Linux 3.2-rc3
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c
XG
62char *audit_point_name[] = {
63 "pre page fault",
64 "post page fault",
65 "pre pte write",
6903074c
XG
66 "post pte write",
67 "pre sync",
68 "post sync"
8b1fe17c 69};
37a7d8b0 70
8b1fe17c 71#undef MMU_DEBUG
37a7d8b0
AK
72
73#ifdef MMU_DEBUG
74
75#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
76#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
77
78#else
79
80#define pgprintk(x...) do { } while (0)
81#define rmap_printk(x...) do { } while (0)
82
83#endif
84
8b1fe17c 85#ifdef MMU_DEBUG
6ada8cca
AK
86static int dbg = 0;
87module_param(dbg, bool, 0644);
37a7d8b0 88#endif
6aa8b732 89
582801a9
MT
90static int oos_shadow = 1;
91module_param(oos_shadow, bool, 0644);
92
d6c69ee9
YD
93#ifndef MMU_DEBUG
94#define ASSERT(x) do { } while (0)
95#else
6aa8b732
AK
96#define ASSERT(x) \
97 if (!(x)) { \
98 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
99 __FILE__, __LINE__, #x); \
100 }
d6c69ee9 101#endif
6aa8b732 102
957ed9ef
XG
103#define PTE_PREFETCH_NUM 8
104
6aa8b732
AK
105#define PT_FIRST_AVAIL_BITS_SHIFT 9
106#define PT64_SECOND_AVAIL_BITS_SHIFT 52
107
6aa8b732
AK
108#define PT64_LEVEL_BITS 9
109
110#define PT64_LEVEL_SHIFT(level) \
d77c26fc 111 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 112
6aa8b732
AK
113#define PT64_INDEX(address, level)\
114 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
115
116
117#define PT32_LEVEL_BITS 10
118
119#define PT32_LEVEL_SHIFT(level) \
d77c26fc 120 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 121
e04da980
JR
122#define PT32_LVL_OFFSET_MASK(level) \
123 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
124 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
125
126#define PT32_INDEX(address, level)\
127 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
128
129
27aba766 130#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
131#define PT64_DIR_BASE_ADDR_MASK \
132 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
133#define PT64_LVL_ADDR_MASK(level) \
134 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
135 * PT64_LEVEL_BITS))) - 1))
136#define PT64_LVL_OFFSET_MASK(level) \
137 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
138 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
139
140#define PT32_BASE_ADDR_MASK PAGE_MASK
141#define PT32_DIR_BASE_ADDR_MASK \
142 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
143#define PT32_LVL_ADDR_MASK(level) \
144 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
145 * PT32_LEVEL_BITS))) - 1))
6aa8b732 146
79539cec
AK
147#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
148 | PT64_NX_MASK)
6aa8b732 149
53c07b18 150#define PTE_LIST_EXT 4
cd4a4e53 151
fe135d2c
AK
152#define ACC_EXEC_MASK 1
153#define ACC_WRITE_MASK PT_WRITABLE_MASK
154#define ACC_USER_MASK PT_USER_MASK
155#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
156
90bb6fc5
AK
157#include <trace/events/kvm.h>
158
07420171
AK
159#define CREATE_TRACE_POINTS
160#include "mmutrace.h"
161
1403283a
IE
162#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
163
135f8c2b
AK
164#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
165
53c07b18
XG
166struct pte_list_desc {
167 u64 *sptes[PTE_LIST_EXT];
168 struct pte_list_desc *more;
cd4a4e53
AK
169};
170
2d11123a
AK
171struct kvm_shadow_walk_iterator {
172 u64 addr;
173 hpa_t shadow_addr;
2d11123a 174 u64 *sptep;
dd3bfd59 175 int level;
2d11123a
AK
176 unsigned index;
177};
178
179#define for_each_shadow_entry(_vcpu, _addr, _walker) \
180 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
181 shadow_walk_okay(&(_walker)); \
182 shadow_walk_next(&(_walker)))
183
c2a2ac2b
XG
184#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
185 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
186 shadow_walk_okay(&(_walker)) && \
187 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
188 __shadow_walk_next(&(_walker), spte))
189
53c07b18 190static struct kmem_cache *pte_list_desc_cache;
d3d25b04 191static struct kmem_cache *mmu_page_header_cache;
45221ab6 192static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 193
7b52345e
SY
194static u64 __read_mostly shadow_nx_mask;
195static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
196static u64 __read_mostly shadow_user_mask;
197static u64 __read_mostly shadow_accessed_mask;
198static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
199static u64 __read_mostly shadow_mmio_mask;
200
201static void mmu_spte_set(u64 *sptep, u64 spte);
202
203void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
204{
205 shadow_mmio_mask = mmio_mask;
206}
207EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
208
209static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
210{
211 access &= ACC_WRITE_MASK | ACC_USER_MASK;
212
4f022648 213 trace_mark_mmio_spte(sptep, gfn, access);
ce88decf
XG
214 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
215}
216
217static bool is_mmio_spte(u64 spte)
218{
219 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
220}
221
222static gfn_t get_mmio_spte_gfn(u64 spte)
223{
224 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
225}
226
227static unsigned get_mmio_spte_access(u64 spte)
228{
229 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
230}
231
232static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
233{
234 if (unlikely(is_noslot_pfn(pfn))) {
235 mark_mmio_spte(sptep, gfn, access);
236 return true;
237 }
238
239 return false;
240}
c7addb90 241
82725b20
DE
242static inline u64 rsvd_bits(int s, int e)
243{
244 return ((1ULL << (e - s + 1)) - 1) << s;
245}
246
7b52345e 247void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 248 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
249{
250 shadow_user_mask = user_mask;
251 shadow_accessed_mask = accessed_mask;
252 shadow_dirty_mask = dirty_mask;
253 shadow_nx_mask = nx_mask;
254 shadow_x_mask = x_mask;
255}
256EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
257
6aa8b732
AK
258static int is_cpuid_PSE36(void)
259{
260 return 1;
261}
262
73b1087e
AK
263static int is_nx(struct kvm_vcpu *vcpu)
264{
f6801dff 265 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
266}
267
c7addb90
AK
268static int is_shadow_present_pte(u64 pte)
269{
ce88decf 270 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
271}
272
05da4558
MT
273static int is_large_pte(u64 pte)
274{
275 return pte & PT_PAGE_SIZE_MASK;
276}
277
43a3795a 278static int is_dirty_gpte(unsigned long pte)
e3c5e7ec 279{
439e218a 280 return pte & PT_DIRTY_MASK;
e3c5e7ec
AK
281}
282
43a3795a 283static int is_rmap_spte(u64 pte)
cd4a4e53 284{
4b1a80fa 285 return is_shadow_present_pte(pte);
cd4a4e53
AK
286}
287
776e6633
MT
288static int is_last_spte(u64 pte, int level)
289{
290 if (level == PT_PAGE_TABLE_LEVEL)
291 return 1;
852e3c19 292 if (is_large_pte(pte))
776e6633
MT
293 return 1;
294 return 0;
295}
296
35149e21 297static pfn_t spte_to_pfn(u64 pte)
0b49ea86 298{
35149e21 299 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
300}
301
da928521
AK
302static gfn_t pse36_gfn_delta(u32 gpte)
303{
304 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
305
306 return (gpte & PT32_DIR_PSE36_MASK) << shift;
307}
308
603e0651 309#ifdef CONFIG_X86_64
d555c333 310static void __set_spte(u64 *sptep, u64 spte)
e663ee64 311{
603e0651 312 *sptep = spte;
e663ee64
AK
313}
314
603e0651 315static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 316{
603e0651
XG
317 *sptep = spte;
318}
319
320static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
321{
322 return xchg(sptep, spte);
323}
c2a2ac2b
XG
324
325static u64 __get_spte_lockless(u64 *sptep)
326{
327 return ACCESS_ONCE(*sptep);
328}
ce88decf
XG
329
330static bool __check_direct_spte_mmio_pf(u64 spte)
331{
332 /* It is valid if the spte is zapped. */
333 return spte == 0ull;
334}
a9221dd5 335#else
603e0651
XG
336union split_spte {
337 struct {
338 u32 spte_low;
339 u32 spte_high;
340 };
341 u64 spte;
342};
a9221dd5 343
c2a2ac2b
XG
344static void count_spte_clear(u64 *sptep, u64 spte)
345{
346 struct kvm_mmu_page *sp = page_header(__pa(sptep));
347
348 if (is_shadow_present_pte(spte))
349 return;
350
351 /* Ensure the spte is completely set before we increase the count */
352 smp_wmb();
353 sp->clear_spte_count++;
354}
355
603e0651
XG
356static void __set_spte(u64 *sptep, u64 spte)
357{
358 union split_spte *ssptep, sspte;
a9221dd5 359
603e0651
XG
360 ssptep = (union split_spte *)sptep;
361 sspte = (union split_spte)spte;
362
363 ssptep->spte_high = sspte.spte_high;
364
365 /*
366 * If we map the spte from nonpresent to present, We should store
367 * the high bits firstly, then set present bit, so cpu can not
368 * fetch this spte while we are setting the spte.
369 */
370 smp_wmb();
371
372 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
373}
374
603e0651
XG
375static void __update_clear_spte_fast(u64 *sptep, u64 spte)
376{
377 union split_spte *ssptep, sspte;
378
379 ssptep = (union split_spte *)sptep;
380 sspte = (union split_spte)spte;
381
382 ssptep->spte_low = sspte.spte_low;
383
384 /*
385 * If we map the spte from present to nonpresent, we should clear
386 * present bit firstly to avoid vcpu fetch the old high bits.
387 */
388 smp_wmb();
389
390 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 391 count_spte_clear(sptep, spte);
603e0651
XG
392}
393
394static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
395{
396 union split_spte *ssptep, sspte, orig;
397
398 ssptep = (union split_spte *)sptep;
399 sspte = (union split_spte)spte;
400
401 /* xchg acts as a barrier before the setting of the high bits */
402 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
403 orig.spte_high = ssptep->spte_high;
404 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 405 count_spte_clear(sptep, spte);
603e0651
XG
406
407 return orig.spte;
408}
c2a2ac2b
XG
409
410/*
411 * The idea using the light way get the spte on x86_32 guest is from
412 * gup_get_pte(arch/x86/mm/gup.c).
413 * The difference is we can not catch the spte tlb flush if we leave
414 * guest mode, so we emulate it by increase clear_spte_count when spte
415 * is cleared.
416 */
417static u64 __get_spte_lockless(u64 *sptep)
418{
419 struct kvm_mmu_page *sp = page_header(__pa(sptep));
420 union split_spte spte, *orig = (union split_spte *)sptep;
421 int count;
422
423retry:
424 count = sp->clear_spte_count;
425 smp_rmb();
426
427 spte.spte_low = orig->spte_low;
428 smp_rmb();
429
430 spte.spte_high = orig->spte_high;
431 smp_rmb();
432
433 if (unlikely(spte.spte_low != orig->spte_low ||
434 count != sp->clear_spte_count))
435 goto retry;
436
437 return spte.spte;
438}
ce88decf
XG
439
440static bool __check_direct_spte_mmio_pf(u64 spte)
441{
442 union split_spte sspte = (union split_spte)spte;
443 u32 high_mmio_mask = shadow_mmio_mask >> 32;
444
445 /* It is valid if the spte is zapped. */
446 if (spte == 0ull)
447 return true;
448
449 /* It is valid if the spte is being zapped. */
450 if (sspte.spte_low == 0ull &&
451 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
452 return true;
453
454 return false;
455}
603e0651
XG
456#endif
457
8672b721
XG
458static bool spte_has_volatile_bits(u64 spte)
459{
460 if (!shadow_accessed_mask)
461 return false;
462
463 if (!is_shadow_present_pte(spte))
464 return false;
465
4132779b
XG
466 if ((spte & shadow_accessed_mask) &&
467 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
468 return false;
469
470 return true;
471}
472
4132779b
XG
473static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
474{
475 return (old_spte & bit_mask) && !(new_spte & bit_mask);
476}
477
1df9f2dc
XG
478/* Rules for using mmu_spte_set:
479 * Set the sptep from nonpresent to present.
480 * Note: the sptep being assigned *must* be either not present
481 * or in a state where the hardware will not attempt to update
482 * the spte.
483 */
484static void mmu_spte_set(u64 *sptep, u64 new_spte)
485{
486 WARN_ON(is_shadow_present_pte(*sptep));
487 __set_spte(sptep, new_spte);
488}
489
490/* Rules for using mmu_spte_update:
491 * Update the state bits, it means the mapped pfn is not changged.
492 */
493static void mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 494{
4132779b
XG
495 u64 mask, old_spte = *sptep;
496
497 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 498
1df9f2dc
XG
499 if (!is_shadow_present_pte(old_spte))
500 return mmu_spte_set(sptep, new_spte);
501
4132779b
XG
502 new_spte |= old_spte & shadow_dirty_mask;
503
504 mask = shadow_accessed_mask;
505 if (is_writable_pte(old_spte))
506 mask |= shadow_dirty_mask;
507
508 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
603e0651 509 __update_clear_spte_fast(sptep, new_spte);
4132779b 510 else
603e0651 511 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b
XG
512
513 if (!shadow_accessed_mask)
514 return;
515
516 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
517 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
518 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
519 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
b79b93f9
AK
520}
521
1df9f2dc
XG
522/*
523 * Rules for using mmu_spte_clear_track_bits:
524 * It sets the sptep from present to nonpresent, and track the
525 * state bits, it is used to clear the last level sptep.
526 */
527static int mmu_spte_clear_track_bits(u64 *sptep)
528{
529 pfn_t pfn;
530 u64 old_spte = *sptep;
531
532 if (!spte_has_volatile_bits(old_spte))
603e0651 533 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 534 else
603e0651 535 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
536
537 if (!is_rmap_spte(old_spte))
538 return 0;
539
540 pfn = spte_to_pfn(old_spte);
541 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
542 kvm_set_pfn_accessed(pfn);
543 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
544 kvm_set_pfn_dirty(pfn);
545 return 1;
546}
547
548/*
549 * Rules for using mmu_spte_clear_no_track:
550 * Directly clear spte without caring the state bits of sptep,
551 * it is used to set the upper level spte.
552 */
553static void mmu_spte_clear_no_track(u64 *sptep)
554{
603e0651 555 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
556}
557
c2a2ac2b
XG
558static u64 mmu_spte_get_lockless(u64 *sptep)
559{
560 return __get_spte_lockless(sptep);
561}
562
563static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
564{
565 rcu_read_lock();
566 atomic_inc(&vcpu->kvm->arch.reader_counter);
567
568 /* Increase the counter before walking shadow page table */
569 smp_mb__after_atomic_inc();
570}
571
572static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
573{
574 /* Decrease the counter after walking shadow page table finished */
575 smp_mb__before_atomic_dec();
576 atomic_dec(&vcpu->kvm->arch.reader_counter);
577 rcu_read_unlock();
578}
579
e2dec939 580static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 581 struct kmem_cache *base_cache, int min)
714b93da
AK
582{
583 void *obj;
584
585 if (cache->nobjs >= min)
e2dec939 586 return 0;
714b93da 587 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 588 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 589 if (!obj)
e2dec939 590 return -ENOMEM;
714b93da
AK
591 cache->objects[cache->nobjs++] = obj;
592 }
e2dec939 593 return 0;
714b93da
AK
594}
595
e8ad9a70
XG
596static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
597 struct kmem_cache *cache)
714b93da
AK
598{
599 while (mc->nobjs)
e8ad9a70 600 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
601}
602
c1158e63 603static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 604 int min)
c1158e63 605{
842f22ed 606 void *page;
c1158e63
AK
607
608 if (cache->nobjs >= min)
609 return 0;
610 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 611 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
612 if (!page)
613 return -ENOMEM;
842f22ed 614 cache->objects[cache->nobjs++] = page;
c1158e63
AK
615 }
616 return 0;
617}
618
619static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
620{
621 while (mc->nobjs)
c4d198d5 622 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
623}
624
2e3e5882 625static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 626{
e2dec939
AK
627 int r;
628
53c07b18 629 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 630 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
631 if (r)
632 goto out;
ad312c7c 633 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
634 if (r)
635 goto out;
ad312c7c 636 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 637 mmu_page_header_cache, 4);
e2dec939
AK
638out:
639 return r;
714b93da
AK
640}
641
642static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
643{
53c07b18
XG
644 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
645 pte_list_desc_cache);
ad312c7c 646 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
647 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
648 mmu_page_header_cache);
714b93da
AK
649}
650
651static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
652 size_t size)
653{
654 void *p;
655
656 BUG_ON(!mc->nobjs);
657 p = mc->objects[--mc->nobjs];
714b93da
AK
658 return p;
659}
660
53c07b18 661static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 662{
53c07b18
XG
663 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
664 sizeof(struct pte_list_desc));
714b93da
AK
665}
666
53c07b18 667static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 668{
53c07b18 669 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
670}
671
2032a93d
LJ
672static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
673{
674 if (!sp->role.direct)
675 return sp->gfns[index];
676
677 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
678}
679
680static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
681{
682 if (sp->role.direct)
683 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
684 else
685 sp->gfns[index] = gfn;
686}
687
05da4558 688/*
d4dbf470
TY
689 * Return the pointer to the large page information for a given gfn,
690 * handling slots that are not large page aligned.
05da4558 691 */
d4dbf470
TY
692static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
693 struct kvm_memory_slot *slot,
694 int level)
05da4558
MT
695{
696 unsigned long idx;
697
82855413
JR
698 idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
699 (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
d4dbf470 700 return &slot->lpage_info[level - 2][idx];
05da4558
MT
701}
702
703static void account_shadowed(struct kvm *kvm, gfn_t gfn)
704{
d25797b2 705 struct kvm_memory_slot *slot;
d4dbf470 706 struct kvm_lpage_info *linfo;
d25797b2 707 int i;
05da4558 708
a1f4d395 709 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
710 for (i = PT_DIRECTORY_LEVEL;
711 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
712 linfo = lpage_info_slot(gfn, slot, i);
713 linfo->write_count += 1;
d25797b2 714 }
332b207d 715 kvm->arch.indirect_shadow_pages++;
05da4558
MT
716}
717
718static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
719{
d25797b2 720 struct kvm_memory_slot *slot;
d4dbf470 721 struct kvm_lpage_info *linfo;
d25797b2 722 int i;
05da4558 723
a1f4d395 724 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
725 for (i = PT_DIRECTORY_LEVEL;
726 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
727 linfo = lpage_info_slot(gfn, slot, i);
728 linfo->write_count -= 1;
729 WARN_ON(linfo->write_count < 0);
d25797b2 730 }
332b207d 731 kvm->arch.indirect_shadow_pages--;
05da4558
MT
732}
733
d25797b2
JR
734static int has_wrprotected_page(struct kvm *kvm,
735 gfn_t gfn,
736 int level)
05da4558 737{
2843099f 738 struct kvm_memory_slot *slot;
d4dbf470 739 struct kvm_lpage_info *linfo;
05da4558 740
a1f4d395 741 slot = gfn_to_memslot(kvm, gfn);
05da4558 742 if (slot) {
d4dbf470
TY
743 linfo = lpage_info_slot(gfn, slot, level);
744 return linfo->write_count;
05da4558
MT
745 }
746
747 return 1;
748}
749
d25797b2 750static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 751{
8f0b1ab6 752 unsigned long page_size;
d25797b2 753 int i, ret = 0;
05da4558 754
8f0b1ab6 755 page_size = kvm_host_page_size(kvm, gfn);
05da4558 756
d25797b2
JR
757 for (i = PT_PAGE_TABLE_LEVEL;
758 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
759 if (page_size >= KVM_HPAGE_SIZE(i))
760 ret = i;
761 else
762 break;
763 }
764
4c2155ce 765 return ret;
05da4558
MT
766}
767
5d163b1c
XG
768static struct kvm_memory_slot *
769gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
770 bool no_dirty_log)
05da4558
MT
771{
772 struct kvm_memory_slot *slot;
5d163b1c
XG
773
774 slot = gfn_to_memslot(vcpu->kvm, gfn);
775 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
776 (no_dirty_log && slot->dirty_bitmap))
777 slot = NULL;
778
779 return slot;
780}
781
782static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
783{
a0a8eaba 784 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
785}
786
787static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
788{
789 int host_level, level, max_level;
05da4558 790
d25797b2
JR
791 host_level = host_mapping_level(vcpu->kvm, large_gfn);
792
793 if (host_level == PT_PAGE_TABLE_LEVEL)
794 return host_level;
795
878403b7
SY
796 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
797 kvm_x86_ops->get_lpage_level() : host_level;
798
799 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
800 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
801 break;
d25797b2
JR
802
803 return level - 1;
05da4558
MT
804}
805
290fc38d 806/*
53c07b18 807 * Pte mapping structures:
cd4a4e53 808 *
53c07b18 809 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 810 *
53c07b18
XG
811 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
812 * pte_list_desc containing more mappings.
53a27b39 813 *
53c07b18 814 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
815 * the spte was not added.
816 *
cd4a4e53 817 */
53c07b18
XG
818static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
819 unsigned long *pte_list)
cd4a4e53 820{
53c07b18 821 struct pte_list_desc *desc;
53a27b39 822 int i, count = 0;
cd4a4e53 823
53c07b18
XG
824 if (!*pte_list) {
825 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
826 *pte_list = (unsigned long)spte;
827 } else if (!(*pte_list & 1)) {
828 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
829 desc = mmu_alloc_pte_list_desc(vcpu);
830 desc->sptes[0] = (u64 *)*pte_list;
d555c333 831 desc->sptes[1] = spte;
53c07b18 832 *pte_list = (unsigned long)desc | 1;
cb16a7b3 833 ++count;
cd4a4e53 834 } else {
53c07b18
XG
835 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
836 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
837 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 838 desc = desc->more;
53c07b18 839 count += PTE_LIST_EXT;
53a27b39 840 }
53c07b18
XG
841 if (desc->sptes[PTE_LIST_EXT-1]) {
842 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
843 desc = desc->more;
844 }
d555c333 845 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 846 ++count;
d555c333 847 desc->sptes[i] = spte;
cd4a4e53 848 }
53a27b39 849 return count;
cd4a4e53
AK
850}
851
53c07b18
XG
852static u64 *pte_list_next(unsigned long *pte_list, u64 *spte)
853{
854 struct pte_list_desc *desc;
855 u64 *prev_spte;
856 int i;
857
858 if (!*pte_list)
859 return NULL;
860 else if (!(*pte_list & 1)) {
861 if (!spte)
862 return (u64 *)*pte_list;
863 return NULL;
864 }
865 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
866 prev_spte = NULL;
867 while (desc) {
868 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
869 if (prev_spte == spte)
870 return desc->sptes[i];
871 prev_spte = desc->sptes[i];
872 }
873 desc = desc->more;
874 }
875 return NULL;
876}
877
878static void
879pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
880 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
881{
882 int j;
883
53c07b18 884 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 885 ;
d555c333
AK
886 desc->sptes[i] = desc->sptes[j];
887 desc->sptes[j] = NULL;
cd4a4e53
AK
888 if (j != 0)
889 return;
890 if (!prev_desc && !desc->more)
53c07b18 891 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
892 else
893 if (prev_desc)
894 prev_desc->more = desc->more;
895 else
53c07b18
XG
896 *pte_list = (unsigned long)desc->more | 1;
897 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
898}
899
53c07b18 900static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 901{
53c07b18
XG
902 struct pte_list_desc *desc;
903 struct pte_list_desc *prev_desc;
cd4a4e53
AK
904 int i;
905
53c07b18
XG
906 if (!*pte_list) {
907 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 908 BUG();
53c07b18
XG
909 } else if (!(*pte_list & 1)) {
910 rmap_printk("pte_list_remove: %p 1->0\n", spte);
911 if ((u64 *)*pte_list != spte) {
912 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
913 BUG();
914 }
53c07b18 915 *pte_list = 0;
cd4a4e53 916 } else {
53c07b18
XG
917 rmap_printk("pte_list_remove: %p many->many\n", spte);
918 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
919 prev_desc = NULL;
920 while (desc) {
53c07b18 921 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 922 if (desc->sptes[i] == spte) {
53c07b18 923 pte_list_desc_remove_entry(pte_list,
714b93da 924 desc, i,
cd4a4e53
AK
925 prev_desc);
926 return;
927 }
928 prev_desc = desc;
929 desc = desc->more;
930 }
53c07b18 931 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
932 BUG();
933 }
934}
935
67052b35
XG
936typedef void (*pte_list_walk_fn) (u64 *spte);
937static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
938{
939 struct pte_list_desc *desc;
940 int i;
941
942 if (!*pte_list)
943 return;
944
945 if (!(*pte_list & 1))
946 return fn((u64 *)*pte_list);
947
948 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
949 while (desc) {
950 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
951 fn(desc->sptes[i]);
952 desc = desc->more;
953 }
954}
955
53c07b18
XG
956/*
957 * Take gfn and return the reverse mapping to it.
958 */
959static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
960{
961 struct kvm_memory_slot *slot;
962 struct kvm_lpage_info *linfo;
963
964 slot = gfn_to_memslot(kvm, gfn);
965 if (likely(level == PT_PAGE_TABLE_LEVEL))
966 return &slot->rmap[gfn - slot->base_gfn];
967
968 linfo = lpage_info_slot(gfn, slot, level);
969
970 return &linfo->rmap_pde;
971}
972
973static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
974{
975 struct kvm_mmu_page *sp;
976 unsigned long *rmapp;
977
53c07b18
XG
978 sp = page_header(__pa(spte));
979 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
980 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
981 return pte_list_add(vcpu, spte, rmapp);
982}
983
984static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
985{
986 return pte_list_next(rmapp, spte);
987}
988
989static void rmap_remove(struct kvm *kvm, u64 *spte)
990{
991 struct kvm_mmu_page *sp;
992 gfn_t gfn;
993 unsigned long *rmapp;
994
995 sp = page_header(__pa(spte));
996 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
997 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
998 pte_list_remove(spte, rmapp);
999}
1000
c3707958 1001static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1002{
1df9f2dc 1003 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1004 rmap_remove(kvm, sptep);
be38d276
AK
1005}
1006
b1a36821 1007static int rmap_write_protect(struct kvm *kvm, u64 gfn)
98348e95 1008{
290fc38d 1009 unsigned long *rmapp;
374cbac0 1010 u64 *spte;
44ad9944 1011 int i, write_protected = 0;
374cbac0 1012
44ad9944 1013 rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
374cbac0 1014
98348e95
IE
1015 spte = rmap_next(kvm, rmapp, NULL);
1016 while (spte) {
374cbac0 1017 BUG_ON(!spte);
374cbac0 1018 BUG_ON(!(*spte & PT_PRESENT_MASK));
374cbac0 1019 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
8dae4445 1020 if (is_writable_pte(*spte)) {
1df9f2dc 1021 mmu_spte_update(spte, *spte & ~PT_WRITABLE_MASK);
caa5b8a5
ED
1022 write_protected = 1;
1023 }
9647c14c 1024 spte = rmap_next(kvm, rmapp, spte);
374cbac0 1025 }
855149aa 1026
05da4558 1027 /* check for huge page mappings */
44ad9944
JR
1028 for (i = PT_DIRECTORY_LEVEL;
1029 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1030 rmapp = gfn_to_rmap(kvm, gfn, i);
1031 spte = rmap_next(kvm, rmapp, NULL);
1032 while (spte) {
1033 BUG_ON(!spte);
1034 BUG_ON(!(*spte & PT_PRESENT_MASK));
1035 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
1036 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
8dae4445 1037 if (is_writable_pte(*spte)) {
c3707958 1038 drop_spte(kvm, spte);
44ad9944 1039 --kvm->stat.lpages;
44ad9944
JR
1040 spte = NULL;
1041 write_protected = 1;
1042 }
1043 spte = rmap_next(kvm, rmapp, spte);
05da4558 1044 }
05da4558
MT
1045 }
1046
b1a36821 1047 return write_protected;
374cbac0
AK
1048}
1049
8a8365c5
FD
1050static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1051 unsigned long data)
e930bffe
AA
1052{
1053 u64 *spte;
1054 int need_tlb_flush = 0;
1055
1056 while ((spte = rmap_next(kvm, rmapp, NULL))) {
1057 BUG_ON(!(*spte & PT_PRESENT_MASK));
1058 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
c3707958 1059 drop_spte(kvm, spte);
e930bffe
AA
1060 need_tlb_flush = 1;
1061 }
1062 return need_tlb_flush;
1063}
1064
8a8365c5
FD
1065static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1066 unsigned long data)
3da0dd43
IE
1067{
1068 int need_flush = 0;
e4b502ea 1069 u64 *spte, new_spte;
3da0dd43
IE
1070 pte_t *ptep = (pte_t *)data;
1071 pfn_t new_pfn;
1072
1073 WARN_ON(pte_huge(*ptep));
1074 new_pfn = pte_pfn(*ptep);
1075 spte = rmap_next(kvm, rmapp, NULL);
1076 while (spte) {
1077 BUG_ON(!is_shadow_present_pte(*spte));
1078 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
1079 need_flush = 1;
1080 if (pte_write(*ptep)) {
c3707958 1081 drop_spte(kvm, spte);
3da0dd43
IE
1082 spte = rmap_next(kvm, rmapp, NULL);
1083 } else {
1084 new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
1085 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1086
1087 new_spte &= ~PT_WRITABLE_MASK;
1088 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1089 new_spte &= ~shadow_accessed_mask;
1df9f2dc
XG
1090 mmu_spte_clear_track_bits(spte);
1091 mmu_spte_set(spte, new_spte);
3da0dd43
IE
1092 spte = rmap_next(kvm, rmapp, spte);
1093 }
1094 }
1095 if (need_flush)
1096 kvm_flush_remote_tlbs(kvm);
1097
1098 return 0;
1099}
1100
8a8365c5
FD
1101static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1102 unsigned long data,
3da0dd43 1103 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
8a8365c5 1104 unsigned long data))
e930bffe 1105{
852e3c19 1106 int i, j;
90bb6fc5 1107 int ret;
e930bffe 1108 int retval = 0;
bc6678a3
MT
1109 struct kvm_memslots *slots;
1110
90d83dc3 1111 slots = kvm_memslots(kvm);
e930bffe 1112
46a26bf5
MT
1113 for (i = 0; i < slots->nmemslots; i++) {
1114 struct kvm_memory_slot *memslot = &slots->memslots[i];
e930bffe
AA
1115 unsigned long start = memslot->userspace_addr;
1116 unsigned long end;
1117
e930bffe
AA
1118 end = start + (memslot->npages << PAGE_SHIFT);
1119 if (hva >= start && hva < end) {
1120 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
d4dbf470 1121 gfn_t gfn = memslot->base_gfn + gfn_offset;
852e3c19 1122
90bb6fc5 1123 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
852e3c19
JR
1124
1125 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
d4dbf470
TY
1126 struct kvm_lpage_info *linfo;
1127
1128 linfo = lpage_info_slot(gfn, memslot,
1129 PT_DIRECTORY_LEVEL + j);
1130 ret |= handler(kvm, &linfo->rmap_pde, data);
852e3c19 1131 }
90bb6fc5
AK
1132 trace_kvm_age_page(hva, memslot, ret);
1133 retval |= ret;
e930bffe
AA
1134 }
1135 }
1136
1137 return retval;
1138}
1139
1140int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1141{
3da0dd43
IE
1142 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1143}
1144
1145void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1146{
8a8365c5 1147 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1148}
1149
8a8365c5
FD
1150static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1151 unsigned long data)
e930bffe
AA
1152{
1153 u64 *spte;
1154 int young = 0;
1155
6316e1c8
RR
1156 /*
1157 * Emulate the accessed bit for EPT, by checking if this page has
1158 * an EPT mapping, and clearing it if it does. On the next access,
1159 * a new EPT mapping will be established.
1160 * This has some overhead, but not as much as the cost of swapping
1161 * out actively used pages or breaking up actively used hugepages.
1162 */
534e38b4 1163 if (!shadow_accessed_mask)
6316e1c8 1164 return kvm_unmap_rmapp(kvm, rmapp, data);
534e38b4 1165
e930bffe
AA
1166 spte = rmap_next(kvm, rmapp, NULL);
1167 while (spte) {
1168 int _young;
1169 u64 _spte = *spte;
1170 BUG_ON(!(_spte & PT_PRESENT_MASK));
1171 _young = _spte & PT_ACCESSED_MASK;
1172 if (_young) {
1173 young = 1;
1174 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
1175 }
1176 spte = rmap_next(kvm, rmapp, spte);
1177 }
1178 return young;
1179}
1180
8ee53820
AA
1181static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1182 unsigned long data)
1183{
1184 u64 *spte;
1185 int young = 0;
1186
1187 /*
1188 * If there's no access bit in the secondary pte set by the
1189 * hardware it's up to gup-fast/gup to set the access bit in
1190 * the primary pte or in the page structure.
1191 */
1192 if (!shadow_accessed_mask)
1193 goto out;
1194
1195 spte = rmap_next(kvm, rmapp, NULL);
1196 while (spte) {
1197 u64 _spte = *spte;
1198 BUG_ON(!(_spte & PT_PRESENT_MASK));
1199 young = _spte & PT_ACCESSED_MASK;
1200 if (young) {
1201 young = 1;
1202 break;
1203 }
1204 spte = rmap_next(kvm, rmapp, spte);
1205 }
1206out:
1207 return young;
1208}
1209
53a27b39
MT
1210#define RMAP_RECYCLE_THRESHOLD 1000
1211
852e3c19 1212static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1213{
1214 unsigned long *rmapp;
852e3c19
JR
1215 struct kvm_mmu_page *sp;
1216
1217 sp = page_header(__pa(spte));
53a27b39 1218
852e3c19 1219 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1220
3da0dd43 1221 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
53a27b39
MT
1222 kvm_flush_remote_tlbs(vcpu->kvm);
1223}
1224
e930bffe
AA
1225int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1226{
3da0dd43 1227 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
e930bffe
AA
1228}
1229
8ee53820
AA
1230int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1231{
1232 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1233}
1234
d6c69ee9 1235#ifdef MMU_DEBUG
47ad8e68 1236static int is_empty_shadow_page(u64 *spt)
6aa8b732 1237{
139bdb2d
AK
1238 u64 *pos;
1239 u64 *end;
1240
47ad8e68 1241 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1242 if (is_shadow_present_pte(*pos)) {
b8688d51 1243 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1244 pos, *pos);
6aa8b732 1245 return 0;
139bdb2d 1246 }
6aa8b732
AK
1247 return 1;
1248}
d6c69ee9 1249#endif
6aa8b732 1250
45221ab6
DH
1251/*
1252 * This value is the sum of all of the kvm instances's
1253 * kvm->arch.n_used_mmu_pages values. We need a global,
1254 * aggregate version in order to make the slab shrinker
1255 * faster
1256 */
1257static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1258{
1259 kvm->arch.n_used_mmu_pages += nr;
1260 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1261}
1262
bd4c86ea
XG
1263/*
1264 * Remove the sp from shadow page cache, after call it,
1265 * we can not find this sp from the cache, and the shadow
1266 * page table is still valid.
1267 * It should be under the protection of mmu lock.
1268 */
1269static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
260746c0 1270{
4db35314 1271 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1272 hlist_del(&sp->hash_link);
2032a93d 1273 if (!sp->role.direct)
842f22ed 1274 free_page((unsigned long)sp->gfns);
bd4c86ea
XG
1275}
1276
1277/*
1278 * Free the shadow page table and the sp, we can do it
1279 * out of the protection of mmu lock.
1280 */
1281static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1282{
1283 list_del(&sp->link);
1284 free_page((unsigned long)sp->spt);
e8ad9a70 1285 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1286}
1287
cea0f0e7
AK
1288static unsigned kvm_page_table_hashfn(gfn_t gfn)
1289{
1ae0a13d 1290 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1291}
1292
714b93da 1293static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1294 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1295{
cea0f0e7
AK
1296 if (!parent_pte)
1297 return;
cea0f0e7 1298
67052b35 1299 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1300}
1301
4db35314 1302static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1303 u64 *parent_pte)
1304{
67052b35 1305 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1306}
1307
bcdd9a93
XG
1308static void drop_parent_pte(struct kvm_mmu_page *sp,
1309 u64 *parent_pte)
1310{
1311 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1312 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1313}
1314
67052b35
XG
1315static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1316 u64 *parent_pte, int direct)
ad8cfbe3 1317{
67052b35
XG
1318 struct kvm_mmu_page *sp;
1319 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
1320 sizeof *sp);
1321 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1322 if (!direct)
1323 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1324 PAGE_SIZE);
1325 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1326 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1327 bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
1328 sp->parent_ptes = 0;
1329 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1330 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1331 return sp;
ad8cfbe3
MT
1332}
1333
67052b35 1334static void mark_unsync(u64 *spte);
1047df1f 1335static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1336{
67052b35 1337 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1338}
1339
67052b35 1340static void mark_unsync(u64 *spte)
0074ff63 1341{
67052b35 1342 struct kvm_mmu_page *sp;
1047df1f 1343 unsigned int index;
0074ff63 1344
67052b35 1345 sp = page_header(__pa(spte));
1047df1f
XG
1346 index = spte - sp->spt;
1347 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1348 return;
1047df1f 1349 if (sp->unsync_children++)
0074ff63 1350 return;
1047df1f 1351 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1352}
1353
e8bc217a 1354static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1355 struct kvm_mmu_page *sp)
e8bc217a
MT
1356{
1357 return 1;
1358}
1359
a7052897
MT
1360static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1361{
1362}
1363
0f53b5b1
XG
1364static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1365 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1366 const void *pte)
0f53b5b1
XG
1367{
1368 WARN_ON(1);
1369}
1370
60c8aec6
MT
1371#define KVM_PAGE_ARRAY_NR 16
1372
1373struct kvm_mmu_pages {
1374 struct mmu_page_and_offset {
1375 struct kvm_mmu_page *sp;
1376 unsigned int idx;
1377 } page[KVM_PAGE_ARRAY_NR];
1378 unsigned int nr;
1379};
1380
0074ff63
MT
1381#define for_each_unsync_children(bitmap, idx) \
1382 for (idx = find_first_bit(bitmap, 512); \
1383 idx < 512; \
1384 idx = find_next_bit(bitmap, 512, idx+1))
1385
cded19f3
HE
1386static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1387 int idx)
4731d4c7 1388{
60c8aec6 1389 int i;
4731d4c7 1390
60c8aec6
MT
1391 if (sp->unsync)
1392 for (i=0; i < pvec->nr; i++)
1393 if (pvec->page[i].sp == sp)
1394 return 0;
1395
1396 pvec->page[pvec->nr].sp = sp;
1397 pvec->page[pvec->nr].idx = idx;
1398 pvec->nr++;
1399 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1400}
1401
1402static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1403 struct kvm_mmu_pages *pvec)
1404{
1405 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1406
0074ff63 1407 for_each_unsync_children(sp->unsync_child_bitmap, i) {
7a8f1a74 1408 struct kvm_mmu_page *child;
4731d4c7
MT
1409 u64 ent = sp->spt[i];
1410
7a8f1a74
XG
1411 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1412 goto clear_child_bitmap;
1413
1414 child = page_header(ent & PT64_BASE_ADDR_MASK);
1415
1416 if (child->unsync_children) {
1417 if (mmu_pages_add(pvec, child, i))
1418 return -ENOSPC;
1419
1420 ret = __mmu_unsync_walk(child, pvec);
1421 if (!ret)
1422 goto clear_child_bitmap;
1423 else if (ret > 0)
1424 nr_unsync_leaf += ret;
1425 else
1426 return ret;
1427 } else if (child->unsync) {
1428 nr_unsync_leaf++;
1429 if (mmu_pages_add(pvec, child, i))
1430 return -ENOSPC;
1431 } else
1432 goto clear_child_bitmap;
1433
1434 continue;
1435
1436clear_child_bitmap:
1437 __clear_bit(i, sp->unsync_child_bitmap);
1438 sp->unsync_children--;
1439 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1440 }
1441
4731d4c7 1442
60c8aec6
MT
1443 return nr_unsync_leaf;
1444}
1445
1446static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1447 struct kvm_mmu_pages *pvec)
1448{
1449 if (!sp->unsync_children)
1450 return 0;
1451
1452 mmu_pages_add(pvec, sp, 0);
1453 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1454}
1455
4731d4c7
MT
1456static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1457{
1458 WARN_ON(!sp->unsync);
5e1b3ddb 1459 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1460 sp->unsync = 0;
1461 --kvm->stat.mmu_unsync;
1462}
1463
7775834a
XG
1464static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1465 struct list_head *invalid_list);
1466static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1467 struct list_head *invalid_list);
4731d4c7 1468
f41d335a
XG
1469#define for_each_gfn_sp(kvm, sp, gfn, pos) \
1470 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1471 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1472 if ((sp)->gfn != (gfn)) {} else
1473
f41d335a
XG
1474#define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1475 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1476 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1477 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1478 (sp)->role.invalid) {} else
1479
f918b443 1480/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1481static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1482 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1483{
5b7e0102 1484 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1485 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1486 return 1;
1487 }
1488
f918b443 1489 if (clear_unsync)
1d9dc7e0 1490 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1491
a4a8e6f7 1492 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1493 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1494 return 1;
1495 }
1496
1497 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1498 return 0;
1499}
1500
1d9dc7e0
XG
1501static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1502 struct kvm_mmu_page *sp)
1503{
d98ba053 1504 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1505 int ret;
1506
d98ba053 1507 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1508 if (ret)
d98ba053
XG
1509 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1510
1d9dc7e0
XG
1511 return ret;
1512}
1513
d98ba053
XG
1514static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1515 struct list_head *invalid_list)
1d9dc7e0 1516{
d98ba053 1517 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1518}
1519
9f1a122f
XG
1520/* @gfn should be write-protected at the call site */
1521static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1522{
9f1a122f 1523 struct kvm_mmu_page *s;
f41d335a 1524 struct hlist_node *node;
d98ba053 1525 LIST_HEAD(invalid_list);
9f1a122f
XG
1526 bool flush = false;
1527
f41d335a 1528 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 1529 if (!s->unsync)
9f1a122f
XG
1530 continue;
1531
1532 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1533 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1534 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1535 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1536 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1537 continue;
1538 }
9f1a122f
XG
1539 flush = true;
1540 }
1541
d98ba053 1542 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1543 if (flush)
1544 kvm_mmu_flush_tlb(vcpu);
1545}
1546
60c8aec6
MT
1547struct mmu_page_path {
1548 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1549 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1550};
1551
60c8aec6
MT
1552#define for_each_sp(pvec, sp, parents, i) \
1553 for (i = mmu_pages_next(&pvec, &parents, -1), \
1554 sp = pvec.page[i].sp; \
1555 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1556 i = mmu_pages_next(&pvec, &parents, i))
1557
cded19f3
HE
1558static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1559 struct mmu_page_path *parents,
1560 int i)
60c8aec6
MT
1561{
1562 int n;
1563
1564 for (n = i+1; n < pvec->nr; n++) {
1565 struct kvm_mmu_page *sp = pvec->page[n].sp;
1566
1567 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1568 parents->idx[0] = pvec->page[n].idx;
1569 return n;
1570 }
1571
1572 parents->parent[sp->role.level-2] = sp;
1573 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1574 }
1575
1576 return n;
1577}
1578
cded19f3 1579static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1580{
60c8aec6
MT
1581 struct kvm_mmu_page *sp;
1582 unsigned int level = 0;
1583
1584 do {
1585 unsigned int idx = parents->idx[level];
4731d4c7 1586
60c8aec6
MT
1587 sp = parents->parent[level];
1588 if (!sp)
1589 return;
1590
1591 --sp->unsync_children;
1592 WARN_ON((int)sp->unsync_children < 0);
1593 __clear_bit(idx, sp->unsync_child_bitmap);
1594 level++;
1595 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1596}
1597
60c8aec6
MT
1598static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1599 struct mmu_page_path *parents,
1600 struct kvm_mmu_pages *pvec)
4731d4c7 1601{
60c8aec6
MT
1602 parents->parent[parent->role.level-1] = NULL;
1603 pvec->nr = 0;
1604}
4731d4c7 1605
60c8aec6
MT
1606static void mmu_sync_children(struct kvm_vcpu *vcpu,
1607 struct kvm_mmu_page *parent)
1608{
1609 int i;
1610 struct kvm_mmu_page *sp;
1611 struct mmu_page_path parents;
1612 struct kvm_mmu_pages pages;
d98ba053 1613 LIST_HEAD(invalid_list);
60c8aec6
MT
1614
1615 kvm_mmu_pages_init(parent, &parents, &pages);
1616 while (mmu_unsync_walk(parent, &pages)) {
b1a36821
MT
1617 int protected = 0;
1618
1619 for_each_sp(pages, sp, parents, i)
1620 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1621
1622 if (protected)
1623 kvm_flush_remote_tlbs(vcpu->kvm);
1624
60c8aec6 1625 for_each_sp(pages, sp, parents, i) {
d98ba053 1626 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1627 mmu_pages_clear_parents(&parents);
1628 }
d98ba053 1629 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1630 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1631 kvm_mmu_pages_init(parent, &parents, &pages);
1632 }
4731d4c7
MT
1633}
1634
c3707958
XG
1635static void init_shadow_page_table(struct kvm_mmu_page *sp)
1636{
1637 int i;
1638
1639 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1640 sp->spt[i] = 0ull;
1641}
1642
cea0f0e7
AK
1643static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1644 gfn_t gfn,
1645 gva_t gaddr,
1646 unsigned level,
f6e2c02b 1647 int direct,
41074d07 1648 unsigned access,
f7d9c7b7 1649 u64 *parent_pte)
cea0f0e7
AK
1650{
1651 union kvm_mmu_page_role role;
cea0f0e7 1652 unsigned quadrant;
9f1a122f 1653 struct kvm_mmu_page *sp;
f41d335a 1654 struct hlist_node *node;
9f1a122f 1655 bool need_sync = false;
cea0f0e7 1656
a770f6f2 1657 role = vcpu->arch.mmu.base_role;
cea0f0e7 1658 role.level = level;
f6e2c02b 1659 role.direct = direct;
84b0c8c6 1660 if (role.direct)
5b7e0102 1661 role.cr4_pae = 0;
41074d07 1662 role.access = access;
c5a78f2b
JR
1663 if (!vcpu->arch.mmu.direct_map
1664 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1665 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1666 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1667 role.quadrant = quadrant;
1668 }
f41d335a 1669 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
7ae680eb
XG
1670 if (!need_sync && sp->unsync)
1671 need_sync = true;
4731d4c7 1672
7ae680eb
XG
1673 if (sp->role.word != role.word)
1674 continue;
4731d4c7 1675
7ae680eb
XG
1676 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1677 break;
e02aa901 1678
7ae680eb
XG
1679 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1680 if (sp->unsync_children) {
a8eeb04a 1681 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1682 kvm_mmu_mark_parents_unsync(sp);
1683 } else if (sp->unsync)
1684 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1685
7ae680eb
XG
1686 trace_kvm_mmu_get_page(sp, false);
1687 return sp;
1688 }
dfc5aa00 1689 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1690 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1691 if (!sp)
1692 return sp;
4db35314
AK
1693 sp->gfn = gfn;
1694 sp->role = role;
7ae680eb
XG
1695 hlist_add_head(&sp->hash_link,
1696 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1697 if (!direct) {
b1a36821
MT
1698 if (rmap_write_protect(vcpu->kvm, gfn))
1699 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1700 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1701 kvm_sync_pages(vcpu, gfn);
1702
4731d4c7
MT
1703 account_shadowed(vcpu->kvm, gfn);
1704 }
c3707958 1705 init_shadow_page_table(sp);
f691fe1d 1706 trace_kvm_mmu_get_page(sp, true);
4db35314 1707 return sp;
cea0f0e7
AK
1708}
1709
2d11123a
AK
1710static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1711 struct kvm_vcpu *vcpu, u64 addr)
1712{
1713 iterator->addr = addr;
1714 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1715 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1716
1717 if (iterator->level == PT64_ROOT_LEVEL &&
1718 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1719 !vcpu->arch.mmu.direct_map)
1720 --iterator->level;
1721
2d11123a
AK
1722 if (iterator->level == PT32E_ROOT_LEVEL) {
1723 iterator->shadow_addr
1724 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1725 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1726 --iterator->level;
1727 if (!iterator->shadow_addr)
1728 iterator->level = 0;
1729 }
1730}
1731
1732static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1733{
1734 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1735 return false;
4d88954d 1736
2d11123a
AK
1737 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1738 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1739 return true;
1740}
1741
c2a2ac2b
XG
1742static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1743 u64 spte)
2d11123a 1744{
c2a2ac2b 1745 if (is_last_spte(spte, iterator->level)) {
052331be
XG
1746 iterator->level = 0;
1747 return;
1748 }
1749
c2a2ac2b 1750 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
1751 --iterator->level;
1752}
1753
c2a2ac2b
XG
1754static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1755{
1756 return __shadow_walk_next(iterator, *iterator->sptep);
1757}
1758
32ef26a3
AK
1759static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1760{
1761 u64 spte;
1762
1763 spte = __pa(sp->spt)
1764 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1765 | PT_WRITABLE_MASK | PT_USER_MASK;
1df9f2dc 1766 mmu_spte_set(sptep, spte);
32ef26a3
AK
1767}
1768
a3aa51cf
AK
1769static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1770{
1771 if (is_large_pte(*sptep)) {
c3707958 1772 drop_spte(vcpu->kvm, sptep);
a3aa51cf
AK
1773 kvm_flush_remote_tlbs(vcpu->kvm);
1774 }
1775}
1776
a357bd22
AK
1777static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1778 unsigned direct_access)
1779{
1780 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1781 struct kvm_mmu_page *child;
1782
1783 /*
1784 * For the direct sp, if the guest pte's dirty bit
1785 * changed form clean to dirty, it will corrupt the
1786 * sp's access: allow writable in the read-only sp,
1787 * so we should update the spte at this point to get
1788 * a new sp with the correct access.
1789 */
1790 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1791 if (child->role.access == direct_access)
1792 return;
1793
bcdd9a93 1794 drop_parent_pte(child, sptep);
a357bd22
AK
1795 kvm_flush_remote_tlbs(vcpu->kvm);
1796 }
1797}
1798
38e3b2b2
XG
1799static void mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1800 u64 *spte)
1801{
1802 u64 pte;
1803 struct kvm_mmu_page *child;
1804
1805 pte = *spte;
1806 if (is_shadow_present_pte(pte)) {
1807 if (is_last_spte(pte, sp->role.level))
c3707958 1808 drop_spte(kvm, spte);
38e3b2b2
XG
1809 else {
1810 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 1811 drop_parent_pte(child, spte);
38e3b2b2 1812 }
ce88decf
XG
1813 } else if (is_mmio_spte(pte))
1814 mmu_spte_clear_no_track(spte);
c3707958 1815
38e3b2b2
XG
1816 if (is_large_pte(pte))
1817 --kvm->stat.lpages;
1818}
1819
90cb0529 1820static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 1821 struct kvm_mmu_page *sp)
a436036b 1822{
697fe2e2 1823 unsigned i;
697fe2e2 1824
38e3b2b2
XG
1825 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1826 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
1827}
1828
4db35314 1829static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1830{
4db35314 1831 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
1832}
1833
12b7d28f
AK
1834static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1835{
1836 int i;
988a2cae 1837 struct kvm_vcpu *vcpu;
12b7d28f 1838
988a2cae
GN
1839 kvm_for_each_vcpu(i, vcpu, kvm)
1840 vcpu->arch.last_pte_updated = NULL;
12b7d28f
AK
1841}
1842
31aa2b44 1843static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b
AK
1844{
1845 u64 *parent_pte;
1846
bcdd9a93
XG
1847 while ((parent_pte = pte_list_next(&sp->parent_ptes, NULL)))
1848 drop_parent_pte(sp, parent_pte);
31aa2b44
AK
1849}
1850
60c8aec6 1851static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
1852 struct kvm_mmu_page *parent,
1853 struct list_head *invalid_list)
4731d4c7 1854{
60c8aec6
MT
1855 int i, zapped = 0;
1856 struct mmu_page_path parents;
1857 struct kvm_mmu_pages pages;
4731d4c7 1858
60c8aec6 1859 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 1860 return 0;
60c8aec6
MT
1861
1862 kvm_mmu_pages_init(parent, &parents, &pages);
1863 while (mmu_unsync_walk(parent, &pages)) {
1864 struct kvm_mmu_page *sp;
1865
1866 for_each_sp(pages, sp, parents, i) {
7775834a 1867 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 1868 mmu_pages_clear_parents(&parents);
77662e00 1869 zapped++;
60c8aec6 1870 }
60c8aec6
MT
1871 kvm_mmu_pages_init(parent, &parents, &pages);
1872 }
1873
1874 return zapped;
4731d4c7
MT
1875}
1876
7775834a
XG
1877static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1878 struct list_head *invalid_list)
31aa2b44 1879{
4731d4c7 1880 int ret;
f691fe1d 1881
7775834a 1882 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 1883 ++kvm->stat.mmu_shadow_zapped;
7775834a 1884 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 1885 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 1886 kvm_mmu_unlink_parents(kvm, sp);
f6e2c02b 1887 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 1888 unaccount_shadowed(kvm, sp->gfn);
4731d4c7
MT
1889 if (sp->unsync)
1890 kvm_unlink_unsync_page(kvm, sp);
4db35314 1891 if (!sp->root_count) {
54a4f023
GJ
1892 /* Count self */
1893 ret++;
7775834a 1894 list_move(&sp->link, invalid_list);
aa6bd187 1895 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 1896 } else {
5b5c6a5a 1897 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2e53d63a
MT
1898 kvm_reload_remote_mmus(kvm);
1899 }
7775834a
XG
1900
1901 sp->role.invalid = 1;
12b7d28f 1902 kvm_mmu_reset_last_pte_updated(kvm);
4731d4c7 1903 return ret;
a436036b
AK
1904}
1905
c2a2ac2b
XG
1906static void kvm_mmu_isolate_pages(struct list_head *invalid_list)
1907{
1908 struct kvm_mmu_page *sp;
1909
1910 list_for_each_entry(sp, invalid_list, link)
1911 kvm_mmu_isolate_page(sp);
1912}
1913
1914static void free_pages_rcu(struct rcu_head *head)
1915{
1916 struct kvm_mmu_page *next, *sp;
1917
1918 sp = container_of(head, struct kvm_mmu_page, rcu);
1919 while (sp) {
1920 if (!list_empty(&sp->link))
1921 next = list_first_entry(&sp->link,
1922 struct kvm_mmu_page, link);
1923 else
1924 next = NULL;
1925 kvm_mmu_free_page(sp);
1926 sp = next;
1927 }
1928}
1929
7775834a
XG
1930static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1931 struct list_head *invalid_list)
1932{
1933 struct kvm_mmu_page *sp;
1934
1935 if (list_empty(invalid_list))
1936 return;
1937
1938 kvm_flush_remote_tlbs(kvm);
1939
c2a2ac2b
XG
1940 if (atomic_read(&kvm->arch.reader_counter)) {
1941 kvm_mmu_isolate_pages(invalid_list);
1942 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1943 list_del_init(invalid_list);
4f022648
XG
1944
1945 trace_kvm_mmu_delay_free_pages(sp);
c2a2ac2b
XG
1946 call_rcu(&sp->rcu, free_pages_rcu);
1947 return;
1948 }
1949
7775834a
XG
1950 do {
1951 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1952 WARN_ON(!sp->role.invalid || sp->root_count);
bd4c86ea 1953 kvm_mmu_isolate_page(sp);
aa6bd187 1954 kvm_mmu_free_page(sp);
7775834a
XG
1955 } while (!list_empty(invalid_list));
1956
1957}
1958
82ce2c96
IE
1959/*
1960 * Changing the number of mmu pages allocated to the vm
49d5ca26 1961 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 1962 */
49d5ca26 1963void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 1964{
d98ba053 1965 LIST_HEAD(invalid_list);
82ce2c96
IE
1966 /*
1967 * If we set the number of mmu pages to be smaller be than the
1968 * number of actived pages , we must to free some mmu pages before we
1969 * change the value
1970 */
1971
49d5ca26
DH
1972 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
1973 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
77662e00 1974 !list_empty(&kvm->arch.active_mmu_pages)) {
82ce2c96
IE
1975 struct kvm_mmu_page *page;
1976
f05e70ac 1977 page = container_of(kvm->arch.active_mmu_pages.prev,
82ce2c96 1978 struct kvm_mmu_page, link);
80b63faf 1979 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
82ce2c96 1980 }
aa6bd187 1981 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 1982 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 1983 }
82ce2c96 1984
49d5ca26 1985 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
82ce2c96
IE
1986}
1987
f67a46f4 1988static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 1989{
4db35314 1990 struct kvm_mmu_page *sp;
f41d335a 1991 struct hlist_node *node;
d98ba053 1992 LIST_HEAD(invalid_list);
a436036b
AK
1993 int r;
1994
9ad17b10 1995 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 1996 r = 0;
f41d335a
XG
1997
1998 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
9ad17b10 1999 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2000 sp->role.word);
2001 r = 1;
f41d335a 2002 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2003 }
d98ba053 2004 kvm_mmu_commit_zap_page(kvm, &invalid_list);
a436036b 2005 return r;
cea0f0e7
AK
2006}
2007
f67a46f4 2008static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
97a0a01e 2009{
4db35314 2010 struct kvm_mmu_page *sp;
f41d335a 2011 struct hlist_node *node;
d98ba053 2012 LIST_HEAD(invalid_list);
97a0a01e 2013
f41d335a 2014 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
9ad17b10 2015 pgprintk("%s: zap %llx %x\n",
7ae680eb 2016 __func__, gfn, sp->role.word);
f41d335a 2017 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
97a0a01e 2018 }
d98ba053 2019 kvm_mmu_commit_zap_page(kvm, &invalid_list);
97a0a01e
AK
2020}
2021
38c335f1 2022static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
6aa8b732 2023{
bc6678a3 2024 int slot = memslot_id(kvm, gfn);
4db35314 2025 struct kvm_mmu_page *sp = page_header(__pa(pte));
6aa8b732 2026
291f26bc 2027 __set_bit(slot, sp->slot_bitmap);
6aa8b732
AK
2028}
2029
74be52e3
SY
2030/*
2031 * The function is based on mtrr_type_lookup() in
2032 * arch/x86/kernel/cpu/mtrr/generic.c
2033 */
2034static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2035 u64 start, u64 end)
2036{
2037 int i;
2038 u64 base, mask;
2039 u8 prev_match, curr_match;
2040 int num_var_ranges = KVM_NR_VAR_MTRR;
2041
2042 if (!mtrr_state->enabled)
2043 return 0xFF;
2044
2045 /* Make end inclusive end, instead of exclusive */
2046 end--;
2047
2048 /* Look in fixed ranges. Just return the type as per start */
2049 if (mtrr_state->have_fixed && (start < 0x100000)) {
2050 int idx;
2051
2052 if (start < 0x80000) {
2053 idx = 0;
2054 idx += (start >> 16);
2055 return mtrr_state->fixed_ranges[idx];
2056 } else if (start < 0xC0000) {
2057 idx = 1 * 8;
2058 idx += ((start - 0x80000) >> 14);
2059 return mtrr_state->fixed_ranges[idx];
2060 } else if (start < 0x1000000) {
2061 idx = 3 * 8;
2062 idx += ((start - 0xC0000) >> 12);
2063 return mtrr_state->fixed_ranges[idx];
2064 }
2065 }
2066
2067 /*
2068 * Look in variable ranges
2069 * Look of multiple ranges matching this address and pick type
2070 * as per MTRR precedence
2071 */
2072 if (!(mtrr_state->enabled & 2))
2073 return mtrr_state->def_type;
2074
2075 prev_match = 0xFF;
2076 for (i = 0; i < num_var_ranges; ++i) {
2077 unsigned short start_state, end_state;
2078
2079 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2080 continue;
2081
2082 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2083 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2084 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2085 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2086
2087 start_state = ((start & mask) == (base & mask));
2088 end_state = ((end & mask) == (base & mask));
2089 if (start_state != end_state)
2090 return 0xFE;
2091
2092 if ((start & mask) != (base & mask))
2093 continue;
2094
2095 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2096 if (prev_match == 0xFF) {
2097 prev_match = curr_match;
2098 continue;
2099 }
2100
2101 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2102 curr_match == MTRR_TYPE_UNCACHABLE)
2103 return MTRR_TYPE_UNCACHABLE;
2104
2105 if ((prev_match == MTRR_TYPE_WRBACK &&
2106 curr_match == MTRR_TYPE_WRTHROUGH) ||
2107 (prev_match == MTRR_TYPE_WRTHROUGH &&
2108 curr_match == MTRR_TYPE_WRBACK)) {
2109 prev_match = MTRR_TYPE_WRTHROUGH;
2110 curr_match = MTRR_TYPE_WRTHROUGH;
2111 }
2112
2113 if (prev_match != curr_match)
2114 return MTRR_TYPE_UNCACHABLE;
2115 }
2116
2117 if (prev_match != 0xFF)
2118 return prev_match;
2119
2120 return mtrr_state->def_type;
2121}
2122
4b12f0de 2123u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2124{
2125 u8 mtrr;
2126
2127 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2128 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2129 if (mtrr == 0xfe || mtrr == 0xff)
2130 mtrr = MTRR_TYPE_WRBACK;
2131 return mtrr;
2132}
4b12f0de 2133EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2134
9cf5cf5a
XG
2135static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2136{
2137 trace_kvm_mmu_unsync_page(sp);
2138 ++vcpu->kvm->stat.mmu_unsync;
2139 sp->unsync = 1;
2140
2141 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2142}
2143
2144static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2145{
4731d4c7 2146 struct kvm_mmu_page *s;
f41d335a 2147 struct hlist_node *node;
9cf5cf5a 2148
f41d335a 2149 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 2150 if (s->unsync)
4731d4c7 2151 continue;
9cf5cf5a
XG
2152 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2153 __kvm_unsync_page(vcpu, s);
4731d4c7 2154 }
4731d4c7
MT
2155}
2156
2157static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2158 bool can_unsync)
2159{
9cf5cf5a 2160 struct kvm_mmu_page *s;
f41d335a 2161 struct hlist_node *node;
9cf5cf5a
XG
2162 bool need_unsync = false;
2163
f41d335a 2164 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
36a2e677
XG
2165 if (!can_unsync)
2166 return 1;
2167
9cf5cf5a 2168 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2169 return 1;
9cf5cf5a
XG
2170
2171 if (!need_unsync && !s->unsync) {
36a2e677 2172 if (!oos_shadow)
9cf5cf5a
XG
2173 return 1;
2174 need_unsync = true;
2175 }
4731d4c7 2176 }
9cf5cf5a
XG
2177 if (need_unsync)
2178 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2179 return 0;
2180}
2181
d555c333 2182static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2183 unsigned pte_access, int user_fault,
640d9b0d 2184 int write_fault, int level,
c2d0ee46 2185 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2186 bool can_unsync, bool host_writable)
1c4f1fd6 2187{
b330aa0c 2188 u64 spte, entry = *sptep;
1e73f9dd 2189 int ret = 0;
64d4d521 2190
ce88decf
XG
2191 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2192 return 0;
2193
1c4f1fd6
AK
2194 /*
2195 * We don't set the accessed bit, since we sometimes want to see
2196 * whether the guest actually used the pte (in order to detect
2197 * demand paging).
2198 */
982c2565 2199 spte = PT_PRESENT_MASK;
947da538 2200 if (!speculative)
3201b5d9 2201 spte |= shadow_accessed_mask;
640d9b0d 2202
7b52345e
SY
2203 if (pte_access & ACC_EXEC_MASK)
2204 spte |= shadow_x_mask;
2205 else
2206 spte |= shadow_nx_mask;
1c4f1fd6 2207 if (pte_access & ACC_USER_MASK)
7b52345e 2208 spte |= shadow_user_mask;
852e3c19 2209 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2210 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2211 if (tdp_enabled)
4b12f0de
SY
2212 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2213 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2214
9bdbba13 2215 if (host_writable)
1403283a 2216 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2217 else
2218 pte_access &= ~ACC_WRITE_MASK;
1403283a 2219
35149e21 2220 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6
AK
2221
2222 if ((pte_access & ACC_WRITE_MASK)
c5a78f2b
JR
2223 || (!vcpu->arch.mmu.direct_map && write_fault
2224 && !is_write_protection(vcpu) && !user_fault)) {
1c4f1fd6 2225
852e3c19
JR
2226 if (level > PT_PAGE_TABLE_LEVEL &&
2227 has_wrprotected_page(vcpu->kvm, gfn, level)) {
38187c83 2228 ret = 1;
c3707958 2229 drop_spte(vcpu->kvm, sptep);
be38d276 2230 goto done;
38187c83
MT
2231 }
2232
1c4f1fd6 2233 spte |= PT_WRITABLE_MASK;
1c4f1fd6 2234
c5a78f2b 2235 if (!vcpu->arch.mmu.direct_map
411c588d 2236 && !(pte_access & ACC_WRITE_MASK)) {
69325a12 2237 spte &= ~PT_USER_MASK;
411c588d
AK
2238 /*
2239 * If we converted a user page to a kernel page,
2240 * so that the kernel can write to it when cr0.wp=0,
2241 * then we should prevent the kernel from executing it
2242 * if SMEP is enabled.
2243 */
2244 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2245 spte |= PT64_NX_MASK;
2246 }
69325a12 2247
ecc5589f
MT
2248 /*
2249 * Optimization: for pte sync, if spte was writable the hash
2250 * lookup is unnecessary (and expensive). Write protection
2251 * is responsibility of mmu_get_page / kvm_sync_page.
2252 * Same reasoning can be applied to dirty page accounting.
2253 */
8dae4445 2254 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2255 goto set_pte;
2256
4731d4c7 2257 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2258 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2259 __func__, gfn);
1e73f9dd 2260 ret = 1;
1c4f1fd6 2261 pte_access &= ~ACC_WRITE_MASK;
8dae4445 2262 if (is_writable_pte(spte))
1c4f1fd6 2263 spte &= ~PT_WRITABLE_MASK;
1c4f1fd6
AK
2264 }
2265 }
2266
1c4f1fd6
AK
2267 if (pte_access & ACC_WRITE_MASK)
2268 mark_page_dirty(vcpu->kvm, gfn);
2269
38187c83 2270set_pte:
1df9f2dc 2271 mmu_spte_update(sptep, spte);
b330aa0c
XG
2272 /*
2273 * If we overwrite a writable spte with a read-only one we
2274 * should flush remote TLBs. Otherwise rmap_write_protect
2275 * will find a read-only spte, even though the writable spte
2276 * might be cached on a CPU's TLB.
2277 */
2278 if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2279 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2280done:
1e73f9dd
MT
2281 return ret;
2282}
2283
d555c333 2284static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2285 unsigned pt_access, unsigned pte_access,
640d9b0d 2286 int user_fault, int write_fault,
b90a0e6c 2287 int *emulate, int level, gfn_t gfn,
1403283a 2288 pfn_t pfn, bool speculative,
9bdbba13 2289 bool host_writable)
1e73f9dd
MT
2290{
2291 int was_rmapped = 0;
53a27b39 2292 int rmap_count;
1e73f9dd
MT
2293
2294 pgprintk("%s: spte %llx access %x write_fault %d"
9ad17b10 2295 " user_fault %d gfn %llx\n",
d555c333 2296 __func__, *sptep, pt_access,
1e73f9dd
MT
2297 write_fault, user_fault, gfn);
2298
d555c333 2299 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2300 /*
2301 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2302 * the parent of the now unreachable PTE.
2303 */
852e3c19
JR
2304 if (level > PT_PAGE_TABLE_LEVEL &&
2305 !is_large_pte(*sptep)) {
1e73f9dd 2306 struct kvm_mmu_page *child;
d555c333 2307 u64 pte = *sptep;
1e73f9dd
MT
2308
2309 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2310 drop_parent_pte(child, sptep);
3be2264b 2311 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2312 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2313 pgprintk("hfn old %llx new %llx\n",
d555c333 2314 spte_to_pfn(*sptep), pfn);
c3707958 2315 drop_spte(vcpu->kvm, sptep);
91546356 2316 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2317 } else
2318 was_rmapped = 1;
1e73f9dd 2319 }
852e3c19 2320
d555c333 2321 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
640d9b0d 2322 level, gfn, pfn, speculative, true,
9bdbba13 2323 host_writable)) {
1e73f9dd 2324 if (write_fault)
b90a0e6c 2325 *emulate = 1;
5304efde 2326 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2327 }
1e73f9dd 2328
ce88decf
XG
2329 if (unlikely(is_mmio_spte(*sptep) && emulate))
2330 *emulate = 1;
2331
d555c333 2332 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2333 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2334 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2335 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2336 *sptep, sptep);
d555c333 2337 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2338 ++vcpu->kvm->stat.lpages;
2339
ffb61bb3
XG
2340 if (is_shadow_present_pte(*sptep)) {
2341 page_header_update_slot(vcpu->kvm, sptep, gfn);
2342 if (!was_rmapped) {
2343 rmap_count = rmap_add(vcpu, sptep, gfn);
2344 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2345 rmap_recycle(vcpu, sptep, gfn);
2346 }
1c4f1fd6 2347 }
9ed5520d 2348 kvm_release_pfn_clean(pfn);
1b7fcd32 2349 if (speculative) {
d555c333 2350 vcpu->arch.last_pte_updated = sptep;
1b7fcd32
AK
2351 vcpu->arch.last_pte_gfn = gfn;
2352 }
1c4f1fd6
AK
2353}
2354
6aa8b732
AK
2355static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2356{
2357}
2358
957ed9ef
XG
2359static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2360 bool no_dirty_log)
2361{
2362 struct kvm_memory_slot *slot;
2363 unsigned long hva;
2364
5d163b1c 2365 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
957ed9ef 2366 if (!slot) {
fce92dce
XG
2367 get_page(fault_page);
2368 return page_to_pfn(fault_page);
957ed9ef
XG
2369 }
2370
2371 hva = gfn_to_hva_memslot(slot, gfn);
2372
2373 return hva_to_pfn_atomic(vcpu->kvm, hva);
2374}
2375
2376static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2377 struct kvm_mmu_page *sp,
2378 u64 *start, u64 *end)
2379{
2380 struct page *pages[PTE_PREFETCH_NUM];
2381 unsigned access = sp->role.access;
2382 int i, ret;
2383 gfn_t gfn;
2384
2385 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2386 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2387 return -1;
2388
2389 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2390 if (ret <= 0)
2391 return -1;
2392
2393 for (i = 0; i < ret; i++, gfn++, start++)
2394 mmu_set_spte(vcpu, start, ACC_ALL,
640d9b0d 2395 access, 0, 0, NULL,
957ed9ef
XG
2396 sp->role.level, gfn,
2397 page_to_pfn(pages[i]), true, true);
2398
2399 return 0;
2400}
2401
2402static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2403 struct kvm_mmu_page *sp, u64 *sptep)
2404{
2405 u64 *spte, *start = NULL;
2406 int i;
2407
2408 WARN_ON(!sp->role.direct);
2409
2410 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2411 spte = sp->spt + i;
2412
2413 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2414 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2415 if (!start)
2416 continue;
2417 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2418 break;
2419 start = NULL;
2420 } else if (!start)
2421 start = spte;
2422 }
2423}
2424
2425static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2426{
2427 struct kvm_mmu_page *sp;
2428
2429 /*
2430 * Since it's no accessed bit on EPT, it's no way to
2431 * distinguish between actually accessed translations
2432 * and prefetched, so disable pte prefetch if EPT is
2433 * enabled.
2434 */
2435 if (!shadow_accessed_mask)
2436 return;
2437
2438 sp = page_header(__pa(sptep));
2439 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2440 return;
2441
2442 __direct_pte_prefetch(vcpu, sp, sptep);
2443}
2444
9f652d21 2445static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2446 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2447 bool prefault)
140754bc 2448{
9f652d21 2449 struct kvm_shadow_walk_iterator iterator;
140754bc 2450 struct kvm_mmu_page *sp;
b90a0e6c 2451 int emulate = 0;
140754bc 2452 gfn_t pseudo_gfn;
6aa8b732 2453
9f652d21 2454 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2455 if (iterator.level == level) {
612819c3
MT
2456 unsigned pte_access = ACC_ALL;
2457
612819c3 2458 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
b90a0e6c 2459 0, write, &emulate,
2ec4739d 2460 level, gfn, pfn, prefault, map_writable);
957ed9ef 2461 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2462 ++vcpu->stat.pf_fixed;
2463 break;
6aa8b732
AK
2464 }
2465
c3707958 2466 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2467 u64 base_addr = iterator.addr;
2468
2469 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2470 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2471 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2472 iterator.level - 1,
2473 1, ACC_ALL, iterator.sptep);
2474 if (!sp) {
2475 pgprintk("nonpaging_map: ENOMEM\n");
2476 kvm_release_pfn_clean(pfn);
2477 return -ENOMEM;
2478 }
140754bc 2479
1df9f2dc
XG
2480 mmu_spte_set(iterator.sptep,
2481 __pa(sp->spt)
2482 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2483 | shadow_user_mask | shadow_x_mask
2484 | shadow_accessed_mask);
9f652d21
AK
2485 }
2486 }
b90a0e6c 2487 return emulate;
6aa8b732
AK
2488}
2489
77db5cbd 2490static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2491{
77db5cbd
HY
2492 siginfo_t info;
2493
2494 info.si_signo = SIGBUS;
2495 info.si_errno = 0;
2496 info.si_code = BUS_MCEERR_AR;
2497 info.si_addr = (void __user *)address;
2498 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2499
77db5cbd 2500 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2501}
2502
d7c55201 2503static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156
HY
2504{
2505 kvm_release_pfn_clean(pfn);
2506 if (is_hwpoison_pfn(pfn)) {
bebb106a 2507 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2508 return 0;
d7c55201 2509 }
edba23e5 2510
d7c55201 2511 return -EFAULT;
bf998156
HY
2512}
2513
936a5fe6
AA
2514static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2515 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2516{
2517 pfn_t pfn = *pfnp;
2518 gfn_t gfn = *gfnp;
2519 int level = *levelp;
2520
2521 /*
2522 * Check if it's a transparent hugepage. If this would be an
2523 * hugetlbfs page, level wouldn't be set to
2524 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2525 * here.
2526 */
2527 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2528 level == PT_PAGE_TABLE_LEVEL &&
2529 PageTransCompound(pfn_to_page(pfn)) &&
2530 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2531 unsigned long mask;
2532 /*
2533 * mmu_notifier_retry was successful and we hold the
2534 * mmu_lock here, so the pmd can't become splitting
2535 * from under us, and in turn
2536 * __split_huge_page_refcount() can't run from under
2537 * us and we can safely transfer the refcount from
2538 * PG_tail to PG_head as we switch the pfn to tail to
2539 * head.
2540 */
2541 *levelp = level = PT_DIRECTORY_LEVEL;
2542 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2543 VM_BUG_ON((gfn & mask) != (pfn & mask));
2544 if (pfn & mask) {
2545 gfn &= ~mask;
2546 *gfnp = gfn;
2547 kvm_release_pfn_clean(pfn);
2548 pfn &= ~mask;
2549 if (!get_page_unless_zero(pfn_to_page(pfn)))
2550 BUG();
2551 *pfnp = pfn;
2552 }
2553 }
2554}
2555
d7c55201
XG
2556static bool mmu_invalid_pfn(pfn_t pfn)
2557{
ce88decf 2558 return unlikely(is_invalid_pfn(pfn));
d7c55201
XG
2559}
2560
2561static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2562 pfn_t pfn, unsigned access, int *ret_val)
2563{
2564 bool ret = true;
2565
2566 /* The pfn is invalid, report the error! */
2567 if (unlikely(is_invalid_pfn(pfn))) {
2568 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2569 goto exit;
2570 }
2571
ce88decf 2572 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2573 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2574
2575 ret = false;
2576exit:
2577 return ret;
2578}
2579
78b2c54a 2580static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe
XG
2581 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2582
2583static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
78b2c54a 2584 bool prefault)
10589a46
MT
2585{
2586 int r;
852e3c19 2587 int level;
936a5fe6 2588 int force_pt_level;
35149e21 2589 pfn_t pfn;
e930bffe 2590 unsigned long mmu_seq;
612819c3 2591 bool map_writable;
aaee2c94 2592
936a5fe6
AA
2593 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2594 if (likely(!force_pt_level)) {
2595 level = mapping_level(vcpu, gfn);
2596 /*
2597 * This path builds a PAE pagetable - so we can map
2598 * 2mb pages at maximum. Therefore check if the level
2599 * is larger than that.
2600 */
2601 if (level > PT_DIRECTORY_LEVEL)
2602 level = PT_DIRECTORY_LEVEL;
852e3c19 2603
936a5fe6
AA
2604 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2605 } else
2606 level = PT_PAGE_TABLE_LEVEL;
05da4558 2607
e930bffe 2608 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2609 smp_rmb();
060c2abe 2610
78b2c54a 2611 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2612 return 0;
aaee2c94 2613
d7c55201
XG
2614 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2615 return r;
d196e343 2616
aaee2c94 2617 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
2618 if (mmu_notifier_retry(vcpu, mmu_seq))
2619 goto out_unlock;
eb787d10 2620 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
2621 if (likely(!force_pt_level))
2622 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2623 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2624 prefault);
aaee2c94
MT
2625 spin_unlock(&vcpu->kvm->mmu_lock);
2626
aaee2c94 2627
10589a46 2628 return r;
e930bffe
AA
2629
2630out_unlock:
2631 spin_unlock(&vcpu->kvm->mmu_lock);
2632 kvm_release_pfn_clean(pfn);
2633 return 0;
10589a46
MT
2634}
2635
2636
17ac10ad
AK
2637static void mmu_free_roots(struct kvm_vcpu *vcpu)
2638{
2639 int i;
4db35314 2640 struct kvm_mmu_page *sp;
d98ba053 2641 LIST_HEAD(invalid_list);
17ac10ad 2642
ad312c7c 2643 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2644 return;
aaee2c94 2645 spin_lock(&vcpu->kvm->mmu_lock);
81407ca5
JR
2646 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2647 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2648 vcpu->arch.mmu.direct_map)) {
ad312c7c 2649 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2650
4db35314
AK
2651 sp = page_header(root);
2652 --sp->root_count;
d98ba053
XG
2653 if (!sp->root_count && sp->role.invalid) {
2654 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2655 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2656 }
ad312c7c 2657 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
aaee2c94 2658 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad
AK
2659 return;
2660 }
17ac10ad 2661 for (i = 0; i < 4; ++i) {
ad312c7c 2662 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2663
417726a3 2664 if (root) {
417726a3 2665 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2666 sp = page_header(root);
2667 --sp->root_count;
2e53d63a 2668 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2669 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2670 &invalid_list);
417726a3 2671 }
ad312c7c 2672 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2673 }
d98ba053 2674 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2675 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2676 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2677}
2678
8986ecc0
MT
2679static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2680{
2681 int ret = 0;
2682
2683 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 2684 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
2685 ret = 1;
2686 }
2687
2688 return ret;
2689}
2690
651dd37a
JR
2691static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2692{
2693 struct kvm_mmu_page *sp;
7ebaf15e 2694 unsigned i;
651dd37a
JR
2695
2696 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2697 spin_lock(&vcpu->kvm->mmu_lock);
2698 kvm_mmu_free_some_pages(vcpu);
2699 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2700 1, ACC_ALL, NULL);
2701 ++sp->root_count;
2702 spin_unlock(&vcpu->kvm->mmu_lock);
2703 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2704 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2705 for (i = 0; i < 4; ++i) {
2706 hpa_t root = vcpu->arch.mmu.pae_root[i];
2707
2708 ASSERT(!VALID_PAGE(root));
2709 spin_lock(&vcpu->kvm->mmu_lock);
2710 kvm_mmu_free_some_pages(vcpu);
649497d1
AK
2711 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2712 i << 30,
651dd37a
JR
2713 PT32_ROOT_LEVEL, 1, ACC_ALL,
2714 NULL);
2715 root = __pa(sp->spt);
2716 ++sp->root_count;
2717 spin_unlock(&vcpu->kvm->mmu_lock);
2718 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 2719 }
6292757f 2720 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
2721 } else
2722 BUG();
2723
2724 return 0;
2725}
2726
2727static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 2728{
4db35314 2729 struct kvm_mmu_page *sp;
81407ca5
JR
2730 u64 pdptr, pm_mask;
2731 gfn_t root_gfn;
2732 int i;
3bb65a22 2733
5777ed34 2734 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 2735
651dd37a
JR
2736 if (mmu_check_root(vcpu, root_gfn))
2737 return 1;
2738
2739 /*
2740 * Do we shadow a long mode page table? If so we need to
2741 * write-protect the guests page table root.
2742 */
2743 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 2744 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
2745
2746 ASSERT(!VALID_PAGE(root));
651dd37a 2747
8facbbff 2748 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2749 kvm_mmu_free_some_pages(vcpu);
651dd37a
JR
2750 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2751 0, ACC_ALL, NULL);
4db35314
AK
2752 root = __pa(sp->spt);
2753 ++sp->root_count;
8facbbff 2754 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2755 vcpu->arch.mmu.root_hpa = root;
8986ecc0 2756 return 0;
17ac10ad 2757 }
f87f9288 2758
651dd37a
JR
2759 /*
2760 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
2761 * or a PAE 3-level page table. In either case we need to be aware that
2762 * the shadow page table may be a PAE or a long mode page table.
651dd37a 2763 */
81407ca5
JR
2764 pm_mask = PT_PRESENT_MASK;
2765 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2766 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2767
17ac10ad 2768 for (i = 0; i < 4; ++i) {
ad312c7c 2769 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
2770
2771 ASSERT(!VALID_PAGE(root));
ad312c7c 2772 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 2773 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 2774 if (!is_present_gpte(pdptr)) {
ad312c7c 2775 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
2776 continue;
2777 }
6de4f3ad 2778 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
2779 if (mmu_check_root(vcpu, root_gfn))
2780 return 1;
5a7388c2 2781 }
8facbbff 2782 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2783 kvm_mmu_free_some_pages(vcpu);
4db35314 2784 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 2785 PT32_ROOT_LEVEL, 0,
f7d9c7b7 2786 ACC_ALL, NULL);
4db35314
AK
2787 root = __pa(sp->spt);
2788 ++sp->root_count;
8facbbff
AK
2789 spin_unlock(&vcpu->kvm->mmu_lock);
2790
81407ca5 2791 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 2792 }
6292757f 2793 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
2794
2795 /*
2796 * If we shadow a 32 bit page table with a long mode page
2797 * table we enter this path.
2798 */
2799 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2800 if (vcpu->arch.mmu.lm_root == NULL) {
2801 /*
2802 * The additional page necessary for this is only
2803 * allocated on demand.
2804 */
2805
2806 u64 *lm_root;
2807
2808 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2809 if (lm_root == NULL)
2810 return 1;
2811
2812 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2813
2814 vcpu->arch.mmu.lm_root = lm_root;
2815 }
2816
2817 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2818 }
2819
8986ecc0 2820 return 0;
17ac10ad
AK
2821}
2822
651dd37a
JR
2823static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2824{
2825 if (vcpu->arch.mmu.direct_map)
2826 return mmu_alloc_direct_roots(vcpu);
2827 else
2828 return mmu_alloc_shadow_roots(vcpu);
2829}
2830
0ba73cda
MT
2831static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2832{
2833 int i;
2834 struct kvm_mmu_page *sp;
2835
81407ca5
JR
2836 if (vcpu->arch.mmu.direct_map)
2837 return;
2838
0ba73cda
MT
2839 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2840 return;
6903074c 2841
bebb106a 2842 vcpu_clear_mmio_info(vcpu, ~0ul);
6903074c 2843 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 2844 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
2845 hpa_t root = vcpu->arch.mmu.root_hpa;
2846 sp = page_header(root);
2847 mmu_sync_children(vcpu, sp);
5054c0de 2848 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
2849 return;
2850 }
2851 for (i = 0; i < 4; ++i) {
2852 hpa_t root = vcpu->arch.mmu.pae_root[i];
2853
8986ecc0 2854 if (root && VALID_PAGE(root)) {
0ba73cda
MT
2855 root &= PT64_BASE_ADDR_MASK;
2856 sp = page_header(root);
2857 mmu_sync_children(vcpu, sp);
2858 }
2859 }
6903074c 2860 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
2861}
2862
2863void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2864{
2865 spin_lock(&vcpu->kvm->mmu_lock);
2866 mmu_sync_roots(vcpu);
6cffe8ca 2867 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
2868}
2869
1871c602 2870static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 2871 u32 access, struct x86_exception *exception)
6aa8b732 2872{
ab9ae313
AK
2873 if (exception)
2874 exception->error_code = 0;
6aa8b732
AK
2875 return vaddr;
2876}
2877
6539e738 2878static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
2879 u32 access,
2880 struct x86_exception *exception)
6539e738 2881{
ab9ae313
AK
2882 if (exception)
2883 exception->error_code = 0;
6539e738
JR
2884 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2885}
2886
ce88decf
XG
2887static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2888{
2889 if (direct)
2890 return vcpu_match_mmio_gpa(vcpu, addr);
2891
2892 return vcpu_match_mmio_gva(vcpu, addr);
2893}
2894
2895
2896/*
2897 * On direct hosts, the last spte is only allows two states
2898 * for mmio page fault:
2899 * - It is the mmio spte
2900 * - It is zapped or it is being zapped.
2901 *
2902 * This function completely checks the spte when the last spte
2903 * is not the mmio spte.
2904 */
2905static bool check_direct_spte_mmio_pf(u64 spte)
2906{
2907 return __check_direct_spte_mmio_pf(spte);
2908}
2909
2910static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
2911{
2912 struct kvm_shadow_walk_iterator iterator;
2913 u64 spte = 0ull;
2914
2915 walk_shadow_page_lockless_begin(vcpu);
2916 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
2917 if (!is_shadow_present_pte(spte))
2918 break;
2919 walk_shadow_page_lockless_end(vcpu);
2920
2921 return spte;
2922}
2923
2924/*
2925 * If it is a real mmio page fault, return 1 and emulat the instruction
2926 * directly, return 0 to let CPU fault again on the address, -1 is
2927 * returned if bug is detected.
2928 */
2929int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2930{
2931 u64 spte;
2932
2933 if (quickly_check_mmio_pf(vcpu, addr, direct))
2934 return 1;
2935
2936 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
2937
2938 if (is_mmio_spte(spte)) {
2939 gfn_t gfn = get_mmio_spte_gfn(spte);
2940 unsigned access = get_mmio_spte_access(spte);
2941
2942 if (direct)
2943 addr = 0;
4f022648
XG
2944
2945 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf
XG
2946 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
2947 return 1;
2948 }
2949
2950 /*
2951 * It's ok if the gva is remapped by other cpus on shadow guest,
2952 * it's a BUG if the gfn is not a mmio page.
2953 */
2954 if (direct && !check_direct_spte_mmio_pf(spte))
2955 return -1;
2956
2957 /*
2958 * If the page table is zapped by other cpus, let CPU fault again on
2959 * the address.
2960 */
2961 return 0;
2962}
2963EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
2964
2965static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
2966 u32 error_code, bool direct)
2967{
2968 int ret;
2969
2970 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
2971 WARN_ON(ret < 0);
2972 return ret;
2973}
2974
6aa8b732 2975static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 2976 u32 error_code, bool prefault)
6aa8b732 2977{
e833240f 2978 gfn_t gfn;
e2dec939 2979 int r;
6aa8b732 2980
b8688d51 2981 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf
XG
2982
2983 if (unlikely(error_code & PFERR_RSVD_MASK))
2984 return handle_mmio_page_fault(vcpu, gva, error_code, true);
2985
e2dec939
AK
2986 r = mmu_topup_memory_caches(vcpu);
2987 if (r)
2988 return r;
714b93da 2989
6aa8b732 2990 ASSERT(vcpu);
ad312c7c 2991 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 2992
e833240f 2993 gfn = gva >> PAGE_SHIFT;
6aa8b732 2994
e833240f 2995 return nonpaging_map(vcpu, gva & PAGE_MASK,
78b2c54a 2996 error_code & PFERR_WRITE_MASK, gfn, prefault);
6aa8b732
AK
2997}
2998
7e1fbeac 2999static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3000{
3001 struct kvm_arch_async_pf arch;
fb67e14f 3002
7c90705b 3003 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3004 arch.gfn = gfn;
c4806acd 3005 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3006 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3007
3008 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3009}
3010
3011static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3012{
3013 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3014 kvm_event_needs_reinjection(vcpu)))
3015 return false;
3016
3017 return kvm_x86_ops->interrupt_allowed(vcpu);
3018}
3019
78b2c54a 3020static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3021 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3022{
3023 bool async;
3024
612819c3 3025 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3026
3027 if (!async)
3028 return false; /* *pfn has correct page already */
3029
3030 put_page(pfn_to_page(*pfn));
3031
78b2c54a 3032 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3033 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3034 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3035 trace_kvm_async_pf_doublefault(gva, gfn);
3036 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3037 return true;
3038 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3039 return true;
3040 }
3041
612819c3 3042 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3043
3044 return false;
3045}
3046
56028d08 3047static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3048 bool prefault)
fb72d167 3049{
35149e21 3050 pfn_t pfn;
fb72d167 3051 int r;
852e3c19 3052 int level;
936a5fe6 3053 int force_pt_level;
05da4558 3054 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3055 unsigned long mmu_seq;
612819c3
MT
3056 int write = error_code & PFERR_WRITE_MASK;
3057 bool map_writable;
fb72d167
JR
3058
3059 ASSERT(vcpu);
3060 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3061
ce88decf
XG
3062 if (unlikely(error_code & PFERR_RSVD_MASK))
3063 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3064
fb72d167
JR
3065 r = mmu_topup_memory_caches(vcpu);
3066 if (r)
3067 return r;
3068
936a5fe6
AA
3069 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3070 if (likely(!force_pt_level)) {
3071 level = mapping_level(vcpu, gfn);
3072 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3073 } else
3074 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3075
e930bffe 3076 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3077 smp_rmb();
af585b92 3078
78b2c54a 3079 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3080 return 0;
3081
d7c55201
XG
3082 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3083 return r;
3084
fb72d167 3085 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
3086 if (mmu_notifier_retry(vcpu, mmu_seq))
3087 goto out_unlock;
fb72d167 3088 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
3089 if (likely(!force_pt_level))
3090 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3091 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3092 level, gfn, pfn, prefault);
fb72d167 3093 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3094
3095 return r;
e930bffe
AA
3096
3097out_unlock:
3098 spin_unlock(&vcpu->kvm->mmu_lock);
3099 kvm_release_pfn_clean(pfn);
3100 return 0;
fb72d167
JR
3101}
3102
6aa8b732
AK
3103static void nonpaging_free(struct kvm_vcpu *vcpu)
3104{
17ac10ad 3105 mmu_free_roots(vcpu);
6aa8b732
AK
3106}
3107
52fde8df
JR
3108static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3109 struct kvm_mmu *context)
6aa8b732 3110{
6aa8b732
AK
3111 context->new_cr3 = nonpaging_new_cr3;
3112 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
3113 context->gva_to_gpa = nonpaging_gva_to_gpa;
3114 context->free = nonpaging_free;
e8bc217a 3115 context->sync_page = nonpaging_sync_page;
a7052897 3116 context->invlpg = nonpaging_invlpg;
0f53b5b1 3117 context->update_pte = nonpaging_update_pte;
cea0f0e7 3118 context->root_level = 0;
6aa8b732 3119 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3120 context->root_hpa = INVALID_PAGE;
c5a78f2b 3121 context->direct_map = true;
2d48a985 3122 context->nx = false;
6aa8b732
AK
3123 return 0;
3124}
3125
d835dfec 3126void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3127{
1165f5fe 3128 ++vcpu->stat.tlb_flush;
a8eeb04a 3129 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732
AK
3130}
3131
3132static void paging_new_cr3(struct kvm_vcpu *vcpu)
3133{
9f8fe504 3134 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
cea0f0e7 3135 mmu_free_roots(vcpu);
6aa8b732
AK
3136}
3137
5777ed34
JR
3138static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3139{
9f8fe504 3140 return kvm_read_cr3(vcpu);
5777ed34
JR
3141}
3142
6389ee94
AK
3143static void inject_page_fault(struct kvm_vcpu *vcpu,
3144 struct x86_exception *fault)
6aa8b732 3145{
6389ee94 3146 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3147}
3148
6aa8b732
AK
3149static void paging_free(struct kvm_vcpu *vcpu)
3150{
3151 nonpaging_free(vcpu);
3152}
3153
3241f22d 3154static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
82725b20
DE
3155{
3156 int bit7;
3157
3158 bit7 = (gpte >> 7) & 1;
3241f22d 3159 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
82725b20
DE
3160}
3161
ce88decf
XG
3162static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3163 int *nr_present)
3164{
3165 if (unlikely(is_mmio_spte(*sptep))) {
3166 if (gfn != get_mmio_spte_gfn(*sptep)) {
3167 mmu_spte_clear_no_track(sptep);
3168 return true;
3169 }
3170
3171 (*nr_present)++;
3172 mark_mmio_spte(sptep, gfn, access);
3173 return true;
3174 }
3175
3176 return false;
3177}
3178
6aa8b732
AK
3179#define PTTYPE 64
3180#include "paging_tmpl.h"
3181#undef PTTYPE
3182
3183#define PTTYPE 32
3184#include "paging_tmpl.h"
3185#undef PTTYPE
3186
52fde8df
JR
3187static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3188 struct kvm_mmu *context,
3189 int level)
82725b20 3190{
82725b20
DE
3191 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3192 u64 exb_bit_rsvd = 0;
3193
2d48a985 3194 if (!context->nx)
82725b20
DE
3195 exb_bit_rsvd = rsvd_bits(63, 63);
3196 switch (level) {
3197 case PT32_ROOT_LEVEL:
3198 /* no rsvd bits for 2 level 4K page table entries */
3199 context->rsvd_bits_mask[0][1] = 0;
3200 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3201 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3202
3203 if (!is_pse(vcpu)) {
3204 context->rsvd_bits_mask[1][1] = 0;
3205 break;
3206 }
3207
82725b20
DE
3208 if (is_cpuid_PSE36())
3209 /* 36bits PSE 4MB page */
3210 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3211 else
3212 /* 32 bits PSE 4MB page */
3213 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3214 break;
3215 case PT32E_ROOT_LEVEL:
20c466b5
DE
3216 context->rsvd_bits_mask[0][2] =
3217 rsvd_bits(maxphyaddr, 63) |
3218 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3219 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3220 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3221 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3222 rsvd_bits(maxphyaddr, 62); /* PTE */
3223 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3224 rsvd_bits(maxphyaddr, 62) |
3225 rsvd_bits(13, 20); /* large page */
f815bce8 3226 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3227 break;
3228 case PT64_ROOT_LEVEL:
3229 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3230 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3231 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3232 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3233 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3234 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3235 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3236 rsvd_bits(maxphyaddr, 51);
3237 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3238 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3239 rsvd_bits(maxphyaddr, 51) |
3240 rsvd_bits(13, 29);
82725b20 3241 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3242 rsvd_bits(maxphyaddr, 51) |
3243 rsvd_bits(13, 20); /* large page */
f815bce8 3244 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3245 break;
3246 }
3247}
3248
52fde8df
JR
3249static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3250 struct kvm_mmu *context,
3251 int level)
6aa8b732 3252{
2d48a985
JR
3253 context->nx = is_nx(vcpu);
3254
52fde8df 3255 reset_rsvds_bits_mask(vcpu, context, level);
6aa8b732
AK
3256
3257 ASSERT(is_pae(vcpu));
3258 context->new_cr3 = paging_new_cr3;
3259 context->page_fault = paging64_page_fault;
6aa8b732 3260 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3261 context->sync_page = paging64_sync_page;
a7052897 3262 context->invlpg = paging64_invlpg;
0f53b5b1 3263 context->update_pte = paging64_update_pte;
6aa8b732 3264 context->free = paging_free;
17ac10ad
AK
3265 context->root_level = level;
3266 context->shadow_root_level = level;
17c3ba9d 3267 context->root_hpa = INVALID_PAGE;
c5a78f2b 3268 context->direct_map = false;
6aa8b732
AK
3269 return 0;
3270}
3271
52fde8df
JR
3272static int paging64_init_context(struct kvm_vcpu *vcpu,
3273 struct kvm_mmu *context)
17ac10ad 3274{
52fde8df 3275 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3276}
3277
52fde8df
JR
3278static int paging32_init_context(struct kvm_vcpu *vcpu,
3279 struct kvm_mmu *context)
6aa8b732 3280{
2d48a985
JR
3281 context->nx = false;
3282
52fde8df 3283 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
6aa8b732
AK
3284
3285 context->new_cr3 = paging_new_cr3;
3286 context->page_fault = paging32_page_fault;
6aa8b732
AK
3287 context->gva_to_gpa = paging32_gva_to_gpa;
3288 context->free = paging_free;
e8bc217a 3289 context->sync_page = paging32_sync_page;
a7052897 3290 context->invlpg = paging32_invlpg;
0f53b5b1 3291 context->update_pte = paging32_update_pte;
6aa8b732
AK
3292 context->root_level = PT32_ROOT_LEVEL;
3293 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3294 context->root_hpa = INVALID_PAGE;
c5a78f2b 3295 context->direct_map = false;
6aa8b732
AK
3296 return 0;
3297}
3298
52fde8df
JR
3299static int paging32E_init_context(struct kvm_vcpu *vcpu,
3300 struct kvm_mmu *context)
6aa8b732 3301{
52fde8df 3302 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3303}
3304
fb72d167
JR
3305static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3306{
14dfe855 3307 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3308
c445f8ef 3309 context->base_role.word = 0;
fb72d167
JR
3310 context->new_cr3 = nonpaging_new_cr3;
3311 context->page_fault = tdp_page_fault;
3312 context->free = nonpaging_free;
e8bc217a 3313 context->sync_page = nonpaging_sync_page;
a7052897 3314 context->invlpg = nonpaging_invlpg;
0f53b5b1 3315 context->update_pte = nonpaging_update_pte;
67253af5 3316 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3317 context->root_hpa = INVALID_PAGE;
c5a78f2b 3318 context->direct_map = true;
1c97f0a0 3319 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3320 context->get_cr3 = get_cr3;
e4e517b4 3321 context->get_pdptr = kvm_pdptr_read;
cb659db8 3322 context->inject_page_fault = kvm_inject_page_fault;
2d48a985 3323 context->nx = is_nx(vcpu);
fb72d167
JR
3324
3325 if (!is_paging(vcpu)) {
2d48a985 3326 context->nx = false;
fb72d167
JR
3327 context->gva_to_gpa = nonpaging_gva_to_gpa;
3328 context->root_level = 0;
3329 } else if (is_long_mode(vcpu)) {
2d48a985 3330 context->nx = is_nx(vcpu);
52fde8df 3331 reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
fb72d167
JR
3332 context->gva_to_gpa = paging64_gva_to_gpa;
3333 context->root_level = PT64_ROOT_LEVEL;
3334 } else if (is_pae(vcpu)) {
2d48a985 3335 context->nx = is_nx(vcpu);
52fde8df 3336 reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
fb72d167
JR
3337 context->gva_to_gpa = paging64_gva_to_gpa;
3338 context->root_level = PT32E_ROOT_LEVEL;
3339 } else {
2d48a985 3340 context->nx = false;
52fde8df 3341 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
fb72d167
JR
3342 context->gva_to_gpa = paging32_gva_to_gpa;
3343 context->root_level = PT32_ROOT_LEVEL;
3344 }
3345
3346 return 0;
3347}
3348
52fde8df 3349int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3350{
a770f6f2 3351 int r;
411c588d 3352 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3353 ASSERT(vcpu);
ad312c7c 3354 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3355
3356 if (!is_paging(vcpu))
52fde8df 3357 r = nonpaging_init_context(vcpu, context);
a9058ecd 3358 else if (is_long_mode(vcpu))
52fde8df 3359 r = paging64_init_context(vcpu, context);
6aa8b732 3360 else if (is_pae(vcpu))
52fde8df 3361 r = paging32E_init_context(vcpu, context);
6aa8b732 3362 else
52fde8df 3363 r = paging32_init_context(vcpu, context);
a770f6f2 3364
5b7e0102 3365 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3366 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3367 vcpu->arch.mmu.base_role.smep_andnot_wp
3368 = smep && !is_write_protection(vcpu);
52fde8df
JR
3369
3370 return r;
3371}
3372EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3373
3374static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3375{
14dfe855 3376 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
52fde8df 3377
14dfe855
JR
3378 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3379 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3380 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3381 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
a770f6f2
AK
3382
3383 return r;
6aa8b732
AK
3384}
3385
02f59dc9
JR
3386static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3387{
3388 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3389
3390 g_context->get_cr3 = get_cr3;
e4e517b4 3391 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3392 g_context->inject_page_fault = kvm_inject_page_fault;
3393
3394 /*
3395 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3396 * translation of l2_gpa to l1_gpa addresses is done using the
3397 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3398 * functions between mmu and nested_mmu are swapped.
3399 */
3400 if (!is_paging(vcpu)) {
2d48a985 3401 g_context->nx = false;
02f59dc9
JR
3402 g_context->root_level = 0;
3403 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3404 } else if (is_long_mode(vcpu)) {
2d48a985 3405 g_context->nx = is_nx(vcpu);
02f59dc9
JR
3406 reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
3407 g_context->root_level = PT64_ROOT_LEVEL;
3408 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3409 } else if (is_pae(vcpu)) {
2d48a985 3410 g_context->nx = is_nx(vcpu);
02f59dc9
JR
3411 reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
3412 g_context->root_level = PT32E_ROOT_LEVEL;
3413 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3414 } else {
2d48a985 3415 g_context->nx = false;
02f59dc9
JR
3416 reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
3417 g_context->root_level = PT32_ROOT_LEVEL;
3418 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3419 }
3420
3421 return 0;
3422}
3423
fb72d167
JR
3424static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3425{
02f59dc9
JR
3426 if (mmu_is_nested(vcpu))
3427 return init_kvm_nested_mmu(vcpu);
3428 else if (tdp_enabled)
fb72d167
JR
3429 return init_kvm_tdp_mmu(vcpu);
3430 else
3431 return init_kvm_softmmu(vcpu);
3432}
3433
6aa8b732
AK
3434static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3435{
3436 ASSERT(vcpu);
62ad0755
SY
3437 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3438 /* mmu.free() should set root_hpa = INVALID_PAGE */
ad312c7c 3439 vcpu->arch.mmu.free(vcpu);
6aa8b732
AK
3440}
3441
3442int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
17c3ba9d
AK
3443{
3444 destroy_kvm_mmu(vcpu);
f8f7e5ee 3445 return init_kvm_mmu(vcpu);
17c3ba9d 3446}
8668a3c4 3447EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3448
3449int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3450{
714b93da
AK
3451 int r;
3452
e2dec939 3453 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3454 if (r)
3455 goto out;
8986ecc0 3456 r = mmu_alloc_roots(vcpu);
8facbbff 3457 spin_lock(&vcpu->kvm->mmu_lock);
0ba73cda 3458 mmu_sync_roots(vcpu);
aaee2c94 3459 spin_unlock(&vcpu->kvm->mmu_lock);
8986ecc0
MT
3460 if (r)
3461 goto out;
3662cb1c 3462 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3463 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3464out:
3465 return r;
6aa8b732 3466}
17c3ba9d
AK
3467EXPORT_SYMBOL_GPL(kvm_mmu_load);
3468
3469void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3470{
3471 mmu_free_roots(vcpu);
3472}
4b16184c 3473EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3474
0028425f 3475static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3476 struct kvm_mmu_page *sp, u64 *spte,
3477 const void *new)
0028425f 3478{
30945387 3479 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3480 ++vcpu->kvm->stat.mmu_pde_zapped;
3481 return;
30945387 3482 }
0028425f 3483
4cee5764 3484 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3485 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3486}
3487
79539cec
AK
3488static bool need_remote_flush(u64 old, u64 new)
3489{
3490 if (!is_shadow_present_pte(old))
3491 return false;
3492 if (!is_shadow_present_pte(new))
3493 return true;
3494 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3495 return true;
3496 old ^= PT64_NX_MASK;
3497 new ^= PT64_NX_MASK;
3498 return (old & ~new & PT64_PERM_MASK) != 0;
3499}
3500
0671a8e7
XG
3501static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3502 bool remote_flush, bool local_flush)
79539cec 3503{
0671a8e7
XG
3504 if (zap_page)
3505 return;
3506
3507 if (remote_flush)
79539cec 3508 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3509 else if (local_flush)
79539cec
AK
3510 kvm_mmu_flush_tlb(vcpu);
3511}
3512
12b7d28f
AK
3513static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
3514{
ad312c7c 3515 u64 *spte = vcpu->arch.last_pte_updated;
12b7d28f 3516
7b52345e 3517 return !!(spte && (*spte & shadow_accessed_mask));
12b7d28f
AK
3518}
3519
1b7fcd32
AK
3520static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
3521{
3522 u64 *spte = vcpu->arch.last_pte_updated;
3523
3524 if (spte
3525 && vcpu->arch.last_pte_gfn == gfn
3526 && shadow_accessed_mask
3527 && !(*spte & shadow_accessed_mask)
3528 && is_shadow_present_pte(*spte))
3529 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
3530}
3531
09072daf 3532void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
ad218f85
MT
3533 const u8 *new, int bytes,
3534 bool guest_initiated)
da4a00f0 3535{
9b7a0325 3536 gfn_t gfn = gpa >> PAGE_SHIFT;
fa1de2bf 3537 union kvm_mmu_page_role mask = { .word = 0 };
4db35314 3538 struct kvm_mmu_page *sp;
f41d335a 3539 struct hlist_node *node;
d98ba053 3540 LIST_HEAD(invalid_list);
0f53b5b1
XG
3541 u64 entry, gentry, *spte;
3542 unsigned pte_size, page_offset, misaligned, quadrant, offset;
3543 int level, npte, invlpg_counter, r, flooded = 0;
0671a8e7
XG
3544 bool remote_flush, local_flush, zap_page;
3545
332b207d
XG
3546 /*
3547 * If we don't have indirect shadow pages, it means no page is
3548 * write-protected, so we can exit simply.
3549 */
3550 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3551 return;
3552
0671a8e7 3553 zap_page = remote_flush = local_flush = false;
0f53b5b1 3554 offset = offset_in_page(gpa);
9b7a0325 3555
b8688d51 3556 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
72016f3a 3557
08e850c6 3558 invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
72016f3a
AK
3559
3560 /*
3561 * Assume that the pte write on a page table of the same type
49b26e26
XG
3562 * as the current vcpu paging mode since we update the sptes only
3563 * when they have the same mode.
72016f3a 3564 */
08e850c6 3565 if ((is_pae(vcpu) && bytes == 4) || !new) {
72016f3a 3566 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
08e850c6
AK
3567 if (is_pae(vcpu)) {
3568 gpa &= ~(gpa_t)7;
3569 bytes = 8;
3570 }
3571 r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
72016f3a
AK
3572 if (r)
3573 gentry = 0;
08e850c6
AK
3574 new = (const u8 *)&gentry;
3575 }
3576
3577 switch (bytes) {
3578 case 4:
3579 gentry = *(const u32 *)new;
3580 break;
3581 case 8:
3582 gentry = *(const u64 *)new;
3583 break;
3584 default:
3585 gentry = 0;
3586 break;
72016f3a
AK
3587 }
3588
aaee2c94 3589 spin_lock(&vcpu->kvm->mmu_lock);
08e850c6
AK
3590 if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
3591 gentry = 0;
eb787d10 3592 kvm_mmu_free_some_pages(vcpu);
4cee5764 3593 ++vcpu->kvm->stat.mmu_pte_write;
8b1fe17c 3594 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
ad218f85 3595 if (guest_initiated) {
1b7fd45c 3596 kvm_mmu_access_page(vcpu, gfn);
ad218f85
MT
3597 if (gfn == vcpu->arch.last_pt_write_gfn
3598 && !last_updated_pte_accessed(vcpu)) {
3599 ++vcpu->arch.last_pt_write_count;
3600 if (vcpu->arch.last_pt_write_count >= 3)
3601 flooded = 1;
3602 } else {
3603 vcpu->arch.last_pt_write_gfn = gfn;
3604 vcpu->arch.last_pt_write_count = 1;
3605 vcpu->arch.last_pte_updated = NULL;
3606 }
86a5ba02 3607 }
3246af0e 3608
fa1de2bf 3609 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
f41d335a 3610 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
5b7e0102 3611 pte_size = sp->role.cr4_pae ? 8 : 4;
0e7bc4b9 3612 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
e925c5ba 3613 misaligned |= bytes < 4;
86a5ba02 3614 if (misaligned || flooded) {
0e7bc4b9
AK
3615 /*
3616 * Misaligned accesses are too much trouble to fix
3617 * up; also, they usually indicate a page is not used
3618 * as a page table.
86a5ba02
AK
3619 *
3620 * If we're seeing too many writes to a page,
3621 * it may no longer be a page table, or we may be
3622 * forking, in which case it is better to unmap the
3623 * page.
0e7bc4b9
AK
3624 */
3625 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4db35314 3626 gpa, bytes, sp->role.word);
0671a8e7 3627 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 3628 &invalid_list);
4cee5764 3629 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
3630 continue;
3631 }
9b7a0325 3632 page_offset = offset;
4db35314 3633 level = sp->role.level;
ac1b714e 3634 npte = 1;
5b7e0102 3635 if (!sp->role.cr4_pae) {
ac1b714e
AK
3636 page_offset <<= 1; /* 32->64 */
3637 /*
3638 * A 32-bit pde maps 4MB while the shadow pdes map
3639 * only 2MB. So we need to double the offset again
3640 * and zap two pdes instead of one.
3641 */
3642 if (level == PT32_ROOT_LEVEL) {
6b8d0f9b 3643 page_offset &= ~7; /* kill rounding error */
ac1b714e
AK
3644 page_offset <<= 1;
3645 npte = 2;
3646 }
fce0657f 3647 quadrant = page_offset >> PAGE_SHIFT;
9b7a0325 3648 page_offset &= ~PAGE_MASK;
4db35314 3649 if (quadrant != sp->role.quadrant)
fce0657f 3650 continue;
9b7a0325 3651 }
0671a8e7 3652 local_flush = true;
4db35314 3653 spte = &sp->spt[page_offset / sizeof(*spte)];
ac1b714e 3654 while (npte--) {
79539cec 3655 entry = *spte;
38e3b2b2 3656 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
3657 if (gentry &&
3658 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3659 & mask.word))
7c562522 3660 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
0671a8e7
XG
3661 if (!remote_flush && need_remote_flush(entry, *spte))
3662 remote_flush = true;
ac1b714e 3663 ++spte;
9b7a0325 3664 }
9b7a0325 3665 }
0671a8e7 3666 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 3667 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
8b1fe17c 3668 trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 3669 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
3670}
3671
a436036b
AK
3672int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3673{
10589a46
MT
3674 gpa_t gpa;
3675 int r;
a436036b 3676
c5a78f2b 3677 if (vcpu->arch.mmu.direct_map)
60f24784
AK
3678 return 0;
3679
1871c602 3680 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 3681
aaee2c94 3682 spin_lock(&vcpu->kvm->mmu_lock);
10589a46 3683 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
aaee2c94 3684 spin_unlock(&vcpu->kvm->mmu_lock);
10589a46 3685 return r;
a436036b 3686}
577bdc49 3687EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 3688
22d95b12 3689void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
ebeace86 3690{
d98ba053 3691 LIST_HEAD(invalid_list);
103ad25a 3692
e0df7b9f 3693 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3b80fffe 3694 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4db35314 3695 struct kvm_mmu_page *sp;
ebeace86 3696
f05e70ac 3697 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4db35314 3698 struct kvm_mmu_page, link);
e0df7b9f 3699 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 3700 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 3701 }
aa6bd187 3702 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 3703}
ebeace86 3704
dc25e89e
AP
3705int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3706 void *insn, int insn_len)
3067714c
AK
3707{
3708 int r;
3709 enum emulation_result er;
3710
56028d08 3711 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
3712 if (r < 0)
3713 goto out;
3714
3715 if (!r) {
3716 r = 1;
3717 goto out;
3718 }
3719
b733bfb5
AK
3720 r = mmu_topup_memory_caches(vcpu);
3721 if (r)
3722 goto out;
3723
dc25e89e 3724 er = x86_emulate_instruction(vcpu, cr2, 0, insn, insn_len);
3067714c
AK
3725
3726 switch (er) {
3727 case EMULATE_DONE:
3728 return 1;
3729 case EMULATE_DO_MMIO:
3730 ++vcpu->stat.mmio_exits;
6d77dbfc 3731 /* fall through */
3067714c 3732 case EMULATE_FAIL:
3f5d18a9 3733 return 0;
3067714c
AK
3734 default:
3735 BUG();
3736 }
3737out:
3067714c
AK
3738 return r;
3739}
3740EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3741
a7052897
MT
3742void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3743{
a7052897 3744 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
3745 kvm_mmu_flush_tlb(vcpu);
3746 ++vcpu->stat.invlpg;
3747}
3748EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3749
18552672
JR
3750void kvm_enable_tdp(void)
3751{
3752 tdp_enabled = true;
3753}
3754EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3755
5f4cb662
JR
3756void kvm_disable_tdp(void)
3757{
3758 tdp_enabled = false;
3759}
3760EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3761
6aa8b732
AK
3762static void free_mmu_pages(struct kvm_vcpu *vcpu)
3763{
ad312c7c 3764 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
3765 if (vcpu->arch.mmu.lm_root != NULL)
3766 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
3767}
3768
3769static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3770{
17ac10ad 3771 struct page *page;
6aa8b732
AK
3772 int i;
3773
3774 ASSERT(vcpu);
3775
17ac10ad
AK
3776 /*
3777 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3778 * Therefore we need to allocate shadow page tables in the first
3779 * 4GB of memory, which happens to fit the DMA32 zone.
3780 */
3781 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3782 if (!page)
d7fa6ab2
WY
3783 return -ENOMEM;
3784
ad312c7c 3785 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 3786 for (i = 0; i < 4; ++i)
ad312c7c 3787 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3788
6aa8b732 3789 return 0;
6aa8b732
AK
3790}
3791
8018c27b 3792int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 3793{
6aa8b732 3794 ASSERT(vcpu);
ad312c7c 3795 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3796
8018c27b
IM
3797 return alloc_mmu_pages(vcpu);
3798}
6aa8b732 3799
8018c27b
IM
3800int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3801{
3802 ASSERT(vcpu);
ad312c7c 3803 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 3804
8018c27b 3805 return init_kvm_mmu(vcpu);
6aa8b732
AK
3806}
3807
90cb0529 3808void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 3809{
4db35314 3810 struct kvm_mmu_page *sp;
6aa8b732 3811
f05e70ac 3812 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
6aa8b732
AK
3813 int i;
3814 u64 *pt;
3815
291f26bc 3816 if (!test_bit(slot, sp->slot_bitmap))
6aa8b732
AK
3817 continue;
3818
4db35314 3819 pt = sp->spt;
8234b22e 3820 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
da8dc75f
XG
3821 if (!is_shadow_present_pte(pt[i]) ||
3822 !is_last_spte(pt[i], sp->role.level))
3823 continue;
3824
3825 if (is_large_pte(pt[i])) {
c3707958 3826 drop_spte(kvm, &pt[i]);
8234b22e 3827 --kvm->stat.lpages;
da8dc75f 3828 continue;
8234b22e 3829 }
da8dc75f 3830
6aa8b732 3831 /* avoid RMW */
01c168ac 3832 if (is_writable_pte(pt[i]))
1df9f2dc
XG
3833 mmu_spte_update(&pt[i],
3834 pt[i] & ~PT_WRITABLE_MASK);
8234b22e 3835 }
6aa8b732 3836 }
171d595d 3837 kvm_flush_remote_tlbs(kvm);
6aa8b732 3838}
37a7d8b0 3839
90cb0529 3840void kvm_mmu_zap_all(struct kvm *kvm)
e0fa826f 3841{
4db35314 3842 struct kvm_mmu_page *sp, *node;
d98ba053 3843 LIST_HEAD(invalid_list);
e0fa826f 3844
aaee2c94 3845 spin_lock(&kvm->mmu_lock);
3246af0e 3846restart:
f05e70ac 3847 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
d98ba053 3848 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3246af0e
XG
3849 goto restart;
3850
d98ba053 3851 kvm_mmu_commit_zap_page(kvm, &invalid_list);
aaee2c94 3852 spin_unlock(&kvm->mmu_lock);
e0fa826f
DL
3853}
3854
d98ba053
XG
3855static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3856 struct list_head *invalid_list)
3ee16c81
IE
3857{
3858 struct kvm_mmu_page *page;
3859
3860 page = container_of(kvm->arch.active_mmu_pages.prev,
3861 struct kvm_mmu_page, link);
d98ba053 3862 return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3ee16c81
IE
3863}
3864
1495f230 3865static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
3866{
3867 struct kvm *kvm;
3868 struct kvm *kvm_freed = NULL;
1495f230 3869 int nr_to_scan = sc->nr_to_scan;
45221ab6
DH
3870
3871 if (nr_to_scan == 0)
3872 goto out;
3ee16c81 3873
e935b837 3874 raw_spin_lock(&kvm_lock);
3ee16c81
IE
3875
3876 list_for_each_entry(kvm, &vm_list, vm_list) {
45221ab6 3877 int idx, freed_pages;
d98ba053 3878 LIST_HEAD(invalid_list);
3ee16c81 3879
f656ce01 3880 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 3881 spin_lock(&kvm->mmu_lock);
45221ab6
DH
3882 if (!kvm_freed && nr_to_scan > 0 &&
3883 kvm->arch.n_used_mmu_pages > 0) {
d98ba053
XG
3884 freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3885 &invalid_list);
3ee16c81
IE
3886 kvm_freed = kvm;
3887 }
3888 nr_to_scan--;
3889
d98ba053 3890 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3ee16c81 3891 spin_unlock(&kvm->mmu_lock);
f656ce01 3892 srcu_read_unlock(&kvm->srcu, idx);
3ee16c81
IE
3893 }
3894 if (kvm_freed)
3895 list_move_tail(&kvm_freed->vm_list, &vm_list);
3896
e935b837 3897 raw_spin_unlock(&kvm_lock);
3ee16c81 3898
45221ab6
DH
3899out:
3900 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
3901}
3902
3903static struct shrinker mmu_shrinker = {
3904 .shrink = mmu_shrink,
3905 .seeks = DEFAULT_SEEKS * 10,
3906};
3907
2ddfd20e 3908static void mmu_destroy_caches(void)
b5a33a75 3909{
53c07b18
XG
3910 if (pte_list_desc_cache)
3911 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
3912 if (mmu_page_header_cache)
3913 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
3914}
3915
3916int kvm_mmu_module_init(void)
3917{
53c07b18
XG
3918 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
3919 sizeof(struct pte_list_desc),
20c2df83 3920 0, 0, NULL);
53c07b18 3921 if (!pte_list_desc_cache)
b5a33a75
AK
3922 goto nomem;
3923
d3d25b04
AK
3924 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3925 sizeof(struct kvm_mmu_page),
20c2df83 3926 0, 0, NULL);
d3d25b04
AK
3927 if (!mmu_page_header_cache)
3928 goto nomem;
3929
45bf21a8
WY
3930 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3931 goto nomem;
3932
3ee16c81
IE
3933 register_shrinker(&mmu_shrinker);
3934
b5a33a75
AK
3935 return 0;
3936
3937nomem:
3ee16c81 3938 mmu_destroy_caches();
b5a33a75
AK
3939 return -ENOMEM;
3940}
3941
3ad82a7e
ZX
3942/*
3943 * Caculate mmu pages needed for kvm.
3944 */
3945unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3946{
3947 int i;
3948 unsigned int nr_mmu_pages;
3949 unsigned int nr_pages = 0;
bc6678a3 3950 struct kvm_memslots *slots;
3ad82a7e 3951
90d83dc3
LJ
3952 slots = kvm_memslots(kvm);
3953
bc6678a3
MT
3954 for (i = 0; i < slots->nmemslots; i++)
3955 nr_pages += slots->memslots[i].npages;
3ad82a7e
ZX
3956
3957 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3958 nr_mmu_pages = max(nr_mmu_pages,
3959 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3960
3961 return nr_mmu_pages;
3962}
3963
2f333bcb
MT
3964static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3965 unsigned len)
3966{
3967 if (len > buffer->len)
3968 return NULL;
3969 return buffer->ptr;
3970}
3971
3972static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3973 unsigned len)
3974{
3975 void *ret;
3976
3977 ret = pv_mmu_peek_buffer(buffer, len);
3978 if (!ret)
3979 return ret;
3980 buffer->ptr += len;
3981 buffer->len -= len;
3982 buffer->processed += len;
3983 return ret;
3984}
3985
3986static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
3987 gpa_t addr, gpa_t value)
3988{
3989 int bytes = 8;
3990 int r;
3991
3992 if (!is_long_mode(vcpu) && !is_pae(vcpu))
3993 bytes = 4;
3994
3995 r = mmu_topup_memory_caches(vcpu);
3996 if (r)
3997 return r;
3998
3200f405 3999 if (!emulator_write_phys(vcpu, addr, &value, bytes))
2f333bcb
MT
4000 return -EFAULT;
4001
4002 return 1;
4003}
4004
4005static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
4006{
9f8fe504 4007 (void)kvm_set_cr3(vcpu, kvm_read_cr3(vcpu));
2f333bcb
MT
4008 return 1;
4009}
4010
4011static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
4012{
4013 spin_lock(&vcpu->kvm->mmu_lock);
4014 mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
4015 spin_unlock(&vcpu->kvm->mmu_lock);
4016 return 1;
4017}
4018
4019static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
4020 struct kvm_pv_mmu_op_buffer *buffer)
4021{
4022 struct kvm_mmu_op_header *header;
4023
4024 header = pv_mmu_peek_buffer(buffer, sizeof *header);
4025 if (!header)
4026 return 0;
4027 switch (header->op) {
4028 case KVM_MMU_OP_WRITE_PTE: {
4029 struct kvm_mmu_op_write_pte *wpte;
4030
4031 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
4032 if (!wpte)
4033 return 0;
4034 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
4035 wpte->pte_val);
4036 }
4037 case KVM_MMU_OP_FLUSH_TLB: {
4038 struct kvm_mmu_op_flush_tlb *ftlb;
4039
4040 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
4041 if (!ftlb)
4042 return 0;
4043 return kvm_pv_mmu_flush_tlb(vcpu);
4044 }
4045 case KVM_MMU_OP_RELEASE_PT: {
4046 struct kvm_mmu_op_release_pt *rpt;
4047
4048 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
4049 if (!rpt)
4050 return 0;
4051 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
4052 }
4053 default: return 0;
4054 }
4055}
4056
4057int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
4058 gpa_t addr, unsigned long *ret)
4059{
4060 int r;
6ad18fba 4061 struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
2f333bcb 4062
6ad18fba
DH
4063 buffer->ptr = buffer->buf;
4064 buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
4065 buffer->processed = 0;
2f333bcb 4066
6ad18fba 4067 r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
2f333bcb
MT
4068 if (r)
4069 goto out;
4070
6ad18fba
DH
4071 while (buffer->len) {
4072 r = kvm_pv_mmu_op_one(vcpu, buffer);
2f333bcb
MT
4073 if (r < 0)
4074 goto out;
4075 if (r == 0)
4076 break;
4077 }
4078
4079 r = 1;
4080out:
6ad18fba 4081 *ret = buffer->processed;
2f333bcb
MT
4082 return r;
4083}
4084
94d8b056
MT
4085int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4086{
4087 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4088 u64 spte;
94d8b056
MT
4089 int nr_sptes = 0;
4090
c2a2ac2b
XG
4091 walk_shadow_page_lockless_begin(vcpu);
4092 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4093 sptes[iterator.level-1] = spte;
94d8b056 4094 nr_sptes++;
c2a2ac2b 4095 if (!is_shadow_present_pte(spte))
94d8b056
MT
4096 break;
4097 }
c2a2ac2b 4098 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4099
4100 return nr_sptes;
4101}
4102EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4103
c42fffe3
XG
4104void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4105{
4106 ASSERT(vcpu);
4107
4108 destroy_kvm_mmu(vcpu);
4109 free_mmu_pages(vcpu);
4110 mmu_free_memory_caches(vcpu);
b034cf01
XG
4111}
4112
4113#ifdef CONFIG_KVM_MMU_AUDIT
4114#include "mmu_audit.c"
4115#else
4116static void mmu_audit_disable(void) { }
4117#endif
4118
4119void kvm_mmu_module_exit(void)
4120{
4121 mmu_destroy_caches();
4122 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4123 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4124 mmu_audit_disable();
4125}
This page took 0.918881 seconds and 5 git commands to generate.