KVM: MMU: Make pte_list_desc fit cache lines well
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c 62#undef MMU_DEBUG
37a7d8b0
AK
63
64#ifdef MMU_DEBUG
65
66#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69#else
70
71#define pgprintk(x...) do { } while (0)
72#define rmap_printk(x...) do { } while (0)
73
74#endif
75
8b1fe17c 76#ifdef MMU_DEBUG
476bc001 77static bool dbg = 0;
6ada8cca 78module_param(dbg, bool, 0644);
37a7d8b0 79#endif
6aa8b732 80
d6c69ee9
YD
81#ifndef MMU_DEBUG
82#define ASSERT(x) do { } while (0)
83#else
6aa8b732
AK
84#define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
d6c69ee9 89#endif
6aa8b732 90
957ed9ef
XG
91#define PTE_PREFETCH_NUM 8
92
6aa8b732
AK
93#define PT_FIRST_AVAIL_BITS_SHIFT 9
94#define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
6aa8b732
AK
96#define PT64_LEVEL_BITS 9
97
98#define PT64_LEVEL_SHIFT(level) \
d77c26fc 99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 100
6aa8b732
AK
101#define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105#define PT32_LEVEL_BITS 10
106
107#define PT32_LEVEL_SHIFT(level) \
d77c26fc 108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 109
e04da980
JR
110#define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
113
114#define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
27aba766 118#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
119#define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
121#define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124#define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
127
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
79539cec
AK
135#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
6aa8b732 137
fe135d2c
AK
138#define ACC_EXEC_MASK 1
139#define ACC_WRITE_MASK PT_WRITABLE_MASK
140#define ACC_USER_MASK PT_USER_MASK
141#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
90bb6fc5
AK
143#include <trace/events/kvm.h>
144
07420171
AK
145#define CREATE_TRACE_POINTS
146#include "mmutrace.h"
147
1403283a
IE
148#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149
135f8c2b
AK
150#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
151
220f773a
TY
152/* make pte_list_desc fit well in cache line */
153#define PTE_LIST_EXT 3
154
53c07b18
XG
155struct pte_list_desc {
156 u64 *sptes[PTE_LIST_EXT];
157 struct pte_list_desc *more;
cd4a4e53
AK
158};
159
2d11123a
AK
160struct kvm_shadow_walk_iterator {
161 u64 addr;
162 hpa_t shadow_addr;
2d11123a 163 u64 *sptep;
dd3bfd59 164 int level;
2d11123a
AK
165 unsigned index;
166};
167
168#define for_each_shadow_entry(_vcpu, _addr, _walker) \
169 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
170 shadow_walk_okay(&(_walker)); \
171 shadow_walk_next(&(_walker)))
172
c2a2ac2b
XG
173#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
174 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
175 shadow_walk_okay(&(_walker)) && \
176 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
177 __shadow_walk_next(&(_walker), spte))
178
53c07b18 179static struct kmem_cache *pte_list_desc_cache;
d3d25b04 180static struct kmem_cache *mmu_page_header_cache;
45221ab6 181static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 182
7b52345e
SY
183static u64 __read_mostly shadow_nx_mask;
184static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
185static u64 __read_mostly shadow_user_mask;
186static u64 __read_mostly shadow_accessed_mask;
187static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
188static u64 __read_mostly shadow_mmio_mask;
189
190static void mmu_spte_set(u64 *sptep, u64 spte);
191
192void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
193{
194 shadow_mmio_mask = mmio_mask;
195}
196EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
197
198static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
199{
200 access &= ACC_WRITE_MASK | ACC_USER_MASK;
201
4f022648 202 trace_mark_mmio_spte(sptep, gfn, access);
ce88decf
XG
203 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
204}
205
206static bool is_mmio_spte(u64 spte)
207{
208 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
209}
210
211static gfn_t get_mmio_spte_gfn(u64 spte)
212{
213 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
214}
215
216static unsigned get_mmio_spte_access(u64 spte)
217{
218 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
219}
220
221static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
222{
223 if (unlikely(is_noslot_pfn(pfn))) {
224 mark_mmio_spte(sptep, gfn, access);
225 return true;
226 }
227
228 return false;
229}
c7addb90 230
82725b20
DE
231static inline u64 rsvd_bits(int s, int e)
232{
233 return ((1ULL << (e - s + 1)) - 1) << s;
234}
235
7b52345e 236void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 237 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
238{
239 shadow_user_mask = user_mask;
240 shadow_accessed_mask = accessed_mask;
241 shadow_dirty_mask = dirty_mask;
242 shadow_nx_mask = nx_mask;
243 shadow_x_mask = x_mask;
244}
245EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
246
6aa8b732
AK
247static int is_cpuid_PSE36(void)
248{
249 return 1;
250}
251
73b1087e
AK
252static int is_nx(struct kvm_vcpu *vcpu)
253{
f6801dff 254 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
255}
256
c7addb90
AK
257static int is_shadow_present_pte(u64 pte)
258{
ce88decf 259 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
260}
261
05da4558
MT
262static int is_large_pte(u64 pte)
263{
264 return pte & PT_PAGE_SIZE_MASK;
265}
266
43a3795a 267static int is_dirty_gpte(unsigned long pte)
e3c5e7ec 268{
439e218a 269 return pte & PT_DIRTY_MASK;
e3c5e7ec
AK
270}
271
43a3795a 272static int is_rmap_spte(u64 pte)
cd4a4e53 273{
4b1a80fa 274 return is_shadow_present_pte(pte);
cd4a4e53
AK
275}
276
776e6633
MT
277static int is_last_spte(u64 pte, int level)
278{
279 if (level == PT_PAGE_TABLE_LEVEL)
280 return 1;
852e3c19 281 if (is_large_pte(pte))
776e6633
MT
282 return 1;
283 return 0;
284}
285
35149e21 286static pfn_t spte_to_pfn(u64 pte)
0b49ea86 287{
35149e21 288 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
289}
290
da928521
AK
291static gfn_t pse36_gfn_delta(u32 gpte)
292{
293 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
294
295 return (gpte & PT32_DIR_PSE36_MASK) << shift;
296}
297
603e0651 298#ifdef CONFIG_X86_64
d555c333 299static void __set_spte(u64 *sptep, u64 spte)
e663ee64 300{
603e0651 301 *sptep = spte;
e663ee64
AK
302}
303
603e0651 304static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 305{
603e0651
XG
306 *sptep = spte;
307}
308
309static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
310{
311 return xchg(sptep, spte);
312}
c2a2ac2b
XG
313
314static u64 __get_spte_lockless(u64 *sptep)
315{
316 return ACCESS_ONCE(*sptep);
317}
ce88decf
XG
318
319static bool __check_direct_spte_mmio_pf(u64 spte)
320{
321 /* It is valid if the spte is zapped. */
322 return spte == 0ull;
323}
a9221dd5 324#else
603e0651
XG
325union split_spte {
326 struct {
327 u32 spte_low;
328 u32 spte_high;
329 };
330 u64 spte;
331};
a9221dd5 332
c2a2ac2b
XG
333static void count_spte_clear(u64 *sptep, u64 spte)
334{
335 struct kvm_mmu_page *sp = page_header(__pa(sptep));
336
337 if (is_shadow_present_pte(spte))
338 return;
339
340 /* Ensure the spte is completely set before we increase the count */
341 smp_wmb();
342 sp->clear_spte_count++;
343}
344
603e0651
XG
345static void __set_spte(u64 *sptep, u64 spte)
346{
347 union split_spte *ssptep, sspte;
a9221dd5 348
603e0651
XG
349 ssptep = (union split_spte *)sptep;
350 sspte = (union split_spte)spte;
351
352 ssptep->spte_high = sspte.spte_high;
353
354 /*
355 * If we map the spte from nonpresent to present, We should store
356 * the high bits firstly, then set present bit, so cpu can not
357 * fetch this spte while we are setting the spte.
358 */
359 smp_wmb();
360
361 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
362}
363
603e0651
XG
364static void __update_clear_spte_fast(u64 *sptep, u64 spte)
365{
366 union split_spte *ssptep, sspte;
367
368 ssptep = (union split_spte *)sptep;
369 sspte = (union split_spte)spte;
370
371 ssptep->spte_low = sspte.spte_low;
372
373 /*
374 * If we map the spte from present to nonpresent, we should clear
375 * present bit firstly to avoid vcpu fetch the old high bits.
376 */
377 smp_wmb();
378
379 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 380 count_spte_clear(sptep, spte);
603e0651
XG
381}
382
383static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
384{
385 union split_spte *ssptep, sspte, orig;
386
387 ssptep = (union split_spte *)sptep;
388 sspte = (union split_spte)spte;
389
390 /* xchg acts as a barrier before the setting of the high bits */
391 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
392 orig.spte_high = ssptep->spte_high;
393 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 394 count_spte_clear(sptep, spte);
603e0651
XG
395
396 return orig.spte;
397}
c2a2ac2b
XG
398
399/*
400 * The idea using the light way get the spte on x86_32 guest is from
401 * gup_get_pte(arch/x86/mm/gup.c).
402 * The difference is we can not catch the spte tlb flush if we leave
403 * guest mode, so we emulate it by increase clear_spte_count when spte
404 * is cleared.
405 */
406static u64 __get_spte_lockless(u64 *sptep)
407{
408 struct kvm_mmu_page *sp = page_header(__pa(sptep));
409 union split_spte spte, *orig = (union split_spte *)sptep;
410 int count;
411
412retry:
413 count = sp->clear_spte_count;
414 smp_rmb();
415
416 spte.spte_low = orig->spte_low;
417 smp_rmb();
418
419 spte.spte_high = orig->spte_high;
420 smp_rmb();
421
422 if (unlikely(spte.spte_low != orig->spte_low ||
423 count != sp->clear_spte_count))
424 goto retry;
425
426 return spte.spte;
427}
ce88decf
XG
428
429static bool __check_direct_spte_mmio_pf(u64 spte)
430{
431 union split_spte sspte = (union split_spte)spte;
432 u32 high_mmio_mask = shadow_mmio_mask >> 32;
433
434 /* It is valid if the spte is zapped. */
435 if (spte == 0ull)
436 return true;
437
438 /* It is valid if the spte is being zapped. */
439 if (sspte.spte_low == 0ull &&
440 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
441 return true;
442
443 return false;
444}
603e0651
XG
445#endif
446
8672b721
XG
447static bool spte_has_volatile_bits(u64 spte)
448{
449 if (!shadow_accessed_mask)
450 return false;
451
452 if (!is_shadow_present_pte(spte))
453 return false;
454
4132779b
XG
455 if ((spte & shadow_accessed_mask) &&
456 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
457 return false;
458
459 return true;
460}
461
4132779b
XG
462static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
463{
464 return (old_spte & bit_mask) && !(new_spte & bit_mask);
465}
466
1df9f2dc
XG
467/* Rules for using mmu_spte_set:
468 * Set the sptep from nonpresent to present.
469 * Note: the sptep being assigned *must* be either not present
470 * or in a state where the hardware will not attempt to update
471 * the spte.
472 */
473static void mmu_spte_set(u64 *sptep, u64 new_spte)
474{
475 WARN_ON(is_shadow_present_pte(*sptep));
476 __set_spte(sptep, new_spte);
477}
478
479/* Rules for using mmu_spte_update:
480 * Update the state bits, it means the mapped pfn is not changged.
481 */
482static void mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 483{
4132779b
XG
484 u64 mask, old_spte = *sptep;
485
486 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 487
1df9f2dc
XG
488 if (!is_shadow_present_pte(old_spte))
489 return mmu_spte_set(sptep, new_spte);
490
4132779b
XG
491 new_spte |= old_spte & shadow_dirty_mask;
492
493 mask = shadow_accessed_mask;
494 if (is_writable_pte(old_spte))
495 mask |= shadow_dirty_mask;
496
497 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
603e0651 498 __update_clear_spte_fast(sptep, new_spte);
4132779b 499 else
603e0651 500 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b
XG
501
502 if (!shadow_accessed_mask)
503 return;
504
505 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
506 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
507 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
508 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
b79b93f9
AK
509}
510
1df9f2dc
XG
511/*
512 * Rules for using mmu_spte_clear_track_bits:
513 * It sets the sptep from present to nonpresent, and track the
514 * state bits, it is used to clear the last level sptep.
515 */
516static int mmu_spte_clear_track_bits(u64 *sptep)
517{
518 pfn_t pfn;
519 u64 old_spte = *sptep;
520
521 if (!spte_has_volatile_bits(old_spte))
603e0651 522 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 523 else
603e0651 524 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
525
526 if (!is_rmap_spte(old_spte))
527 return 0;
528
529 pfn = spte_to_pfn(old_spte);
530 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
531 kvm_set_pfn_accessed(pfn);
532 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
533 kvm_set_pfn_dirty(pfn);
534 return 1;
535}
536
537/*
538 * Rules for using mmu_spte_clear_no_track:
539 * Directly clear spte without caring the state bits of sptep,
540 * it is used to set the upper level spte.
541 */
542static void mmu_spte_clear_no_track(u64 *sptep)
543{
603e0651 544 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
545}
546
c2a2ac2b
XG
547static u64 mmu_spte_get_lockless(u64 *sptep)
548{
549 return __get_spte_lockless(sptep);
550}
551
552static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
553{
554 rcu_read_lock();
555 atomic_inc(&vcpu->kvm->arch.reader_counter);
556
557 /* Increase the counter before walking shadow page table */
558 smp_mb__after_atomic_inc();
559}
560
561static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
562{
563 /* Decrease the counter after walking shadow page table finished */
564 smp_mb__before_atomic_dec();
565 atomic_dec(&vcpu->kvm->arch.reader_counter);
566 rcu_read_unlock();
567}
568
e2dec939 569static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 570 struct kmem_cache *base_cache, int min)
714b93da
AK
571{
572 void *obj;
573
574 if (cache->nobjs >= min)
e2dec939 575 return 0;
714b93da 576 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 577 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 578 if (!obj)
e2dec939 579 return -ENOMEM;
714b93da
AK
580 cache->objects[cache->nobjs++] = obj;
581 }
e2dec939 582 return 0;
714b93da
AK
583}
584
f759e2b4
XG
585static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
586{
587 return cache->nobjs;
588}
589
e8ad9a70
XG
590static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
591 struct kmem_cache *cache)
714b93da
AK
592{
593 while (mc->nobjs)
e8ad9a70 594 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
595}
596
c1158e63 597static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 598 int min)
c1158e63 599{
842f22ed 600 void *page;
c1158e63
AK
601
602 if (cache->nobjs >= min)
603 return 0;
604 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 605 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
606 if (!page)
607 return -ENOMEM;
842f22ed 608 cache->objects[cache->nobjs++] = page;
c1158e63
AK
609 }
610 return 0;
611}
612
613static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
614{
615 while (mc->nobjs)
c4d198d5 616 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
617}
618
2e3e5882 619static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 620{
e2dec939
AK
621 int r;
622
53c07b18 623 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 624 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
625 if (r)
626 goto out;
ad312c7c 627 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
628 if (r)
629 goto out;
ad312c7c 630 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 631 mmu_page_header_cache, 4);
e2dec939
AK
632out:
633 return r;
714b93da
AK
634}
635
636static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
637{
53c07b18
XG
638 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
639 pte_list_desc_cache);
ad312c7c 640 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
641 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
642 mmu_page_header_cache);
714b93da
AK
643}
644
645static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
646 size_t size)
647{
648 void *p;
649
650 BUG_ON(!mc->nobjs);
651 p = mc->objects[--mc->nobjs];
714b93da
AK
652 return p;
653}
654
53c07b18 655static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 656{
53c07b18
XG
657 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
658 sizeof(struct pte_list_desc));
714b93da
AK
659}
660
53c07b18 661static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 662{
53c07b18 663 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
664}
665
2032a93d
LJ
666static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
667{
668 if (!sp->role.direct)
669 return sp->gfns[index];
670
671 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
672}
673
674static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
675{
676 if (sp->role.direct)
677 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
678 else
679 sp->gfns[index] = gfn;
680}
681
05da4558 682/*
d4dbf470
TY
683 * Return the pointer to the large page information for a given gfn,
684 * handling slots that are not large page aligned.
05da4558 685 */
d4dbf470
TY
686static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
687 struct kvm_memory_slot *slot,
688 int level)
05da4558
MT
689{
690 unsigned long idx;
691
fb03cb6f 692 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 693 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
694}
695
696static void account_shadowed(struct kvm *kvm, gfn_t gfn)
697{
d25797b2 698 struct kvm_memory_slot *slot;
d4dbf470 699 struct kvm_lpage_info *linfo;
d25797b2 700 int i;
05da4558 701
a1f4d395 702 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
703 for (i = PT_DIRECTORY_LEVEL;
704 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
705 linfo = lpage_info_slot(gfn, slot, i);
706 linfo->write_count += 1;
d25797b2 707 }
332b207d 708 kvm->arch.indirect_shadow_pages++;
05da4558
MT
709}
710
711static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
712{
d25797b2 713 struct kvm_memory_slot *slot;
d4dbf470 714 struct kvm_lpage_info *linfo;
d25797b2 715 int i;
05da4558 716
a1f4d395 717 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
718 for (i = PT_DIRECTORY_LEVEL;
719 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
720 linfo = lpage_info_slot(gfn, slot, i);
721 linfo->write_count -= 1;
722 WARN_ON(linfo->write_count < 0);
d25797b2 723 }
332b207d 724 kvm->arch.indirect_shadow_pages--;
05da4558
MT
725}
726
d25797b2
JR
727static int has_wrprotected_page(struct kvm *kvm,
728 gfn_t gfn,
729 int level)
05da4558 730{
2843099f 731 struct kvm_memory_slot *slot;
d4dbf470 732 struct kvm_lpage_info *linfo;
05da4558 733
a1f4d395 734 slot = gfn_to_memslot(kvm, gfn);
05da4558 735 if (slot) {
d4dbf470
TY
736 linfo = lpage_info_slot(gfn, slot, level);
737 return linfo->write_count;
05da4558
MT
738 }
739
740 return 1;
741}
742
d25797b2 743static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 744{
8f0b1ab6 745 unsigned long page_size;
d25797b2 746 int i, ret = 0;
05da4558 747
8f0b1ab6 748 page_size = kvm_host_page_size(kvm, gfn);
05da4558 749
d25797b2
JR
750 for (i = PT_PAGE_TABLE_LEVEL;
751 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
752 if (page_size >= KVM_HPAGE_SIZE(i))
753 ret = i;
754 else
755 break;
756 }
757
4c2155ce 758 return ret;
05da4558
MT
759}
760
5d163b1c
XG
761static struct kvm_memory_slot *
762gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
763 bool no_dirty_log)
05da4558
MT
764{
765 struct kvm_memory_slot *slot;
5d163b1c
XG
766
767 slot = gfn_to_memslot(vcpu->kvm, gfn);
768 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
769 (no_dirty_log && slot->dirty_bitmap))
770 slot = NULL;
771
772 return slot;
773}
774
775static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
776{
a0a8eaba 777 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
778}
779
780static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
781{
782 int host_level, level, max_level;
05da4558 783
d25797b2
JR
784 host_level = host_mapping_level(vcpu->kvm, large_gfn);
785
786 if (host_level == PT_PAGE_TABLE_LEVEL)
787 return host_level;
788
878403b7
SY
789 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
790 kvm_x86_ops->get_lpage_level() : host_level;
791
792 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
793 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
794 break;
d25797b2
JR
795
796 return level - 1;
05da4558
MT
797}
798
290fc38d 799/*
53c07b18 800 * Pte mapping structures:
cd4a4e53 801 *
53c07b18 802 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 803 *
53c07b18
XG
804 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
805 * pte_list_desc containing more mappings.
53a27b39 806 *
53c07b18 807 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
808 * the spte was not added.
809 *
cd4a4e53 810 */
53c07b18
XG
811static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
812 unsigned long *pte_list)
cd4a4e53 813{
53c07b18 814 struct pte_list_desc *desc;
53a27b39 815 int i, count = 0;
cd4a4e53 816
53c07b18
XG
817 if (!*pte_list) {
818 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
819 *pte_list = (unsigned long)spte;
820 } else if (!(*pte_list & 1)) {
821 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
822 desc = mmu_alloc_pte_list_desc(vcpu);
823 desc->sptes[0] = (u64 *)*pte_list;
d555c333 824 desc->sptes[1] = spte;
53c07b18 825 *pte_list = (unsigned long)desc | 1;
cb16a7b3 826 ++count;
cd4a4e53 827 } else {
53c07b18
XG
828 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
829 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
830 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 831 desc = desc->more;
53c07b18 832 count += PTE_LIST_EXT;
53a27b39 833 }
53c07b18
XG
834 if (desc->sptes[PTE_LIST_EXT-1]) {
835 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
836 desc = desc->more;
837 }
d555c333 838 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 839 ++count;
d555c333 840 desc->sptes[i] = spte;
cd4a4e53 841 }
53a27b39 842 return count;
cd4a4e53
AK
843}
844
53c07b18
XG
845static u64 *pte_list_next(unsigned long *pte_list, u64 *spte)
846{
847 struct pte_list_desc *desc;
848 u64 *prev_spte;
849 int i;
850
851 if (!*pte_list)
852 return NULL;
853 else if (!(*pte_list & 1)) {
854 if (!spte)
855 return (u64 *)*pte_list;
856 return NULL;
857 }
858 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
859 prev_spte = NULL;
860 while (desc) {
861 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
862 if (prev_spte == spte)
863 return desc->sptes[i];
864 prev_spte = desc->sptes[i];
865 }
866 desc = desc->more;
867 }
868 return NULL;
869}
870
871static void
872pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
873 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
874{
875 int j;
876
53c07b18 877 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 878 ;
d555c333
AK
879 desc->sptes[i] = desc->sptes[j];
880 desc->sptes[j] = NULL;
cd4a4e53
AK
881 if (j != 0)
882 return;
883 if (!prev_desc && !desc->more)
53c07b18 884 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
885 else
886 if (prev_desc)
887 prev_desc->more = desc->more;
888 else
53c07b18
XG
889 *pte_list = (unsigned long)desc->more | 1;
890 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
891}
892
53c07b18 893static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 894{
53c07b18
XG
895 struct pte_list_desc *desc;
896 struct pte_list_desc *prev_desc;
cd4a4e53
AK
897 int i;
898
53c07b18
XG
899 if (!*pte_list) {
900 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 901 BUG();
53c07b18
XG
902 } else if (!(*pte_list & 1)) {
903 rmap_printk("pte_list_remove: %p 1->0\n", spte);
904 if ((u64 *)*pte_list != spte) {
905 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
906 BUG();
907 }
53c07b18 908 *pte_list = 0;
cd4a4e53 909 } else {
53c07b18
XG
910 rmap_printk("pte_list_remove: %p many->many\n", spte);
911 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
912 prev_desc = NULL;
913 while (desc) {
53c07b18 914 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 915 if (desc->sptes[i] == spte) {
53c07b18 916 pte_list_desc_remove_entry(pte_list,
714b93da 917 desc, i,
cd4a4e53
AK
918 prev_desc);
919 return;
920 }
921 prev_desc = desc;
922 desc = desc->more;
923 }
53c07b18 924 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
925 BUG();
926 }
927}
928
67052b35
XG
929typedef void (*pte_list_walk_fn) (u64 *spte);
930static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
931{
932 struct pte_list_desc *desc;
933 int i;
934
935 if (!*pte_list)
936 return;
937
938 if (!(*pte_list & 1))
939 return fn((u64 *)*pte_list);
940
941 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
942 while (desc) {
943 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
944 fn(desc->sptes[i]);
945 desc = desc->more;
946 }
947}
948
9373e2c0 949static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 950 struct kvm_memory_slot *slot)
53c07b18 951{
53c07b18
XG
952 struct kvm_lpage_info *linfo;
953
53c07b18
XG
954 if (likely(level == PT_PAGE_TABLE_LEVEL))
955 return &slot->rmap[gfn - slot->base_gfn];
956
957 linfo = lpage_info_slot(gfn, slot, level);
53c07b18
XG
958 return &linfo->rmap_pde;
959}
960
9b9b1492
TY
961/*
962 * Take gfn and return the reverse mapping to it.
963 */
964static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
965{
966 struct kvm_memory_slot *slot;
967
968 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 969 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
970}
971
f759e2b4
XG
972static bool rmap_can_add(struct kvm_vcpu *vcpu)
973{
974 struct kvm_mmu_memory_cache *cache;
975
976 cache = &vcpu->arch.mmu_pte_list_desc_cache;
977 return mmu_memory_cache_free_objects(cache);
978}
979
53c07b18
XG
980static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
981{
982 struct kvm_mmu_page *sp;
983 unsigned long *rmapp;
984
53c07b18
XG
985 sp = page_header(__pa(spte));
986 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
987 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
988 return pte_list_add(vcpu, spte, rmapp);
989}
990
e4b35cc9 991static u64 *rmap_next(unsigned long *rmapp, u64 *spte)
53c07b18
XG
992{
993 return pte_list_next(rmapp, spte);
994}
995
996static void rmap_remove(struct kvm *kvm, u64 *spte)
997{
998 struct kvm_mmu_page *sp;
999 gfn_t gfn;
1000 unsigned long *rmapp;
1001
1002 sp = page_header(__pa(spte));
1003 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1004 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1005 pte_list_remove(spte, rmapp);
1006}
1007
c3707958 1008static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1009{
1df9f2dc 1010 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1011 rmap_remove(kvm, sptep);
be38d276
AK
1012}
1013
a0ed4607 1014static int __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp, int level)
98348e95 1015{
a0ed4607
TY
1016 u64 *spte = NULL;
1017 int write_protected = 0;
374cbac0 1018
a0ed4607 1019 while ((spte = rmap_next(rmapp, spte))) {
374cbac0 1020 BUG_ON(!(*spte & PT_PRESENT_MASK));
374cbac0 1021 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
a0ed4607
TY
1022
1023 if (!is_writable_pte(*spte))
1024 continue;
1025
1026 if (level == PT_PAGE_TABLE_LEVEL) {
1df9f2dc 1027 mmu_spte_update(spte, *spte & ~PT_WRITABLE_MASK);
a0ed4607
TY
1028 } else {
1029 BUG_ON(!is_large_pte(*spte));
1030 drop_spte(kvm, spte);
1031 --kvm->stat.lpages;
1032 spte = NULL;
caa5b8a5 1033 }
a0ed4607
TY
1034
1035 write_protected = 1;
374cbac0 1036 }
855149aa 1037
a0ed4607
TY
1038 return write_protected;
1039}
1040
5dc99b23
TY
1041/**
1042 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1043 * @kvm: kvm instance
1044 * @slot: slot to protect
1045 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1046 * @mask: indicates which pages we should protect
1047 *
1048 * Used when we do not need to care about huge page mappings: e.g. during dirty
1049 * logging we do not have any such mappings.
1050 */
1051void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1052 struct kvm_memory_slot *slot,
1053 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1054{
1055 unsigned long *rmapp;
a0ed4607 1056
5dc99b23
TY
1057 while (mask) {
1058 rmapp = &slot->rmap[gfn_offset + __ffs(mask)];
1059 __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL);
05da4558 1060
5dc99b23
TY
1061 /* clear the first set bit */
1062 mask &= mask - 1;
1063 }
374cbac0
AK
1064}
1065
95d4c16c
TY
1066static int rmap_write_protect(struct kvm *kvm, u64 gfn)
1067{
1068 struct kvm_memory_slot *slot;
5dc99b23
TY
1069 unsigned long *rmapp;
1070 int i;
1071 int write_protected = 0;
95d4c16c
TY
1072
1073 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1074
1075 for (i = PT_PAGE_TABLE_LEVEL;
1076 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1077 rmapp = __gfn_to_rmap(gfn, i, slot);
1078 write_protected |= __rmap_write_protect(kvm, rmapp, i);
1079 }
1080
1081 return write_protected;
95d4c16c
TY
1082}
1083
8a8365c5
FD
1084static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1085 unsigned long data)
e930bffe
AA
1086{
1087 u64 *spte;
1088 int need_tlb_flush = 0;
1089
e4b35cc9 1090 while ((spte = rmap_next(rmapp, NULL))) {
e930bffe
AA
1091 BUG_ON(!(*spte & PT_PRESENT_MASK));
1092 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
c3707958 1093 drop_spte(kvm, spte);
e930bffe
AA
1094 need_tlb_flush = 1;
1095 }
1096 return need_tlb_flush;
1097}
1098
8a8365c5
FD
1099static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1100 unsigned long data)
3da0dd43
IE
1101{
1102 int need_flush = 0;
e4b502ea 1103 u64 *spte, new_spte;
3da0dd43
IE
1104 pte_t *ptep = (pte_t *)data;
1105 pfn_t new_pfn;
1106
1107 WARN_ON(pte_huge(*ptep));
1108 new_pfn = pte_pfn(*ptep);
e4b35cc9 1109 spte = rmap_next(rmapp, NULL);
3da0dd43
IE
1110 while (spte) {
1111 BUG_ON(!is_shadow_present_pte(*spte));
1112 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
1113 need_flush = 1;
1114 if (pte_write(*ptep)) {
c3707958 1115 drop_spte(kvm, spte);
e4b35cc9 1116 spte = rmap_next(rmapp, NULL);
3da0dd43
IE
1117 } else {
1118 new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
1119 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1120
1121 new_spte &= ~PT_WRITABLE_MASK;
1122 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1123 new_spte &= ~shadow_accessed_mask;
1df9f2dc
XG
1124 mmu_spte_clear_track_bits(spte);
1125 mmu_spte_set(spte, new_spte);
e4b35cc9 1126 spte = rmap_next(rmapp, spte);
3da0dd43
IE
1127 }
1128 }
1129 if (need_flush)
1130 kvm_flush_remote_tlbs(kvm);
1131
1132 return 0;
1133}
1134
8a8365c5
FD
1135static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1136 unsigned long data,
3da0dd43 1137 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
8a8365c5 1138 unsigned long data))
e930bffe 1139{
be6ba0f0 1140 int j;
90bb6fc5 1141 int ret;
e930bffe 1142 int retval = 0;
bc6678a3 1143 struct kvm_memslots *slots;
be6ba0f0 1144 struct kvm_memory_slot *memslot;
bc6678a3 1145
90d83dc3 1146 slots = kvm_memslots(kvm);
e930bffe 1147
be6ba0f0 1148 kvm_for_each_memslot(memslot, slots) {
e930bffe
AA
1149 unsigned long start = memslot->userspace_addr;
1150 unsigned long end;
1151
e930bffe
AA
1152 end = start + (memslot->npages << PAGE_SHIFT);
1153 if (hva >= start && hva < end) {
1154 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
d4dbf470 1155 gfn_t gfn = memslot->base_gfn + gfn_offset;
852e3c19 1156
90bb6fc5 1157 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
852e3c19
JR
1158
1159 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
d4dbf470
TY
1160 struct kvm_lpage_info *linfo;
1161
1162 linfo = lpage_info_slot(gfn, memslot,
1163 PT_DIRECTORY_LEVEL + j);
1164 ret |= handler(kvm, &linfo->rmap_pde, data);
852e3c19 1165 }
90bb6fc5
AK
1166 trace_kvm_age_page(hva, memslot, ret);
1167 retval |= ret;
e930bffe
AA
1168 }
1169 }
1170
1171 return retval;
1172}
1173
1174int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1175{
3da0dd43
IE
1176 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1177}
1178
1179void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1180{
8a8365c5 1181 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1182}
1183
8a8365c5
FD
1184static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1185 unsigned long data)
e930bffe
AA
1186{
1187 u64 *spte;
1188 int young = 0;
1189
6316e1c8
RR
1190 /*
1191 * Emulate the accessed bit for EPT, by checking if this page has
1192 * an EPT mapping, and clearing it if it does. On the next access,
1193 * a new EPT mapping will be established.
1194 * This has some overhead, but not as much as the cost of swapping
1195 * out actively used pages or breaking up actively used hugepages.
1196 */
534e38b4 1197 if (!shadow_accessed_mask)
6316e1c8 1198 return kvm_unmap_rmapp(kvm, rmapp, data);
534e38b4 1199
e4b35cc9 1200 spte = rmap_next(rmapp, NULL);
e930bffe
AA
1201 while (spte) {
1202 int _young;
1203 u64 _spte = *spte;
1204 BUG_ON(!(_spte & PT_PRESENT_MASK));
1205 _young = _spte & PT_ACCESSED_MASK;
1206 if (_young) {
1207 young = 1;
1208 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
1209 }
e4b35cc9 1210 spte = rmap_next(rmapp, spte);
e930bffe
AA
1211 }
1212 return young;
1213}
1214
8ee53820
AA
1215static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1216 unsigned long data)
1217{
1218 u64 *spte;
1219 int young = 0;
1220
1221 /*
1222 * If there's no access bit in the secondary pte set by the
1223 * hardware it's up to gup-fast/gup to set the access bit in
1224 * the primary pte or in the page structure.
1225 */
1226 if (!shadow_accessed_mask)
1227 goto out;
1228
e4b35cc9 1229 spte = rmap_next(rmapp, NULL);
8ee53820
AA
1230 while (spte) {
1231 u64 _spte = *spte;
1232 BUG_ON(!(_spte & PT_PRESENT_MASK));
1233 young = _spte & PT_ACCESSED_MASK;
1234 if (young) {
1235 young = 1;
1236 break;
1237 }
e4b35cc9 1238 spte = rmap_next(rmapp, spte);
8ee53820
AA
1239 }
1240out:
1241 return young;
1242}
1243
53a27b39
MT
1244#define RMAP_RECYCLE_THRESHOLD 1000
1245
852e3c19 1246static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1247{
1248 unsigned long *rmapp;
852e3c19
JR
1249 struct kvm_mmu_page *sp;
1250
1251 sp = page_header(__pa(spte));
53a27b39 1252
852e3c19 1253 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1254
3da0dd43 1255 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
53a27b39
MT
1256 kvm_flush_remote_tlbs(vcpu->kvm);
1257}
1258
e930bffe
AA
1259int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1260{
3da0dd43 1261 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
e930bffe
AA
1262}
1263
8ee53820
AA
1264int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1265{
1266 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1267}
1268
d6c69ee9 1269#ifdef MMU_DEBUG
47ad8e68 1270static int is_empty_shadow_page(u64 *spt)
6aa8b732 1271{
139bdb2d
AK
1272 u64 *pos;
1273 u64 *end;
1274
47ad8e68 1275 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1276 if (is_shadow_present_pte(*pos)) {
b8688d51 1277 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1278 pos, *pos);
6aa8b732 1279 return 0;
139bdb2d 1280 }
6aa8b732
AK
1281 return 1;
1282}
d6c69ee9 1283#endif
6aa8b732 1284
45221ab6
DH
1285/*
1286 * This value is the sum of all of the kvm instances's
1287 * kvm->arch.n_used_mmu_pages values. We need a global,
1288 * aggregate version in order to make the slab shrinker
1289 * faster
1290 */
1291static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1292{
1293 kvm->arch.n_used_mmu_pages += nr;
1294 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1295}
1296
bd4c86ea
XG
1297/*
1298 * Remove the sp from shadow page cache, after call it,
1299 * we can not find this sp from the cache, and the shadow
1300 * page table is still valid.
1301 * It should be under the protection of mmu lock.
1302 */
1303static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
260746c0 1304{
4db35314 1305 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1306 hlist_del(&sp->hash_link);
2032a93d 1307 if (!sp->role.direct)
842f22ed 1308 free_page((unsigned long)sp->gfns);
bd4c86ea
XG
1309}
1310
1311/*
1312 * Free the shadow page table and the sp, we can do it
1313 * out of the protection of mmu lock.
1314 */
1315static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1316{
1317 list_del(&sp->link);
1318 free_page((unsigned long)sp->spt);
e8ad9a70 1319 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1320}
1321
cea0f0e7
AK
1322static unsigned kvm_page_table_hashfn(gfn_t gfn)
1323{
1ae0a13d 1324 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1325}
1326
714b93da 1327static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1328 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1329{
cea0f0e7
AK
1330 if (!parent_pte)
1331 return;
cea0f0e7 1332
67052b35 1333 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1334}
1335
4db35314 1336static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1337 u64 *parent_pte)
1338{
67052b35 1339 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1340}
1341
bcdd9a93
XG
1342static void drop_parent_pte(struct kvm_mmu_page *sp,
1343 u64 *parent_pte)
1344{
1345 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1346 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1347}
1348
67052b35
XG
1349static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1350 u64 *parent_pte, int direct)
ad8cfbe3 1351{
67052b35
XG
1352 struct kvm_mmu_page *sp;
1353 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
1354 sizeof *sp);
1355 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1356 if (!direct)
1357 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1358 PAGE_SIZE);
1359 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1360 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
93a5cef0 1361 bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
67052b35
XG
1362 sp->parent_ptes = 0;
1363 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1364 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1365 return sp;
ad8cfbe3
MT
1366}
1367
67052b35 1368static void mark_unsync(u64 *spte);
1047df1f 1369static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1370{
67052b35 1371 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1372}
1373
67052b35 1374static void mark_unsync(u64 *spte)
0074ff63 1375{
67052b35 1376 struct kvm_mmu_page *sp;
1047df1f 1377 unsigned int index;
0074ff63 1378
67052b35 1379 sp = page_header(__pa(spte));
1047df1f
XG
1380 index = spte - sp->spt;
1381 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1382 return;
1047df1f 1383 if (sp->unsync_children++)
0074ff63 1384 return;
1047df1f 1385 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1386}
1387
e8bc217a 1388static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1389 struct kvm_mmu_page *sp)
e8bc217a
MT
1390{
1391 return 1;
1392}
1393
a7052897
MT
1394static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1395{
1396}
1397
0f53b5b1
XG
1398static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1399 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1400 const void *pte)
0f53b5b1
XG
1401{
1402 WARN_ON(1);
1403}
1404
60c8aec6
MT
1405#define KVM_PAGE_ARRAY_NR 16
1406
1407struct kvm_mmu_pages {
1408 struct mmu_page_and_offset {
1409 struct kvm_mmu_page *sp;
1410 unsigned int idx;
1411 } page[KVM_PAGE_ARRAY_NR];
1412 unsigned int nr;
1413};
1414
cded19f3
HE
1415static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1416 int idx)
4731d4c7 1417{
60c8aec6 1418 int i;
4731d4c7 1419
60c8aec6
MT
1420 if (sp->unsync)
1421 for (i=0; i < pvec->nr; i++)
1422 if (pvec->page[i].sp == sp)
1423 return 0;
1424
1425 pvec->page[pvec->nr].sp = sp;
1426 pvec->page[pvec->nr].idx = idx;
1427 pvec->nr++;
1428 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1429}
1430
1431static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1432 struct kvm_mmu_pages *pvec)
1433{
1434 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1435
37178b8b 1436 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1437 struct kvm_mmu_page *child;
4731d4c7
MT
1438 u64 ent = sp->spt[i];
1439
7a8f1a74
XG
1440 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1441 goto clear_child_bitmap;
1442
1443 child = page_header(ent & PT64_BASE_ADDR_MASK);
1444
1445 if (child->unsync_children) {
1446 if (mmu_pages_add(pvec, child, i))
1447 return -ENOSPC;
1448
1449 ret = __mmu_unsync_walk(child, pvec);
1450 if (!ret)
1451 goto clear_child_bitmap;
1452 else if (ret > 0)
1453 nr_unsync_leaf += ret;
1454 else
1455 return ret;
1456 } else if (child->unsync) {
1457 nr_unsync_leaf++;
1458 if (mmu_pages_add(pvec, child, i))
1459 return -ENOSPC;
1460 } else
1461 goto clear_child_bitmap;
1462
1463 continue;
1464
1465clear_child_bitmap:
1466 __clear_bit(i, sp->unsync_child_bitmap);
1467 sp->unsync_children--;
1468 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1469 }
1470
4731d4c7 1471
60c8aec6
MT
1472 return nr_unsync_leaf;
1473}
1474
1475static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1476 struct kvm_mmu_pages *pvec)
1477{
1478 if (!sp->unsync_children)
1479 return 0;
1480
1481 mmu_pages_add(pvec, sp, 0);
1482 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1483}
1484
4731d4c7
MT
1485static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1486{
1487 WARN_ON(!sp->unsync);
5e1b3ddb 1488 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1489 sp->unsync = 0;
1490 --kvm->stat.mmu_unsync;
1491}
1492
7775834a
XG
1493static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1494 struct list_head *invalid_list);
1495static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1496 struct list_head *invalid_list);
4731d4c7 1497
f41d335a
XG
1498#define for_each_gfn_sp(kvm, sp, gfn, pos) \
1499 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1500 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1501 if ((sp)->gfn != (gfn)) {} else
1502
f41d335a
XG
1503#define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1504 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1505 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1506 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1507 (sp)->role.invalid) {} else
1508
f918b443 1509/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1510static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1511 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1512{
5b7e0102 1513 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1514 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1515 return 1;
1516 }
1517
f918b443 1518 if (clear_unsync)
1d9dc7e0 1519 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1520
a4a8e6f7 1521 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1522 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1523 return 1;
1524 }
1525
1526 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1527 return 0;
1528}
1529
1d9dc7e0
XG
1530static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1531 struct kvm_mmu_page *sp)
1532{
d98ba053 1533 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1534 int ret;
1535
d98ba053 1536 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1537 if (ret)
d98ba053
XG
1538 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1539
1d9dc7e0
XG
1540 return ret;
1541}
1542
e37fa785
XG
1543#ifdef CONFIG_KVM_MMU_AUDIT
1544#include "mmu_audit.c"
1545#else
1546static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1547static void mmu_audit_disable(void) { }
1548#endif
1549
d98ba053
XG
1550static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1551 struct list_head *invalid_list)
1d9dc7e0 1552{
d98ba053 1553 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1554}
1555
9f1a122f
XG
1556/* @gfn should be write-protected at the call site */
1557static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1558{
9f1a122f 1559 struct kvm_mmu_page *s;
f41d335a 1560 struct hlist_node *node;
d98ba053 1561 LIST_HEAD(invalid_list);
9f1a122f
XG
1562 bool flush = false;
1563
f41d335a 1564 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 1565 if (!s->unsync)
9f1a122f
XG
1566 continue;
1567
1568 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1569 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1570 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1571 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1572 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1573 continue;
1574 }
9f1a122f
XG
1575 flush = true;
1576 }
1577
d98ba053 1578 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1579 if (flush)
1580 kvm_mmu_flush_tlb(vcpu);
1581}
1582
60c8aec6
MT
1583struct mmu_page_path {
1584 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1585 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1586};
1587
60c8aec6
MT
1588#define for_each_sp(pvec, sp, parents, i) \
1589 for (i = mmu_pages_next(&pvec, &parents, -1), \
1590 sp = pvec.page[i].sp; \
1591 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1592 i = mmu_pages_next(&pvec, &parents, i))
1593
cded19f3
HE
1594static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1595 struct mmu_page_path *parents,
1596 int i)
60c8aec6
MT
1597{
1598 int n;
1599
1600 for (n = i+1; n < pvec->nr; n++) {
1601 struct kvm_mmu_page *sp = pvec->page[n].sp;
1602
1603 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1604 parents->idx[0] = pvec->page[n].idx;
1605 return n;
1606 }
1607
1608 parents->parent[sp->role.level-2] = sp;
1609 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1610 }
1611
1612 return n;
1613}
1614
cded19f3 1615static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1616{
60c8aec6
MT
1617 struct kvm_mmu_page *sp;
1618 unsigned int level = 0;
1619
1620 do {
1621 unsigned int idx = parents->idx[level];
4731d4c7 1622
60c8aec6
MT
1623 sp = parents->parent[level];
1624 if (!sp)
1625 return;
1626
1627 --sp->unsync_children;
1628 WARN_ON((int)sp->unsync_children < 0);
1629 __clear_bit(idx, sp->unsync_child_bitmap);
1630 level++;
1631 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1632}
1633
60c8aec6
MT
1634static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1635 struct mmu_page_path *parents,
1636 struct kvm_mmu_pages *pvec)
4731d4c7 1637{
60c8aec6
MT
1638 parents->parent[parent->role.level-1] = NULL;
1639 pvec->nr = 0;
1640}
4731d4c7 1641
60c8aec6
MT
1642static void mmu_sync_children(struct kvm_vcpu *vcpu,
1643 struct kvm_mmu_page *parent)
1644{
1645 int i;
1646 struct kvm_mmu_page *sp;
1647 struct mmu_page_path parents;
1648 struct kvm_mmu_pages pages;
d98ba053 1649 LIST_HEAD(invalid_list);
60c8aec6
MT
1650
1651 kvm_mmu_pages_init(parent, &parents, &pages);
1652 while (mmu_unsync_walk(parent, &pages)) {
b1a36821
MT
1653 int protected = 0;
1654
1655 for_each_sp(pages, sp, parents, i)
1656 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1657
1658 if (protected)
1659 kvm_flush_remote_tlbs(vcpu->kvm);
1660
60c8aec6 1661 for_each_sp(pages, sp, parents, i) {
d98ba053 1662 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1663 mmu_pages_clear_parents(&parents);
1664 }
d98ba053 1665 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1666 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1667 kvm_mmu_pages_init(parent, &parents, &pages);
1668 }
4731d4c7
MT
1669}
1670
c3707958
XG
1671static void init_shadow_page_table(struct kvm_mmu_page *sp)
1672{
1673 int i;
1674
1675 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1676 sp->spt[i] = 0ull;
1677}
1678
a30f47cb
XG
1679static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1680{
1681 sp->write_flooding_count = 0;
1682}
1683
1684static void clear_sp_write_flooding_count(u64 *spte)
1685{
1686 struct kvm_mmu_page *sp = page_header(__pa(spte));
1687
1688 __clear_sp_write_flooding_count(sp);
1689}
1690
cea0f0e7
AK
1691static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1692 gfn_t gfn,
1693 gva_t gaddr,
1694 unsigned level,
f6e2c02b 1695 int direct,
41074d07 1696 unsigned access,
f7d9c7b7 1697 u64 *parent_pte)
cea0f0e7
AK
1698{
1699 union kvm_mmu_page_role role;
cea0f0e7 1700 unsigned quadrant;
9f1a122f 1701 struct kvm_mmu_page *sp;
f41d335a 1702 struct hlist_node *node;
9f1a122f 1703 bool need_sync = false;
cea0f0e7 1704
a770f6f2 1705 role = vcpu->arch.mmu.base_role;
cea0f0e7 1706 role.level = level;
f6e2c02b 1707 role.direct = direct;
84b0c8c6 1708 if (role.direct)
5b7e0102 1709 role.cr4_pae = 0;
41074d07 1710 role.access = access;
c5a78f2b
JR
1711 if (!vcpu->arch.mmu.direct_map
1712 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1713 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1714 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1715 role.quadrant = quadrant;
1716 }
f41d335a 1717 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
7ae680eb
XG
1718 if (!need_sync && sp->unsync)
1719 need_sync = true;
4731d4c7 1720
7ae680eb
XG
1721 if (sp->role.word != role.word)
1722 continue;
4731d4c7 1723
7ae680eb
XG
1724 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1725 break;
e02aa901 1726
7ae680eb
XG
1727 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1728 if (sp->unsync_children) {
a8eeb04a 1729 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1730 kvm_mmu_mark_parents_unsync(sp);
1731 } else if (sp->unsync)
1732 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1733
a30f47cb 1734 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1735 trace_kvm_mmu_get_page(sp, false);
1736 return sp;
1737 }
dfc5aa00 1738 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1739 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1740 if (!sp)
1741 return sp;
4db35314
AK
1742 sp->gfn = gfn;
1743 sp->role = role;
7ae680eb
XG
1744 hlist_add_head(&sp->hash_link,
1745 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1746 if (!direct) {
b1a36821
MT
1747 if (rmap_write_protect(vcpu->kvm, gfn))
1748 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1749 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1750 kvm_sync_pages(vcpu, gfn);
1751
4731d4c7
MT
1752 account_shadowed(vcpu->kvm, gfn);
1753 }
c3707958 1754 init_shadow_page_table(sp);
f691fe1d 1755 trace_kvm_mmu_get_page(sp, true);
4db35314 1756 return sp;
cea0f0e7
AK
1757}
1758
2d11123a
AK
1759static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1760 struct kvm_vcpu *vcpu, u64 addr)
1761{
1762 iterator->addr = addr;
1763 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1764 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1765
1766 if (iterator->level == PT64_ROOT_LEVEL &&
1767 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1768 !vcpu->arch.mmu.direct_map)
1769 --iterator->level;
1770
2d11123a
AK
1771 if (iterator->level == PT32E_ROOT_LEVEL) {
1772 iterator->shadow_addr
1773 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1774 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1775 --iterator->level;
1776 if (!iterator->shadow_addr)
1777 iterator->level = 0;
1778 }
1779}
1780
1781static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1782{
1783 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1784 return false;
4d88954d 1785
2d11123a
AK
1786 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1787 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1788 return true;
1789}
1790
c2a2ac2b
XG
1791static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1792 u64 spte)
2d11123a 1793{
c2a2ac2b 1794 if (is_last_spte(spte, iterator->level)) {
052331be
XG
1795 iterator->level = 0;
1796 return;
1797 }
1798
c2a2ac2b 1799 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
1800 --iterator->level;
1801}
1802
c2a2ac2b
XG
1803static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1804{
1805 return __shadow_walk_next(iterator, *iterator->sptep);
1806}
1807
32ef26a3
AK
1808static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1809{
1810 u64 spte;
1811
1812 spte = __pa(sp->spt)
1813 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1814 | PT_WRITABLE_MASK | PT_USER_MASK;
1df9f2dc 1815 mmu_spte_set(sptep, spte);
32ef26a3
AK
1816}
1817
a3aa51cf
AK
1818static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1819{
1820 if (is_large_pte(*sptep)) {
c3707958 1821 drop_spte(vcpu->kvm, sptep);
6addd1aa 1822 --vcpu->kvm->stat.lpages;
a3aa51cf
AK
1823 kvm_flush_remote_tlbs(vcpu->kvm);
1824 }
1825}
1826
a357bd22
AK
1827static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1828 unsigned direct_access)
1829{
1830 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1831 struct kvm_mmu_page *child;
1832
1833 /*
1834 * For the direct sp, if the guest pte's dirty bit
1835 * changed form clean to dirty, it will corrupt the
1836 * sp's access: allow writable in the read-only sp,
1837 * so we should update the spte at this point to get
1838 * a new sp with the correct access.
1839 */
1840 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1841 if (child->role.access == direct_access)
1842 return;
1843
bcdd9a93 1844 drop_parent_pte(child, sptep);
a357bd22
AK
1845 kvm_flush_remote_tlbs(vcpu->kvm);
1846 }
1847}
1848
505aef8f 1849static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
1850 u64 *spte)
1851{
1852 u64 pte;
1853 struct kvm_mmu_page *child;
1854
1855 pte = *spte;
1856 if (is_shadow_present_pte(pte)) {
505aef8f 1857 if (is_last_spte(pte, sp->role.level)) {
c3707958 1858 drop_spte(kvm, spte);
505aef8f
XG
1859 if (is_large_pte(pte))
1860 --kvm->stat.lpages;
1861 } else {
38e3b2b2 1862 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 1863 drop_parent_pte(child, spte);
38e3b2b2 1864 }
505aef8f
XG
1865 return true;
1866 }
1867
1868 if (is_mmio_spte(pte))
ce88decf 1869 mmu_spte_clear_no_track(spte);
c3707958 1870
505aef8f 1871 return false;
38e3b2b2
XG
1872}
1873
90cb0529 1874static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 1875 struct kvm_mmu_page *sp)
a436036b 1876{
697fe2e2 1877 unsigned i;
697fe2e2 1878
38e3b2b2
XG
1879 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1880 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
1881}
1882
4db35314 1883static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1884{
4db35314 1885 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
1886}
1887
31aa2b44 1888static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b
AK
1889{
1890 u64 *parent_pte;
1891
bcdd9a93
XG
1892 while ((parent_pte = pte_list_next(&sp->parent_ptes, NULL)))
1893 drop_parent_pte(sp, parent_pte);
31aa2b44
AK
1894}
1895
60c8aec6 1896static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
1897 struct kvm_mmu_page *parent,
1898 struct list_head *invalid_list)
4731d4c7 1899{
60c8aec6
MT
1900 int i, zapped = 0;
1901 struct mmu_page_path parents;
1902 struct kvm_mmu_pages pages;
4731d4c7 1903
60c8aec6 1904 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 1905 return 0;
60c8aec6
MT
1906
1907 kvm_mmu_pages_init(parent, &parents, &pages);
1908 while (mmu_unsync_walk(parent, &pages)) {
1909 struct kvm_mmu_page *sp;
1910
1911 for_each_sp(pages, sp, parents, i) {
7775834a 1912 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 1913 mmu_pages_clear_parents(&parents);
77662e00 1914 zapped++;
60c8aec6 1915 }
60c8aec6
MT
1916 kvm_mmu_pages_init(parent, &parents, &pages);
1917 }
1918
1919 return zapped;
4731d4c7
MT
1920}
1921
7775834a
XG
1922static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1923 struct list_head *invalid_list)
31aa2b44 1924{
4731d4c7 1925 int ret;
f691fe1d 1926
7775834a 1927 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 1928 ++kvm->stat.mmu_shadow_zapped;
7775834a 1929 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 1930 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 1931 kvm_mmu_unlink_parents(kvm, sp);
f6e2c02b 1932 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 1933 unaccount_shadowed(kvm, sp->gfn);
4731d4c7
MT
1934 if (sp->unsync)
1935 kvm_unlink_unsync_page(kvm, sp);
4db35314 1936 if (!sp->root_count) {
54a4f023
GJ
1937 /* Count self */
1938 ret++;
7775834a 1939 list_move(&sp->link, invalid_list);
aa6bd187 1940 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 1941 } else {
5b5c6a5a 1942 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2e53d63a
MT
1943 kvm_reload_remote_mmus(kvm);
1944 }
7775834a
XG
1945
1946 sp->role.invalid = 1;
4731d4c7 1947 return ret;
a436036b
AK
1948}
1949
c2a2ac2b
XG
1950static void kvm_mmu_isolate_pages(struct list_head *invalid_list)
1951{
1952 struct kvm_mmu_page *sp;
1953
1954 list_for_each_entry(sp, invalid_list, link)
1955 kvm_mmu_isolate_page(sp);
1956}
1957
1958static void free_pages_rcu(struct rcu_head *head)
1959{
1960 struct kvm_mmu_page *next, *sp;
1961
1962 sp = container_of(head, struct kvm_mmu_page, rcu);
1963 while (sp) {
1964 if (!list_empty(&sp->link))
1965 next = list_first_entry(&sp->link,
1966 struct kvm_mmu_page, link);
1967 else
1968 next = NULL;
1969 kvm_mmu_free_page(sp);
1970 sp = next;
1971 }
1972}
1973
7775834a
XG
1974static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1975 struct list_head *invalid_list)
1976{
1977 struct kvm_mmu_page *sp;
1978
1979 if (list_empty(invalid_list))
1980 return;
1981
1982 kvm_flush_remote_tlbs(kvm);
1983
c2a2ac2b
XG
1984 if (atomic_read(&kvm->arch.reader_counter)) {
1985 kvm_mmu_isolate_pages(invalid_list);
1986 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1987 list_del_init(invalid_list);
4f022648
XG
1988
1989 trace_kvm_mmu_delay_free_pages(sp);
c2a2ac2b
XG
1990 call_rcu(&sp->rcu, free_pages_rcu);
1991 return;
1992 }
1993
7775834a
XG
1994 do {
1995 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1996 WARN_ON(!sp->role.invalid || sp->root_count);
bd4c86ea 1997 kvm_mmu_isolate_page(sp);
aa6bd187 1998 kvm_mmu_free_page(sp);
7775834a
XG
1999 } while (!list_empty(invalid_list));
2000
2001}
2002
82ce2c96
IE
2003/*
2004 * Changing the number of mmu pages allocated to the vm
49d5ca26 2005 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2006 */
49d5ca26 2007void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2008{
d98ba053 2009 LIST_HEAD(invalid_list);
82ce2c96
IE
2010 /*
2011 * If we set the number of mmu pages to be smaller be than the
2012 * number of actived pages , we must to free some mmu pages before we
2013 * change the value
2014 */
2015
49d5ca26
DH
2016 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2017 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
77662e00 2018 !list_empty(&kvm->arch.active_mmu_pages)) {
82ce2c96
IE
2019 struct kvm_mmu_page *page;
2020
f05e70ac 2021 page = container_of(kvm->arch.active_mmu_pages.prev,
82ce2c96 2022 struct kvm_mmu_page, link);
80b63faf 2023 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
82ce2c96 2024 }
aa6bd187 2025 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2026 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2027 }
82ce2c96 2028
49d5ca26 2029 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
82ce2c96
IE
2030}
2031
1cb3f3ae 2032int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2033{
4db35314 2034 struct kvm_mmu_page *sp;
f41d335a 2035 struct hlist_node *node;
d98ba053 2036 LIST_HEAD(invalid_list);
a436036b
AK
2037 int r;
2038
9ad17b10 2039 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2040 r = 0;
1cb3f3ae 2041 spin_lock(&kvm->mmu_lock);
f41d335a 2042 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
9ad17b10 2043 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2044 sp->role.word);
2045 r = 1;
f41d335a 2046 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2047 }
d98ba053 2048 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2049 spin_unlock(&kvm->mmu_lock);
2050
a436036b 2051 return r;
cea0f0e7 2052}
1cb3f3ae 2053EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2054
38c335f1 2055static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
6aa8b732 2056{
bc6678a3 2057 int slot = memslot_id(kvm, gfn);
4db35314 2058 struct kvm_mmu_page *sp = page_header(__pa(pte));
6aa8b732 2059
291f26bc 2060 __set_bit(slot, sp->slot_bitmap);
6aa8b732
AK
2061}
2062
74be52e3
SY
2063/*
2064 * The function is based on mtrr_type_lookup() in
2065 * arch/x86/kernel/cpu/mtrr/generic.c
2066 */
2067static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2068 u64 start, u64 end)
2069{
2070 int i;
2071 u64 base, mask;
2072 u8 prev_match, curr_match;
2073 int num_var_ranges = KVM_NR_VAR_MTRR;
2074
2075 if (!mtrr_state->enabled)
2076 return 0xFF;
2077
2078 /* Make end inclusive end, instead of exclusive */
2079 end--;
2080
2081 /* Look in fixed ranges. Just return the type as per start */
2082 if (mtrr_state->have_fixed && (start < 0x100000)) {
2083 int idx;
2084
2085 if (start < 0x80000) {
2086 idx = 0;
2087 idx += (start >> 16);
2088 return mtrr_state->fixed_ranges[idx];
2089 } else if (start < 0xC0000) {
2090 idx = 1 * 8;
2091 idx += ((start - 0x80000) >> 14);
2092 return mtrr_state->fixed_ranges[idx];
2093 } else if (start < 0x1000000) {
2094 idx = 3 * 8;
2095 idx += ((start - 0xC0000) >> 12);
2096 return mtrr_state->fixed_ranges[idx];
2097 }
2098 }
2099
2100 /*
2101 * Look in variable ranges
2102 * Look of multiple ranges matching this address and pick type
2103 * as per MTRR precedence
2104 */
2105 if (!(mtrr_state->enabled & 2))
2106 return mtrr_state->def_type;
2107
2108 prev_match = 0xFF;
2109 for (i = 0; i < num_var_ranges; ++i) {
2110 unsigned short start_state, end_state;
2111
2112 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2113 continue;
2114
2115 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2116 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2117 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2118 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2119
2120 start_state = ((start & mask) == (base & mask));
2121 end_state = ((end & mask) == (base & mask));
2122 if (start_state != end_state)
2123 return 0xFE;
2124
2125 if ((start & mask) != (base & mask))
2126 continue;
2127
2128 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2129 if (prev_match == 0xFF) {
2130 prev_match = curr_match;
2131 continue;
2132 }
2133
2134 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2135 curr_match == MTRR_TYPE_UNCACHABLE)
2136 return MTRR_TYPE_UNCACHABLE;
2137
2138 if ((prev_match == MTRR_TYPE_WRBACK &&
2139 curr_match == MTRR_TYPE_WRTHROUGH) ||
2140 (prev_match == MTRR_TYPE_WRTHROUGH &&
2141 curr_match == MTRR_TYPE_WRBACK)) {
2142 prev_match = MTRR_TYPE_WRTHROUGH;
2143 curr_match = MTRR_TYPE_WRTHROUGH;
2144 }
2145
2146 if (prev_match != curr_match)
2147 return MTRR_TYPE_UNCACHABLE;
2148 }
2149
2150 if (prev_match != 0xFF)
2151 return prev_match;
2152
2153 return mtrr_state->def_type;
2154}
2155
4b12f0de 2156u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2157{
2158 u8 mtrr;
2159
2160 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2161 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2162 if (mtrr == 0xfe || mtrr == 0xff)
2163 mtrr = MTRR_TYPE_WRBACK;
2164 return mtrr;
2165}
4b12f0de 2166EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2167
9cf5cf5a
XG
2168static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2169{
2170 trace_kvm_mmu_unsync_page(sp);
2171 ++vcpu->kvm->stat.mmu_unsync;
2172 sp->unsync = 1;
2173
2174 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2175}
2176
2177static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2178{
4731d4c7 2179 struct kvm_mmu_page *s;
f41d335a 2180 struct hlist_node *node;
9cf5cf5a 2181
f41d335a 2182 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 2183 if (s->unsync)
4731d4c7 2184 continue;
9cf5cf5a
XG
2185 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2186 __kvm_unsync_page(vcpu, s);
4731d4c7 2187 }
4731d4c7
MT
2188}
2189
2190static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2191 bool can_unsync)
2192{
9cf5cf5a 2193 struct kvm_mmu_page *s;
f41d335a 2194 struct hlist_node *node;
9cf5cf5a
XG
2195 bool need_unsync = false;
2196
f41d335a 2197 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
36a2e677
XG
2198 if (!can_unsync)
2199 return 1;
2200
9cf5cf5a 2201 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2202 return 1;
9cf5cf5a
XG
2203
2204 if (!need_unsync && !s->unsync) {
9cf5cf5a
XG
2205 need_unsync = true;
2206 }
4731d4c7 2207 }
9cf5cf5a
XG
2208 if (need_unsync)
2209 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2210 return 0;
2211}
2212
d555c333 2213static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2214 unsigned pte_access, int user_fault,
640d9b0d 2215 int write_fault, int level,
c2d0ee46 2216 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2217 bool can_unsync, bool host_writable)
1c4f1fd6 2218{
b330aa0c 2219 u64 spte, entry = *sptep;
1e73f9dd 2220 int ret = 0;
64d4d521 2221
ce88decf
XG
2222 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2223 return 0;
2224
982c2565 2225 spte = PT_PRESENT_MASK;
947da538 2226 if (!speculative)
3201b5d9 2227 spte |= shadow_accessed_mask;
640d9b0d 2228
7b52345e
SY
2229 if (pte_access & ACC_EXEC_MASK)
2230 spte |= shadow_x_mask;
2231 else
2232 spte |= shadow_nx_mask;
1c4f1fd6 2233 if (pte_access & ACC_USER_MASK)
7b52345e 2234 spte |= shadow_user_mask;
852e3c19 2235 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2236 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2237 if (tdp_enabled)
4b12f0de
SY
2238 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2239 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2240
9bdbba13 2241 if (host_writable)
1403283a 2242 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2243 else
2244 pte_access &= ~ACC_WRITE_MASK;
1403283a 2245
35149e21 2246 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6
AK
2247
2248 if ((pte_access & ACC_WRITE_MASK)
c5a78f2b
JR
2249 || (!vcpu->arch.mmu.direct_map && write_fault
2250 && !is_write_protection(vcpu) && !user_fault)) {
1c4f1fd6 2251
852e3c19
JR
2252 if (level > PT_PAGE_TABLE_LEVEL &&
2253 has_wrprotected_page(vcpu->kvm, gfn, level)) {
38187c83 2254 ret = 1;
c3707958 2255 drop_spte(vcpu->kvm, sptep);
be38d276 2256 goto done;
38187c83
MT
2257 }
2258
1c4f1fd6 2259 spte |= PT_WRITABLE_MASK;
1c4f1fd6 2260
c5a78f2b 2261 if (!vcpu->arch.mmu.direct_map
411c588d 2262 && !(pte_access & ACC_WRITE_MASK)) {
69325a12 2263 spte &= ~PT_USER_MASK;
411c588d
AK
2264 /*
2265 * If we converted a user page to a kernel page,
2266 * so that the kernel can write to it when cr0.wp=0,
2267 * then we should prevent the kernel from executing it
2268 * if SMEP is enabled.
2269 */
2270 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2271 spte |= PT64_NX_MASK;
2272 }
69325a12 2273
ecc5589f
MT
2274 /*
2275 * Optimization: for pte sync, if spte was writable the hash
2276 * lookup is unnecessary (and expensive). Write protection
2277 * is responsibility of mmu_get_page / kvm_sync_page.
2278 * Same reasoning can be applied to dirty page accounting.
2279 */
8dae4445 2280 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2281 goto set_pte;
2282
4731d4c7 2283 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2284 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2285 __func__, gfn);
1e73f9dd 2286 ret = 1;
1c4f1fd6 2287 pte_access &= ~ACC_WRITE_MASK;
8dae4445 2288 if (is_writable_pte(spte))
1c4f1fd6 2289 spte &= ~PT_WRITABLE_MASK;
1c4f1fd6
AK
2290 }
2291 }
2292
1c4f1fd6
AK
2293 if (pte_access & ACC_WRITE_MASK)
2294 mark_page_dirty(vcpu->kvm, gfn);
2295
38187c83 2296set_pte:
1df9f2dc 2297 mmu_spte_update(sptep, spte);
b330aa0c
XG
2298 /*
2299 * If we overwrite a writable spte with a read-only one we
2300 * should flush remote TLBs. Otherwise rmap_write_protect
2301 * will find a read-only spte, even though the writable spte
2302 * might be cached on a CPU's TLB.
2303 */
2304 if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2305 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2306done:
1e73f9dd
MT
2307 return ret;
2308}
2309
d555c333 2310static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2311 unsigned pt_access, unsigned pte_access,
640d9b0d 2312 int user_fault, int write_fault,
b90a0e6c 2313 int *emulate, int level, gfn_t gfn,
1403283a 2314 pfn_t pfn, bool speculative,
9bdbba13 2315 bool host_writable)
1e73f9dd
MT
2316{
2317 int was_rmapped = 0;
53a27b39 2318 int rmap_count;
1e73f9dd
MT
2319
2320 pgprintk("%s: spte %llx access %x write_fault %d"
9ad17b10 2321 " user_fault %d gfn %llx\n",
d555c333 2322 __func__, *sptep, pt_access,
1e73f9dd
MT
2323 write_fault, user_fault, gfn);
2324
d555c333 2325 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2326 /*
2327 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2328 * the parent of the now unreachable PTE.
2329 */
852e3c19
JR
2330 if (level > PT_PAGE_TABLE_LEVEL &&
2331 !is_large_pte(*sptep)) {
1e73f9dd 2332 struct kvm_mmu_page *child;
d555c333 2333 u64 pte = *sptep;
1e73f9dd
MT
2334
2335 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2336 drop_parent_pte(child, sptep);
3be2264b 2337 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2338 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2339 pgprintk("hfn old %llx new %llx\n",
d555c333 2340 spte_to_pfn(*sptep), pfn);
c3707958 2341 drop_spte(vcpu->kvm, sptep);
91546356 2342 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2343 } else
2344 was_rmapped = 1;
1e73f9dd 2345 }
852e3c19 2346
d555c333 2347 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
640d9b0d 2348 level, gfn, pfn, speculative, true,
9bdbba13 2349 host_writable)) {
1e73f9dd 2350 if (write_fault)
b90a0e6c 2351 *emulate = 1;
5304efde 2352 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2353 }
1e73f9dd 2354
ce88decf
XG
2355 if (unlikely(is_mmio_spte(*sptep) && emulate))
2356 *emulate = 1;
2357
d555c333 2358 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2359 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2360 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2361 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2362 *sptep, sptep);
d555c333 2363 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2364 ++vcpu->kvm->stat.lpages;
2365
ffb61bb3
XG
2366 if (is_shadow_present_pte(*sptep)) {
2367 page_header_update_slot(vcpu->kvm, sptep, gfn);
2368 if (!was_rmapped) {
2369 rmap_count = rmap_add(vcpu, sptep, gfn);
2370 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2371 rmap_recycle(vcpu, sptep, gfn);
2372 }
1c4f1fd6 2373 }
9ed5520d 2374 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2375}
2376
6aa8b732
AK
2377static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2378{
2379}
2380
957ed9ef
XG
2381static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2382 bool no_dirty_log)
2383{
2384 struct kvm_memory_slot *slot;
2385 unsigned long hva;
2386
5d163b1c 2387 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
957ed9ef 2388 if (!slot) {
fce92dce
XG
2389 get_page(fault_page);
2390 return page_to_pfn(fault_page);
957ed9ef
XG
2391 }
2392
2393 hva = gfn_to_hva_memslot(slot, gfn);
2394
2395 return hva_to_pfn_atomic(vcpu->kvm, hva);
2396}
2397
2398static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2399 struct kvm_mmu_page *sp,
2400 u64 *start, u64 *end)
2401{
2402 struct page *pages[PTE_PREFETCH_NUM];
2403 unsigned access = sp->role.access;
2404 int i, ret;
2405 gfn_t gfn;
2406
2407 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2408 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2409 return -1;
2410
2411 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2412 if (ret <= 0)
2413 return -1;
2414
2415 for (i = 0; i < ret; i++, gfn++, start++)
2416 mmu_set_spte(vcpu, start, ACC_ALL,
640d9b0d 2417 access, 0, 0, NULL,
957ed9ef
XG
2418 sp->role.level, gfn,
2419 page_to_pfn(pages[i]), true, true);
2420
2421 return 0;
2422}
2423
2424static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2425 struct kvm_mmu_page *sp, u64 *sptep)
2426{
2427 u64 *spte, *start = NULL;
2428 int i;
2429
2430 WARN_ON(!sp->role.direct);
2431
2432 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2433 spte = sp->spt + i;
2434
2435 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2436 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2437 if (!start)
2438 continue;
2439 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2440 break;
2441 start = NULL;
2442 } else if (!start)
2443 start = spte;
2444 }
2445}
2446
2447static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2448{
2449 struct kvm_mmu_page *sp;
2450
2451 /*
2452 * Since it's no accessed bit on EPT, it's no way to
2453 * distinguish between actually accessed translations
2454 * and prefetched, so disable pte prefetch if EPT is
2455 * enabled.
2456 */
2457 if (!shadow_accessed_mask)
2458 return;
2459
2460 sp = page_header(__pa(sptep));
2461 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2462 return;
2463
2464 __direct_pte_prefetch(vcpu, sp, sptep);
2465}
2466
9f652d21 2467static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2468 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2469 bool prefault)
140754bc 2470{
9f652d21 2471 struct kvm_shadow_walk_iterator iterator;
140754bc 2472 struct kvm_mmu_page *sp;
b90a0e6c 2473 int emulate = 0;
140754bc 2474 gfn_t pseudo_gfn;
6aa8b732 2475
9f652d21 2476 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2477 if (iterator.level == level) {
612819c3
MT
2478 unsigned pte_access = ACC_ALL;
2479
612819c3 2480 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
b90a0e6c 2481 0, write, &emulate,
2ec4739d 2482 level, gfn, pfn, prefault, map_writable);
957ed9ef 2483 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2484 ++vcpu->stat.pf_fixed;
2485 break;
6aa8b732
AK
2486 }
2487
c3707958 2488 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2489 u64 base_addr = iterator.addr;
2490
2491 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2492 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2493 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2494 iterator.level - 1,
2495 1, ACC_ALL, iterator.sptep);
2496 if (!sp) {
2497 pgprintk("nonpaging_map: ENOMEM\n");
2498 kvm_release_pfn_clean(pfn);
2499 return -ENOMEM;
2500 }
140754bc 2501
1df9f2dc
XG
2502 mmu_spte_set(iterator.sptep,
2503 __pa(sp->spt)
2504 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2505 | shadow_user_mask | shadow_x_mask
2506 | shadow_accessed_mask);
9f652d21
AK
2507 }
2508 }
b90a0e6c 2509 return emulate;
6aa8b732
AK
2510}
2511
77db5cbd 2512static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2513{
77db5cbd
HY
2514 siginfo_t info;
2515
2516 info.si_signo = SIGBUS;
2517 info.si_errno = 0;
2518 info.si_code = BUS_MCEERR_AR;
2519 info.si_addr = (void __user *)address;
2520 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2521
77db5cbd 2522 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2523}
2524
d7c55201 2525static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156
HY
2526{
2527 kvm_release_pfn_clean(pfn);
2528 if (is_hwpoison_pfn(pfn)) {
bebb106a 2529 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2530 return 0;
d7c55201 2531 }
edba23e5 2532
d7c55201 2533 return -EFAULT;
bf998156
HY
2534}
2535
936a5fe6
AA
2536static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2537 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2538{
2539 pfn_t pfn = *pfnp;
2540 gfn_t gfn = *gfnp;
2541 int level = *levelp;
2542
2543 /*
2544 * Check if it's a transparent hugepage. If this would be an
2545 * hugetlbfs page, level wouldn't be set to
2546 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2547 * here.
2548 */
2549 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2550 level == PT_PAGE_TABLE_LEVEL &&
2551 PageTransCompound(pfn_to_page(pfn)) &&
2552 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2553 unsigned long mask;
2554 /*
2555 * mmu_notifier_retry was successful and we hold the
2556 * mmu_lock here, so the pmd can't become splitting
2557 * from under us, and in turn
2558 * __split_huge_page_refcount() can't run from under
2559 * us and we can safely transfer the refcount from
2560 * PG_tail to PG_head as we switch the pfn to tail to
2561 * head.
2562 */
2563 *levelp = level = PT_DIRECTORY_LEVEL;
2564 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2565 VM_BUG_ON((gfn & mask) != (pfn & mask));
2566 if (pfn & mask) {
2567 gfn &= ~mask;
2568 *gfnp = gfn;
2569 kvm_release_pfn_clean(pfn);
2570 pfn &= ~mask;
2571 if (!get_page_unless_zero(pfn_to_page(pfn)))
2572 BUG();
2573 *pfnp = pfn;
2574 }
2575 }
2576}
2577
d7c55201
XG
2578static bool mmu_invalid_pfn(pfn_t pfn)
2579{
ce88decf 2580 return unlikely(is_invalid_pfn(pfn));
d7c55201
XG
2581}
2582
2583static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2584 pfn_t pfn, unsigned access, int *ret_val)
2585{
2586 bool ret = true;
2587
2588 /* The pfn is invalid, report the error! */
2589 if (unlikely(is_invalid_pfn(pfn))) {
2590 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2591 goto exit;
2592 }
2593
ce88decf 2594 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2595 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2596
2597 ret = false;
2598exit:
2599 return ret;
2600}
2601
78b2c54a 2602static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe
XG
2603 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2604
2605static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
78b2c54a 2606 bool prefault)
10589a46
MT
2607{
2608 int r;
852e3c19 2609 int level;
936a5fe6 2610 int force_pt_level;
35149e21 2611 pfn_t pfn;
e930bffe 2612 unsigned long mmu_seq;
612819c3 2613 bool map_writable;
aaee2c94 2614
936a5fe6
AA
2615 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2616 if (likely(!force_pt_level)) {
2617 level = mapping_level(vcpu, gfn);
2618 /*
2619 * This path builds a PAE pagetable - so we can map
2620 * 2mb pages at maximum. Therefore check if the level
2621 * is larger than that.
2622 */
2623 if (level > PT_DIRECTORY_LEVEL)
2624 level = PT_DIRECTORY_LEVEL;
852e3c19 2625
936a5fe6
AA
2626 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2627 } else
2628 level = PT_PAGE_TABLE_LEVEL;
05da4558 2629
e930bffe 2630 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2631 smp_rmb();
060c2abe 2632
78b2c54a 2633 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2634 return 0;
aaee2c94 2635
d7c55201
XG
2636 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2637 return r;
d196e343 2638
aaee2c94 2639 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
2640 if (mmu_notifier_retry(vcpu, mmu_seq))
2641 goto out_unlock;
eb787d10 2642 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
2643 if (likely(!force_pt_level))
2644 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2645 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2646 prefault);
aaee2c94
MT
2647 spin_unlock(&vcpu->kvm->mmu_lock);
2648
aaee2c94 2649
10589a46 2650 return r;
e930bffe
AA
2651
2652out_unlock:
2653 spin_unlock(&vcpu->kvm->mmu_lock);
2654 kvm_release_pfn_clean(pfn);
2655 return 0;
10589a46
MT
2656}
2657
2658
17ac10ad
AK
2659static void mmu_free_roots(struct kvm_vcpu *vcpu)
2660{
2661 int i;
4db35314 2662 struct kvm_mmu_page *sp;
d98ba053 2663 LIST_HEAD(invalid_list);
17ac10ad 2664
ad312c7c 2665 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2666 return;
aaee2c94 2667 spin_lock(&vcpu->kvm->mmu_lock);
81407ca5
JR
2668 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2669 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2670 vcpu->arch.mmu.direct_map)) {
ad312c7c 2671 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2672
4db35314
AK
2673 sp = page_header(root);
2674 --sp->root_count;
d98ba053
XG
2675 if (!sp->root_count && sp->role.invalid) {
2676 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2677 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2678 }
ad312c7c 2679 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
aaee2c94 2680 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad
AK
2681 return;
2682 }
17ac10ad 2683 for (i = 0; i < 4; ++i) {
ad312c7c 2684 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2685
417726a3 2686 if (root) {
417726a3 2687 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2688 sp = page_header(root);
2689 --sp->root_count;
2e53d63a 2690 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2691 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2692 &invalid_list);
417726a3 2693 }
ad312c7c 2694 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2695 }
d98ba053 2696 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2697 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2698 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2699}
2700
8986ecc0
MT
2701static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2702{
2703 int ret = 0;
2704
2705 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 2706 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
2707 ret = 1;
2708 }
2709
2710 return ret;
2711}
2712
651dd37a
JR
2713static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2714{
2715 struct kvm_mmu_page *sp;
7ebaf15e 2716 unsigned i;
651dd37a
JR
2717
2718 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2719 spin_lock(&vcpu->kvm->mmu_lock);
2720 kvm_mmu_free_some_pages(vcpu);
2721 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2722 1, ACC_ALL, NULL);
2723 ++sp->root_count;
2724 spin_unlock(&vcpu->kvm->mmu_lock);
2725 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2726 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2727 for (i = 0; i < 4; ++i) {
2728 hpa_t root = vcpu->arch.mmu.pae_root[i];
2729
2730 ASSERT(!VALID_PAGE(root));
2731 spin_lock(&vcpu->kvm->mmu_lock);
2732 kvm_mmu_free_some_pages(vcpu);
649497d1
AK
2733 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2734 i << 30,
651dd37a
JR
2735 PT32_ROOT_LEVEL, 1, ACC_ALL,
2736 NULL);
2737 root = __pa(sp->spt);
2738 ++sp->root_count;
2739 spin_unlock(&vcpu->kvm->mmu_lock);
2740 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 2741 }
6292757f 2742 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
2743 } else
2744 BUG();
2745
2746 return 0;
2747}
2748
2749static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 2750{
4db35314 2751 struct kvm_mmu_page *sp;
81407ca5
JR
2752 u64 pdptr, pm_mask;
2753 gfn_t root_gfn;
2754 int i;
3bb65a22 2755
5777ed34 2756 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 2757
651dd37a
JR
2758 if (mmu_check_root(vcpu, root_gfn))
2759 return 1;
2760
2761 /*
2762 * Do we shadow a long mode page table? If so we need to
2763 * write-protect the guests page table root.
2764 */
2765 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 2766 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
2767
2768 ASSERT(!VALID_PAGE(root));
651dd37a 2769
8facbbff 2770 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2771 kvm_mmu_free_some_pages(vcpu);
651dd37a
JR
2772 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2773 0, ACC_ALL, NULL);
4db35314
AK
2774 root = __pa(sp->spt);
2775 ++sp->root_count;
8facbbff 2776 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2777 vcpu->arch.mmu.root_hpa = root;
8986ecc0 2778 return 0;
17ac10ad 2779 }
f87f9288 2780
651dd37a
JR
2781 /*
2782 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
2783 * or a PAE 3-level page table. In either case we need to be aware that
2784 * the shadow page table may be a PAE or a long mode page table.
651dd37a 2785 */
81407ca5
JR
2786 pm_mask = PT_PRESENT_MASK;
2787 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2788 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2789
17ac10ad 2790 for (i = 0; i < 4; ++i) {
ad312c7c 2791 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
2792
2793 ASSERT(!VALID_PAGE(root));
ad312c7c 2794 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 2795 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 2796 if (!is_present_gpte(pdptr)) {
ad312c7c 2797 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
2798 continue;
2799 }
6de4f3ad 2800 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
2801 if (mmu_check_root(vcpu, root_gfn))
2802 return 1;
5a7388c2 2803 }
8facbbff 2804 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2805 kvm_mmu_free_some_pages(vcpu);
4db35314 2806 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 2807 PT32_ROOT_LEVEL, 0,
f7d9c7b7 2808 ACC_ALL, NULL);
4db35314
AK
2809 root = __pa(sp->spt);
2810 ++sp->root_count;
8facbbff
AK
2811 spin_unlock(&vcpu->kvm->mmu_lock);
2812
81407ca5 2813 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 2814 }
6292757f 2815 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
2816
2817 /*
2818 * If we shadow a 32 bit page table with a long mode page
2819 * table we enter this path.
2820 */
2821 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2822 if (vcpu->arch.mmu.lm_root == NULL) {
2823 /*
2824 * The additional page necessary for this is only
2825 * allocated on demand.
2826 */
2827
2828 u64 *lm_root;
2829
2830 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2831 if (lm_root == NULL)
2832 return 1;
2833
2834 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2835
2836 vcpu->arch.mmu.lm_root = lm_root;
2837 }
2838
2839 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2840 }
2841
8986ecc0 2842 return 0;
17ac10ad
AK
2843}
2844
651dd37a
JR
2845static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2846{
2847 if (vcpu->arch.mmu.direct_map)
2848 return mmu_alloc_direct_roots(vcpu);
2849 else
2850 return mmu_alloc_shadow_roots(vcpu);
2851}
2852
0ba73cda
MT
2853static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2854{
2855 int i;
2856 struct kvm_mmu_page *sp;
2857
81407ca5
JR
2858 if (vcpu->arch.mmu.direct_map)
2859 return;
2860
0ba73cda
MT
2861 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2862 return;
6903074c 2863
bebb106a 2864 vcpu_clear_mmio_info(vcpu, ~0ul);
0375f7fa 2865 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 2866 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
2867 hpa_t root = vcpu->arch.mmu.root_hpa;
2868 sp = page_header(root);
2869 mmu_sync_children(vcpu, sp);
0375f7fa 2870 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
2871 return;
2872 }
2873 for (i = 0; i < 4; ++i) {
2874 hpa_t root = vcpu->arch.mmu.pae_root[i];
2875
8986ecc0 2876 if (root && VALID_PAGE(root)) {
0ba73cda
MT
2877 root &= PT64_BASE_ADDR_MASK;
2878 sp = page_header(root);
2879 mmu_sync_children(vcpu, sp);
2880 }
2881 }
0375f7fa 2882 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
2883}
2884
2885void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2886{
2887 spin_lock(&vcpu->kvm->mmu_lock);
2888 mmu_sync_roots(vcpu);
6cffe8ca 2889 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
2890}
2891
1871c602 2892static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 2893 u32 access, struct x86_exception *exception)
6aa8b732 2894{
ab9ae313
AK
2895 if (exception)
2896 exception->error_code = 0;
6aa8b732
AK
2897 return vaddr;
2898}
2899
6539e738 2900static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
2901 u32 access,
2902 struct x86_exception *exception)
6539e738 2903{
ab9ae313
AK
2904 if (exception)
2905 exception->error_code = 0;
6539e738
JR
2906 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2907}
2908
ce88decf
XG
2909static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2910{
2911 if (direct)
2912 return vcpu_match_mmio_gpa(vcpu, addr);
2913
2914 return vcpu_match_mmio_gva(vcpu, addr);
2915}
2916
2917
2918/*
2919 * On direct hosts, the last spte is only allows two states
2920 * for mmio page fault:
2921 * - It is the mmio spte
2922 * - It is zapped or it is being zapped.
2923 *
2924 * This function completely checks the spte when the last spte
2925 * is not the mmio spte.
2926 */
2927static bool check_direct_spte_mmio_pf(u64 spte)
2928{
2929 return __check_direct_spte_mmio_pf(spte);
2930}
2931
2932static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
2933{
2934 struct kvm_shadow_walk_iterator iterator;
2935 u64 spte = 0ull;
2936
2937 walk_shadow_page_lockless_begin(vcpu);
2938 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
2939 if (!is_shadow_present_pte(spte))
2940 break;
2941 walk_shadow_page_lockless_end(vcpu);
2942
2943 return spte;
2944}
2945
2946/*
2947 * If it is a real mmio page fault, return 1 and emulat the instruction
2948 * directly, return 0 to let CPU fault again on the address, -1 is
2949 * returned if bug is detected.
2950 */
2951int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2952{
2953 u64 spte;
2954
2955 if (quickly_check_mmio_pf(vcpu, addr, direct))
2956 return 1;
2957
2958 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
2959
2960 if (is_mmio_spte(spte)) {
2961 gfn_t gfn = get_mmio_spte_gfn(spte);
2962 unsigned access = get_mmio_spte_access(spte);
2963
2964 if (direct)
2965 addr = 0;
4f022648
XG
2966
2967 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf
XG
2968 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
2969 return 1;
2970 }
2971
2972 /*
2973 * It's ok if the gva is remapped by other cpus on shadow guest,
2974 * it's a BUG if the gfn is not a mmio page.
2975 */
2976 if (direct && !check_direct_spte_mmio_pf(spte))
2977 return -1;
2978
2979 /*
2980 * If the page table is zapped by other cpus, let CPU fault again on
2981 * the address.
2982 */
2983 return 0;
2984}
2985EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
2986
2987static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
2988 u32 error_code, bool direct)
2989{
2990 int ret;
2991
2992 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
2993 WARN_ON(ret < 0);
2994 return ret;
2995}
2996
6aa8b732 2997static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 2998 u32 error_code, bool prefault)
6aa8b732 2999{
e833240f 3000 gfn_t gfn;
e2dec939 3001 int r;
6aa8b732 3002
b8688d51 3003 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf
XG
3004
3005 if (unlikely(error_code & PFERR_RSVD_MASK))
3006 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3007
e2dec939
AK
3008 r = mmu_topup_memory_caches(vcpu);
3009 if (r)
3010 return r;
714b93da 3011
6aa8b732 3012 ASSERT(vcpu);
ad312c7c 3013 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3014
e833240f 3015 gfn = gva >> PAGE_SHIFT;
6aa8b732 3016
e833240f 3017 return nonpaging_map(vcpu, gva & PAGE_MASK,
78b2c54a 3018 error_code & PFERR_WRITE_MASK, gfn, prefault);
6aa8b732
AK
3019}
3020
7e1fbeac 3021static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3022{
3023 struct kvm_arch_async_pf arch;
fb67e14f 3024
7c90705b 3025 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3026 arch.gfn = gfn;
c4806acd 3027 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3028 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3029
3030 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3031}
3032
3033static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3034{
3035 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3036 kvm_event_needs_reinjection(vcpu)))
3037 return false;
3038
3039 return kvm_x86_ops->interrupt_allowed(vcpu);
3040}
3041
78b2c54a 3042static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3043 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3044{
3045 bool async;
3046
612819c3 3047 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3048
3049 if (!async)
3050 return false; /* *pfn has correct page already */
3051
3052 put_page(pfn_to_page(*pfn));
3053
78b2c54a 3054 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3055 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3056 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3057 trace_kvm_async_pf_doublefault(gva, gfn);
3058 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3059 return true;
3060 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3061 return true;
3062 }
3063
612819c3 3064 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3065
3066 return false;
3067}
3068
56028d08 3069static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3070 bool prefault)
fb72d167 3071{
35149e21 3072 pfn_t pfn;
fb72d167 3073 int r;
852e3c19 3074 int level;
936a5fe6 3075 int force_pt_level;
05da4558 3076 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3077 unsigned long mmu_seq;
612819c3
MT
3078 int write = error_code & PFERR_WRITE_MASK;
3079 bool map_writable;
fb72d167
JR
3080
3081 ASSERT(vcpu);
3082 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3083
ce88decf
XG
3084 if (unlikely(error_code & PFERR_RSVD_MASK))
3085 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3086
fb72d167
JR
3087 r = mmu_topup_memory_caches(vcpu);
3088 if (r)
3089 return r;
3090
936a5fe6
AA
3091 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3092 if (likely(!force_pt_level)) {
3093 level = mapping_level(vcpu, gfn);
3094 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3095 } else
3096 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3097
e930bffe 3098 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3099 smp_rmb();
af585b92 3100
78b2c54a 3101 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3102 return 0;
3103
d7c55201
XG
3104 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3105 return r;
3106
fb72d167 3107 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
3108 if (mmu_notifier_retry(vcpu, mmu_seq))
3109 goto out_unlock;
fb72d167 3110 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
3111 if (likely(!force_pt_level))
3112 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3113 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3114 level, gfn, pfn, prefault);
fb72d167 3115 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3116
3117 return r;
e930bffe
AA
3118
3119out_unlock:
3120 spin_unlock(&vcpu->kvm->mmu_lock);
3121 kvm_release_pfn_clean(pfn);
3122 return 0;
fb72d167
JR
3123}
3124
6aa8b732
AK
3125static void nonpaging_free(struct kvm_vcpu *vcpu)
3126{
17ac10ad 3127 mmu_free_roots(vcpu);
6aa8b732
AK
3128}
3129
52fde8df
JR
3130static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3131 struct kvm_mmu *context)
6aa8b732 3132{
6aa8b732
AK
3133 context->new_cr3 = nonpaging_new_cr3;
3134 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
3135 context->gva_to_gpa = nonpaging_gva_to_gpa;
3136 context->free = nonpaging_free;
e8bc217a 3137 context->sync_page = nonpaging_sync_page;
a7052897 3138 context->invlpg = nonpaging_invlpg;
0f53b5b1 3139 context->update_pte = nonpaging_update_pte;
cea0f0e7 3140 context->root_level = 0;
6aa8b732 3141 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3142 context->root_hpa = INVALID_PAGE;
c5a78f2b 3143 context->direct_map = true;
2d48a985 3144 context->nx = false;
6aa8b732
AK
3145 return 0;
3146}
3147
d835dfec 3148void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3149{
1165f5fe 3150 ++vcpu->stat.tlb_flush;
a8eeb04a 3151 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732
AK
3152}
3153
3154static void paging_new_cr3(struct kvm_vcpu *vcpu)
3155{
9f8fe504 3156 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
cea0f0e7 3157 mmu_free_roots(vcpu);
6aa8b732
AK
3158}
3159
5777ed34
JR
3160static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3161{
9f8fe504 3162 return kvm_read_cr3(vcpu);
5777ed34
JR
3163}
3164
6389ee94
AK
3165static void inject_page_fault(struct kvm_vcpu *vcpu,
3166 struct x86_exception *fault)
6aa8b732 3167{
6389ee94 3168 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3169}
3170
6aa8b732
AK
3171static void paging_free(struct kvm_vcpu *vcpu)
3172{
3173 nonpaging_free(vcpu);
3174}
3175
3241f22d 3176static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
82725b20
DE
3177{
3178 int bit7;
3179
3180 bit7 = (gpte >> 7) & 1;
3241f22d 3181 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
82725b20
DE
3182}
3183
ce88decf
XG
3184static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3185 int *nr_present)
3186{
3187 if (unlikely(is_mmio_spte(*sptep))) {
3188 if (gfn != get_mmio_spte_gfn(*sptep)) {
3189 mmu_spte_clear_no_track(sptep);
3190 return true;
3191 }
3192
3193 (*nr_present)++;
3194 mark_mmio_spte(sptep, gfn, access);
3195 return true;
3196 }
3197
3198 return false;
3199}
3200
6aa8b732
AK
3201#define PTTYPE 64
3202#include "paging_tmpl.h"
3203#undef PTTYPE
3204
3205#define PTTYPE 32
3206#include "paging_tmpl.h"
3207#undef PTTYPE
3208
52fde8df 3209static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3210 struct kvm_mmu *context)
82725b20 3211{
82725b20
DE
3212 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3213 u64 exb_bit_rsvd = 0;
3214
2d48a985 3215 if (!context->nx)
82725b20 3216 exb_bit_rsvd = rsvd_bits(63, 63);
4d6931c3 3217 switch (context->root_level) {
82725b20
DE
3218 case PT32_ROOT_LEVEL:
3219 /* no rsvd bits for 2 level 4K page table entries */
3220 context->rsvd_bits_mask[0][1] = 0;
3221 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3222 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3223
3224 if (!is_pse(vcpu)) {
3225 context->rsvd_bits_mask[1][1] = 0;
3226 break;
3227 }
3228
82725b20
DE
3229 if (is_cpuid_PSE36())
3230 /* 36bits PSE 4MB page */
3231 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3232 else
3233 /* 32 bits PSE 4MB page */
3234 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3235 break;
3236 case PT32E_ROOT_LEVEL:
20c466b5
DE
3237 context->rsvd_bits_mask[0][2] =
3238 rsvd_bits(maxphyaddr, 63) |
3239 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3240 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3241 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3242 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3243 rsvd_bits(maxphyaddr, 62); /* PTE */
3244 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3245 rsvd_bits(maxphyaddr, 62) |
3246 rsvd_bits(13, 20); /* large page */
f815bce8 3247 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3248 break;
3249 case PT64_ROOT_LEVEL:
3250 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3251 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3252 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3253 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3254 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3255 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3256 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3257 rsvd_bits(maxphyaddr, 51);
3258 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3259 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3260 rsvd_bits(maxphyaddr, 51) |
3261 rsvd_bits(13, 29);
82725b20 3262 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3263 rsvd_bits(maxphyaddr, 51) |
3264 rsvd_bits(13, 20); /* large page */
f815bce8 3265 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3266 break;
3267 }
3268}
3269
52fde8df
JR
3270static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3271 struct kvm_mmu *context,
3272 int level)
6aa8b732 3273{
2d48a985 3274 context->nx = is_nx(vcpu);
4d6931c3 3275 context->root_level = level;
2d48a985 3276
4d6931c3 3277 reset_rsvds_bits_mask(vcpu, context);
6aa8b732
AK
3278
3279 ASSERT(is_pae(vcpu));
3280 context->new_cr3 = paging_new_cr3;
3281 context->page_fault = paging64_page_fault;
6aa8b732 3282 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3283 context->sync_page = paging64_sync_page;
a7052897 3284 context->invlpg = paging64_invlpg;
0f53b5b1 3285 context->update_pte = paging64_update_pte;
6aa8b732 3286 context->free = paging_free;
17ac10ad 3287 context->shadow_root_level = level;
17c3ba9d 3288 context->root_hpa = INVALID_PAGE;
c5a78f2b 3289 context->direct_map = false;
6aa8b732
AK
3290 return 0;
3291}
3292
52fde8df
JR
3293static int paging64_init_context(struct kvm_vcpu *vcpu,
3294 struct kvm_mmu *context)
17ac10ad 3295{
52fde8df 3296 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3297}
3298
52fde8df
JR
3299static int paging32_init_context(struct kvm_vcpu *vcpu,
3300 struct kvm_mmu *context)
6aa8b732 3301{
2d48a985 3302 context->nx = false;
4d6931c3 3303 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3304
4d6931c3 3305 reset_rsvds_bits_mask(vcpu, context);
6aa8b732
AK
3306
3307 context->new_cr3 = paging_new_cr3;
3308 context->page_fault = paging32_page_fault;
6aa8b732
AK
3309 context->gva_to_gpa = paging32_gva_to_gpa;
3310 context->free = paging_free;
e8bc217a 3311 context->sync_page = paging32_sync_page;
a7052897 3312 context->invlpg = paging32_invlpg;
0f53b5b1 3313 context->update_pte = paging32_update_pte;
6aa8b732 3314 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3315 context->root_hpa = INVALID_PAGE;
c5a78f2b 3316 context->direct_map = false;
6aa8b732
AK
3317 return 0;
3318}
3319
52fde8df
JR
3320static int paging32E_init_context(struct kvm_vcpu *vcpu,
3321 struct kvm_mmu *context)
6aa8b732 3322{
52fde8df 3323 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3324}
3325
fb72d167
JR
3326static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3327{
14dfe855 3328 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3329
c445f8ef 3330 context->base_role.word = 0;
fb72d167
JR
3331 context->new_cr3 = nonpaging_new_cr3;
3332 context->page_fault = tdp_page_fault;
3333 context->free = nonpaging_free;
e8bc217a 3334 context->sync_page = nonpaging_sync_page;
a7052897 3335 context->invlpg = nonpaging_invlpg;
0f53b5b1 3336 context->update_pte = nonpaging_update_pte;
67253af5 3337 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3338 context->root_hpa = INVALID_PAGE;
c5a78f2b 3339 context->direct_map = true;
1c97f0a0 3340 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3341 context->get_cr3 = get_cr3;
e4e517b4 3342 context->get_pdptr = kvm_pdptr_read;
cb659db8 3343 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3344
3345 if (!is_paging(vcpu)) {
2d48a985 3346 context->nx = false;
fb72d167
JR
3347 context->gva_to_gpa = nonpaging_gva_to_gpa;
3348 context->root_level = 0;
3349 } else if (is_long_mode(vcpu)) {
2d48a985 3350 context->nx = is_nx(vcpu);
fb72d167 3351 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3352 reset_rsvds_bits_mask(vcpu, context);
3353 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3354 } else if (is_pae(vcpu)) {
2d48a985 3355 context->nx = is_nx(vcpu);
fb72d167 3356 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3357 reset_rsvds_bits_mask(vcpu, context);
3358 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3359 } else {
2d48a985 3360 context->nx = false;
fb72d167 3361 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3362 reset_rsvds_bits_mask(vcpu, context);
3363 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3364 }
3365
3366 return 0;
3367}
3368
52fde8df 3369int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3370{
a770f6f2 3371 int r;
411c588d 3372 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3373 ASSERT(vcpu);
ad312c7c 3374 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3375
3376 if (!is_paging(vcpu))
52fde8df 3377 r = nonpaging_init_context(vcpu, context);
a9058ecd 3378 else if (is_long_mode(vcpu))
52fde8df 3379 r = paging64_init_context(vcpu, context);
6aa8b732 3380 else if (is_pae(vcpu))
52fde8df 3381 r = paging32E_init_context(vcpu, context);
6aa8b732 3382 else
52fde8df 3383 r = paging32_init_context(vcpu, context);
a770f6f2 3384
5b7e0102 3385 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3386 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3387 vcpu->arch.mmu.base_role.smep_andnot_wp
3388 = smep && !is_write_protection(vcpu);
52fde8df
JR
3389
3390 return r;
3391}
3392EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3393
3394static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3395{
14dfe855 3396 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
52fde8df 3397
14dfe855
JR
3398 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3399 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3400 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3401 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
a770f6f2
AK
3402
3403 return r;
6aa8b732
AK
3404}
3405
02f59dc9
JR
3406static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3407{
3408 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3409
3410 g_context->get_cr3 = get_cr3;
e4e517b4 3411 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3412 g_context->inject_page_fault = kvm_inject_page_fault;
3413
3414 /*
3415 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3416 * translation of l2_gpa to l1_gpa addresses is done using the
3417 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3418 * functions between mmu and nested_mmu are swapped.
3419 */
3420 if (!is_paging(vcpu)) {
2d48a985 3421 g_context->nx = false;
02f59dc9
JR
3422 g_context->root_level = 0;
3423 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3424 } else if (is_long_mode(vcpu)) {
2d48a985 3425 g_context->nx = is_nx(vcpu);
02f59dc9 3426 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3427 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3428 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3429 } else if (is_pae(vcpu)) {
2d48a985 3430 g_context->nx = is_nx(vcpu);
02f59dc9 3431 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3432 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3433 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3434 } else {
2d48a985 3435 g_context->nx = false;
02f59dc9 3436 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3437 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3438 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3439 }
3440
3441 return 0;
3442}
3443
fb72d167
JR
3444static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3445{
02f59dc9
JR
3446 if (mmu_is_nested(vcpu))
3447 return init_kvm_nested_mmu(vcpu);
3448 else if (tdp_enabled)
fb72d167
JR
3449 return init_kvm_tdp_mmu(vcpu);
3450 else
3451 return init_kvm_softmmu(vcpu);
3452}
3453
6aa8b732
AK
3454static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3455{
3456 ASSERT(vcpu);
62ad0755
SY
3457 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3458 /* mmu.free() should set root_hpa = INVALID_PAGE */
ad312c7c 3459 vcpu->arch.mmu.free(vcpu);
6aa8b732
AK
3460}
3461
3462int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
17c3ba9d
AK
3463{
3464 destroy_kvm_mmu(vcpu);
f8f7e5ee 3465 return init_kvm_mmu(vcpu);
17c3ba9d 3466}
8668a3c4 3467EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3468
3469int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3470{
714b93da
AK
3471 int r;
3472
e2dec939 3473 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3474 if (r)
3475 goto out;
8986ecc0 3476 r = mmu_alloc_roots(vcpu);
8facbbff 3477 spin_lock(&vcpu->kvm->mmu_lock);
0ba73cda 3478 mmu_sync_roots(vcpu);
aaee2c94 3479 spin_unlock(&vcpu->kvm->mmu_lock);
8986ecc0
MT
3480 if (r)
3481 goto out;
3662cb1c 3482 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3483 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3484out:
3485 return r;
6aa8b732 3486}
17c3ba9d
AK
3487EXPORT_SYMBOL_GPL(kvm_mmu_load);
3488
3489void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3490{
3491 mmu_free_roots(vcpu);
3492}
4b16184c 3493EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3494
0028425f 3495static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3496 struct kvm_mmu_page *sp, u64 *spte,
3497 const void *new)
0028425f 3498{
30945387 3499 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3500 ++vcpu->kvm->stat.mmu_pde_zapped;
3501 return;
30945387 3502 }
0028425f 3503
4cee5764 3504 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3505 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3506}
3507
79539cec
AK
3508static bool need_remote_flush(u64 old, u64 new)
3509{
3510 if (!is_shadow_present_pte(old))
3511 return false;
3512 if (!is_shadow_present_pte(new))
3513 return true;
3514 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3515 return true;
3516 old ^= PT64_NX_MASK;
3517 new ^= PT64_NX_MASK;
3518 return (old & ~new & PT64_PERM_MASK) != 0;
3519}
3520
0671a8e7
XG
3521static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3522 bool remote_flush, bool local_flush)
79539cec 3523{
0671a8e7
XG
3524 if (zap_page)
3525 return;
3526
3527 if (remote_flush)
79539cec 3528 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3529 else if (local_flush)
79539cec
AK
3530 kvm_mmu_flush_tlb(vcpu);
3531}
3532
889e5cbc
XG
3533static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3534 const u8 *new, int *bytes)
da4a00f0 3535{
889e5cbc
XG
3536 u64 gentry;
3537 int r;
72016f3a 3538
72016f3a
AK
3539 /*
3540 * Assume that the pte write on a page table of the same type
49b26e26
XG
3541 * as the current vcpu paging mode since we update the sptes only
3542 * when they have the same mode.
72016f3a 3543 */
889e5cbc 3544 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3545 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3546 *gpa &= ~(gpa_t)7;
3547 *bytes = 8;
3548 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
72016f3a
AK
3549 if (r)
3550 gentry = 0;
08e850c6
AK
3551 new = (const u8 *)&gentry;
3552 }
3553
889e5cbc 3554 switch (*bytes) {
08e850c6
AK
3555 case 4:
3556 gentry = *(const u32 *)new;
3557 break;
3558 case 8:
3559 gentry = *(const u64 *)new;
3560 break;
3561 default:
3562 gentry = 0;
3563 break;
72016f3a
AK
3564 }
3565
889e5cbc
XG
3566 return gentry;
3567}
3568
3569/*
3570 * If we're seeing too many writes to a page, it may no longer be a page table,
3571 * or we may be forking, in which case it is better to unmap the page.
3572 */
a138fe75 3573static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 3574{
a30f47cb
XG
3575 /*
3576 * Skip write-flooding detected for the sp whose level is 1, because
3577 * it can become unsync, then the guest page is not write-protected.
3578 */
3579 if (sp->role.level == 1)
3580 return false;
3246af0e 3581
a30f47cb 3582 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
3583}
3584
3585/*
3586 * Misaligned accesses are too much trouble to fix up; also, they usually
3587 * indicate a page is not used as a page table.
3588 */
3589static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3590 int bytes)
3591{
3592 unsigned offset, pte_size, misaligned;
3593
3594 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3595 gpa, bytes, sp->role.word);
3596
3597 offset = offset_in_page(gpa);
3598 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
3599
3600 /*
3601 * Sometimes, the OS only writes the last one bytes to update status
3602 * bits, for example, in linux, andb instruction is used in clear_bit().
3603 */
3604 if (!(offset & (pte_size - 1)) && bytes == 1)
3605 return false;
3606
889e5cbc
XG
3607 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3608 misaligned |= bytes < 4;
3609
3610 return misaligned;
3611}
3612
3613static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3614{
3615 unsigned page_offset, quadrant;
3616 u64 *spte;
3617 int level;
3618
3619 page_offset = offset_in_page(gpa);
3620 level = sp->role.level;
3621 *nspte = 1;
3622 if (!sp->role.cr4_pae) {
3623 page_offset <<= 1; /* 32->64 */
3624 /*
3625 * A 32-bit pde maps 4MB while the shadow pdes map
3626 * only 2MB. So we need to double the offset again
3627 * and zap two pdes instead of one.
3628 */
3629 if (level == PT32_ROOT_LEVEL) {
3630 page_offset &= ~7; /* kill rounding error */
3631 page_offset <<= 1;
3632 *nspte = 2;
3633 }
3634 quadrant = page_offset >> PAGE_SHIFT;
3635 page_offset &= ~PAGE_MASK;
3636 if (quadrant != sp->role.quadrant)
3637 return NULL;
3638 }
3639
3640 spte = &sp->spt[page_offset / sizeof(*spte)];
3641 return spte;
3642}
3643
3644void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3645 const u8 *new, int bytes)
3646{
3647 gfn_t gfn = gpa >> PAGE_SHIFT;
3648 union kvm_mmu_page_role mask = { .word = 0 };
3649 struct kvm_mmu_page *sp;
3650 struct hlist_node *node;
3651 LIST_HEAD(invalid_list);
3652 u64 entry, gentry, *spte;
3653 int npte;
a30f47cb 3654 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
3655
3656 /*
3657 * If we don't have indirect shadow pages, it means no page is
3658 * write-protected, so we can exit simply.
3659 */
3660 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3661 return;
3662
3663 zap_page = remote_flush = local_flush = false;
3664
3665 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3666
3667 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3668
3669 /*
3670 * No need to care whether allocation memory is successful
3671 * or not since pte prefetch is skiped if it does not have
3672 * enough objects in the cache.
3673 */
3674 mmu_topup_memory_caches(vcpu);
3675
3676 spin_lock(&vcpu->kvm->mmu_lock);
3677 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 3678 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 3679
fa1de2bf 3680 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
f41d335a 3681 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
a30f47cb 3682 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 3683 detect_write_flooding(sp)) {
0671a8e7 3684 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 3685 &invalid_list);
4cee5764 3686 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
3687 continue;
3688 }
889e5cbc
XG
3689
3690 spte = get_written_sptes(sp, gpa, &npte);
3691 if (!spte)
3692 continue;
3693
0671a8e7 3694 local_flush = true;
ac1b714e 3695 while (npte--) {
79539cec 3696 entry = *spte;
38e3b2b2 3697 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
3698 if (gentry &&
3699 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 3700 & mask.word) && rmap_can_add(vcpu))
7c562522 3701 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
0671a8e7
XG
3702 if (!remote_flush && need_remote_flush(entry, *spte))
3703 remote_flush = true;
ac1b714e 3704 ++spte;
9b7a0325 3705 }
9b7a0325 3706 }
0671a8e7 3707 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 3708 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 3709 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 3710 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
3711}
3712
a436036b
AK
3713int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3714{
10589a46
MT
3715 gpa_t gpa;
3716 int r;
a436036b 3717
c5a78f2b 3718 if (vcpu->arch.mmu.direct_map)
60f24784
AK
3719 return 0;
3720
1871c602 3721 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 3722
10589a46 3723 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 3724
10589a46 3725 return r;
a436036b 3726}
577bdc49 3727EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 3728
22d95b12 3729void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
ebeace86 3730{
d98ba053 3731 LIST_HEAD(invalid_list);
103ad25a 3732
e0df7b9f 3733 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3b80fffe 3734 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4db35314 3735 struct kvm_mmu_page *sp;
ebeace86 3736
f05e70ac 3737 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4db35314 3738 struct kvm_mmu_page, link);
e0df7b9f 3739 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 3740 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 3741 }
aa6bd187 3742 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 3743}
ebeace86 3744
1cb3f3ae
XG
3745static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3746{
3747 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3748 return vcpu_match_mmio_gpa(vcpu, addr);
3749
3750 return vcpu_match_mmio_gva(vcpu, addr);
3751}
3752
dc25e89e
AP
3753int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3754 void *insn, int insn_len)
3067714c 3755{
1cb3f3ae 3756 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
3757 enum emulation_result er;
3758
56028d08 3759 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
3760 if (r < 0)
3761 goto out;
3762
3763 if (!r) {
3764 r = 1;
3765 goto out;
3766 }
3767
1cb3f3ae
XG
3768 if (is_mmio_page_fault(vcpu, cr2))
3769 emulation_type = 0;
3770
3771 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
3772
3773 switch (er) {
3774 case EMULATE_DONE:
3775 return 1;
3776 case EMULATE_DO_MMIO:
3777 ++vcpu->stat.mmio_exits;
6d77dbfc 3778 /* fall through */
3067714c 3779 case EMULATE_FAIL:
3f5d18a9 3780 return 0;
3067714c
AK
3781 default:
3782 BUG();
3783 }
3784out:
3067714c
AK
3785 return r;
3786}
3787EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3788
a7052897
MT
3789void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3790{
a7052897 3791 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
3792 kvm_mmu_flush_tlb(vcpu);
3793 ++vcpu->stat.invlpg;
3794}
3795EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3796
18552672
JR
3797void kvm_enable_tdp(void)
3798{
3799 tdp_enabled = true;
3800}
3801EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3802
5f4cb662
JR
3803void kvm_disable_tdp(void)
3804{
3805 tdp_enabled = false;
3806}
3807EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3808
6aa8b732
AK
3809static void free_mmu_pages(struct kvm_vcpu *vcpu)
3810{
ad312c7c 3811 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
3812 if (vcpu->arch.mmu.lm_root != NULL)
3813 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
3814}
3815
3816static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3817{
17ac10ad 3818 struct page *page;
6aa8b732
AK
3819 int i;
3820
3821 ASSERT(vcpu);
3822
17ac10ad
AK
3823 /*
3824 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3825 * Therefore we need to allocate shadow page tables in the first
3826 * 4GB of memory, which happens to fit the DMA32 zone.
3827 */
3828 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3829 if (!page)
d7fa6ab2
WY
3830 return -ENOMEM;
3831
ad312c7c 3832 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 3833 for (i = 0; i < 4; ++i)
ad312c7c 3834 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3835
6aa8b732 3836 return 0;
6aa8b732
AK
3837}
3838
8018c27b 3839int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 3840{
6aa8b732 3841 ASSERT(vcpu);
e459e322
XG
3842
3843 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
3844 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3845 vcpu->arch.mmu.translate_gpa = translate_gpa;
3846 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 3847
8018c27b
IM
3848 return alloc_mmu_pages(vcpu);
3849}
6aa8b732 3850
8018c27b
IM
3851int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3852{
3853 ASSERT(vcpu);
ad312c7c 3854 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 3855
8018c27b 3856 return init_kvm_mmu(vcpu);
6aa8b732
AK
3857}
3858
90cb0529 3859void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 3860{
4db35314 3861 struct kvm_mmu_page *sp;
6aa8b732 3862
f05e70ac 3863 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
6aa8b732
AK
3864 int i;
3865 u64 *pt;
3866
291f26bc 3867 if (!test_bit(slot, sp->slot_bitmap))
6aa8b732
AK
3868 continue;
3869
4db35314 3870 pt = sp->spt;
8234b22e 3871 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
da8dc75f
XG
3872 if (!is_shadow_present_pte(pt[i]) ||
3873 !is_last_spte(pt[i], sp->role.level))
3874 continue;
3875
3876 if (is_large_pte(pt[i])) {
c3707958 3877 drop_spte(kvm, &pt[i]);
8234b22e 3878 --kvm->stat.lpages;
da8dc75f 3879 continue;
8234b22e 3880 }
da8dc75f 3881
6aa8b732 3882 /* avoid RMW */
01c168ac 3883 if (is_writable_pte(pt[i]))
1df9f2dc
XG
3884 mmu_spte_update(&pt[i],
3885 pt[i] & ~PT_WRITABLE_MASK);
8234b22e 3886 }
6aa8b732 3887 }
171d595d 3888 kvm_flush_remote_tlbs(kvm);
6aa8b732 3889}
37a7d8b0 3890
90cb0529 3891void kvm_mmu_zap_all(struct kvm *kvm)
e0fa826f 3892{
4db35314 3893 struct kvm_mmu_page *sp, *node;
d98ba053 3894 LIST_HEAD(invalid_list);
e0fa826f 3895
aaee2c94 3896 spin_lock(&kvm->mmu_lock);
3246af0e 3897restart:
f05e70ac 3898 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
d98ba053 3899 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3246af0e
XG
3900 goto restart;
3901
d98ba053 3902 kvm_mmu_commit_zap_page(kvm, &invalid_list);
aaee2c94 3903 spin_unlock(&kvm->mmu_lock);
e0fa826f
DL
3904}
3905
3d56cbdf
JK
3906static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3907 struct list_head *invalid_list)
3ee16c81
IE
3908{
3909 struct kvm_mmu_page *page;
3910
3911 page = container_of(kvm->arch.active_mmu_pages.prev,
3912 struct kvm_mmu_page, link);
3d56cbdf 3913 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3ee16c81
IE
3914}
3915
1495f230 3916static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
3917{
3918 struct kvm *kvm;
3919 struct kvm *kvm_freed = NULL;
1495f230 3920 int nr_to_scan = sc->nr_to_scan;
45221ab6
DH
3921
3922 if (nr_to_scan == 0)
3923 goto out;
3ee16c81 3924
e935b837 3925 raw_spin_lock(&kvm_lock);
3ee16c81
IE
3926
3927 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 3928 int idx;
d98ba053 3929 LIST_HEAD(invalid_list);
3ee16c81 3930
f656ce01 3931 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 3932 spin_lock(&kvm->mmu_lock);
45221ab6
DH
3933 if (!kvm_freed && nr_to_scan > 0 &&
3934 kvm->arch.n_used_mmu_pages > 0) {
3d56cbdf
JK
3935 kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3936 &invalid_list);
3ee16c81
IE
3937 kvm_freed = kvm;
3938 }
3939 nr_to_scan--;
3940
d98ba053 3941 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3ee16c81 3942 spin_unlock(&kvm->mmu_lock);
f656ce01 3943 srcu_read_unlock(&kvm->srcu, idx);
3ee16c81
IE
3944 }
3945 if (kvm_freed)
3946 list_move_tail(&kvm_freed->vm_list, &vm_list);
3947
e935b837 3948 raw_spin_unlock(&kvm_lock);
3ee16c81 3949
45221ab6
DH
3950out:
3951 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
3952}
3953
3954static struct shrinker mmu_shrinker = {
3955 .shrink = mmu_shrink,
3956 .seeks = DEFAULT_SEEKS * 10,
3957};
3958
2ddfd20e 3959static void mmu_destroy_caches(void)
b5a33a75 3960{
53c07b18
XG
3961 if (pte_list_desc_cache)
3962 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
3963 if (mmu_page_header_cache)
3964 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
3965}
3966
3967int kvm_mmu_module_init(void)
3968{
53c07b18
XG
3969 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
3970 sizeof(struct pte_list_desc),
20c2df83 3971 0, 0, NULL);
53c07b18 3972 if (!pte_list_desc_cache)
b5a33a75
AK
3973 goto nomem;
3974
d3d25b04
AK
3975 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3976 sizeof(struct kvm_mmu_page),
20c2df83 3977 0, 0, NULL);
d3d25b04
AK
3978 if (!mmu_page_header_cache)
3979 goto nomem;
3980
45bf21a8
WY
3981 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3982 goto nomem;
3983
3ee16c81
IE
3984 register_shrinker(&mmu_shrinker);
3985
b5a33a75
AK
3986 return 0;
3987
3988nomem:
3ee16c81 3989 mmu_destroy_caches();
b5a33a75
AK
3990 return -ENOMEM;
3991}
3992
3ad82a7e
ZX
3993/*
3994 * Caculate mmu pages needed for kvm.
3995 */
3996unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3997{
3ad82a7e
ZX
3998 unsigned int nr_mmu_pages;
3999 unsigned int nr_pages = 0;
bc6678a3 4000 struct kvm_memslots *slots;
be6ba0f0 4001 struct kvm_memory_slot *memslot;
3ad82a7e 4002
90d83dc3
LJ
4003 slots = kvm_memslots(kvm);
4004
be6ba0f0
XG
4005 kvm_for_each_memslot(memslot, slots)
4006 nr_pages += memslot->npages;
3ad82a7e
ZX
4007
4008 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4009 nr_mmu_pages = max(nr_mmu_pages,
4010 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4011
4012 return nr_mmu_pages;
4013}
4014
94d8b056
MT
4015int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4016{
4017 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4018 u64 spte;
94d8b056
MT
4019 int nr_sptes = 0;
4020
c2a2ac2b
XG
4021 walk_shadow_page_lockless_begin(vcpu);
4022 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4023 sptes[iterator.level-1] = spte;
94d8b056 4024 nr_sptes++;
c2a2ac2b 4025 if (!is_shadow_present_pte(spte))
94d8b056
MT
4026 break;
4027 }
c2a2ac2b 4028 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4029
4030 return nr_sptes;
4031}
4032EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4033
c42fffe3
XG
4034void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4035{
4036 ASSERT(vcpu);
4037
4038 destroy_kvm_mmu(vcpu);
4039 free_mmu_pages(vcpu);
4040 mmu_free_memory_caches(vcpu);
b034cf01
XG
4041}
4042
b034cf01
XG
4043void kvm_mmu_module_exit(void)
4044{
4045 mmu_destroy_caches();
4046 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4047 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4048 mmu_audit_disable();
4049}
This page took 1.726465 seconds and 5 git commands to generate.