(u64 *spte)
0074ff63 1605{
67052b35 1606 struct kvm_mmu_page *sp;
1047df1f 1607 unsigned int index;
0074ff63 1608
67052b35 1609 sp = page_header(__pa(spte));
1047df1f
XG
1610 index = spte - sp->spt;
1611 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1612 return;
1047df1f 1613 if (sp->unsync_children++)
0074ff63 1614 return;
1047df1f 1615 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1616}
1617
e8bc217a 1618static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1619 struct kvm_mmu_page *sp)
e8bc217a
MT
1620{
1621 return 1;
1622}
1623
a7052897
MT
1624static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1625{
1626}
1627
0f53b5b1
XG
1628static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1629 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1630 const void *pte)
0f53b5b1
XG
1631{
1632 WARN_ON(1);
1633}
1634
60c8aec6
MT
1635#define KVM_PAGE_ARRAY_NR 16
1636
1637struct kvm_mmu_pages {
1638 struct mmu_page_and_offset {
1639 struct kvm_mmu_page *sp;
1640 unsigned int idx;
1641 } page[KVM_PAGE_ARRAY_NR];
1642 unsigned int nr;
1643};
1644
cded19f3
HE
1645static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1646 int idx)
4731d4c7 1647{
60c8aec6 1648 int i;
4731d4c7 1649
60c8aec6
MT
1650 if (sp->unsync)
1651 for (i=0; i < pvec->nr; i++)
1652 if (pvec->page[i].sp == sp)
1653 return 0;
1654
1655 pvec->page[pvec->nr].sp = sp;
1656 pvec->page[pvec->nr].idx = idx;
1657 pvec->nr++;
1658 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1659}
1660
1661static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1662 struct kvm_mmu_pages *pvec)
1663{
1664 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1665
37178b8b 1666 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1667 struct kvm_mmu_page *child;
4731d4c7
MT
1668 u64 ent = sp->spt[i];
1669
7a8f1a74
XG
1670 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1671 goto clear_child_bitmap;
1672
1673 child = page_header(ent & PT64_BASE_ADDR_MASK);
1674
1675 if (child->unsync_children) {
1676 if (mmu_pages_add(pvec, child, i))
1677 return -ENOSPC;
1678
1679 ret = __mmu_unsync_walk(child, pvec);
1680 if (!ret)
1681 goto clear_child_bitmap;
1682 else if (ret > 0)
1683 nr_unsync_leaf += ret;
1684 else
1685 return ret;
1686 } else if (child->unsync) {
1687 nr_unsync_leaf++;
1688 if (mmu_pages_add(pvec, child, i))
1689 return -ENOSPC;
1690 } else
1691 goto clear_child_bitmap;
1692
1693 continue;
1694
1695clear_child_bitmap:
1696 __clear_bit(i, sp->unsync_child_bitmap);
1697 sp->unsync_children--;
1698 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1699 }
1700
4731d4c7 1701
60c8aec6
MT
1702 return nr_unsync_leaf;
1703}
1704
1705static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1706 struct kvm_mmu_pages *pvec)
1707{
1708 if (!sp->unsync_children)
1709 return 0;
1710
1711 mmu_pages_add(pvec, sp, 0);
1712 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1713}
1714
4731d4c7
MT
1715static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1716{
1717 WARN_ON(!sp->unsync);
5e1b3ddb 1718 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1719 sp->unsync = 0;
1720 --kvm->stat.mmu_unsync;
1721}
1722
7775834a
XG
1723static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1724 struct list_head *invalid_list);
1725static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1726 struct list_head *invalid_list);
4731d4c7 1727
f34d251d
XG
1728/*
1729 * NOTE: we should pay more attention on the zapped-obsolete page
1730 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1731 * since it has been deleted from active_mmu_pages but still can be found
1732 * at hast list.
1733 *
1734 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1735 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1736 * all the obsolete pages.
1737 */
1044b030
TY
1738#define for_each_gfn_sp(_kvm, _sp, _gfn) \
1739 hlist_for_each_entry(_sp, \
1740 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1741 if ((_sp)->gfn != (_gfn)) {} else
1742
1743#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1744 for_each_gfn_sp(_kvm, _sp, _gfn) \
1745 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
7ae680eb 1746
f918b443 1747/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1748static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1749 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1750{
5b7e0102 1751 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1752 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1753 return 1;
1754 }
1755
f918b443 1756 if (clear_unsync)
1d9dc7e0 1757 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1758
a4a8e6f7 1759 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1760 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1761 return 1;
1762 }
1763
77c3913b 1764 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4731d4c7
MT
1765 return 0;
1766}
1767
1d9dc7e0
XG
1768static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1769 struct kvm_mmu_page *sp)
1770{
d98ba053 1771 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1772 int ret;
1773
d98ba053 1774 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1775 if (ret)
d98ba053
XG
1776 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1777
1d9dc7e0
XG
1778 return ret;
1779}
1780
e37fa785
XG
1781#ifdef CONFIG_KVM_MMU_AUDIT
1782#include "mmu_audit.c"
1783#else
1784static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1785static void mmu_audit_disable(void) { }
1786#endif
1787
d98ba053
XG
1788static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1789 struct list_head *invalid_list)
1d9dc7e0 1790{
d98ba053 1791 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1792}
1793
9f1a122f
XG
1794/* @gfn should be write-protected at the call site */
1795static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1796{
9f1a122f 1797 struct kvm_mmu_page *s;
d98ba053 1798 LIST_HEAD(invalid_list);
9f1a122f
XG
1799 bool flush = false;
1800
b67bfe0d 1801 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1802 if (!s->unsync)
9f1a122f
XG
1803 continue;
1804
1805 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1806 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1807 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1808 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1809 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1810 continue;
1811 }
9f1a122f
XG
1812 flush = true;
1813 }
1814
d98ba053 1815 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f 1816 if (flush)
77c3913b 1817 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
9f1a122f
XG
1818}
1819
60c8aec6
MT
1820struct mmu_page_path {
1821 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1822 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1823};
1824
60c8aec6
MT
1825#define for_each_sp(pvec, sp, parents, i) \
1826 for (i = mmu_pages_next(&pvec, &parents, -1), \
1827 sp = pvec.page[i].sp; \
1828 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1829 i = mmu_pages_next(&pvec, &parents, i))
1830
cded19f3
HE
1831static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1832 struct mmu_page_path *parents,
1833 int i)
60c8aec6
MT
1834{
1835 int n;
1836
1837 for (n = i+1; n < pvec->nr; n++) {
1838 struct kvm_mmu_page *sp = pvec->page[n].sp;
1839
1840 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1841 parents->idx[0] = pvec->page[n].idx;
1842 return n;
1843 }
1844
1845 parents->parent[sp->role.level-2] = sp;
1846 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1847 }
1848
1849 return n;
1850}
1851
cded19f3 1852static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1853{
60c8aec6
MT
1854 struct kvm_mmu_page *sp;
1855 unsigned int level = 0;
1856
1857 do {
1858 unsigned int idx = parents->idx[level];
4731d4c7 1859
60c8aec6
MT
1860 sp = parents->parent[level];
1861 if (!sp)
1862 return;
1863
1864 --sp->unsync_children;
1865 WARN_ON((int)sp->unsync_children < 0);
1866 __clear_bit(idx, sp->unsync_child_bitmap);
1867 level++;
1868 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1869}
1870
60c8aec6
MT
1871static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1872 struct mmu_page_path *parents,
1873 struct kvm_mmu_pages *pvec)
4731d4c7 1874{
60c8aec6
MT
1875 parents->parent[parent->role.level-1] = NULL;
1876 pvec->nr = 0;
1877}
4731d4c7 1878
60c8aec6
MT
1879static void mmu_sync_children(struct kvm_vcpu *vcpu,
1880 struct kvm_mmu_page *parent)
1881{
1882 int i;
1883 struct kvm_mmu_page *sp;
1884 struct mmu_page_path parents;
1885 struct kvm_mmu_pages pages;
d98ba053 1886 LIST_HEAD(invalid_list);
60c8aec6
MT
1887
1888 kvm_mmu_pages_init(parent, &parents, &pages);
1889 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1890 bool protected = false;
b1a36821
MT
1891
1892 for_each_sp(pages, sp, parents, i)
1893 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1894
1895 if (protected)
1896 kvm_flush_remote_tlbs(vcpu->kvm);
1897
60c8aec6 1898 for_each_sp(pages, sp, parents, i) {
d98ba053 1899 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1900 mmu_pages_clear_parents(&parents);
1901 }
d98ba053 1902 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1903 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1904 kvm_mmu_pages_init(parent, &parents, &pages);
1905 }
4731d4c7
MT
1906}
1907
c3707958
XG
1908static void init_shadow_page_table(struct kvm_mmu_page *sp)
1909{
1910 int i;
1911
1912 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1913 sp->spt[i] = 0ull;
1914}
1915
a30f47cb
XG
1916static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1917{
1918 sp->write_flooding_count = 0;
1919}
1920
1921static void clear_sp_write_flooding_count(u64 *spte)
1922{
1923 struct kvm_mmu_page *sp = page_header(__pa(spte));
1924
1925 __clear_sp_write_flooding_count(sp);
1926}
1927
5304b8d3
XG
1928static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1929{
1930 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1931}
1932
cea0f0e7
AK
1933static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1934 gfn_t gfn,
1935 gva_t gaddr,
1936 unsigned level,
f6e2c02b 1937 int direct,
41074d07 1938 unsigned access,
f7d9c7b7 1939 u64 *parent_pte)
cea0f0e7
AK
1940{
1941 union kvm_mmu_page_role role;
cea0f0e7 1942 unsigned quadrant;
9f1a122f 1943 struct kvm_mmu_page *sp;
9f1a122f 1944 bool need_sync = false;
cea0f0e7 1945
a770f6f2 1946 role = vcpu->arch.mmu.base_role;
cea0f0e7 1947 role.level = level;
f6e2c02b 1948 role.direct = direct;
84b0c8c6 1949 if (role.direct)
5b7e0102 1950 role.cr4_pae = 0;
41074d07 1951 role.access = access;
c5a78f2b
JR
1952 if (!vcpu->arch.mmu.direct_map
1953 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1954 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1955 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1956 role.quadrant = quadrant;
1957 }
b67bfe0d 1958 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
7f52af74
XG
1959 if (is_obsolete_sp(vcpu->kvm, sp))
1960 continue;
1961
7ae680eb
XG
1962 if (!need_sync && sp->unsync)
1963 need_sync = true;
4731d4c7 1964
7ae680eb
XG
1965 if (sp->role.word != role.word)
1966 continue;
4731d4c7 1967
7ae680eb
XG
1968 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1969 break;
e02aa901 1970
7ae680eb
XG
1971 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1972 if (sp->unsync_children) {
a8eeb04a 1973 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1974 kvm_mmu_mark_parents_unsync(sp);
1975 } else if (sp->unsync)
1976 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1977
a30f47cb 1978 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1979 trace_kvm_mmu_get_page(sp, false);
1980 return sp;
1981 }
dfc5aa00 1982 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1983 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1984 if (!sp)
1985 return sp;
4db35314
AK
1986 sp->gfn = gfn;
1987 sp->role = role;
7ae680eb
XG
1988 hlist_add_head(&sp->hash_link,
1989 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1990 if (!direct) {
b1a36821
MT
1991 if (rmap_write_protect(vcpu->kvm, gfn))
1992 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1993 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1994 kvm_sync_pages(vcpu, gfn);
1995
4731d4c7
MT
1996 account_shadowed(vcpu->kvm, gfn);
1997 }
5304b8d3 1998 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
c3707958 1999 init_shadow_page_table(sp);
f691fe1d 2000 trace_kvm_mmu_get_page(sp, true);
4db35314 2001 return sp;
cea0f0e7
AK
2002}
2003
2d11123a
AK
2004static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2005 struct kvm_vcpu *vcpu, u64 addr)
2006{
2007 iterator->addr = addr;
2008 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2009 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
2010
2011 if (iterator->level == PT64_ROOT_LEVEL &&
2012 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2013 !vcpu->arch.mmu.direct_map)
2014 --iterator->level;
2015
2d11123a
AK
2016 if (iterator->level == PT32E_ROOT_LEVEL) {
2017 iterator->shadow_addr
2018 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2019 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2020 --iterator->level;
2021 if (!iterator->shadow_addr)
2022 iterator->level = 0;
2023 }
2024}
2025
2026static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2027{
2028 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2029 return false;
4d88954d 2030
2d11123a
AK
2031 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2032 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2033 return true;
2034}
2035
c2a2ac2b
XG
2036static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2037 u64 spte)
2d11123a 2038{
c2a2ac2b 2039 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2040 iterator->level = 0;
2041 return;
2042 }
2043
c2a2ac2b 2044 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2045 --iterator->level;
2046}
2047
c2a2ac2b
XG
2048static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2049{
2050 return __shadow_walk_next(iterator, *iterator->sptep);
2051}
2052
7a1638ce 2053static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
32ef26a3
AK
2054{
2055 u64 spte;
2056
7a1638ce
YZ
2057 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2058 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2059
24db2734 2060 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
7a1638ce
YZ
2061 shadow_user_mask | shadow_x_mask;
2062
2063 if (accessed)
2064 spte |= shadow_accessed_mask;
24db2734 2065
1df9f2dc 2066 mmu_spte_set(sptep, spte);
32ef26a3
AK
2067}
2068
a357bd22
AK
2069static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2070 unsigned direct_access)
2071{
2072 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2073 struct kvm_mmu_page *child;
2074
2075 /*
2076 * For the direct sp, if the guest pte's dirty bit
2077 * changed form clean to dirty, it will corrupt the
2078 * sp's access: allow writable in the read-only sp,
2079 * so we should update the spte at this point to get
2080 * a new sp with the correct access.
2081 */
2082 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2083 if (child->role.access == direct_access)
2084 return;
2085
bcdd9a93 2086 drop_parent_pte(child, sptep);
a357bd22
AK
2087 kvm_flush_remote_tlbs(vcpu->kvm);
2088 }
2089}
2090
505aef8f 2091static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2092 u64 *spte)
2093{
2094 u64 pte;
2095 struct kvm_mmu_page *child;
2096
2097 pte = *spte;
2098 if (is_shadow_present_pte(pte)) {
505aef8f 2099 if (is_last_spte(pte, sp->role.level)) {
c3707958 2100 drop_spte(kvm, spte);
505aef8f
XG
2101 if (is_large_pte(pte))
2102 --kvm->stat.lpages;
2103 } else {
38e3b2b2 2104 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2105 drop_parent_pte(child, spte);
38e3b2b2 2106 }
505aef8f
XG
2107 return true;
2108 }
2109
2110 if (is_mmio_spte(pte))
ce88decf 2111 mmu_spte_clear_no_track(spte);
c3707958 2112
505aef8f 2113 return false;
38e3b2b2
XG
2114}
2115
90cb0529 2116static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2117 struct kvm_mmu_page *sp)
a436036b 2118{
697fe2e2 2119 unsigned i;
697fe2e2 2120
38e3b2b2
XG
2121 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2122 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2123}
2124
4db35314 2125static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2126{
4db35314 2127 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2128}
2129
31aa2b44 2130static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2131{
1e3f42f0
TY
2132 u64 *sptep;
2133 struct rmap_iterator iter;
a436036b 2134
1e3f42f0
TY
2135 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2136 drop_parent_pte(sp, sptep);
31aa2b44
AK
2137}
2138
60c8aec6 2139static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2140 struct kvm_mmu_page *parent,
2141 struct list_head *invalid_list)
4731d4c7 2142{
60c8aec6
MT
2143 int i, zapped = 0;
2144 struct mmu_page_path parents;
2145 struct kvm_mmu_pages pages;
4731d4c7 2146
60c8aec6 2147 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2148 return 0;
60c8aec6
MT
2149
2150 kvm_mmu_pages_init(parent, &parents, &pages);
2151 while (mmu_unsync_walk(parent, &pages)) {
2152 struct kvm_mmu_page *sp;
2153
2154 for_each_sp(pages, sp, parents, i) {
7775834a 2155 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2156 mmu_pages_clear_parents(&parents);
77662e00 2157 zapped++;
60c8aec6 2158 }
60c8aec6
MT
2159 kvm_mmu_pages_init(parent, &parents, &pages);
2160 }
2161
2162 return zapped;
4731d4c7
MT
2163}
2164
7775834a
XG
2165static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2166 struct list_head *invalid_list)
31aa2b44 2167{
4731d4c7 2168 int ret;
f691fe1d 2169
7775834a 2170 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2171 ++kvm->stat.mmu_shadow_zapped;
7775834a 2172 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2173 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2174 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2175
f6e2c02b 2176 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 2177 unaccount_shadowed(kvm, sp->gfn);
5304b8d3 2178
4731d4c7
MT
2179 if (sp->unsync)
2180 kvm_unlink_unsync_page(kvm, sp);
4db35314 2181 if (!sp->root_count) {
54a4f023
GJ
2182 /* Count self */
2183 ret++;
7775834a 2184 list_move(&sp->link, invalid_list);
aa6bd187 2185 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2186 } else {
5b5c6a5a 2187 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2188
2189 /*
2190 * The obsolete pages can not be used on any vcpus.
2191 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2192 */
2193 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2194 kvm_reload_remote_mmus(kvm);
2e53d63a 2195 }
7775834a
XG
2196
2197 sp->role.invalid = 1;
4731d4c7 2198 return ret;
a436036b
AK
2199}
2200
7775834a
XG
2201static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2202 struct list_head *invalid_list)
2203{
945315b9 2204 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2205
2206 if (list_empty(invalid_list))
2207 return;
2208
c142786c
AK
2209 /*
2210 * wmb: make sure everyone sees our modifications to the page tables
2211 * rmb: make sure we see changes to vcpu->mode
2212 */
2213 smp_mb();
4f022648 2214
c142786c
AK
2215 /*
2216 * Wait for all vcpus to exit guest mode and/or lockless shadow
2217 * page table walks.
2218 */
2219 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2220
945315b9 2221 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2222 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2223 kvm_mmu_free_page(sp);
945315b9 2224 }
7775834a
XG
2225}
2226
5da59607
TY
2227static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2228 struct list_head *invalid_list)
2229{
2230 struct kvm_mmu_page *sp;
2231
2232 if (list_empty(&kvm->arch.active_mmu_pages))
2233 return false;
2234
2235 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2236 struct kvm_mmu_page, link);
2237 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2238
2239 return true;
2240}
2241
82ce2c96
IE
2242/*
2243 * Changing the number of mmu pages allocated to the vm
49d5ca26 2244 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2245 */
49d5ca26 2246void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2247{
d98ba053 2248 LIST_HEAD(invalid_list);
82ce2c96 2249
b34cb590
TY
2250 spin_lock(&kvm->mmu_lock);
2251
49d5ca26 2252 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2253 /* Need to free some mmu pages to achieve the goal. */
2254 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2255 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2256 break;
82ce2c96 2257
aa6bd187 2258 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2259 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2260 }
82ce2c96 2261
49d5ca26 2262 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2263
2264 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2265}
2266
1cb3f3ae 2267int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2268{
4db35314 2269 struct kvm_mmu_page *sp;
d98ba053 2270 LIST_HEAD(invalid_list);
a436036b
AK
2271 int r;
2272
9ad17b10 2273 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2274 r = 0;
1cb3f3ae 2275 spin_lock(&kvm->mmu_lock);
b67bfe0d 2276 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2277 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2278 sp->role.word);
2279 r = 1;
f41d335a 2280 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2281 }
d98ba053 2282 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2283 spin_unlock(&kvm->mmu_lock);
2284
a436036b 2285 return r;
cea0f0e7 2286}
1cb3f3ae 2287EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2288
74be52e3
SY
2289/*
2290 * The function is based on mtrr_type_lookup() in
2291 * arch/x86/kernel/cpu/mtrr/generic.c
2292 */
2293static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2294 u64 start, u64 end)
2295{
2296 int i;
2297 u64 base, mask;
2298 u8 prev_match, curr_match;
2299 int num_var_ranges = KVM_NR_VAR_MTRR;
2300
2301 if (!mtrr_state->enabled)
2302 return 0xFF;
2303
2304 /* Make end inclusive end, instead of exclusive */
2305 end--;
2306
2307 /* Look in fixed ranges. Just return the type as per start */
2308 if (mtrr_state->have_fixed && (start < 0x100000)) {
2309 int idx;
2310
2311 if (start < 0x80000) {
2312 idx = 0;
2313 idx += (start >> 16);
2314 return mtrr_state->fixed_ranges[idx];
2315 } else if (start < 0xC0000) {
2316 idx = 1 * 8;
2317 idx += ((start - 0x80000) >> 14);
2318 return mtrr_state->fixed_ranges[idx];
2319 } else if (start < 0x1000000) {
2320 idx = 3 * 8;
2321 idx += ((start - 0xC0000) >> 12);
2322 return mtrr_state->fixed_ranges[idx];
2323 }
2324 }
2325
2326 /*
2327 * Look in variable ranges
2328 * Look of multiple ranges matching this address and pick type
2329 * as per MTRR precedence
2330 */
2331 if (!(mtrr_state->enabled & 2))
2332 return mtrr_state->def_type;
2333
2334 prev_match = 0xFF;
2335 for (i = 0; i < num_var_ranges; ++i) {
2336 unsigned short start_state, end_state;
2337
2338 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2339 continue;
2340
2341 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2342 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2343 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2344 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2345
2346 start_state = ((start & mask) == (base & mask));
2347 end_state = ((end & mask) == (base & mask));
2348 if (start_state != end_state)
2349 return 0xFE;
2350
2351 if ((start & mask) != (base & mask))
2352 continue;
2353
2354 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2355 if (prev_match == 0xFF) {
2356 prev_match = curr_match;
2357 continue;
2358 }
2359
2360 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2361 curr_match == MTRR_TYPE_UNCACHABLE)
2362 return MTRR_TYPE_UNCACHABLE;
2363
2364 if ((prev_match == MTRR_TYPE_WRBACK &&
2365 curr_match == MTRR_TYPE_WRTHROUGH) ||
2366 (prev_match == MTRR_TYPE_WRTHROUGH &&
2367 curr_match == MTRR_TYPE_WRBACK)) {
2368 prev_match = MTRR_TYPE_WRTHROUGH;
2369 curr_match = MTRR_TYPE_WRTHROUGH;
2370 }
2371
2372 if (prev_match != curr_match)
2373 return MTRR_TYPE_UNCACHABLE;
2374 }
2375
2376 if (prev_match != 0xFF)
2377 return prev_match;
2378
2379 return mtrr_state->def_type;
2380}
2381
4b12f0de 2382u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2383{
2384 u8 mtrr;
2385
2386 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2387 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2388 if (mtrr == 0xfe || mtrr == 0xff)
2389 mtrr = MTRR_TYPE_WRBACK;
2390 return mtrr;
2391}
4b12f0de 2392EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2393
9cf5cf5a
XG
2394static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2395{
2396 trace_kvm_mmu_unsync_page(sp);
2397 ++vcpu->kvm->stat.mmu_unsync;
2398 sp->unsync = 1;
2399
2400 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2401}
2402
2403static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2404{
4731d4c7 2405 struct kvm_mmu_page *s;
9cf5cf5a 2406
b67bfe0d 2407 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2408 if (s->unsync)
4731d4c7 2409 continue;
9cf5cf5a
XG
2410 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2411 __kvm_unsync_page(vcpu, s);
4731d4c7 2412 }
4731d4c7
MT
2413}
2414
2415static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2416 bool can_unsync)
2417{
9cf5cf5a 2418 struct kvm_mmu_page *s;
9cf5cf5a
XG
2419 bool need_unsync = false;
2420
b67bfe0d 2421 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
36a2e677
XG
2422 if (!can_unsync)
2423 return 1;
2424
9cf5cf5a 2425 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2426 return 1;
9cf5cf5a 2427
9bb4f6b1 2428 if (!s->unsync)
9cf5cf5a 2429 need_unsync = true;
4731d4c7 2430 }
9cf5cf5a
XG
2431 if (need_unsync)
2432 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2433 return 0;
2434}
2435
d555c333 2436static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2437 unsigned pte_access, int level,
c2d0ee46 2438 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2439 bool can_unsync, bool host_writable)
1c4f1fd6 2440{
6e7d0354 2441 u64 spte;
1e73f9dd 2442 int ret = 0;
64d4d521 2443
f2fd125d 2444 if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
ce88decf
XG
2445 return 0;
2446
982c2565 2447 spte = PT_PRESENT_MASK;
947da538 2448 if (!speculative)
3201b5d9 2449 spte |= shadow_accessed_mask;
640d9b0d 2450
7b52345e
SY
2451 if (pte_access & ACC_EXEC_MASK)
2452 spte |= shadow_x_mask;
2453 else
2454 spte |= shadow_nx_mask;
49fde340 2455
1c4f1fd6 2456 if (pte_access & ACC_USER_MASK)
7b52345e 2457 spte |= shadow_user_mask;
49fde340 2458
852e3c19 2459 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2460 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2461 if (tdp_enabled)
4b12f0de 2462 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
bf4bea8e 2463 kvm_is_reserved_pfn(pfn));
1c4f1fd6 2464
9bdbba13 2465 if (host_writable)
1403283a 2466 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2467 else
2468 pte_access &= ~ACC_WRITE_MASK;
1403283a 2469
35149e21 2470 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2471
c2288505 2472 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2473
c2193463 2474 /*
7751babd
XG
2475 * Other vcpu creates new sp in the window between
2476 * mapping_level() and acquiring mmu-lock. We can
2477 * allow guest to retry the access, the mapping can
2478 * be fixed if guest refault.
c2193463 2479 */
852e3c19 2480 if (level > PT_PAGE_TABLE_LEVEL &&
c2193463 2481 has_wrprotected_page(vcpu->kvm, gfn, level))
be38d276 2482 goto done;
38187c83 2483
49fde340 2484 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2485
ecc5589f
MT
2486 /*
2487 * Optimization: for pte sync, if spte was writable the hash
2488 * lookup is unnecessary (and expensive). Write protection
2489 * is responsibility of mmu_get_page / kvm_sync_page.
2490 * Same reasoning can be applied to dirty page accounting.
2491 */
8dae4445 2492 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2493 goto set_pte;
2494
4731d4c7 2495 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2496 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2497 __func__, gfn);
1e73f9dd 2498 ret = 1;
1c4f1fd6 2499 pte_access &= ~ACC_WRITE_MASK;
49fde340 2500 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2501 }
2502 }
2503
1c4f1fd6
AK
2504 if (pte_access & ACC_WRITE_MASK)
2505 mark_page_dirty(vcpu->kvm, gfn);
2506
38187c83 2507set_pte:
6e7d0354 2508 if (mmu_spte_update(sptep, spte))
b330aa0c 2509 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2510done:
1e73f9dd
MT
2511 return ret;
2512}
2513
d555c333 2514static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
f7616203
XG
2515 unsigned pte_access, int write_fault, int *emulate,
2516 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2517 bool host_writable)
1e73f9dd
MT
2518{
2519 int was_rmapped = 0;
53a27b39 2520 int rmap_count;
1e73f9dd 2521
f7616203
XG
2522 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2523 *sptep, write_fault, gfn);
1e73f9dd 2524
d555c333 2525 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2526 /*
2527 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2528 * the parent of the now unreachable PTE.
2529 */
852e3c19
JR
2530 if (level > PT_PAGE_TABLE_LEVEL &&
2531 !is_large_pte(*sptep)) {
1e73f9dd 2532 struct kvm_mmu_page *child;
d555c333 2533 u64 pte = *sptep;
1e73f9dd
MT
2534
2535 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2536 drop_parent_pte(child, sptep);
3be2264b 2537 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2538 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2539 pgprintk("hfn old %llx new %llx\n",
d555c333 2540 spte_to_pfn(*sptep), pfn);
c3707958 2541 drop_spte(vcpu->kvm, sptep);
91546356 2542 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2543 } else
2544 was_rmapped = 1;
1e73f9dd 2545 }
852e3c19 2546
c2288505
XG
2547 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2548 true, host_writable)) {
1e73f9dd 2549 if (write_fault)
b90a0e6c 2550 *emulate = 1;
77c3913b 2551 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 2552 }
1e73f9dd 2553
ce88decf
XG
2554 if (unlikely(is_mmio_spte(*sptep) && emulate))
2555 *emulate = 1;
2556
d555c333 2557 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2558 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2559 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2560 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2561 *sptep, sptep);
d555c333 2562 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2563 ++vcpu->kvm->stat.lpages;
2564
ffb61bb3 2565 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2566 if (!was_rmapped) {
2567 rmap_count = rmap_add(vcpu, sptep, gfn);
2568 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2569 rmap_recycle(vcpu, sptep, gfn);
2570 }
1c4f1fd6 2571 }
cb9aaa30 2572
f3ac1a4b 2573 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2574}
2575
957ed9ef
XG
2576static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2577 bool no_dirty_log)
2578{
2579 struct kvm_memory_slot *slot;
957ed9ef 2580
5d163b1c 2581 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2582 if (!slot)
6c8ee57b 2583 return KVM_PFN_ERR_FAULT;
957ed9ef 2584
037d92dc 2585 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2586}
2587
2588static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2589 struct kvm_mmu_page *sp,
2590 u64 *start, u64 *end)
2591{
2592 struct page *pages[PTE_PREFETCH_NUM];
2593 unsigned access = sp->role.access;
2594 int i, ret;
2595 gfn_t gfn;
2596
2597 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2598 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2599 return -1;
2600
2601 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2602 if (ret <= 0)
2603 return -1;
2604
2605 for (i = 0; i < ret; i++, gfn++, start++)
f7616203 2606 mmu_set_spte(vcpu, start, access, 0, NULL,
c2288505
XG
2607 sp->role.level, gfn, page_to_pfn(pages[i]),
2608 true, true);
957ed9ef
XG
2609
2610 return 0;
2611}
2612
2613static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2614 struct kvm_mmu_page *sp, u64 *sptep)
2615{
2616 u64 *spte, *start = NULL;
2617 int i;
2618
2619 WARN_ON(!sp->role.direct);
2620
2621 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2622 spte = sp->spt + i;
2623
2624 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2625 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2626 if (!start)
2627 continue;
2628 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2629 break;
2630 start = NULL;
2631 } else if (!start)
2632 start = spte;
2633 }
2634}
2635
2636static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2637{
2638 struct kvm_mmu_page *sp;
2639
2640 /*
2641 * Since it's no accessed bit on EPT, it's no way to
2642 * distinguish between actually accessed translations
2643 * and prefetched, so disable pte prefetch if EPT is
2644 * enabled.
2645 */
2646 if (!shadow_accessed_mask)
2647 return;
2648
2649 sp = page_header(__pa(sptep));
2650 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2651 return;
2652
2653 __direct_pte_prefetch(vcpu, sp, sptep);
2654}
2655
9f652d21 2656static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2657 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2658 bool prefault)
140754bc 2659{
9f652d21 2660 struct kvm_shadow_walk_iterator iterator;
140754bc 2661 struct kvm_mmu_page *sp;
b90a0e6c 2662 int emulate = 0;
140754bc 2663 gfn_t pseudo_gfn;
6aa8b732 2664
989c6b34
MT
2665 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2666 return 0;
2667
9f652d21 2668 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2669 if (iterator.level == level) {
f7616203 2670 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
c2288505
XG
2671 write, &emulate, level, gfn, pfn,
2672 prefault, map_writable);
957ed9ef 2673 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2674 ++vcpu->stat.pf_fixed;
2675 break;
6aa8b732
AK
2676 }
2677
404381c5 2678 drop_large_spte(vcpu, iterator.sptep);
c3707958 2679 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2680 u64 base_addr = iterator.addr;
2681
2682 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2683 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2684 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2685 iterator.level - 1,
2686 1, ACC_ALL, iterator.sptep);
140754bc 2687
7a1638ce 2688 link_shadow_page(iterator.sptep, sp, true);
9f652d21
AK
2689 }
2690 }
b90a0e6c 2691 return emulate;
6aa8b732
AK
2692}
2693
77db5cbd 2694static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2695{
77db5cbd
HY
2696 siginfo_t info;
2697
2698 info.si_signo = SIGBUS;
2699 info.si_errno = 0;
2700 info.si_code = BUS_MCEERR_AR;
2701 info.si_addr = (void __user *)address;
2702 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2703
77db5cbd 2704 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2705}
2706
d7c55201 2707static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156 2708{
4d8b81ab
XG
2709 /*
2710 * Do not cache the mmio info caused by writing the readonly gfn
2711 * into the spte otherwise read access on readonly gfn also can
2712 * caused mmio page fault and treat it as mmio access.
2713 * Return 1 to tell kvm to emulate it.
2714 */
2715 if (pfn == KVM_PFN_ERR_RO_FAULT)
2716 return 1;
2717
e6c1502b 2718 if (pfn == KVM_PFN_ERR_HWPOISON) {
bebb106a 2719 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2720 return 0;
d7c55201 2721 }
edba23e5 2722
d7c55201 2723 return -EFAULT;
bf998156
HY
2724}
2725
936a5fe6
AA
2726static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2727 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2728{
2729 pfn_t pfn = *pfnp;
2730 gfn_t gfn = *gfnp;
2731 int level = *levelp;
2732
2733 /*
2734 * Check if it's a transparent hugepage. If this would be an
2735 * hugetlbfs page, level wouldn't be set to
2736 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2737 * here.
2738 */
bf4bea8e 2739 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6
AA
2740 level == PT_PAGE_TABLE_LEVEL &&
2741 PageTransCompound(pfn_to_page(pfn)) &&
2742 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2743 unsigned long mask;
2744 /*
2745 * mmu_notifier_retry was successful and we hold the
2746 * mmu_lock here, so the pmd can't become splitting
2747 * from under us, and in turn
2748 * __split_huge_page_refcount() can't run from under
2749 * us and we can safely transfer the refcount from
2750 * PG_tail to PG_head as we switch the pfn to tail to
2751 * head.
2752 */
2753 *levelp = level = PT_DIRECTORY_LEVEL;
2754 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2755 VM_BUG_ON((gfn & mask) != (pfn & mask));
2756 if (pfn & mask) {
2757 gfn &= ~mask;
2758 *gfnp = gfn;
2759 kvm_release_pfn_clean(pfn);
2760 pfn &= ~mask;
c3586667 2761 kvm_get_pfn(pfn);
936a5fe6
AA
2762 *pfnp = pfn;
2763 }
2764 }
2765}
2766
d7c55201
XG
2767static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2768 pfn_t pfn, unsigned access, int *ret_val)
2769{
2770 bool ret = true;
2771
2772 /* The pfn is invalid, report the error! */
81c52c56 2773 if (unlikely(is_error_pfn(pfn))) {
d7c55201
XG
2774 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2775 goto exit;
2776 }
2777
ce88decf 2778 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2779 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2780
2781 ret = false;
2782exit:
2783 return ret;
2784}
2785
e5552fd2 2786static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2787{
1c118b82
XG
2788 /*
2789 * Do not fix the mmio spte with invalid generation number which
2790 * need to be updated by slow page fault path.
2791 */
2792 if (unlikely(error_code & PFERR_RSVD_MASK))
2793 return false;
2794
c7ba5b48
XG
2795 /*
2796 * #PF can be fast only if the shadow page table is present and it
2797 * is caused by write-protect, that means we just need change the
2798 * W bit of the spte which can be done out of mmu-lock.
2799 */
2800 if (!(error_code & PFERR_PRESENT_MASK) ||
2801 !(error_code & PFERR_WRITE_MASK))
2802 return false;
2803
2804 return true;
2805}
2806
2807static bool
92a476cb
XG
2808fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2809 u64 *sptep, u64 spte)
c7ba5b48 2810{
c7ba5b48
XG
2811 gfn_t gfn;
2812
2813 WARN_ON(!sp->role.direct);
2814
2815 /*
2816 * The gfn of direct spte is stable since it is calculated
2817 * by sp->gfn.
2818 */
2819 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2820
2821 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2822 mark_page_dirty(vcpu->kvm, gfn);
2823
2824 return true;
2825}
2826
2827/*
2828 * Return value:
2829 * - true: let the vcpu to access on the same address again.
2830 * - false: let the real page fault path to fix it.
2831 */
2832static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2833 u32 error_code)
2834{
2835 struct kvm_shadow_walk_iterator iterator;
92a476cb 2836 struct kvm_mmu_page *sp;
c7ba5b48
XG
2837 bool ret = false;
2838 u64 spte = 0ull;
2839
37f6a4e2
MT
2840 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2841 return false;
2842
e5552fd2 2843 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
2844 return false;
2845
2846 walk_shadow_page_lockless_begin(vcpu);
2847 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2848 if (!is_shadow_present_pte(spte) || iterator.level < level)
2849 break;
2850
2851 /*
2852 * If the mapping has been changed, let the vcpu fault on the
2853 * same address again.
2854 */
2855 if (!is_rmap_spte(spte)) {
2856 ret = true;
2857 goto exit;
2858 }
2859
92a476cb
XG
2860 sp = page_header(__pa(iterator.sptep));
2861 if (!is_last_spte(spte, sp->role.level))
c7ba5b48
XG
2862 goto exit;
2863
2864 /*
2865 * Check if it is a spurious fault caused by TLB lazily flushed.
2866 *
2867 * Need not check the access of upper level table entries since
2868 * they are always ACC_ALL.
2869 */
2870 if (is_writable_pte(spte)) {
2871 ret = true;
2872 goto exit;
2873 }
2874
2875 /*
2876 * Currently, to simplify the code, only the spte write-protected
2877 * by dirty-log can be fast fixed.
2878 */
2879 if (!spte_is_locklessly_modifiable(spte))
2880 goto exit;
2881
c126d94f
XG
2882 /*
2883 * Do not fix write-permission on the large spte since we only dirty
2884 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2885 * that means other pages are missed if its slot is dirty-logged.
2886 *
2887 * Instead, we let the slow page fault path create a normal spte to
2888 * fix the access.
2889 *
2890 * See the comments in kvm_arch_commit_memory_region().
2891 */
2892 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2893 goto exit;
2894
c7ba5b48
XG
2895 /*
2896 * Currently, fast page fault only works for direct mapping since
2897 * the gfn is not stable for indirect shadow page.
2898 * See Documentation/virtual/kvm/locking.txt to get more detail.
2899 */
92a476cb 2900 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
c7ba5b48 2901exit:
a72faf25
XG
2902 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2903 spte, ret);
c7ba5b48
XG
2904 walk_shadow_page_lockless_end(vcpu);
2905
2906 return ret;
2907}
2908
78b2c54a 2909static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe 2910 gva_t gva, pfn_t *pfn, bool write, bool *writable);
450e0b41 2911static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 2912
c7ba5b48
XG
2913static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2914 gfn_t gfn, bool prefault)
10589a46
MT
2915{
2916 int r;
852e3c19 2917 int level;
936a5fe6 2918 int force_pt_level;
35149e21 2919 pfn_t pfn;
e930bffe 2920 unsigned long mmu_seq;
c7ba5b48 2921 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2922
936a5fe6
AA
2923 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2924 if (likely(!force_pt_level)) {
2925 level = mapping_level(vcpu, gfn);
2926 /*
2927 * This path builds a PAE pagetable - so we can map
2928 * 2mb pages at maximum. Therefore check if the level
2929 * is larger than that.
2930 */
2931 if (level > PT_DIRECTORY_LEVEL)
2932 level = PT_DIRECTORY_LEVEL;
852e3c19 2933
936a5fe6
AA
2934 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2935 } else
2936 level = PT_PAGE_TABLE_LEVEL;
05da4558 2937
c7ba5b48
XG
2938 if (fast_page_fault(vcpu, v, level, error_code))
2939 return 0;
2940
e930bffe 2941 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2942 smp_rmb();
060c2abe 2943
78b2c54a 2944 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2945 return 0;
aaee2c94 2946
d7c55201
XG
2947 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2948 return r;
d196e343 2949
aaee2c94 2950 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 2951 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 2952 goto out_unlock;
450e0b41 2953 make_mmu_pages_available(vcpu);
936a5fe6
AA
2954 if (likely(!force_pt_level))
2955 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2956 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2957 prefault);
aaee2c94
MT
2958 spin_unlock(&vcpu->kvm->mmu_lock);
2959
aaee2c94 2960
10589a46 2961 return r;
e930bffe
AA
2962
2963out_unlock:
2964 spin_unlock(&vcpu->kvm->mmu_lock);
2965 kvm_release_pfn_clean(pfn);
2966 return 0;
10589a46
MT
2967}
2968
2969
17ac10ad
AK
2970static void mmu_free_roots(struct kvm_vcpu *vcpu)
2971{
2972 int i;
4db35314 2973 struct kvm_mmu_page *sp;
d98ba053 2974 LIST_HEAD(invalid_list);
17ac10ad 2975
ad312c7c 2976 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2977 return;
35af577a 2978
81407ca5
JR
2979 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2980 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2981 vcpu->arch.mmu.direct_map)) {
ad312c7c 2982 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2983
35af577a 2984 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
2985 sp = page_header(root);
2986 --sp->root_count;
d98ba053
XG
2987 if (!sp->root_count && sp->role.invalid) {
2988 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2989 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2990 }
aaee2c94 2991 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 2992 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2993 return;
2994 }
35af577a
GN
2995
2996 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 2997 for (i = 0; i < 4; ++i) {
ad312c7c 2998 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2999
417726a3 3000 if (root) {
417726a3 3001 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
3002 sp = page_header(root);
3003 --sp->root_count;
2e53d63a 3004 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
3005 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3006 &invalid_list);
417726a3 3007 }
ad312c7c 3008 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3009 }
d98ba053 3010 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3011 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3012 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3013}
3014
8986ecc0
MT
3015static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3016{
3017 int ret = 0;
3018
3019 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3020 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3021 ret = 1;
3022 }
3023
3024 return ret;
3025}
3026
651dd37a
JR
3027static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3028{
3029 struct kvm_mmu_page *sp;
7ebaf15e 3030 unsigned i;
651dd37a
JR
3031
3032 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3033 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3034 make_mmu_pages_available(vcpu);
651dd37a
JR
3035 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3036 1, ACC_ALL, NULL);
3037 ++sp->root_count;
3038 spin_unlock(&vcpu->kvm->mmu_lock);
3039 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3040 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3041 for (i = 0; i < 4; ++i) {
3042 hpa_t root = vcpu->arch.mmu.pae_root[i];
3043
3044 ASSERT(!VALID_PAGE(root));
3045 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3046 make_mmu_pages_available(vcpu);
649497d1
AK
3047 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3048 i << 30,
651dd37a
JR
3049 PT32_ROOT_LEVEL, 1, ACC_ALL,
3050 NULL);
3051 root = __pa(sp->spt);
3052 ++sp->root_count;
3053 spin_unlock(&vcpu->kvm->mmu_lock);
3054 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3055 }
6292757f 3056 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3057 } else
3058 BUG();
3059
3060 return 0;
3061}
3062
3063static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3064{
4db35314 3065 struct kvm_mmu_page *sp;
81407ca5
JR
3066 u64 pdptr, pm_mask;
3067 gfn_t root_gfn;
3068 int i;
3bb65a22 3069
5777ed34 3070 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3071
651dd37a
JR
3072 if (mmu_check_root(vcpu, root_gfn))
3073 return 1;
3074
3075 /*
3076 * Do we shadow a long mode page table? If so we need to
3077 * write-protect the guests page table root.
3078 */
3079 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 3080 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
3081
3082 ASSERT(!VALID_PAGE(root));
651dd37a 3083
8facbbff 3084 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3085 make_mmu_pages_available(vcpu);
651dd37a
JR
3086 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3087 0, ACC_ALL, NULL);
4db35314
AK
3088 root = __pa(sp->spt);
3089 ++sp->root_count;
8facbbff 3090 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3091 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3092 return 0;
17ac10ad 3093 }
f87f9288 3094
651dd37a
JR
3095 /*
3096 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3097 * or a PAE 3-level page table. In either case we need to be aware that
3098 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3099 */
81407ca5
JR
3100 pm_mask = PT_PRESENT_MASK;
3101 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3102 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3103
17ac10ad 3104 for (i = 0; i < 4; ++i) {
ad312c7c 3105 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
3106
3107 ASSERT(!VALID_PAGE(root));
ad312c7c 3108 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3109 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3110 if (!is_present_gpte(pdptr)) {
ad312c7c 3111 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3112 continue;
3113 }
6de4f3ad 3114 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3115 if (mmu_check_root(vcpu, root_gfn))
3116 return 1;
5a7388c2 3117 }
8facbbff 3118 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3119 make_mmu_pages_available(vcpu);
4db35314 3120 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3121 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3122 ACC_ALL, NULL);
4db35314
AK
3123 root = __pa(sp->spt);
3124 ++sp->root_count;
8facbbff
AK
3125 spin_unlock(&vcpu->kvm->mmu_lock);
3126
81407ca5 3127 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3128 }
6292757f 3129 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3130
3131 /*
3132 * If we shadow a 32 bit page table with a long mode page
3133 * table we enter this path.
3134 */
3135 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3136 if (vcpu->arch.mmu.lm_root == NULL) {
3137 /*
3138 * The additional page necessary for this is only
3139 * allocated on demand.
3140 */
3141
3142 u64 *lm_root;
3143
3144 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3145 if (lm_root == NULL)
3146 return 1;
3147
3148 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3149
3150 vcpu->arch.mmu.lm_root = lm_root;
3151 }
3152
3153 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3154 }
3155
8986ecc0 3156 return 0;
17ac10ad
AK
3157}
3158
651dd37a
JR
3159static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3160{
3161 if (vcpu->arch.mmu.direct_map)
3162 return mmu_alloc_direct_roots(vcpu);
3163 else
3164 return mmu_alloc_shadow_roots(vcpu);
3165}
3166
0ba73cda
MT
3167static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3168{
3169 int i;
3170 struct kvm_mmu_page *sp;
3171
81407ca5
JR
3172 if (vcpu->arch.mmu.direct_map)
3173 return;
3174
0ba73cda
MT
3175 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3176 return;
6903074c 3177
56f17dd3 3178 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
0375f7fa 3179 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3180 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3181 hpa_t root = vcpu->arch.mmu.root_hpa;
3182 sp = page_header(root);
3183 mmu_sync_children(vcpu, sp);
0375f7fa 3184 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3185 return;
3186 }
3187 for (i = 0; i < 4; ++i) {
3188 hpa_t root = vcpu->arch.mmu.pae_root[i];
3189
8986ecc0 3190 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3191 root &= PT64_BASE_ADDR_MASK;
3192 sp = page_header(root);
3193 mmu_sync_children(vcpu, sp);
3194 }
3195 }
0375f7fa 3196 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3197}
3198
3199void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3200{
3201 spin_lock(&vcpu->kvm->mmu_lock);
3202 mmu_sync_roots(vcpu);
6cffe8ca 3203 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3204}
bfd0a56b 3205EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3206
1871c602 3207static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3208 u32 access, struct x86_exception *exception)
6aa8b732 3209{
ab9ae313
AK
3210 if (exception)
3211 exception->error_code = 0;
6aa8b732
AK
3212 return vaddr;
3213}
3214
6539e738 3215static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3216 u32 access,
3217 struct x86_exception *exception)
6539e738 3218{
ab9ae313
AK
3219 if (exception)
3220 exception->error_code = 0;
54987b7a 3221 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3222}
3223
ce88decf
XG
3224static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3225{
3226 if (direct)
3227 return vcpu_match_mmio_gpa(vcpu, addr);
3228
3229 return vcpu_match_mmio_gva(vcpu, addr);
3230}
3231
3232
3233/*
3234 * On direct hosts, the last spte is only allows two states
3235 * for mmio page fault:
3236 * - It is the mmio spte
3237 * - It is zapped or it is being zapped.
3238 *
3239 * This function completely checks the spte when the last spte
3240 * is not the mmio spte.
3241 */
3242static bool check_direct_spte_mmio_pf(u64 spte)
3243{
3244 return __check_direct_spte_mmio_pf(spte);
3245}
3246
3247static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3248{
3249 struct kvm_shadow_walk_iterator iterator;
3250 u64 spte = 0ull;
3251
37f6a4e2
MT
3252 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3253 return spte;
3254
ce88decf
XG
3255 walk_shadow_page_lockless_begin(vcpu);
3256 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3257 if (!is_shadow_present_pte(spte))
3258 break;
3259 walk_shadow_page_lockless_end(vcpu);
3260
3261 return spte;
3262}
3263
ce88decf
XG
3264int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3265{
3266 u64 spte;
3267
3268 if (quickly_check_mmio_pf(vcpu, addr, direct))
b37fbea6 3269 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3270
3271 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3272
3273 if (is_mmio_spte(spte)) {
3274 gfn_t gfn = get_mmio_spte_gfn(spte);
3275 unsigned access = get_mmio_spte_access(spte);
3276
f8f55942
XG
3277 if (!check_mmio_spte(vcpu->kvm, spte))
3278 return RET_MMIO_PF_INVALID;
3279
ce88decf
XG
3280 if (direct)
3281 addr = 0;
4f022648
XG
3282
3283 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3284 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
b37fbea6 3285 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3286 }
3287
3288 /*
3289 * It's ok if the gva is remapped by other cpus on shadow guest,
3290 * it's a BUG if the gfn is not a mmio page.
3291 */
3292 if (direct && !check_direct_spte_mmio_pf(spte))
b37fbea6 3293 return RET_MMIO_PF_BUG;
ce88decf
XG
3294
3295 /*
3296 * If the page table is zapped by other cpus, let CPU fault again on
3297 * the address.
3298 */
b37fbea6 3299 return RET_MMIO_PF_RETRY;
ce88decf
XG
3300}
3301EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3302
3303static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3304 u32 error_code, bool direct)
3305{
3306 int ret;
3307
3308 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
b37fbea6 3309 WARN_ON(ret == RET_MMIO_PF_BUG);
ce88decf
XG
3310 return ret;
3311}
3312
6aa8b732 3313static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3314 u32 error_code, bool prefault)
6aa8b732 3315{
e833240f 3316 gfn_t gfn;
e2dec939 3317 int r;
6aa8b732 3318
b8688d51 3319 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3320
f8f55942
XG
3321 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3322 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3323
3324 if (likely(r != RET_MMIO_PF_INVALID))
3325 return r;
3326 }
ce88decf 3327
e2dec939
AK
3328 r = mmu_topup_memory_caches(vcpu);
3329 if (r)
3330 return r;
714b93da 3331
6aa8b732 3332 ASSERT(vcpu);
ad312c7c 3333 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3334
e833240f 3335 gfn = gva >> PAGE_SHIFT;
6aa8b732 3336
e833240f 3337 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3338 error_code, gfn, prefault);
6aa8b732
AK
3339}
3340
7e1fbeac 3341static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3342{
3343 struct kvm_arch_async_pf arch;
fb67e14f 3344
7c90705b 3345 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3346 arch.gfn = gfn;
c4806acd 3347 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3348 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92 3349
e0ead41a 3350 return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
af585b92
GN
3351}
3352
3353static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3354{
3355 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3356 kvm_event_needs_reinjection(vcpu)))
3357 return false;
3358
3359 return kvm_x86_ops->interrupt_allowed(vcpu);
3360}
3361
78b2c54a 3362static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3363 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3364{
3365 bool async;
3366
612819c3 3367 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3368
3369 if (!async)
3370 return false; /* *pfn has correct page already */
3371
78b2c54a 3372 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3373 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3374 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3375 trace_kvm_async_pf_doublefault(gva, gfn);
3376 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3377 return true;
3378 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3379 return true;
3380 }
3381
612819c3 3382 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3383
3384 return false;
3385}
3386
56028d08 3387static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3388 bool prefault)
fb72d167 3389{
35149e21 3390 pfn_t pfn;
fb72d167 3391 int r;
852e3c19 3392 int level;
936a5fe6 3393 int force_pt_level;
05da4558 3394 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3395 unsigned long mmu_seq;
612819c3
MT
3396 int write = error_code & PFERR_WRITE_MASK;
3397 bool map_writable;
fb72d167
JR
3398
3399 ASSERT(vcpu);
3400 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3401
f8f55942
XG
3402 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3403 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3404
3405 if (likely(r != RET_MMIO_PF_INVALID))
3406 return r;
3407 }
ce88decf 3408
fb72d167
JR
3409 r = mmu_topup_memory_caches(vcpu);
3410 if (r)
3411 return r;
3412
936a5fe6
AA
3413 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3414 if (likely(!force_pt_level)) {
3415 level = mapping_level(vcpu, gfn);
3416 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3417 } else
3418 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3419
c7ba5b48
XG
3420 if (fast_page_fault(vcpu, gpa, level, error_code))
3421 return 0;
3422
e930bffe 3423 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3424 smp_rmb();
af585b92 3425
78b2c54a 3426 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3427 return 0;
3428
d7c55201
XG
3429 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3430 return r;
3431
fb72d167 3432 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3433 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3434 goto out_unlock;
450e0b41 3435 make_mmu_pages_available(vcpu);
936a5fe6
AA
3436 if (likely(!force_pt_level))
3437 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3438 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3439 level, gfn, pfn, prefault);
fb72d167 3440 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3441
3442 return r;
e930bffe
AA
3443
3444out_unlock:
3445 spin_unlock(&vcpu->kvm->mmu_lock);
3446 kvm_release_pfn_clean(pfn);
3447 return 0;
fb72d167
JR
3448}
3449
8a3c1a33
PB
3450static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3451 struct kvm_mmu *context)
6aa8b732 3452{
6aa8b732 3453 context->page_fault = nonpaging_page_fault;
6aa8b732 3454 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3455 context->sync_page = nonpaging_sync_page;
a7052897 3456 context->invlpg = nonpaging_invlpg;
0f53b5b1 3457 context->update_pte = nonpaging_update_pte;
cea0f0e7 3458 context->root_level = 0;
6aa8b732 3459 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3460 context->root_hpa = INVALID_PAGE;
c5a78f2b 3461 context->direct_map = true;
2d48a985 3462 context->nx = false;
6aa8b732
AK
3463}
3464
d8d173da 3465void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
6aa8b732 3466{
cea0f0e7 3467 mmu_free_roots(vcpu);
6aa8b732
AK
3468}
3469
5777ed34
JR
3470static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3471{
9f8fe504 3472 return kvm_read_cr3(vcpu);
5777ed34
JR
3473}
3474
6389ee94
AK
3475static void inject_page_fault(struct kvm_vcpu *vcpu,
3476 struct x86_exception *fault)
6aa8b732 3477{
6389ee94 3478 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3479}
3480
f2fd125d
XG
3481static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3482 unsigned access, int *nr_present)
ce88decf
XG
3483{
3484 if (unlikely(is_mmio_spte(*sptep))) {
3485 if (gfn != get_mmio_spte_gfn(*sptep)) {
3486 mmu_spte_clear_no_track(sptep);
3487 return true;
3488 }
3489
3490 (*nr_present)++;
f2fd125d 3491 mark_mmio_spte(kvm, sptep, gfn, access);
ce88decf
XG
3492 return true;
3493 }
3494
3495 return false;
3496}
3497
6fd01b71
AK
3498static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3499{
3500 unsigned index;
3501
3502 index = level - 1;
3503 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3504 return mmu->last_pte_bitmap & (1 << index);
3505}
3506
37406aaa
NHE
3507#define PTTYPE_EPT 18 /* arbitrary */
3508#define PTTYPE PTTYPE_EPT
3509#include "paging_tmpl.h"
3510#undef PTTYPE
3511
6aa8b732
AK
3512#define PTTYPE 64
3513#include "paging_tmpl.h"
3514#undef PTTYPE
3515
3516#define PTTYPE 32
3517#include "paging_tmpl.h"
3518#undef PTTYPE
3519
52fde8df 3520static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3521 struct kvm_mmu *context)
82725b20 3522{
82725b20
DE
3523 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3524 u64 exb_bit_rsvd = 0;
5f7dde7b 3525 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3526 u64 nonleaf_bit8_rsvd = 0;
82725b20 3527
25d92081
YZ
3528 context->bad_mt_xwr = 0;
3529
2d48a985 3530 if (!context->nx)
82725b20 3531 exb_bit_rsvd = rsvd_bits(63, 63);
5f7dde7b
NA
3532 if (!guest_cpuid_has_gbpages(vcpu))
3533 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
3534
3535 /*
3536 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3537 * leaf entries) on AMD CPUs only.
3538 */
3539 if (guest_cpuid_is_amd(vcpu))
3540 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3541
4d6931c3 3542 switch (context->root_level) {
82725b20
DE
3543 case PT32_ROOT_LEVEL:
3544 /* no rsvd bits for 2 level 4K page table entries */
3545 context->rsvd_bits_mask[0][1] = 0;
3546 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3547 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3548
3549 if (!is_pse(vcpu)) {
3550 context->rsvd_bits_mask[1][1] = 0;
3551 break;
3552 }
3553
82725b20
DE
3554 if (is_cpuid_PSE36())
3555 /* 36bits PSE 4MB page */
3556 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3557 else
3558 /* 32 bits PSE 4MB page */
3559 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3560 break;
3561 case PT32E_ROOT_LEVEL:
20c466b5
DE
3562 context->rsvd_bits_mask[0][2] =
3563 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 3564 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3565 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3566 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3567 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3568 rsvd_bits(maxphyaddr, 62); /* PTE */
3569 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3570 rsvd_bits(maxphyaddr, 62) |
3571 rsvd_bits(13, 20); /* large page */
f815bce8 3572 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3573 break;
3574 case PT64_ROOT_LEVEL:
3575 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
a0c0feb5 3576 nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
82725b20 3577 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
a0c0feb5 3578 nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
82725b20 3579 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3580 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3581 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3582 rsvd_bits(maxphyaddr, 51);
3583 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980 3584 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 3585 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 3586 rsvd_bits(13, 29);
82725b20 3587 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3588 rsvd_bits(maxphyaddr, 51) |
3589 rsvd_bits(13, 20); /* large page */
f815bce8 3590 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3591 break;
3592 }
3593}
3594
25d92081
YZ
3595static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3596 struct kvm_mmu *context, bool execonly)
3597{
3598 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3599 int pte;
3600
3601 context->rsvd_bits_mask[0][3] =
3602 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3603 context->rsvd_bits_mask[0][2] =
3604 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3605 context->rsvd_bits_mask[0][1] =
3606 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3607 context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3608
3609 /* large page */
3610 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3611 context->rsvd_bits_mask[1][2] =
3612 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3613 context->rsvd_bits_mask[1][1] =
3614 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3615 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3616
3617 for (pte = 0; pte < 64; pte++) {
3618 int rwx_bits = pte & 7;
3619 int mt = pte >> 3;
3620 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3621 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3622 (rwx_bits == 0x4 && !execonly))
3623 context->bad_mt_xwr |= (1ull << pte);
3624 }
3625}
3626
97ec8c06 3627void update_permission_bitmask(struct kvm_vcpu *vcpu,
25d92081 3628 struct kvm_mmu *mmu, bool ept)
97d64b78
AK
3629{
3630 unsigned bit, byte, pfec;
3631 u8 map;
66386ade 3632 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
97d64b78 3633
66386ade 3634 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
97ec8c06 3635 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
97d64b78
AK
3636 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3637 pfec = byte << 1;
3638 map = 0;
3639 wf = pfec & PFERR_WRITE_MASK;
3640 uf = pfec & PFERR_USER_MASK;
3641 ff = pfec & PFERR_FETCH_MASK;
97ec8c06
FW
3642 /*
3643 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3644 * subject to SMAP restrictions, and cleared otherwise. The
3645 * bit is only meaningful if the SMAP bit is set in CR4.
3646 */
3647 smapf = !(pfec & PFERR_RSVD_MASK);
97d64b78
AK
3648 for (bit = 0; bit < 8; ++bit) {
3649 x = bit & ACC_EXEC_MASK;
3650 w = bit & ACC_WRITE_MASK;
3651 u = bit & ACC_USER_MASK;
3652
25d92081
YZ
3653 if (!ept) {
3654 /* Not really needed: !nx will cause pte.nx to fault */
3655 x |= !mmu->nx;
3656 /* Allow supervisor writes if !cr0.wp */
3657 w |= !is_write_protection(vcpu) && !uf;
3658 /* Disallow supervisor fetches of user code if cr4.smep */
66386ade 3659 x &= !(cr4_smep && u && !uf);
97ec8c06
FW
3660
3661 /*
3662 * SMAP:kernel-mode data accesses from user-mode
3663 * mappings should fault. A fault is considered
3664 * as a SMAP violation if all of the following
3665 * conditions are ture:
3666 * - X86_CR4_SMAP is set in CR4
3667 * - An user page is accessed
3668 * - Page fault in kernel mode
3669 * - if CPL = 3 or X86_EFLAGS_AC is clear
3670 *
3671 * Here, we cover the first three conditions.
3672 * The fourth is computed dynamically in
3673 * permission_fault() and is in smapf.
3674 *
3675 * Also, SMAP does not affect instruction
3676 * fetches, add the !ff check here to make it
3677 * clearer.
3678 */
3679 smap = cr4_smap && u && !uf && !ff;
25d92081
YZ
3680 } else
3681 /* Not really needed: no U/S accesses on ept */
3682 u = 1;
97d64b78 3683
97ec8c06
FW
3684 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3685 (smapf && smap);
97d64b78
AK
3686 map |= fault << bit;
3687 }
3688 mmu->permissions[byte] = map;
3689 }
3690}
3691
6fd01b71
AK
3692static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3693{
3694 u8 map;
3695 unsigned level, root_level = mmu->root_level;
3696 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3697
3698 if (root_level == PT32E_ROOT_LEVEL)
3699 --root_level;
3700 /* PT_PAGE_TABLE_LEVEL always terminates */
3701 map = 1 | (1 << ps_set_index);
3702 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3703 if (level <= PT_PDPE_LEVEL
3704 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3705 map |= 1 << (ps_set_index | (level - 1));
3706 }
3707 mmu->last_pte_bitmap = map;
3708}
3709
8a3c1a33
PB
3710static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3711 struct kvm_mmu *context,
3712 int level)
6aa8b732 3713{
2d48a985 3714 context->nx = is_nx(vcpu);
4d6931c3 3715 context->root_level = level;
2d48a985 3716
4d6931c3 3717 reset_rsvds_bits_mask(vcpu, context);
25d92081 3718 update_permission_bitmask(vcpu, context, false);
6fd01b71 3719 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3720
3721 ASSERT(is_pae(vcpu));
6aa8b732 3722 context->page_fault = paging64_page_fault;
6aa8b732 3723 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3724 context->sync_page = paging64_sync_page;
a7052897 3725 context->invlpg = paging64_invlpg;
0f53b5b1 3726 context->update_pte = paging64_update_pte;
17ac10ad 3727 context->shadow_root_level = level;
17c3ba9d 3728 context->root_hpa = INVALID_PAGE;
c5a78f2b 3729 context->direct_map = false;
6aa8b732
AK
3730}
3731
8a3c1a33
PB
3732static void paging64_init_context(struct kvm_vcpu *vcpu,
3733 struct kvm_mmu *context)
17ac10ad 3734{
8a3c1a33 3735 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3736}
3737
8a3c1a33
PB
3738static void paging32_init_context(struct kvm_vcpu *vcpu,
3739 struct kvm_mmu *context)
6aa8b732 3740{
2d48a985 3741 context->nx = false;
4d6931c3 3742 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3743
4d6931c3 3744 reset_rsvds_bits_mask(vcpu, context);
25d92081 3745 update_permission_bitmask(vcpu, context, false);
6fd01b71 3746 update_last_pte_bitmap(vcpu, context);
6aa8b732 3747
6aa8b732 3748 context->page_fault = paging32_page_fault;
6aa8b732 3749 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 3750 context->sync_page = paging32_sync_page;
a7052897 3751 context->invlpg = paging32_invlpg;
0f53b5b1 3752 context->update_pte = paging32_update_pte;
6aa8b732 3753 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3754 context->root_hpa = INVALID_PAGE;
c5a78f2b 3755 context->direct_map = false;
6aa8b732
AK
3756}
3757
8a3c1a33
PB
3758static void paging32E_init_context(struct kvm_vcpu *vcpu,
3759 struct kvm_mmu *context)
6aa8b732 3760{
8a3c1a33 3761 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3762}
3763
8a3c1a33 3764static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 3765{
ad896af0 3766 struct kvm_mmu *context = &vcpu->arch.mmu;
fb72d167 3767
c445f8ef 3768 context->base_role.word = 0;
fb72d167 3769 context->page_fault = tdp_page_fault;
e8bc217a 3770 context->sync_page = nonpaging_sync_page;
a7052897 3771 context->invlpg = nonpaging_invlpg;
0f53b5b1 3772 context->update_pte = nonpaging_update_pte;
67253af5 3773 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3774 context->root_hpa = INVALID_PAGE;
c5a78f2b 3775 context->direct_map = true;
1c97f0a0 3776 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3777 context->get_cr3 = get_cr3;
e4e517b4 3778 context->get_pdptr = kvm_pdptr_read;
cb659db8 3779 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3780
3781 if (!is_paging(vcpu)) {
2d48a985 3782 context->nx = false;
fb72d167
JR
3783 context->gva_to_gpa = nonpaging_gva_to_gpa;
3784 context->root_level = 0;
3785 } else if (is_long_mode(vcpu)) {
2d48a985 3786 context->nx = is_nx(vcpu);
fb72d167 3787 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3788 reset_rsvds_bits_mask(vcpu, context);
3789 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3790 } else if (is_pae(vcpu)) {
2d48a985 3791 context->nx = is_nx(vcpu);
fb72d167 3792 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3793 reset_rsvds_bits_mask(vcpu, context);
3794 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3795 } else {
2d48a985 3796 context->nx = false;
fb72d167 3797 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3798 reset_rsvds_bits_mask(vcpu, context);
3799 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3800 }
3801
25d92081 3802 update_permission_bitmask(vcpu, context, false);
6fd01b71 3803 update_last_pte_bitmap(vcpu, context);
fb72d167
JR
3804}
3805
ad896af0 3806void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
6aa8b732 3807{
411c588d 3808 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
ad896af0
PB
3809 struct kvm_mmu *context = &vcpu->arch.mmu;
3810
6aa8b732 3811 ASSERT(vcpu);
ad896af0 3812 ASSERT(!VALID_PAGE(context->root_hpa));
6aa8b732
AK
3813
3814 if (!is_paging(vcpu))
8a3c1a33 3815 nonpaging_init_context(vcpu, context);
a9058ecd 3816 else if (is_long_mode(vcpu))
8a3c1a33 3817 paging64_init_context(vcpu, context);
6aa8b732 3818 else if (is_pae(vcpu))
8a3c1a33 3819 paging32E_init_context(vcpu, context);
6aa8b732 3820 else
8a3c1a33 3821 paging32_init_context(vcpu, context);
a770f6f2 3822
ad896af0
PB
3823 context->base_role.nxe = is_nx(vcpu);
3824 context->base_role.cr4_pae = !!is_pae(vcpu);
3825 context->base_role.cr0_wp = is_write_protection(vcpu);
3826 context->base_role.smep_andnot_wp
411c588d 3827 = smep && !is_write_protection(vcpu);
52fde8df
JR
3828}
3829EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3830
ad896af0 3831void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
155a97a3 3832{
ad896af0
PB
3833 struct kvm_mmu *context = &vcpu->arch.mmu;
3834
155a97a3 3835 ASSERT(vcpu);
ad896af0 3836 ASSERT(!VALID_PAGE(context->root_hpa));
155a97a3
NHE
3837
3838 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3839
3840 context->nx = true;
155a97a3
NHE
3841 context->page_fault = ept_page_fault;
3842 context->gva_to_gpa = ept_gva_to_gpa;
3843 context->sync_page = ept_sync_page;
3844 context->invlpg = ept_invlpg;
3845 context->update_pte = ept_update_pte;
155a97a3
NHE
3846 context->root_level = context->shadow_root_level;
3847 context->root_hpa = INVALID_PAGE;
3848 context->direct_map = false;
3849
3850 update_permission_bitmask(vcpu, context, true);
3851 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
155a97a3
NHE
3852}
3853EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
3854
8a3c1a33 3855static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 3856{
ad896af0
PB
3857 struct kvm_mmu *context = &vcpu->arch.mmu;
3858
3859 kvm_init_shadow_mmu(vcpu);
3860 context->set_cr3 = kvm_x86_ops->set_cr3;
3861 context->get_cr3 = get_cr3;
3862 context->get_pdptr = kvm_pdptr_read;
3863 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
3864}
3865
8a3c1a33 3866static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
3867{
3868 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3869
3870 g_context->get_cr3 = get_cr3;
e4e517b4 3871 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3872 g_context->inject_page_fault = kvm_inject_page_fault;
3873
3874 /*
3875 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3876 * translation of l2_gpa to l1_gpa addresses is done using the
3877 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3878 * functions between mmu and nested_mmu are swapped.
3879 */
3880 if (!is_paging(vcpu)) {
2d48a985 3881 g_context->nx = false;
02f59dc9
JR
3882 g_context->root_level = 0;
3883 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3884 } else if (is_long_mode(vcpu)) {
2d48a985 3885 g_context->nx = is_nx(vcpu);
02f59dc9 3886 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3887 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3888 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3889 } else if (is_pae(vcpu)) {
2d48a985 3890 g_context->nx = is_nx(vcpu);
02f59dc9 3891 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3892 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3893 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3894 } else {
2d48a985 3895 g_context->nx = false;
02f59dc9 3896 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3897 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3898 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3899 }
3900
25d92081 3901 update_permission_bitmask(vcpu, g_context, false);
6fd01b71 3902 update_last_pte_bitmap(vcpu, g_context);
02f59dc9
JR
3903}
3904
8a3c1a33 3905static void init_kvm_mmu(struct kvm_vcpu *vcpu)
fb72d167 3906{
02f59dc9 3907 if (mmu_is_nested(vcpu))
e0c6db3e 3908 init_kvm_nested_mmu(vcpu);
02f59dc9 3909 else if (tdp_enabled)
e0c6db3e 3910 init_kvm_tdp_mmu(vcpu);
fb72d167 3911 else
e0c6db3e 3912 init_kvm_softmmu(vcpu);
fb72d167
JR
3913}
3914
8a3c1a33 3915void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732
AK
3916{
3917 ASSERT(vcpu);
6aa8b732 3918
95f93af4 3919 kvm_mmu_unload(vcpu);
8a3c1a33 3920 init_kvm_mmu(vcpu);
17c3ba9d 3921}
8668a3c4 3922EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3923
3924int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3925{
714b93da
AK
3926 int r;
3927
e2dec939 3928 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3929 if (r)
3930 goto out;
8986ecc0 3931 r = mmu_alloc_roots(vcpu);
e2858b4a 3932 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
3933 if (r)
3934 goto out;
3662cb1c 3935 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3936 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3937out:
3938 return r;
6aa8b732 3939}
17c3ba9d
AK
3940EXPORT_SYMBOL_GPL(kvm_mmu_load);
3941
3942void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3943{
3944 mmu_free_roots(vcpu);
95f93af4 3945 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
17c3ba9d 3946}
4b16184c 3947EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3948
0028425f 3949static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3950 struct kvm_mmu_page *sp, u64 *spte,
3951 const void *new)
0028425f 3952{
30945387 3953 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3954 ++vcpu->kvm->stat.mmu_pde_zapped;
3955 return;
30945387 3956 }
0028425f 3957
4cee5764 3958 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3959 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3960}
3961
79539cec
AK
3962static bool need_remote_flush(u64 old, u64 new)
3963{
3964 if (!is_shadow_present_pte(old))
3965 return false;
3966 if (!is_shadow_present_pte(new))
3967 return true;
3968 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3969 return true;
53166229
GN
3970 old ^= shadow_nx_mask;
3971 new ^= shadow_nx_mask;
79539cec
AK
3972 return (old & ~new & PT64_PERM_MASK) != 0;
3973}
3974
0671a8e7
XG
3975static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3976 bool remote_flush, bool local_flush)
79539cec 3977{
0671a8e7
XG
3978 if (zap_page)
3979 return;
3980
3981 if (remote_flush)
79539cec 3982 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3983 else if (local_flush)
77c3913b 3984 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
79539cec
AK
3985}
3986
889e5cbc
XG
3987static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3988 const u8 *new, int *bytes)
da4a00f0 3989{
889e5cbc
XG
3990 u64 gentry;
3991 int r;
72016f3a 3992
72016f3a
AK
3993 /*
3994 * Assume that the pte write on a page table of the same type
49b26e26
XG
3995 * as the current vcpu paging mode since we update the sptes only
3996 * when they have the same mode.
72016f3a 3997 */
889e5cbc 3998 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3999 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4000 *gpa &= ~(gpa_t)7;
4001 *bytes = 8;
116eb3d3 4002 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
72016f3a
AK
4003 if (r)
4004 gentry = 0;
08e850c6
AK
4005 new = (const u8 *)&gentry;
4006 }
4007
889e5cbc 4008 switch (*bytes) {
08e850c6
AK
4009 case 4:
4010 gentry = *(const u32 *)new;
4011 break;
4012 case 8:
4013 gentry = *(const u64 *)new;
4014 break;
4015 default:
4016 gentry = 0;
4017 break;
72016f3a
AK
4018 }
4019
889e5cbc
XG
4020 return gentry;
4021}
4022
4023/*
4024 * If we're seeing too many writes to a page, it may no longer be a page table,
4025 * or we may be forking, in which case it is better to unmap the page.
4026 */
a138fe75 4027static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4028{
a30f47cb
XG
4029 /*
4030 * Skip write-flooding detected for the sp whose level is 1, because
4031 * it can become unsync, then the guest page is not write-protected.
4032 */
f71fa31f 4033 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 4034 return false;
3246af0e 4035
a30f47cb 4036 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
4037}
4038
4039/*
4040 * Misaligned accesses are too much trouble to fix up; also, they usually
4041 * indicate a page is not used as a page table.
4042 */
4043static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4044 int bytes)
4045{
4046 unsigned offset, pte_size, misaligned;
4047
4048 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4049 gpa, bytes, sp->role.word);
4050
4051 offset = offset_in_page(gpa);
4052 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
4053
4054 /*
4055 * Sometimes, the OS only writes the last one bytes to update status
4056 * bits, for example, in linux, andb instruction is used in clear_bit().
4057 */
4058 if (!(offset & (pte_size - 1)) && bytes == 1)
4059 return false;
4060
889e5cbc
XG
4061 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4062 misaligned |= bytes < 4;
4063
4064 return misaligned;
4065}
4066
4067static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4068{
4069 unsigned page_offset, quadrant;
4070 u64 *spte;
4071 int level;
4072
4073 page_offset = offset_in_page(gpa);
4074 level = sp->role.level;
4075 *nspte = 1;
4076 if (!sp->role.cr4_pae) {
4077 page_offset <<= 1; /* 32->64 */
4078 /*
4079 * A 32-bit pde maps 4MB while the shadow pdes map
4080 * only 2MB. So we need to double the offset again
4081 * and zap two pdes instead of one.
4082 */
4083 if (level == PT32_ROOT_LEVEL) {
4084 page_offset &= ~7; /* kill rounding error */
4085 page_offset <<= 1;
4086 *nspte = 2;
4087 }
4088 quadrant = page_offset >> PAGE_SHIFT;
4089 page_offset &= ~PAGE_MASK;
4090 if (quadrant != sp->role.quadrant)
4091 return NULL;
4092 }
4093
4094 spte = &sp->spt[page_offset / sizeof(*spte)];
4095 return spte;
4096}
4097
4098void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4099 const u8 *new, int bytes)
4100{
4101 gfn_t gfn = gpa >> PAGE_SHIFT;
4102 union kvm_mmu_page_role mask = { .word = 0 };
4103 struct kvm_mmu_page *sp;
889e5cbc
XG
4104 LIST_HEAD(invalid_list);
4105 u64 entry, gentry, *spte;
4106 int npte;
a30f47cb 4107 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
4108
4109 /*
4110 * If we don't have indirect shadow pages, it means no page is
4111 * write-protected, so we can exit simply.
4112 */
4113 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4114 return;
4115
4116 zap_page = remote_flush = local_flush = false;
4117
4118 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4119
4120 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4121
4122 /*
4123 * No need to care whether allocation memory is successful
4124 * or not since pte prefetch is skiped if it does not have
4125 * enough objects in the cache.
4126 */
4127 mmu_topup_memory_caches(vcpu);
4128
4129 spin_lock(&vcpu->kvm->mmu_lock);
4130 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4131 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4132
fa1de2bf 4133 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
b67bfe0d 4134 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4135 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4136 detect_write_flooding(sp)) {
0671a8e7 4137 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 4138 &invalid_list);
4cee5764 4139 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4140 continue;
4141 }
889e5cbc
XG
4142
4143 spte = get_written_sptes(sp, gpa, &npte);
4144 if (!spte)
4145 continue;
4146
0671a8e7 4147 local_flush = true;
ac1b714e 4148 while (npte--) {
79539cec 4149 entry = *spte;
38e3b2b2 4150 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4151 if (gentry &&
4152 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4153 & mask.word) && rmap_can_add(vcpu))
7c562522 4154 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4155 if (need_remote_flush(entry, *spte))
0671a8e7 4156 remote_flush = true;
ac1b714e 4157 ++spte;
9b7a0325 4158 }
9b7a0325 4159 }
0671a8e7 4160 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 4161 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 4162 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4163 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4164}
4165
a436036b
AK
4166int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4167{
10589a46
MT
4168 gpa_t gpa;
4169 int r;
a436036b 4170
c5a78f2b 4171 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4172 return 0;
4173
1871c602 4174 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4175
10589a46 4176 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4177
10589a46 4178 return r;
a436036b 4179}
577bdc49 4180EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4181
81f4f76b 4182static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4183{
d98ba053 4184 LIST_HEAD(invalid_list);
103ad25a 4185
81f4f76b
TY
4186 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4187 return;
4188
5da59607
TY
4189 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4190 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4191 break;
ebeace86 4192
4cee5764 4193 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4194 }
aa6bd187 4195 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4196}
ebeace86 4197
1cb3f3ae
XG
4198static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4199{
4200 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4201 return vcpu_match_mmio_gpa(vcpu, addr);
4202
4203 return vcpu_match_mmio_gva(vcpu, addr);
4204}
4205
dc25e89e
AP
4206int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4207 void *insn, int insn_len)
3067714c 4208{
1cb3f3ae 4209 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
4210 enum emulation_result er;
4211
56028d08 4212 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
4213 if (r < 0)
4214 goto out;
4215
4216 if (!r) {
4217 r = 1;
4218 goto out;
4219 }
4220
1cb3f3ae
XG
4221 if (is_mmio_page_fault(vcpu, cr2))
4222 emulation_type = 0;
4223
4224 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4225
4226 switch (er) {
4227 case EMULATE_DONE:
4228 return 1;
ac0a48c3 4229 case EMULATE_USER_EXIT:
3067714c 4230 ++vcpu->stat.mmio_exits;
6d77dbfc 4231 /* fall through */
3067714c 4232 case EMULATE_FAIL:
3f5d18a9 4233 return 0;
3067714c
AK
4234 default:
4235 BUG();
4236 }
4237out:
3067714c
AK
4238 return r;
4239}
4240EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4241
a7052897
MT
4242void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4243{
a7052897 4244 vcpu->arch.mmu.invlpg(vcpu, gva);
77c3913b 4245 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a7052897
MT
4246 ++vcpu->stat.invlpg;
4247}
4248EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4249
18552672
JR
4250void kvm_enable_tdp(void)
4251{
4252 tdp_enabled = true;
4253}
4254EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4255
5f4cb662
JR
4256void kvm_disable_tdp(void)
4257{
4258 tdp_enabled = false;
4259}
4260EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4261
6aa8b732
AK
4262static void free_mmu_pages(struct kvm_vcpu *vcpu)
4263{
ad312c7c 4264 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4265 if (vcpu->arch.mmu.lm_root != NULL)
4266 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4267}
4268
4269static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4270{
17ac10ad 4271 struct page *page;
6aa8b732
AK
4272 int i;
4273
4274 ASSERT(vcpu);
4275
17ac10ad
AK
4276 /*
4277 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4278 * Therefore we need to allocate shadow page tables in the first
4279 * 4GB of memory, which happens to fit the DMA32 zone.
4280 */
4281 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4282 if (!page)
d7fa6ab2
WY
4283 return -ENOMEM;
4284
ad312c7c 4285 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4286 for (i = 0; i < 4; ++i)
ad312c7c 4287 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4288
6aa8b732 4289 return 0;
6aa8b732
AK
4290}
4291
8018c27b 4292int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4293{
6aa8b732 4294 ASSERT(vcpu);
e459e322
XG
4295
4296 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4297 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4298 vcpu->arch.mmu.translate_gpa = translate_gpa;
4299 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4300
8018c27b
IM
4301 return alloc_mmu_pages(vcpu);
4302}
6aa8b732 4303
8a3c1a33 4304void kvm_mmu_setup(struct kvm_vcpu *vcpu)
8018c27b
IM
4305{
4306 ASSERT(vcpu);
ad312c7c 4307 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4308
8a3c1a33 4309 init_kvm_mmu(vcpu);
6aa8b732
AK
4310}
4311
90cb0529 4312void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 4313{
b99db1d3
TY
4314 struct kvm_memory_slot *memslot;
4315 gfn_t last_gfn;
4316 int i;
6aa8b732 4317
b99db1d3
TY
4318 memslot = id_to_memslot(kvm->memslots, slot);
4319 last_gfn = memslot->base_gfn + memslot->npages - 1;
6aa8b732 4320
9d1beefb
TY
4321 spin_lock(&kvm->mmu_lock);
4322
b99db1d3
TY
4323 for (i = PT_PAGE_TABLE_LEVEL;
4324 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4325 unsigned long *rmapp;
4326 unsigned long last_index, index;
6aa8b732 4327
b99db1d3
TY
4328 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4329 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
da8dc75f 4330
b99db1d3
TY
4331 for (index = 0; index <= last_index; ++index, ++rmapp) {
4332 if (*rmapp)
4333 __rmap_write_protect(kvm, rmapp, false);
6b81b05e 4334
198c74f4 4335 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
6b81b05e 4336 cond_resched_lock(&kvm->mmu_lock);
8234b22e 4337 }
6aa8b732 4338 }
b99db1d3 4339
9d1beefb 4340 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
4341
4342 /*
4343 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4344 * which do tlb flush out of mmu-lock should be serialized by
4345 * kvm->slots_lock otherwise tlb flush would be missed.
4346 */
4347 lockdep_assert_held(&kvm->slots_lock);
4348
4349 /*
4350 * We can flush all the TLBs out of the mmu lock without TLB
4351 * corruption since we just change the spte from writable to
4352 * readonly so that we only need to care the case of changing
4353 * spte from present to present (changing the spte from present
4354 * to nonpresent will flush all the TLBs immediately), in other
4355 * words, the only case we care is mmu_spte_update() where we
4356 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4357 * instead of PT_WRITABLE_MASK, that means it does not depend
4358 * on PT_WRITABLE_MASK anymore.
4359 */
4360 kvm_flush_remote_tlbs(kvm);
6aa8b732 4361}
37a7d8b0 4362
e7d11c7a 4363#define BATCH_ZAP_PAGES 10
5304b8d3
XG
4364static void kvm_zap_obsolete_pages(struct kvm *kvm)
4365{
4366 struct kvm_mmu_page *sp, *node;
e7d11c7a 4367 int batch = 0;
5304b8d3
XG
4368
4369restart:
4370 list_for_each_entry_safe_reverse(sp, node,
4371 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
4372 int ret;
4373
5304b8d3
XG
4374 /*
4375 * No obsolete page exists before new created page since
4376 * active_mmu_pages is the FIFO list.
4377 */
4378 if (!is_obsolete_sp(kvm, sp))
4379 break;
4380
4381 /*
5304b8d3
XG
4382 * Since we are reversely walking the list and the invalid
4383 * list will be moved to the head, skip the invalid page
4384 * can help us to avoid the infinity list walking.
4385 */
4386 if (sp->role.invalid)
4387 continue;
4388
f34d251d
XG
4389 /*
4390 * Need not flush tlb since we only zap the sp with invalid
4391 * generation number.
4392 */
e7d11c7a 4393 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 4394 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 4395 batch = 0;
5304b8d3
XG
4396 goto restart;
4397 }
4398
365c8868
XG
4399 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4400 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
4401 batch += ret;
4402
4403 if (ret)
5304b8d3
XG
4404 goto restart;
4405 }
4406
f34d251d
XG
4407 /*
4408 * Should flush tlb before free page tables since lockless-walking
4409 * may use the pages.
4410 */
365c8868 4411 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
4412}
4413
4414/*
4415 * Fast invalidate all shadow pages and use lock-break technique
4416 * to zap obsolete pages.
4417 *
4418 * It's required when memslot is being deleted or VM is being
4419 * destroyed, in these cases, we should ensure that KVM MMU does
4420 * not use any resource of the being-deleted slot or all slots
4421 * after calling the function.
4422 */
4423void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4424{
4425 spin_lock(&kvm->mmu_lock);
35006126 4426 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
4427 kvm->arch.mmu_valid_gen++;
4428
f34d251d
XG
4429 /*
4430 * Notify all vcpus to reload its shadow page table
4431 * and flush TLB. Then all vcpus will switch to new
4432 * shadow page table with the new mmu_valid_gen.
4433 *
4434 * Note: we should do this under the protection of
4435 * mmu-lock, otherwise, vcpu would purge shadow page
4436 * but miss tlb flush.
4437 */
4438 kvm_reload_remote_mmus(kvm);
4439
5304b8d3
XG
4440 kvm_zap_obsolete_pages(kvm);
4441 spin_unlock(&kvm->mmu_lock);
4442}
4443
365c8868
XG
4444static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4445{
4446 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4447}
4448
f8f55942
XG
4449void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4450{
4451 /*
4452 * The very rare case: if the generation-number is round,
4453 * zap all shadow pages.
f8f55942 4454 */
ee3d1570 4455 if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
a629df7e 4456 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 4457 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 4458 }
f8f55942
XG
4459}
4460
70534a73
DC
4461static unsigned long
4462mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4463{
4464 struct kvm *kvm;
1495f230 4465 int nr_to_scan = sc->nr_to_scan;
70534a73 4466 unsigned long freed = 0;
3ee16c81 4467
2f303b74 4468 spin_lock(&kvm_lock);
3ee16c81
IE
4469
4470 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4471 int idx;
d98ba053 4472 LIST_HEAD(invalid_list);
3ee16c81 4473
35f2d16b
TY
4474 /*
4475 * Never scan more than sc->nr_to_scan VM instances.
4476 * Will not hit this condition practically since we do not try
4477 * to shrink more than one VM and it is very unlikely to see
4478 * !n_used_mmu_pages so many times.
4479 */
4480 if (!nr_to_scan--)
4481 break;
19526396
GN
4482 /*
4483 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4484 * here. We may skip a VM instance errorneosly, but we do not
4485 * want to shrink a VM that only started to populate its MMU
4486 * anyway.
4487 */
365c8868
XG
4488 if (!kvm->arch.n_used_mmu_pages &&
4489 !kvm_has_zapped_obsolete_pages(kvm))
19526396 4490 continue;
19526396 4491
f656ce01 4492 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4493 spin_lock(&kvm->mmu_lock);
3ee16c81 4494
365c8868
XG
4495 if (kvm_has_zapped_obsolete_pages(kvm)) {
4496 kvm_mmu_commit_zap_page(kvm,
4497 &kvm->arch.zapped_obsolete_pages);
4498 goto unlock;
4499 }
4500
70534a73
DC
4501 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4502 freed++;
d98ba053 4503 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4504
365c8868 4505unlock:
3ee16c81 4506 spin_unlock(&kvm->mmu_lock);
f656ce01 4507 srcu_read_unlock(&kvm->srcu, idx);
19526396 4508
70534a73
DC
4509 /*
4510 * unfair on small ones
4511 * per-vm shrinkers cry out
4512 * sadness comes quickly
4513 */
19526396
GN
4514 list_move_tail(&kvm->vm_list, &vm_list);
4515 break;
3ee16c81 4516 }
3ee16c81 4517
2f303b74 4518 spin_unlock(&kvm_lock);
70534a73 4519 return freed;
70534a73
DC
4520}
4521
4522static unsigned long
4523mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4524{
45221ab6 4525 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4526}
4527
4528static struct shrinker mmu_shrinker = {
70534a73
DC
4529 .count_objects = mmu_shrink_count,
4530 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
4531 .seeks = DEFAULT_SEEKS * 10,
4532};
4533
2ddfd20e 4534static void mmu_destroy_caches(void)
b5a33a75 4535{
53c07b18
XG
4536 if (pte_list_desc_cache)
4537 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4538 if (mmu_page_header_cache)
4539 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4540}
4541
4542int kvm_mmu_module_init(void)
4543{
53c07b18
XG
4544 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4545 sizeof(struct pte_list_desc),
20c2df83 4546 0, 0, NULL);
53c07b18 4547 if (!pte_list_desc_cache)
b5a33a75
AK
4548 goto nomem;
4549
d3d25b04
AK
4550 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4551 sizeof(struct kvm_mmu_page),
20c2df83 4552 0, 0, NULL);
d3d25b04
AK
4553 if (!mmu_page_header_cache)
4554 goto nomem;
4555
908c7f19 4556 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
45bf21a8
WY
4557 goto nomem;
4558
3ee16c81
IE
4559 register_shrinker(&mmu_shrinker);
4560
b5a33a75
AK
4561 return 0;
4562
4563nomem:
3ee16c81 4564 mmu_destroy_caches();
b5a33a75
AK
4565 return -ENOMEM;
4566}
4567
3ad82a7e
ZX
4568/*
4569 * Caculate mmu pages needed for kvm.
4570 */
4571unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4572{
3ad82a7e
ZX
4573 unsigned int nr_mmu_pages;
4574 unsigned int nr_pages = 0;
bc6678a3 4575 struct kvm_memslots *slots;
be6ba0f0 4576 struct kvm_memory_slot *memslot;
3ad82a7e 4577
90d83dc3
LJ
4578 slots = kvm_memslots(kvm);
4579
be6ba0f0
XG
4580 kvm_for_each_memslot(memslot, slots)
4581 nr_pages += memslot->npages;
3ad82a7e
ZX
4582
4583 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4584 nr_mmu_pages = max(nr_mmu_pages,
4585 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4586
4587 return nr_mmu_pages;
4588}
4589
94d8b056
MT
4590int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4591{
4592 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4593 u64 spte;
94d8b056
MT
4594 int nr_sptes = 0;
4595
37f6a4e2
MT
4596 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4597 return nr_sptes;
4598
c2a2ac2b
XG
4599 walk_shadow_page_lockless_begin(vcpu);
4600 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4601 sptes[iterator.level-1] = spte;
94d8b056 4602 nr_sptes++;
c2a2ac2b 4603 if (!is_shadow_present_pte(spte))
94d8b056
MT
4604 break;
4605 }
c2a2ac2b 4606 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4607
4608 return nr_sptes;
4609}
4610EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4611
c42fffe3
XG
4612void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4613{
4614 ASSERT(vcpu);
4615
95f93af4 4616 kvm_mmu_unload(vcpu);
c42fffe3
XG
4617 free_mmu_pages(vcpu);
4618 mmu_free_memory_caches(vcpu);
b034cf01
XG
4619}
4620
b034cf01
XG
4621void kvm_mmu_module_exit(void)
4622{
4623 mmu_destroy_caches();
4624 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4625 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4626 mmu_audit_disable();
4627}
This page took 0.939876 seconds and 5 git commands to generate.