KVM: Remove redundant smp_mb() in the kvm_mmu_commit_zap_page()
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
448353ca 33#include <linux/swap.h>
05da4558 34#include <linux/hugetlb.h>
2f333bcb 35#include <linux/compiler.h>
bc6678a3 36#include <linux/srcu.h>
5a0e3ad6 37#include <linux/slab.h>
bf998156 38#include <linux/uaccess.h>
6aa8b732 39
e495606d
AK
40#include <asm/page.h>
41#include <asm/cmpxchg.h>
4e542370 42#include <asm/io.h>
13673a90 43#include <asm/vmx.h>
3d0c27ad 44#include <asm/kvm_page_track.h>
6aa8b732 45
18552672
JR
46/*
47 * When setting this variable to true it enables Two-Dimensional-Paging
48 * where the hardware walks 2 page tables:
49 * 1. the guest-virtual to guest-physical
50 * 2. while doing 1. it walks guest-physical to host-physical
51 * If the hardware supports that we don't need to do shadow paging.
52 */
2f333bcb 53bool tdp_enabled = false;
18552672 54
8b1fe17c
XG
55enum {
56 AUDIT_PRE_PAGE_FAULT,
57 AUDIT_POST_PAGE_FAULT,
58 AUDIT_PRE_PTE_WRITE,
6903074c
XG
59 AUDIT_POST_PTE_WRITE,
60 AUDIT_PRE_SYNC,
61 AUDIT_POST_SYNC
8b1fe17c 62};
37a7d8b0 63
8b1fe17c 64#undef MMU_DEBUG
37a7d8b0
AK
65
66#ifdef MMU_DEBUG
fa4a2c08
PB
67static bool dbg = 0;
68module_param(dbg, bool, 0644);
37a7d8b0
AK
69
70#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
71#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 72#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 73#else
37a7d8b0
AK
74#define pgprintk(x...) do { } while (0)
75#define rmap_printk(x...) do { } while (0)
fa4a2c08 76#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 77#endif
6aa8b732 78
957ed9ef
XG
79#define PTE_PREFETCH_NUM 8
80
00763e41 81#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
82#define PT64_SECOND_AVAIL_BITS_SHIFT 52
83
6aa8b732
AK
84#define PT64_LEVEL_BITS 9
85
86#define PT64_LEVEL_SHIFT(level) \
d77c26fc 87 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 88
6aa8b732
AK
89#define PT64_INDEX(address, level)\
90 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
91
92
93#define PT32_LEVEL_BITS 10
94
95#define PT32_LEVEL_SHIFT(level) \
d77c26fc 96 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 97
e04da980
JR
98#define PT32_LVL_OFFSET_MASK(level) \
99 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
100 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
101
102#define PT32_INDEX(address, level)\
103 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
104
105
27aba766 106#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
107#define PT64_DIR_BASE_ADDR_MASK \
108 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
109#define PT64_LVL_ADDR_MASK(level) \
110 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
111 * PT64_LEVEL_BITS))) - 1))
112#define PT64_LVL_OFFSET_MASK(level) \
113 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
114 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
115
116#define PT32_BASE_ADDR_MASK PAGE_MASK
117#define PT32_DIR_BASE_ADDR_MASK \
118 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
119#define PT32_LVL_ADDR_MASK(level) \
120 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
121 * PT32_LEVEL_BITS))) - 1))
6aa8b732 122
53166229
GN
123#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
124 | shadow_x_mask | shadow_nx_mask)
6aa8b732 125
fe135d2c
AK
126#define ACC_EXEC_MASK 1
127#define ACC_WRITE_MASK PT_WRITABLE_MASK
128#define ACC_USER_MASK PT_USER_MASK
129#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
130
90bb6fc5
AK
131#include <trace/events/kvm.h>
132
07420171
AK
133#define CREATE_TRACE_POINTS
134#include "mmutrace.h"
135
49fde340
XG
136#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
137#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 138
135f8c2b
AK
139#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
140
220f773a
TY
141/* make pte_list_desc fit well in cache line */
142#define PTE_LIST_EXT 3
143
53c07b18
XG
144struct pte_list_desc {
145 u64 *sptes[PTE_LIST_EXT];
146 struct pte_list_desc *more;
cd4a4e53
AK
147};
148
2d11123a
AK
149struct kvm_shadow_walk_iterator {
150 u64 addr;
151 hpa_t shadow_addr;
2d11123a 152 u64 *sptep;
dd3bfd59 153 int level;
2d11123a
AK
154 unsigned index;
155};
156
157#define for_each_shadow_entry(_vcpu, _addr, _walker) \
158 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
159 shadow_walk_okay(&(_walker)); \
160 shadow_walk_next(&(_walker)))
161
c2a2ac2b
XG
162#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
163 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
164 shadow_walk_okay(&(_walker)) && \
165 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
166 __shadow_walk_next(&(_walker), spte))
167
53c07b18 168static struct kmem_cache *pte_list_desc_cache;
d3d25b04 169static struct kmem_cache *mmu_page_header_cache;
45221ab6 170static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 171
7b52345e
SY
172static u64 __read_mostly shadow_nx_mask;
173static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
174static u64 __read_mostly shadow_user_mask;
175static u64 __read_mostly shadow_accessed_mask;
176static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
177static u64 __read_mostly shadow_mmio_mask;
178
179static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 180static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
181
182void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
183{
184 shadow_mmio_mask = mmio_mask;
185}
186EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
187
f2fd125d 188/*
ee3d1570
DM
189 * the low bit of the generation number is always presumed to be zero.
190 * This disables mmio caching during memslot updates. The concept is
191 * similar to a seqcount but instead of retrying the access we just punt
192 * and ignore the cache.
193 *
194 * spte bits 3-11 are used as bits 1-9 of the generation number,
195 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 196 */
ee3d1570 197#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
198#define MMIO_SPTE_GEN_HIGH_SHIFT 52
199
ee3d1570
DM
200#define MMIO_GEN_SHIFT 20
201#define MMIO_GEN_LOW_SHIFT 10
202#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942 203#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
204
205static u64 generation_mmio_spte_mask(unsigned int gen)
206{
207 u64 mask;
208
842bb26a 209 WARN_ON(gen & ~MMIO_GEN_MASK);
f2fd125d
XG
210
211 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
212 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
213 return mask;
214}
215
216static unsigned int get_mmio_spte_generation(u64 spte)
217{
218 unsigned int gen;
219
220 spte &= ~shadow_mmio_mask;
221
222 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
223 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
224 return gen;
225}
226
54bf36aa 227static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
f8f55942 228{
54bf36aa 229 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
f8f55942
XG
230}
231
54bf36aa 232static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
f2fd125d 233 unsigned access)
ce88decf 234{
54bf36aa 235 unsigned int gen = kvm_current_mmio_generation(vcpu);
f8f55942 236 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 237
ce88decf 238 access &= ACC_WRITE_MASK | ACC_USER_MASK;
f2fd125d 239 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
f2fd125d 240
f8f55942 241 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 242 mmu_spte_set(sptep, mask);
ce88decf
XG
243}
244
245static bool is_mmio_spte(u64 spte)
246{
247 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
248}
249
250static gfn_t get_mmio_spte_gfn(u64 spte)
251{
842bb26a 252 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 253 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
254}
255
256static unsigned get_mmio_spte_access(u64 spte)
257{
842bb26a 258 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 259 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
260}
261
54bf36aa 262static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
ba049e93 263 kvm_pfn_t pfn, unsigned access)
ce88decf
XG
264{
265 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 266 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
267 return true;
268 }
269
270 return false;
271}
c7addb90 272
54bf36aa 273static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 274{
089504c0
XG
275 unsigned int kvm_gen, spte_gen;
276
54bf36aa 277 kvm_gen = kvm_current_mmio_generation(vcpu);
089504c0
XG
278 spte_gen = get_mmio_spte_generation(spte);
279
280 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
281 return likely(kvm_gen == spte_gen);
f8f55942
XG
282}
283
7b52345e 284void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 285 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
286{
287 shadow_user_mask = user_mask;
288 shadow_accessed_mask = accessed_mask;
289 shadow_dirty_mask = dirty_mask;
290 shadow_nx_mask = nx_mask;
291 shadow_x_mask = x_mask;
292}
293EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
294
6aa8b732
AK
295static int is_cpuid_PSE36(void)
296{
297 return 1;
298}
299
73b1087e
AK
300static int is_nx(struct kvm_vcpu *vcpu)
301{
f6801dff 302 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
303}
304
c7addb90
AK
305static int is_shadow_present_pte(u64 pte)
306{
ce88decf 307 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
308}
309
05da4558
MT
310static int is_large_pte(u64 pte)
311{
312 return pte & PT_PAGE_SIZE_MASK;
313}
314
776e6633
MT
315static int is_last_spte(u64 pte, int level)
316{
317 if (level == PT_PAGE_TABLE_LEVEL)
318 return 1;
852e3c19 319 if (is_large_pte(pte))
776e6633
MT
320 return 1;
321 return 0;
322}
323
ba049e93 324static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 325{
35149e21 326 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
327}
328
da928521
AK
329static gfn_t pse36_gfn_delta(u32 gpte)
330{
331 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
332
333 return (gpte & PT32_DIR_PSE36_MASK) << shift;
334}
335
603e0651 336#ifdef CONFIG_X86_64
d555c333 337static void __set_spte(u64 *sptep, u64 spte)
e663ee64 338{
603e0651 339 *sptep = spte;
e663ee64
AK
340}
341
603e0651 342static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 343{
603e0651
XG
344 *sptep = spte;
345}
346
347static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
348{
349 return xchg(sptep, spte);
350}
c2a2ac2b
XG
351
352static u64 __get_spte_lockless(u64 *sptep)
353{
354 return ACCESS_ONCE(*sptep);
355}
a9221dd5 356#else
603e0651
XG
357union split_spte {
358 struct {
359 u32 spte_low;
360 u32 spte_high;
361 };
362 u64 spte;
363};
a9221dd5 364
c2a2ac2b
XG
365static void count_spte_clear(u64 *sptep, u64 spte)
366{
367 struct kvm_mmu_page *sp = page_header(__pa(sptep));
368
369 if (is_shadow_present_pte(spte))
370 return;
371
372 /* Ensure the spte is completely set before we increase the count */
373 smp_wmb();
374 sp->clear_spte_count++;
375}
376
603e0651
XG
377static void __set_spte(u64 *sptep, u64 spte)
378{
379 union split_spte *ssptep, sspte;
a9221dd5 380
603e0651
XG
381 ssptep = (union split_spte *)sptep;
382 sspte = (union split_spte)spte;
383
384 ssptep->spte_high = sspte.spte_high;
385
386 /*
387 * If we map the spte from nonpresent to present, We should store
388 * the high bits firstly, then set present bit, so cpu can not
389 * fetch this spte while we are setting the spte.
390 */
391 smp_wmb();
392
393 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
394}
395
603e0651
XG
396static void __update_clear_spte_fast(u64 *sptep, u64 spte)
397{
398 union split_spte *ssptep, sspte;
399
400 ssptep = (union split_spte *)sptep;
401 sspte = (union split_spte)spte;
402
403 ssptep->spte_low = sspte.spte_low;
404
405 /*
406 * If we map the spte from present to nonpresent, we should clear
407 * present bit firstly to avoid vcpu fetch the old high bits.
408 */
409 smp_wmb();
410
411 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 412 count_spte_clear(sptep, spte);
603e0651
XG
413}
414
415static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
416{
417 union split_spte *ssptep, sspte, orig;
418
419 ssptep = (union split_spte *)sptep;
420 sspte = (union split_spte)spte;
421
422 /* xchg acts as a barrier before the setting of the high bits */
423 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
424 orig.spte_high = ssptep->spte_high;
425 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 426 count_spte_clear(sptep, spte);
603e0651
XG
427
428 return orig.spte;
429}
c2a2ac2b
XG
430
431/*
432 * The idea using the light way get the spte on x86_32 guest is from
433 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
434 *
435 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
436 * coalesces them and we are running out of the MMU lock. Therefore
437 * we need to protect against in-progress updates of the spte.
438 *
439 * Reading the spte while an update is in progress may get the old value
440 * for the high part of the spte. The race is fine for a present->non-present
441 * change (because the high part of the spte is ignored for non-present spte),
442 * but for a present->present change we must reread the spte.
443 *
444 * All such changes are done in two steps (present->non-present and
445 * non-present->present), hence it is enough to count the number of
446 * present->non-present updates: if it changed while reading the spte,
447 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
448 */
449static u64 __get_spte_lockless(u64 *sptep)
450{
451 struct kvm_mmu_page *sp = page_header(__pa(sptep));
452 union split_spte spte, *orig = (union split_spte *)sptep;
453 int count;
454
455retry:
456 count = sp->clear_spte_count;
457 smp_rmb();
458
459 spte.spte_low = orig->spte_low;
460 smp_rmb();
461
462 spte.spte_high = orig->spte_high;
463 smp_rmb();
464
465 if (unlikely(spte.spte_low != orig->spte_low ||
466 count != sp->clear_spte_count))
467 goto retry;
468
469 return spte.spte;
470}
603e0651
XG
471#endif
472
c7ba5b48
XG
473static bool spte_is_locklessly_modifiable(u64 spte)
474{
feb3eb70
GN
475 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
476 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
477}
478
8672b721
XG
479static bool spte_has_volatile_bits(u64 spte)
480{
c7ba5b48
XG
481 /*
482 * Always atomicly update spte if it can be updated
483 * out of mmu-lock, it can ensure dirty bit is not lost,
484 * also, it can help us to get a stable is_writable_pte()
485 * to ensure tlb flush is not missed.
486 */
487 if (spte_is_locklessly_modifiable(spte))
488 return true;
489
8672b721
XG
490 if (!shadow_accessed_mask)
491 return false;
492
493 if (!is_shadow_present_pte(spte))
494 return false;
495
4132779b
XG
496 if ((spte & shadow_accessed_mask) &&
497 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
498 return false;
499
500 return true;
501}
502
4132779b
XG
503static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
504{
505 return (old_spte & bit_mask) && !(new_spte & bit_mask);
506}
507
7e71a59b
KH
508static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
509{
510 return (old_spte & bit_mask) != (new_spte & bit_mask);
511}
512
1df9f2dc
XG
513/* Rules for using mmu_spte_set:
514 * Set the sptep from nonpresent to present.
515 * Note: the sptep being assigned *must* be either not present
516 * or in a state where the hardware will not attempt to update
517 * the spte.
518 */
519static void mmu_spte_set(u64 *sptep, u64 new_spte)
520{
521 WARN_ON(is_shadow_present_pte(*sptep));
522 __set_spte(sptep, new_spte);
523}
524
525/* Rules for using mmu_spte_update:
526 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
527 *
528 * Whenever we overwrite a writable spte with a read-only one we
529 * should flush remote TLBs. Otherwise rmap_write_protect
530 * will find a read-only spte, even though the writable spte
531 * might be cached on a CPU's TLB, the return value indicates this
532 * case.
1df9f2dc 533 */
6e7d0354 534static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 535{
c7ba5b48 536 u64 old_spte = *sptep;
6e7d0354 537 bool ret = false;
4132779b 538
afd28fe1 539 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 540
6e7d0354
XG
541 if (!is_shadow_present_pte(old_spte)) {
542 mmu_spte_set(sptep, new_spte);
543 return ret;
544 }
4132779b 545
c7ba5b48 546 if (!spte_has_volatile_bits(old_spte))
603e0651 547 __update_clear_spte_fast(sptep, new_spte);
4132779b 548 else
603e0651 549 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 550
c7ba5b48
XG
551 /*
552 * For the spte updated out of mmu-lock is safe, since
553 * we always atomicly update it, see the comments in
554 * spte_has_volatile_bits().
555 */
7f31c959
XG
556 if (spte_is_locklessly_modifiable(old_spte) &&
557 !is_writable_pte(new_spte))
6e7d0354
XG
558 ret = true;
559
4132779b 560 if (!shadow_accessed_mask)
6e7d0354 561 return ret;
4132779b 562
7e71a59b
KH
563 /*
564 * Flush TLB when accessed/dirty bits are changed in the page tables,
565 * to guarantee consistency between TLB and page tables.
566 */
567 if (spte_is_bit_changed(old_spte, new_spte,
568 shadow_accessed_mask | shadow_dirty_mask))
569 ret = true;
570
4132779b
XG
571 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
572 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
573 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
574 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
575
576 return ret;
b79b93f9
AK
577}
578
1df9f2dc
XG
579/*
580 * Rules for using mmu_spte_clear_track_bits:
581 * It sets the sptep from present to nonpresent, and track the
582 * state bits, it is used to clear the last level sptep.
583 */
584static int mmu_spte_clear_track_bits(u64 *sptep)
585{
ba049e93 586 kvm_pfn_t pfn;
1df9f2dc
XG
587 u64 old_spte = *sptep;
588
589 if (!spte_has_volatile_bits(old_spte))
603e0651 590 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 591 else
603e0651 592 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 593
afd28fe1 594 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
595 return 0;
596
597 pfn = spte_to_pfn(old_spte);
86fde74c
XG
598
599 /*
600 * KVM does not hold the refcount of the page used by
601 * kvm mmu, before reclaiming the page, we should
602 * unmap it from mmu first.
603 */
bf4bea8e 604 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 605
1df9f2dc
XG
606 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
607 kvm_set_pfn_accessed(pfn);
608 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
609 kvm_set_pfn_dirty(pfn);
610 return 1;
611}
612
613/*
614 * Rules for using mmu_spte_clear_no_track:
615 * Directly clear spte without caring the state bits of sptep,
616 * it is used to set the upper level spte.
617 */
618static void mmu_spte_clear_no_track(u64 *sptep)
619{
603e0651 620 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
621}
622
c2a2ac2b
XG
623static u64 mmu_spte_get_lockless(u64 *sptep)
624{
625 return __get_spte_lockless(sptep);
626}
627
628static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
629{
c142786c
AK
630 /*
631 * Prevent page table teardown by making any free-er wait during
632 * kvm_flush_remote_tlbs() IPI to all active vcpus.
633 */
634 local_irq_disable();
635 vcpu->mode = READING_SHADOW_PAGE_TABLES;
636 /*
637 * Make sure a following spte read is not reordered ahead of the write
638 * to vcpu->mode.
639 */
640 smp_mb();
c2a2ac2b
XG
641}
642
643static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
644{
c142786c
AK
645 /*
646 * Make sure the write to vcpu->mode is not reordered in front of
647 * reads to sptes. If it does, kvm_commit_zap_page() can see us
648 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
649 */
650 smp_mb();
651 vcpu->mode = OUTSIDE_GUEST_MODE;
652 local_irq_enable();
c2a2ac2b
XG
653}
654
e2dec939 655static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 656 struct kmem_cache *base_cache, int min)
714b93da
AK
657{
658 void *obj;
659
660 if (cache->nobjs >= min)
e2dec939 661 return 0;
714b93da 662 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 663 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 664 if (!obj)
e2dec939 665 return -ENOMEM;
714b93da
AK
666 cache->objects[cache->nobjs++] = obj;
667 }
e2dec939 668 return 0;
714b93da
AK
669}
670
f759e2b4
XG
671static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
672{
673 return cache->nobjs;
674}
675
e8ad9a70
XG
676static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
677 struct kmem_cache *cache)
714b93da
AK
678{
679 while (mc->nobjs)
e8ad9a70 680 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
681}
682
c1158e63 683static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 684 int min)
c1158e63 685{
842f22ed 686 void *page;
c1158e63
AK
687
688 if (cache->nobjs >= min)
689 return 0;
690 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 691 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
692 if (!page)
693 return -ENOMEM;
842f22ed 694 cache->objects[cache->nobjs++] = page;
c1158e63
AK
695 }
696 return 0;
697}
698
699static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
700{
701 while (mc->nobjs)
c4d198d5 702 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
703}
704
2e3e5882 705static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 706{
e2dec939
AK
707 int r;
708
53c07b18 709 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 710 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
711 if (r)
712 goto out;
ad312c7c 713 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
714 if (r)
715 goto out;
ad312c7c 716 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 717 mmu_page_header_cache, 4);
e2dec939
AK
718out:
719 return r;
714b93da
AK
720}
721
722static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
723{
53c07b18
XG
724 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
725 pte_list_desc_cache);
ad312c7c 726 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
727 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
728 mmu_page_header_cache);
714b93da
AK
729}
730
80feb89a 731static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
732{
733 void *p;
734
735 BUG_ON(!mc->nobjs);
736 p = mc->objects[--mc->nobjs];
714b93da
AK
737 return p;
738}
739
53c07b18 740static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 741{
80feb89a 742 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
743}
744
53c07b18 745static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 746{
53c07b18 747 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
748}
749
2032a93d
LJ
750static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
751{
752 if (!sp->role.direct)
753 return sp->gfns[index];
754
755 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
756}
757
758static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
759{
760 if (sp->role.direct)
761 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
762 else
763 sp->gfns[index] = gfn;
764}
765
05da4558 766/*
d4dbf470
TY
767 * Return the pointer to the large page information for a given gfn,
768 * handling slots that are not large page aligned.
05da4558 769 */
d4dbf470
TY
770static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
771 struct kvm_memory_slot *slot,
772 int level)
05da4558
MT
773{
774 unsigned long idx;
775
fb03cb6f 776 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 777 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
778}
779
547ffaed
XG
780static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
781 gfn_t gfn, int count)
782{
783 struct kvm_lpage_info *linfo;
784 int i;
785
786 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
787 linfo = lpage_info_slot(gfn, slot, i);
788 linfo->disallow_lpage += count;
789 WARN_ON(linfo->disallow_lpage < 0);
790 }
791}
792
793void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
794{
795 update_gfn_disallow_lpage_count(slot, gfn, 1);
796}
797
798void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
799{
800 update_gfn_disallow_lpage_count(slot, gfn, -1);
801}
802
3ed1a478 803static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 804{
699023e2 805 struct kvm_memslots *slots;
d25797b2 806 struct kvm_memory_slot *slot;
3ed1a478 807 gfn_t gfn;
05da4558 808
56ca57f9 809 kvm->arch.indirect_shadow_pages++;
3ed1a478 810 gfn = sp->gfn;
699023e2
PB
811 slots = kvm_memslots_for_spte_role(kvm, sp->role);
812 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
813
814 /* the non-leaf shadow pages are keeping readonly. */
815 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
816 return kvm_slot_page_track_add_page(kvm, slot, gfn,
817 KVM_PAGE_TRACK_WRITE);
818
547ffaed 819 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
820}
821
3ed1a478 822static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 823{
699023e2 824 struct kvm_memslots *slots;
d25797b2 825 struct kvm_memory_slot *slot;
3ed1a478 826 gfn_t gfn;
05da4558 827
56ca57f9 828 kvm->arch.indirect_shadow_pages--;
3ed1a478 829 gfn = sp->gfn;
699023e2
PB
830 slots = kvm_memslots_for_spte_role(kvm, sp->role);
831 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
832 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
833 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
834 KVM_PAGE_TRACK_WRITE);
835
547ffaed 836 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
837}
838
92f94f1e
XG
839static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
840 struct kvm_memory_slot *slot)
05da4558 841{
d4dbf470 842 struct kvm_lpage_info *linfo;
05da4558
MT
843
844 if (slot) {
d4dbf470 845 linfo = lpage_info_slot(gfn, slot, level);
92f94f1e 846 return !!linfo->disallow_lpage;
05da4558
MT
847 }
848
92f94f1e 849 return true;
05da4558
MT
850}
851
92f94f1e
XG
852static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
853 int level)
5225fdf8
TY
854{
855 struct kvm_memory_slot *slot;
856
857 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
92f94f1e 858 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
5225fdf8
TY
859}
860
d25797b2 861static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 862{
8f0b1ab6 863 unsigned long page_size;
d25797b2 864 int i, ret = 0;
05da4558 865
8f0b1ab6 866 page_size = kvm_host_page_size(kvm, gfn);
05da4558 867
8a3d08f1 868 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
869 if (page_size >= KVM_HPAGE_SIZE(i))
870 ret = i;
871 else
872 break;
873 }
874
4c2155ce 875 return ret;
05da4558
MT
876}
877
d8aacf5d
TY
878static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
879 bool no_dirty_log)
880{
881 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
882 return false;
883 if (no_dirty_log && slot->dirty_bitmap)
884 return false;
885
886 return true;
887}
888
5d163b1c
XG
889static struct kvm_memory_slot *
890gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
891 bool no_dirty_log)
05da4558
MT
892{
893 struct kvm_memory_slot *slot;
5d163b1c 894
54bf36aa 895 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
d8aacf5d 896 if (!memslot_valid_for_gpte(slot, no_dirty_log))
5d163b1c
XG
897 slot = NULL;
898
899 return slot;
900}
901
fd136902
TY
902static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
903 bool *force_pt_level)
936a5fe6
AA
904{
905 int host_level, level, max_level;
d8aacf5d
TY
906 struct kvm_memory_slot *slot;
907
8c85ac1c
TY
908 if (unlikely(*force_pt_level))
909 return PT_PAGE_TABLE_LEVEL;
05da4558 910
8c85ac1c
TY
911 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
912 *force_pt_level = !memslot_valid_for_gpte(slot, true);
fd136902
TY
913 if (unlikely(*force_pt_level))
914 return PT_PAGE_TABLE_LEVEL;
915
d25797b2
JR
916 host_level = host_mapping_level(vcpu->kvm, large_gfn);
917
918 if (host_level == PT_PAGE_TABLE_LEVEL)
919 return host_level;
920
55dd98c3 921 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
922
923 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
92f94f1e 924 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
d25797b2 925 break;
d25797b2
JR
926
927 return level - 1;
05da4558
MT
928}
929
290fc38d 930/*
018aabb5 931 * About rmap_head encoding:
cd4a4e53 932 *
018aabb5
TY
933 * If the bit zero of rmap_head->val is clear, then it points to the only spte
934 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 935 * pte_list_desc containing more mappings.
018aabb5
TY
936 */
937
938/*
939 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 940 */
53c07b18 941static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 942 struct kvm_rmap_head *rmap_head)
cd4a4e53 943{
53c07b18 944 struct pte_list_desc *desc;
53a27b39 945 int i, count = 0;
cd4a4e53 946
018aabb5 947 if (!rmap_head->val) {
53c07b18 948 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
949 rmap_head->val = (unsigned long)spte;
950 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
951 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
952 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 953 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 954 desc->sptes[1] = spte;
018aabb5 955 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 956 ++count;
cd4a4e53 957 } else {
53c07b18 958 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 959 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 960 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 961 desc = desc->more;
53c07b18 962 count += PTE_LIST_EXT;
53a27b39 963 }
53c07b18
XG
964 if (desc->sptes[PTE_LIST_EXT-1]) {
965 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
966 desc = desc->more;
967 }
d555c333 968 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 969 ++count;
d555c333 970 desc->sptes[i] = spte;
cd4a4e53 971 }
53a27b39 972 return count;
cd4a4e53
AK
973}
974
53c07b18 975static void
018aabb5
TY
976pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
977 struct pte_list_desc *desc, int i,
978 struct pte_list_desc *prev_desc)
cd4a4e53
AK
979{
980 int j;
981
53c07b18 982 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 983 ;
d555c333
AK
984 desc->sptes[i] = desc->sptes[j];
985 desc->sptes[j] = NULL;
cd4a4e53
AK
986 if (j != 0)
987 return;
988 if (!prev_desc && !desc->more)
018aabb5 989 rmap_head->val = (unsigned long)desc->sptes[0];
cd4a4e53
AK
990 else
991 if (prev_desc)
992 prev_desc->more = desc->more;
993 else
018aabb5 994 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 995 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
996}
997
018aabb5 998static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 999{
53c07b18
XG
1000 struct pte_list_desc *desc;
1001 struct pte_list_desc *prev_desc;
cd4a4e53
AK
1002 int i;
1003
018aabb5 1004 if (!rmap_head->val) {
53c07b18 1005 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 1006 BUG();
018aabb5 1007 } else if (!(rmap_head->val & 1)) {
53c07b18 1008 rmap_printk("pte_list_remove: %p 1->0\n", spte);
018aabb5 1009 if ((u64 *)rmap_head->val != spte) {
53c07b18 1010 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
1011 BUG();
1012 }
018aabb5 1013 rmap_head->val = 0;
cd4a4e53 1014 } else {
53c07b18 1015 rmap_printk("pte_list_remove: %p many->many\n", spte);
018aabb5 1016 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
1017 prev_desc = NULL;
1018 while (desc) {
018aabb5 1019 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 1020 if (desc->sptes[i] == spte) {
018aabb5
TY
1021 pte_list_desc_remove_entry(rmap_head,
1022 desc, i, prev_desc);
cd4a4e53
AK
1023 return;
1024 }
018aabb5 1025 }
cd4a4e53
AK
1026 prev_desc = desc;
1027 desc = desc->more;
1028 }
53c07b18 1029 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1030 BUG();
1031 }
1032}
1033
018aabb5
TY
1034static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1035 struct kvm_memory_slot *slot)
53c07b18 1036{
77d11309 1037 unsigned long idx;
53c07b18 1038
77d11309 1039 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1040 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1041}
1042
018aabb5
TY
1043static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1044 struct kvm_mmu_page *sp)
9b9b1492 1045{
699023e2 1046 struct kvm_memslots *slots;
9b9b1492
TY
1047 struct kvm_memory_slot *slot;
1048
699023e2
PB
1049 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1050 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1051 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1052}
1053
f759e2b4
XG
1054static bool rmap_can_add(struct kvm_vcpu *vcpu)
1055{
1056 struct kvm_mmu_memory_cache *cache;
1057
1058 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1059 return mmu_memory_cache_free_objects(cache);
1060}
1061
53c07b18
XG
1062static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1063{
1064 struct kvm_mmu_page *sp;
018aabb5 1065 struct kvm_rmap_head *rmap_head;
53c07b18 1066
53c07b18
XG
1067 sp = page_header(__pa(spte));
1068 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1069 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1070 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1071}
1072
53c07b18
XG
1073static void rmap_remove(struct kvm *kvm, u64 *spte)
1074{
1075 struct kvm_mmu_page *sp;
1076 gfn_t gfn;
018aabb5 1077 struct kvm_rmap_head *rmap_head;
53c07b18
XG
1078
1079 sp = page_header(__pa(spte));
1080 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5
TY
1081 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1082 pte_list_remove(spte, rmap_head);
53c07b18
XG
1083}
1084
1e3f42f0
TY
1085/*
1086 * Used by the following functions to iterate through the sptes linked by a
1087 * rmap. All fields are private and not assumed to be used outside.
1088 */
1089struct rmap_iterator {
1090 /* private fields */
1091 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1092 int pos; /* index of the sptep */
1093};
1094
1095/*
1096 * Iteration must be started by this function. This should also be used after
1097 * removing/dropping sptes from the rmap link because in such cases the
1098 * information in the itererator may not be valid.
1099 *
1100 * Returns sptep if found, NULL otherwise.
1101 */
018aabb5
TY
1102static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1103 struct rmap_iterator *iter)
1e3f42f0 1104{
77fbbbd2
TY
1105 u64 *sptep;
1106
018aabb5 1107 if (!rmap_head->val)
1e3f42f0
TY
1108 return NULL;
1109
018aabb5 1110 if (!(rmap_head->val & 1)) {
1e3f42f0 1111 iter->desc = NULL;
77fbbbd2
TY
1112 sptep = (u64 *)rmap_head->val;
1113 goto out;
1e3f42f0
TY
1114 }
1115
018aabb5 1116 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1117 iter->pos = 0;
77fbbbd2
TY
1118 sptep = iter->desc->sptes[iter->pos];
1119out:
1120 BUG_ON(!is_shadow_present_pte(*sptep));
1121 return sptep;
1e3f42f0
TY
1122}
1123
1124/*
1125 * Must be used with a valid iterator: e.g. after rmap_get_first().
1126 *
1127 * Returns sptep if found, NULL otherwise.
1128 */
1129static u64 *rmap_get_next(struct rmap_iterator *iter)
1130{
77fbbbd2
TY
1131 u64 *sptep;
1132
1e3f42f0
TY
1133 if (iter->desc) {
1134 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1135 ++iter->pos;
1136 sptep = iter->desc->sptes[iter->pos];
1137 if (sptep)
77fbbbd2 1138 goto out;
1e3f42f0
TY
1139 }
1140
1141 iter->desc = iter->desc->more;
1142
1143 if (iter->desc) {
1144 iter->pos = 0;
1145 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1146 sptep = iter->desc->sptes[iter->pos];
1147 goto out;
1e3f42f0
TY
1148 }
1149 }
1150
1151 return NULL;
77fbbbd2
TY
1152out:
1153 BUG_ON(!is_shadow_present_pte(*sptep));
1154 return sptep;
1e3f42f0
TY
1155}
1156
018aabb5
TY
1157#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1158 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1159 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1160
c3707958 1161static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1162{
1df9f2dc 1163 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1164 rmap_remove(kvm, sptep);
be38d276
AK
1165}
1166
8e22f955
XG
1167
1168static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1169{
1170 if (is_large_pte(*sptep)) {
1171 WARN_ON(page_header(__pa(sptep))->role.level ==
1172 PT_PAGE_TABLE_LEVEL);
1173 drop_spte(kvm, sptep);
1174 --kvm->stat.lpages;
1175 return true;
1176 }
1177
1178 return false;
1179}
1180
1181static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1182{
1183 if (__drop_large_spte(vcpu->kvm, sptep))
1184 kvm_flush_remote_tlbs(vcpu->kvm);
1185}
1186
1187/*
49fde340 1188 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1189 * spte write-protection is caused by protecting shadow page table.
49fde340 1190 *
b4619660 1191 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1192 * protection:
1193 * - for dirty logging, the spte can be set to writable at anytime if
1194 * its dirty bitmap is properly set.
1195 * - for spte protection, the spte can be writable only after unsync-ing
1196 * shadow page.
8e22f955 1197 *
c126d94f 1198 * Return true if tlb need be flushed.
8e22f955 1199 */
c126d94f 1200static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
d13bc5b5
XG
1201{
1202 u64 spte = *sptep;
1203
49fde340
XG
1204 if (!is_writable_pte(spte) &&
1205 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1206 return false;
1207
1208 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1209
49fde340
XG
1210 if (pt_protect)
1211 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1212 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1213
c126d94f 1214 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1215}
1216
018aabb5
TY
1217static bool __rmap_write_protect(struct kvm *kvm,
1218 struct kvm_rmap_head *rmap_head,
245c3912 1219 bool pt_protect)
98348e95 1220{
1e3f42f0
TY
1221 u64 *sptep;
1222 struct rmap_iterator iter;
d13bc5b5 1223 bool flush = false;
374cbac0 1224
018aabb5 1225 for_each_rmap_spte(rmap_head, &iter, sptep)
c126d94f 1226 flush |= spte_write_protect(kvm, sptep, pt_protect);
855149aa 1227
d13bc5b5 1228 return flush;
a0ed4607
TY
1229}
1230
f4b4b180
KH
1231static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1232{
1233 u64 spte = *sptep;
1234
1235 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1236
1237 spte &= ~shadow_dirty_mask;
1238
1239 return mmu_spte_update(sptep, spte);
1240}
1241
018aabb5 1242static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1243{
1244 u64 *sptep;
1245 struct rmap_iterator iter;
1246 bool flush = false;
1247
018aabb5 1248 for_each_rmap_spte(rmap_head, &iter, sptep)
f4b4b180 1249 flush |= spte_clear_dirty(kvm, sptep);
f4b4b180
KH
1250
1251 return flush;
1252}
1253
1254static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1255{
1256 u64 spte = *sptep;
1257
1258 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1259
1260 spte |= shadow_dirty_mask;
1261
1262 return mmu_spte_update(sptep, spte);
1263}
1264
018aabb5 1265static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1266{
1267 u64 *sptep;
1268 struct rmap_iterator iter;
1269 bool flush = false;
1270
018aabb5 1271 for_each_rmap_spte(rmap_head, &iter, sptep)
f4b4b180 1272 flush |= spte_set_dirty(kvm, sptep);
f4b4b180
KH
1273
1274 return flush;
1275}
1276
5dc99b23 1277/**
3b0f1d01 1278 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1279 * @kvm: kvm instance
1280 * @slot: slot to protect
1281 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1282 * @mask: indicates which pages we should protect
1283 *
1284 * Used when we do not need to care about huge page mappings: e.g. during dirty
1285 * logging we do not have any such mappings.
1286 */
3b0f1d01 1287static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1288 struct kvm_memory_slot *slot,
1289 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1290{
018aabb5 1291 struct kvm_rmap_head *rmap_head;
a0ed4607 1292
5dc99b23 1293 while (mask) {
018aabb5
TY
1294 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1295 PT_PAGE_TABLE_LEVEL, slot);
1296 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1297
5dc99b23
TY
1298 /* clear the first set bit */
1299 mask &= mask - 1;
1300 }
374cbac0
AK
1301}
1302
f4b4b180
KH
1303/**
1304 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1305 * @kvm: kvm instance
1306 * @slot: slot to clear D-bit
1307 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1308 * @mask: indicates which pages we should clear D-bit
1309 *
1310 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1311 */
1312void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1313 struct kvm_memory_slot *slot,
1314 gfn_t gfn_offset, unsigned long mask)
1315{
018aabb5 1316 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1317
1318 while (mask) {
018aabb5
TY
1319 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1320 PT_PAGE_TABLE_LEVEL, slot);
1321 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1322
1323 /* clear the first set bit */
1324 mask &= mask - 1;
1325 }
1326}
1327EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1328
3b0f1d01
KH
1329/**
1330 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1331 * PT level pages.
1332 *
1333 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1334 * enable dirty logging for them.
1335 *
1336 * Used when we do not need to care about huge page mappings: e.g. during dirty
1337 * logging we do not have any such mappings.
1338 */
1339void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1340 struct kvm_memory_slot *slot,
1341 gfn_t gfn_offset, unsigned long mask)
1342{
88178fd4
KH
1343 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1344 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1345 mask);
1346 else
1347 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1348}
1349
aeecee2e
XG
1350bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1351 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1352{
018aabb5 1353 struct kvm_rmap_head *rmap_head;
5dc99b23 1354 int i;
2f84569f 1355 bool write_protected = false;
95d4c16c 1356
8a3d08f1 1357 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1358 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1359 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1360 }
1361
1362 return write_protected;
95d4c16c
TY
1363}
1364
aeecee2e
XG
1365static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1366{
1367 struct kvm_memory_slot *slot;
1368
1369 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1370 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1371}
1372
018aabb5 1373static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1374{
1e3f42f0
TY
1375 u64 *sptep;
1376 struct rmap_iterator iter;
6a49f85c 1377 bool flush = false;
e930bffe 1378
018aabb5 1379 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1380 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0
TY
1381
1382 drop_spte(kvm, sptep);
6a49f85c 1383 flush = true;
e930bffe 1384 }
1e3f42f0 1385
6a49f85c
XG
1386 return flush;
1387}
1388
018aabb5 1389static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1390 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1391 unsigned long data)
1392{
018aabb5 1393 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1394}
1395
018aabb5 1396static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1397 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1398 unsigned long data)
3da0dd43 1399{
1e3f42f0
TY
1400 u64 *sptep;
1401 struct rmap_iterator iter;
3da0dd43 1402 int need_flush = 0;
1e3f42f0 1403 u64 new_spte;
3da0dd43 1404 pte_t *ptep = (pte_t *)data;
ba049e93 1405 kvm_pfn_t new_pfn;
3da0dd43
IE
1406
1407 WARN_ON(pte_huge(*ptep));
1408 new_pfn = pte_pfn(*ptep);
1e3f42f0 1409
0d536790 1410restart:
018aabb5 1411 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2
ALC
1412 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1413 sptep, *sptep, gfn, level);
1e3f42f0 1414
3da0dd43 1415 need_flush = 1;
1e3f42f0 1416
3da0dd43 1417 if (pte_write(*ptep)) {
1e3f42f0 1418 drop_spte(kvm, sptep);
0d536790 1419 goto restart;
3da0dd43 1420 } else {
1e3f42f0 1421 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1422 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1423
1424 new_spte &= ~PT_WRITABLE_MASK;
1425 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1426 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1427
1428 mmu_spte_clear_track_bits(sptep);
1429 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1430 }
1431 }
1e3f42f0 1432
3da0dd43
IE
1433 if (need_flush)
1434 kvm_flush_remote_tlbs(kvm);
1435
1436 return 0;
1437}
1438
6ce1f4e2
XG
1439struct slot_rmap_walk_iterator {
1440 /* input fields. */
1441 struct kvm_memory_slot *slot;
1442 gfn_t start_gfn;
1443 gfn_t end_gfn;
1444 int start_level;
1445 int end_level;
1446
1447 /* output fields. */
1448 gfn_t gfn;
018aabb5 1449 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1450 int level;
1451
1452 /* private field. */
018aabb5 1453 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1454};
1455
1456static void
1457rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1458{
1459 iterator->level = level;
1460 iterator->gfn = iterator->start_gfn;
1461 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1462 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1463 iterator->slot);
1464}
1465
1466static void
1467slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1468 struct kvm_memory_slot *slot, int start_level,
1469 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1470{
1471 iterator->slot = slot;
1472 iterator->start_level = start_level;
1473 iterator->end_level = end_level;
1474 iterator->start_gfn = start_gfn;
1475 iterator->end_gfn = end_gfn;
1476
1477 rmap_walk_init_level(iterator, iterator->start_level);
1478}
1479
1480static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1481{
1482 return !!iterator->rmap;
1483}
1484
1485static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1486{
1487 if (++iterator->rmap <= iterator->end_rmap) {
1488 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1489 return;
1490 }
1491
1492 if (++iterator->level > iterator->end_level) {
1493 iterator->rmap = NULL;
1494 return;
1495 }
1496
1497 rmap_walk_init_level(iterator, iterator->level);
1498}
1499
1500#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1501 _start_gfn, _end_gfn, _iter_) \
1502 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1503 _end_level_, _start_gfn, _end_gfn); \
1504 slot_rmap_walk_okay(_iter_); \
1505 slot_rmap_walk_next(_iter_))
1506
84504ef3
TY
1507static int kvm_handle_hva_range(struct kvm *kvm,
1508 unsigned long start,
1509 unsigned long end,
1510 unsigned long data,
1511 int (*handler)(struct kvm *kvm,
018aabb5 1512 struct kvm_rmap_head *rmap_head,
048212d0 1513 struct kvm_memory_slot *slot,
8a9522d2
ALC
1514 gfn_t gfn,
1515 int level,
84504ef3 1516 unsigned long data))
e930bffe 1517{
bc6678a3 1518 struct kvm_memslots *slots;
be6ba0f0 1519 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1520 struct slot_rmap_walk_iterator iterator;
1521 int ret = 0;
9da0e4d5 1522 int i;
bc6678a3 1523
9da0e4d5
PB
1524 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1525 slots = __kvm_memslots(kvm, i);
1526 kvm_for_each_memslot(memslot, slots) {
1527 unsigned long hva_start, hva_end;
1528 gfn_t gfn_start, gfn_end;
e930bffe 1529
9da0e4d5
PB
1530 hva_start = max(start, memslot->userspace_addr);
1531 hva_end = min(end, memslot->userspace_addr +
1532 (memslot->npages << PAGE_SHIFT));
1533 if (hva_start >= hva_end)
1534 continue;
1535 /*
1536 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1537 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1538 */
1539 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1540 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1541
1542 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1543 PT_MAX_HUGEPAGE_LEVEL,
1544 gfn_start, gfn_end - 1,
1545 &iterator)
1546 ret |= handler(kvm, iterator.rmap, memslot,
1547 iterator.gfn, iterator.level, data);
1548 }
e930bffe
AA
1549 }
1550
f395302e 1551 return ret;
e930bffe
AA
1552}
1553
84504ef3
TY
1554static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1555 unsigned long data,
018aabb5
TY
1556 int (*handler)(struct kvm *kvm,
1557 struct kvm_rmap_head *rmap_head,
048212d0 1558 struct kvm_memory_slot *slot,
8a9522d2 1559 gfn_t gfn, int level,
84504ef3
TY
1560 unsigned long data))
1561{
1562 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1563}
1564
1565int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1566{
3da0dd43
IE
1567 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1568}
1569
b3ae2096
TY
1570int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1571{
1572 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1573}
1574
3da0dd43
IE
1575void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1576{
8a8365c5 1577 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1578}
1579
018aabb5 1580static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1581 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1582 unsigned long data)
e930bffe 1583{
1e3f42f0 1584 u64 *sptep;
79f702a6 1585 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1586 int young = 0;
1587
57128468 1588 BUG_ON(!shadow_accessed_mask);
534e38b4 1589
018aabb5 1590 for_each_rmap_spte(rmap_head, &iter, sptep) {
3f6d8c8a 1591 if (*sptep & shadow_accessed_mask) {
e930bffe 1592 young = 1;
3f6d8c8a
XH
1593 clear_bit((ffs(shadow_accessed_mask) - 1),
1594 (unsigned long *)sptep);
e930bffe 1595 }
018aabb5 1596 }
0d536790 1597
8a9522d2 1598 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1599 return young;
1600}
1601
018aabb5 1602static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1603 struct kvm_memory_slot *slot, gfn_t gfn,
1604 int level, unsigned long data)
8ee53820 1605{
1e3f42f0
TY
1606 u64 *sptep;
1607 struct rmap_iterator iter;
8ee53820
AA
1608 int young = 0;
1609
1610 /*
1611 * If there's no access bit in the secondary pte set by the
1612 * hardware it's up to gup-fast/gup to set the access bit in
1613 * the primary pte or in the page structure.
1614 */
1615 if (!shadow_accessed_mask)
1616 goto out;
1617
018aabb5 1618 for_each_rmap_spte(rmap_head, &iter, sptep) {
3f6d8c8a 1619 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1620 young = 1;
1621 break;
1622 }
018aabb5 1623 }
8ee53820
AA
1624out:
1625 return young;
1626}
1627
53a27b39
MT
1628#define RMAP_RECYCLE_THRESHOLD 1000
1629
852e3c19 1630static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1631{
018aabb5 1632 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1633 struct kvm_mmu_page *sp;
1634
1635 sp = page_header(__pa(spte));
53a27b39 1636
018aabb5 1637 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1638
018aabb5 1639 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
53a27b39
MT
1640 kvm_flush_remote_tlbs(vcpu->kvm);
1641}
1642
57128468 1643int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1644{
57128468
ALC
1645 /*
1646 * In case of absence of EPT Access and Dirty Bits supports,
1647 * emulate the accessed bit for EPT, by checking if this page has
1648 * an EPT mapping, and clearing it if it does. On the next access,
1649 * a new EPT mapping will be established.
1650 * This has some overhead, but not as much as the cost of swapping
1651 * out actively used pages or breaking up actively used hugepages.
1652 */
1653 if (!shadow_accessed_mask) {
1654 /*
1655 * We are holding the kvm->mmu_lock, and we are blowing up
1656 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1657 * This is correct as long as we don't decouple the mmu_lock
1658 * protected regions (like invalidate_range_start|end does).
1659 */
1660 kvm->mmu_notifier_seq++;
1661 return kvm_handle_hva_range(kvm, start, end, 0,
1662 kvm_unmap_rmapp);
1663 }
1664
1665 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1666}
1667
8ee53820
AA
1668int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1669{
1670 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1671}
1672
d6c69ee9 1673#ifdef MMU_DEBUG
47ad8e68 1674static int is_empty_shadow_page(u64 *spt)
6aa8b732 1675{
139bdb2d
AK
1676 u64 *pos;
1677 u64 *end;
1678
47ad8e68 1679 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1680 if (is_shadow_present_pte(*pos)) {
b8688d51 1681 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1682 pos, *pos);
6aa8b732 1683 return 0;
139bdb2d 1684 }
6aa8b732
AK
1685 return 1;
1686}
d6c69ee9 1687#endif
6aa8b732 1688
45221ab6
DH
1689/*
1690 * This value is the sum of all of the kvm instances's
1691 * kvm->arch.n_used_mmu_pages values. We need a global,
1692 * aggregate version in order to make the slab shrinker
1693 * faster
1694 */
1695static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1696{
1697 kvm->arch.n_used_mmu_pages += nr;
1698 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1699}
1700
834be0d8 1701static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1702{
fa4a2c08 1703 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1704 hlist_del(&sp->hash_link);
bd4c86ea
XG
1705 list_del(&sp->link);
1706 free_page((unsigned long)sp->spt);
834be0d8
GN
1707 if (!sp->role.direct)
1708 free_page((unsigned long)sp->gfns);
e8ad9a70 1709 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1710}
1711
cea0f0e7
AK
1712static unsigned kvm_page_table_hashfn(gfn_t gfn)
1713{
1ae0a13d 1714 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1715}
1716
714b93da 1717static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1718 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1719{
cea0f0e7
AK
1720 if (!parent_pte)
1721 return;
cea0f0e7 1722
67052b35 1723 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1724}
1725
4db35314 1726static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1727 u64 *parent_pte)
1728{
67052b35 1729 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1730}
1731
bcdd9a93
XG
1732static void drop_parent_pte(struct kvm_mmu_page *sp,
1733 u64 *parent_pte)
1734{
1735 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1736 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1737}
1738
47005792 1739static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 1740{
67052b35 1741 struct kvm_mmu_page *sp;
7ddca7e4 1742
80feb89a
TY
1743 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1744 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1745 if (!direct)
80feb89a 1746 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1747 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1748
1749 /*
1750 * The active_mmu_pages list is the FIFO list, do not move the
1751 * page until it is zapped. kvm_zap_obsolete_pages depends on
1752 * this feature. See the comments in kvm_zap_obsolete_pages().
1753 */
67052b35 1754 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1755 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1756 return sp;
ad8cfbe3
MT
1757}
1758
67052b35 1759static void mark_unsync(u64 *spte);
1047df1f 1760static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1761{
74c4e63a
TY
1762 u64 *sptep;
1763 struct rmap_iterator iter;
1764
1765 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1766 mark_unsync(sptep);
1767 }
0074ff63
MT
1768}
1769
67052b35 1770static void mark_unsync(u64 *spte)
0074ff63 1771{
67052b35 1772 struct kvm_mmu_page *sp;
1047df1f 1773 unsigned int index;
0074ff63 1774
67052b35 1775 sp = page_header(__pa(spte));
1047df1f
XG
1776 index = spte - sp->spt;
1777 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1778 return;
1047df1f 1779 if (sp->unsync_children++)
0074ff63 1780 return;
1047df1f 1781 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1782}
1783
e8bc217a 1784static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1785 struct kvm_mmu_page *sp)
e8bc217a 1786{
1f50f1b3 1787 return 0;
e8bc217a
MT
1788}
1789
a7052897
MT
1790static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1791{
1792}
1793
0f53b5b1
XG
1794static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1795 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1796 const void *pte)
0f53b5b1
XG
1797{
1798 WARN_ON(1);
1799}
1800
60c8aec6
MT
1801#define KVM_PAGE_ARRAY_NR 16
1802
1803struct kvm_mmu_pages {
1804 struct mmu_page_and_offset {
1805 struct kvm_mmu_page *sp;
1806 unsigned int idx;
1807 } page[KVM_PAGE_ARRAY_NR];
1808 unsigned int nr;
1809};
1810
cded19f3
HE
1811static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1812 int idx)
4731d4c7 1813{
60c8aec6 1814 int i;
4731d4c7 1815
60c8aec6
MT
1816 if (sp->unsync)
1817 for (i=0; i < pvec->nr; i++)
1818 if (pvec->page[i].sp == sp)
1819 return 0;
1820
1821 pvec->page[pvec->nr].sp = sp;
1822 pvec->page[pvec->nr].idx = idx;
1823 pvec->nr++;
1824 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1825}
1826
fd951457
TY
1827static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1828{
1829 --sp->unsync_children;
1830 WARN_ON((int)sp->unsync_children < 0);
1831 __clear_bit(idx, sp->unsync_child_bitmap);
1832}
1833
60c8aec6
MT
1834static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1835 struct kvm_mmu_pages *pvec)
1836{
1837 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1838
37178b8b 1839 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1840 struct kvm_mmu_page *child;
4731d4c7
MT
1841 u64 ent = sp->spt[i];
1842
fd951457
TY
1843 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1844 clear_unsync_child_bit(sp, i);
1845 continue;
1846 }
7a8f1a74
XG
1847
1848 child = page_header(ent & PT64_BASE_ADDR_MASK);
1849
1850 if (child->unsync_children) {
1851 if (mmu_pages_add(pvec, child, i))
1852 return -ENOSPC;
1853
1854 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
1855 if (!ret) {
1856 clear_unsync_child_bit(sp, i);
1857 continue;
1858 } else if (ret > 0) {
7a8f1a74 1859 nr_unsync_leaf += ret;
fd951457 1860 } else
7a8f1a74
XG
1861 return ret;
1862 } else if (child->unsync) {
1863 nr_unsync_leaf++;
1864 if (mmu_pages_add(pvec, child, i))
1865 return -ENOSPC;
1866 } else
fd951457 1867 clear_unsync_child_bit(sp, i);
4731d4c7
MT
1868 }
1869
60c8aec6
MT
1870 return nr_unsync_leaf;
1871}
1872
e23d3fef
XG
1873#define INVALID_INDEX (-1)
1874
60c8aec6
MT
1875static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1876 struct kvm_mmu_pages *pvec)
1877{
0a47cd85 1878 pvec->nr = 0;
60c8aec6
MT
1879 if (!sp->unsync_children)
1880 return 0;
1881
e23d3fef 1882 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 1883 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1884}
1885
4731d4c7
MT
1886static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1887{
1888 WARN_ON(!sp->unsync);
5e1b3ddb 1889 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1890 sp->unsync = 0;
1891 --kvm->stat.mmu_unsync;
1892}
1893
7775834a
XG
1894static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1895 struct list_head *invalid_list);
1896static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1897 struct list_head *invalid_list);
4731d4c7 1898
f34d251d
XG
1899/*
1900 * NOTE: we should pay more attention on the zapped-obsolete page
1901 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1902 * since it has been deleted from active_mmu_pages but still can be found
1903 * at hast list.
1904 *
1905 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1906 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1907 * all the obsolete pages.
1908 */
1044b030
TY
1909#define for_each_gfn_sp(_kvm, _sp, _gfn) \
1910 hlist_for_each_entry(_sp, \
1911 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1912 if ((_sp)->gfn != (_gfn)) {} else
1913
1914#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1915 for_each_gfn_sp(_kvm, _sp, _gfn) \
1916 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
7ae680eb 1917
f918b443 1918/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
1919static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1920 struct list_head *invalid_list)
4731d4c7 1921{
5b7e0102 1922 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1923 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 1924 return false;
4731d4c7
MT
1925 }
1926
1f50f1b3 1927 if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
d98ba053 1928 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 1929 return false;
4731d4c7
MT
1930 }
1931
1f50f1b3 1932 return true;
4731d4c7
MT
1933}
1934
35a70510
PB
1935static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1936 struct list_head *invalid_list,
1937 bool remote_flush, bool local_flush)
1d9dc7e0 1938{
35a70510
PB
1939 if (!list_empty(invalid_list)) {
1940 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
1941 return;
1942 }
d98ba053 1943
35a70510
PB
1944 if (remote_flush)
1945 kvm_flush_remote_tlbs(vcpu->kvm);
1946 else if (local_flush)
1947 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1d9dc7e0
XG
1948}
1949
e37fa785
XG
1950#ifdef CONFIG_KVM_MMU_AUDIT
1951#include "mmu_audit.c"
1952#else
1953static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1954static void mmu_audit_disable(void) { }
1955#endif
1956
1f50f1b3 1957static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1958 struct list_head *invalid_list)
1d9dc7e0 1959{
9a43c5d9
PB
1960 kvm_unlink_unsync_page(vcpu->kvm, sp);
1961 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
1962}
1963
9f1a122f 1964/* @gfn should be write-protected at the call site */
2a74003a
PB
1965static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1966 struct list_head *invalid_list)
9f1a122f 1967{
9f1a122f 1968 struct kvm_mmu_page *s;
2a74003a 1969 bool ret = false;
9f1a122f 1970
b67bfe0d 1971 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1972 if (!s->unsync)
9f1a122f
XG
1973 continue;
1974
1975 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2a74003a 1976 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
1977 }
1978
2a74003a 1979 return ret;
9f1a122f
XG
1980}
1981
60c8aec6 1982struct mmu_page_path {
0a47cd85
PB
1983 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
1984 unsigned int idx[PT64_ROOT_LEVEL];
4731d4c7
MT
1985};
1986
60c8aec6 1987#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 1988 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
1989 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1990 i = mmu_pages_next(&pvec, &parents, i))
1991
cded19f3
HE
1992static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1993 struct mmu_page_path *parents,
1994 int i)
60c8aec6
MT
1995{
1996 int n;
1997
1998 for (n = i+1; n < pvec->nr; n++) {
1999 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
2000 unsigned idx = pvec->page[n].idx;
2001 int level = sp->role.level;
60c8aec6 2002
0a47cd85
PB
2003 parents->idx[level-1] = idx;
2004 if (level == PT_PAGE_TABLE_LEVEL)
2005 break;
60c8aec6 2006
0a47cd85 2007 parents->parent[level-2] = sp;
60c8aec6
MT
2008 }
2009
2010 return n;
2011}
2012
0a47cd85
PB
2013static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2014 struct mmu_page_path *parents)
2015{
2016 struct kvm_mmu_page *sp;
2017 int level;
2018
2019 if (pvec->nr == 0)
2020 return 0;
2021
e23d3fef
XG
2022 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2023
0a47cd85
PB
2024 sp = pvec->page[0].sp;
2025 level = sp->role.level;
2026 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2027
2028 parents->parent[level-2] = sp;
2029
2030 /* Also set up a sentinel. Further entries in pvec are all
2031 * children of sp, so this element is never overwritten.
2032 */
2033 parents->parent[level-1] = NULL;
2034 return mmu_pages_next(pvec, parents, 0);
2035}
2036
cded19f3 2037static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2038{
60c8aec6
MT
2039 struct kvm_mmu_page *sp;
2040 unsigned int level = 0;
2041
2042 do {
2043 unsigned int idx = parents->idx[level];
60c8aec6
MT
2044 sp = parents->parent[level];
2045 if (!sp)
2046 return;
2047
e23d3fef 2048 WARN_ON(idx == INVALID_INDEX);
fd951457 2049 clear_unsync_child_bit(sp, idx);
60c8aec6 2050 level++;
0a47cd85 2051 } while (!sp->unsync_children);
60c8aec6 2052}
4731d4c7 2053
60c8aec6
MT
2054static void mmu_sync_children(struct kvm_vcpu *vcpu,
2055 struct kvm_mmu_page *parent)
2056{
2057 int i;
2058 struct kvm_mmu_page *sp;
2059 struct mmu_page_path parents;
2060 struct kvm_mmu_pages pages;
d98ba053 2061 LIST_HEAD(invalid_list);
50c9e6f3 2062 bool flush = false;
60c8aec6 2063
60c8aec6 2064 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2065 bool protected = false;
b1a36821
MT
2066
2067 for_each_sp(pages, sp, parents, i)
54bf36aa 2068 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2069
50c9e6f3 2070 if (protected) {
b1a36821 2071 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2072 flush = false;
2073 }
b1a36821 2074
60c8aec6 2075 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2076 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2077 mmu_pages_clear_parents(&parents);
2078 }
50c9e6f3
PB
2079 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2080 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2081 cond_resched_lock(&vcpu->kvm->mmu_lock);
2082 flush = false;
2083 }
60c8aec6 2084 }
50c9e6f3
PB
2085
2086 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2087}
2088
a30f47cb
XG
2089static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2090{
e5691a81 2091 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2092}
2093
2094static void clear_sp_write_flooding_count(u64 *spte)
2095{
2096 struct kvm_mmu_page *sp = page_header(__pa(spte));
2097
2098 __clear_sp_write_flooding_count(sp);
2099}
2100
5304b8d3
XG
2101static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2102{
2103 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2104}
2105
cea0f0e7
AK
2106static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2107 gfn_t gfn,
2108 gva_t gaddr,
2109 unsigned level,
f6e2c02b 2110 int direct,
bb11c6c9 2111 unsigned access)
cea0f0e7
AK
2112{
2113 union kvm_mmu_page_role role;
cea0f0e7 2114 unsigned quadrant;
9f1a122f 2115 struct kvm_mmu_page *sp;
9f1a122f 2116 bool need_sync = false;
2a74003a
PB
2117 bool flush = false;
2118 LIST_HEAD(invalid_list);
cea0f0e7 2119
a770f6f2 2120 role = vcpu->arch.mmu.base_role;
cea0f0e7 2121 role.level = level;
f6e2c02b 2122 role.direct = direct;
84b0c8c6 2123 if (role.direct)
5b7e0102 2124 role.cr4_pae = 0;
41074d07 2125 role.access = access;
c5a78f2b
JR
2126 if (!vcpu->arch.mmu.direct_map
2127 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2128 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2129 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2130 role.quadrant = quadrant;
2131 }
b67bfe0d 2132 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
7f52af74
XG
2133 if (is_obsolete_sp(vcpu->kvm, sp))
2134 continue;
2135
7ae680eb
XG
2136 if (!need_sync && sp->unsync)
2137 need_sync = true;
4731d4c7 2138
7ae680eb
XG
2139 if (sp->role.word != role.word)
2140 continue;
4731d4c7 2141
2a74003a
PB
2142 if (sp->unsync) {
2143 /* The page is good, but __kvm_sync_page might still end
2144 * up zapping it. If so, break in order to rebuild it.
2145 */
2146 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2147 break;
2148
2149 WARN_ON(!list_empty(&invalid_list));
2150 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2151 }
e02aa901 2152
98bba238 2153 if (sp->unsync_children)
a8eeb04a 2154 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2155
a30f47cb 2156 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
2157 trace_kvm_mmu_get_page(sp, false);
2158 return sp;
2159 }
47005792 2160
dfc5aa00 2161 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2162
2163 sp = kvm_mmu_alloc_page(vcpu, direct);
2164
4db35314
AK
2165 sp->gfn = gfn;
2166 sp->role = role;
7ae680eb
XG
2167 hlist_add_head(&sp->hash_link,
2168 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2169 if (!direct) {
56ca57f9
XG
2170 /*
2171 * we should do write protection before syncing pages
2172 * otherwise the content of the synced shadow page may
2173 * be inconsistent with guest page table.
2174 */
2175 account_shadowed(vcpu->kvm, sp);
2176 if (level == PT_PAGE_TABLE_LEVEL &&
2177 rmap_write_protect(vcpu, gfn))
b1a36821 2178 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f 2179
9f1a122f 2180 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2a74003a 2181 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2182 }
5304b8d3 2183 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
77492664 2184 clear_page(sp->spt);
f691fe1d 2185 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2186
2187 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4db35314 2188 return sp;
cea0f0e7
AK
2189}
2190
2d11123a
AK
2191static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2192 struct kvm_vcpu *vcpu, u64 addr)
2193{
2194 iterator->addr = addr;
2195 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2196 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
2197
2198 if (iterator->level == PT64_ROOT_LEVEL &&
2199 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2200 !vcpu->arch.mmu.direct_map)
2201 --iterator->level;
2202
2d11123a
AK
2203 if (iterator->level == PT32E_ROOT_LEVEL) {
2204 iterator->shadow_addr
2205 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2206 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2207 --iterator->level;
2208 if (!iterator->shadow_addr)
2209 iterator->level = 0;
2210 }
2211}
2212
2213static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2214{
2215 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2216 return false;
4d88954d 2217
2d11123a
AK
2218 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2219 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2220 return true;
2221}
2222
c2a2ac2b
XG
2223static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2224 u64 spte)
2d11123a 2225{
c2a2ac2b 2226 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2227 iterator->level = 0;
2228 return;
2229 }
2230
c2a2ac2b 2231 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2232 --iterator->level;
2233}
2234
c2a2ac2b
XG
2235static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2236{
2237 return __shadow_walk_next(iterator, *iterator->sptep);
2238}
2239
98bba238
TY
2240static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2241 struct kvm_mmu_page *sp)
32ef26a3
AK
2242{
2243 u64 spte;
2244
7a1638ce
YZ
2245 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2246 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2247
24db2734 2248 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
0e3d0648 2249 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
24db2734 2250
1df9f2dc 2251 mmu_spte_set(sptep, spte);
98bba238
TY
2252
2253 mmu_page_add_parent_pte(vcpu, sp, sptep);
2254
2255 if (sp->unsync_children || sp->unsync)
2256 mark_unsync(sptep);
32ef26a3
AK
2257}
2258
a357bd22
AK
2259static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2260 unsigned direct_access)
2261{
2262 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2263 struct kvm_mmu_page *child;
2264
2265 /*
2266 * For the direct sp, if the guest pte's dirty bit
2267 * changed form clean to dirty, it will corrupt the
2268 * sp's access: allow writable in the read-only sp,
2269 * so we should update the spte at this point to get
2270 * a new sp with the correct access.
2271 */
2272 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2273 if (child->role.access == direct_access)
2274 return;
2275
bcdd9a93 2276 drop_parent_pte(child, sptep);
a357bd22
AK
2277 kvm_flush_remote_tlbs(vcpu->kvm);
2278 }
2279}
2280
505aef8f 2281static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2282 u64 *spte)
2283{
2284 u64 pte;
2285 struct kvm_mmu_page *child;
2286
2287 pte = *spte;
2288 if (is_shadow_present_pte(pte)) {
505aef8f 2289 if (is_last_spte(pte, sp->role.level)) {
c3707958 2290 drop_spte(kvm, spte);
505aef8f
XG
2291 if (is_large_pte(pte))
2292 --kvm->stat.lpages;
2293 } else {
38e3b2b2 2294 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2295 drop_parent_pte(child, spte);
38e3b2b2 2296 }
505aef8f
XG
2297 return true;
2298 }
2299
2300 if (is_mmio_spte(pte))
ce88decf 2301 mmu_spte_clear_no_track(spte);
c3707958 2302
505aef8f 2303 return false;
38e3b2b2
XG
2304}
2305
90cb0529 2306static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2307 struct kvm_mmu_page *sp)
a436036b 2308{
697fe2e2 2309 unsigned i;
697fe2e2 2310
38e3b2b2
XG
2311 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2312 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2313}
2314
31aa2b44 2315static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2316{
1e3f42f0
TY
2317 u64 *sptep;
2318 struct rmap_iterator iter;
a436036b 2319
018aabb5 2320 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2321 drop_parent_pte(sp, sptep);
31aa2b44
AK
2322}
2323
60c8aec6 2324static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2325 struct kvm_mmu_page *parent,
2326 struct list_head *invalid_list)
4731d4c7 2327{
60c8aec6
MT
2328 int i, zapped = 0;
2329 struct mmu_page_path parents;
2330 struct kvm_mmu_pages pages;
4731d4c7 2331
60c8aec6 2332 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2333 return 0;
60c8aec6 2334
60c8aec6
MT
2335 while (mmu_unsync_walk(parent, &pages)) {
2336 struct kvm_mmu_page *sp;
2337
2338 for_each_sp(pages, sp, parents, i) {
7775834a 2339 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2340 mmu_pages_clear_parents(&parents);
77662e00 2341 zapped++;
60c8aec6 2342 }
60c8aec6
MT
2343 }
2344
2345 return zapped;
4731d4c7
MT
2346}
2347
7775834a
XG
2348static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2349 struct list_head *invalid_list)
31aa2b44 2350{
4731d4c7 2351 int ret;
f691fe1d 2352
7775834a 2353 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2354 ++kvm->stat.mmu_shadow_zapped;
7775834a 2355 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2356 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2357 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2358
f6e2c02b 2359 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2360 unaccount_shadowed(kvm, sp);
5304b8d3 2361
4731d4c7
MT
2362 if (sp->unsync)
2363 kvm_unlink_unsync_page(kvm, sp);
4db35314 2364 if (!sp->root_count) {
54a4f023
GJ
2365 /* Count self */
2366 ret++;
7775834a 2367 list_move(&sp->link, invalid_list);
aa6bd187 2368 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2369 } else {
5b5c6a5a 2370 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2371
2372 /*
2373 * The obsolete pages can not be used on any vcpus.
2374 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2375 */
2376 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2377 kvm_reload_remote_mmus(kvm);
2e53d63a 2378 }
7775834a
XG
2379
2380 sp->role.invalid = 1;
4731d4c7 2381 return ret;
a436036b
AK
2382}
2383
7775834a
XG
2384static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2385 struct list_head *invalid_list)
2386{
945315b9 2387 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2388
2389 if (list_empty(invalid_list))
2390 return;
2391
c142786c 2392 /*
9753f529
LT
2393 * We need to make sure everyone sees our modifications to
2394 * the page tables and see changes to vcpu->mode here. The barrier
2395 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2396 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2397 *
2398 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2399 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2400 */
2401 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2402
945315b9 2403 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2404 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2405 kvm_mmu_free_page(sp);
945315b9 2406 }
7775834a
XG
2407}
2408
5da59607
TY
2409static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2410 struct list_head *invalid_list)
2411{
2412 struct kvm_mmu_page *sp;
2413
2414 if (list_empty(&kvm->arch.active_mmu_pages))
2415 return false;
2416
d74c0e6b
GT
2417 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2418 struct kvm_mmu_page, link);
5da59607
TY
2419 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2420
2421 return true;
2422}
2423
82ce2c96
IE
2424/*
2425 * Changing the number of mmu pages allocated to the vm
49d5ca26 2426 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2427 */
49d5ca26 2428void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2429{
d98ba053 2430 LIST_HEAD(invalid_list);
82ce2c96 2431
b34cb590
TY
2432 spin_lock(&kvm->mmu_lock);
2433
49d5ca26 2434 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2435 /* Need to free some mmu pages to achieve the goal. */
2436 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2437 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2438 break;
82ce2c96 2439
aa6bd187 2440 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2441 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2442 }
82ce2c96 2443
49d5ca26 2444 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2445
2446 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2447}
2448
1cb3f3ae 2449int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2450{
4db35314 2451 struct kvm_mmu_page *sp;
d98ba053 2452 LIST_HEAD(invalid_list);
a436036b
AK
2453 int r;
2454
9ad17b10 2455 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2456 r = 0;
1cb3f3ae 2457 spin_lock(&kvm->mmu_lock);
b67bfe0d 2458 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2459 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2460 sp->role.word);
2461 r = 1;
f41d335a 2462 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2463 }
d98ba053 2464 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2465 spin_unlock(&kvm->mmu_lock);
2466
a436036b 2467 return r;
cea0f0e7 2468}
1cb3f3ae 2469EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2470
5c520e90 2471static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2472{
2473 trace_kvm_mmu_unsync_page(sp);
2474 ++vcpu->kvm->stat.mmu_unsync;
2475 sp->unsync = 1;
2476
2477 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2478}
2479
3d0c27ad
XG
2480static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2481 bool can_unsync)
4731d4c7 2482{
5c520e90 2483 struct kvm_mmu_page *sp;
4731d4c7 2484
3d0c27ad
XG
2485 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2486 return true;
9cf5cf5a 2487
5c520e90 2488 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2489 if (!can_unsync)
3d0c27ad 2490 return true;
36a2e677 2491
5c520e90
XG
2492 if (sp->unsync)
2493 continue;
9cf5cf5a 2494
5c520e90
XG
2495 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2496 kvm_unsync_page(vcpu, sp);
4731d4c7 2497 }
3d0c27ad
XG
2498
2499 return false;
4731d4c7
MT
2500}
2501
ba049e93 2502static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
2503{
2504 if (pfn_valid(pfn))
2505 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2506
2507 return true;
2508}
2509
d555c333 2510static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2511 unsigned pte_access, int level,
ba049e93 2512 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 2513 bool can_unsync, bool host_writable)
1c4f1fd6 2514{
6e7d0354 2515 u64 spte;
1e73f9dd 2516 int ret = 0;
64d4d521 2517
54bf36aa 2518 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
2519 return 0;
2520
982c2565 2521 spte = PT_PRESENT_MASK;
947da538 2522 if (!speculative)
3201b5d9 2523 spte |= shadow_accessed_mask;
640d9b0d 2524
7b52345e
SY
2525 if (pte_access & ACC_EXEC_MASK)
2526 spte |= shadow_x_mask;
2527 else
2528 spte |= shadow_nx_mask;
49fde340 2529
1c4f1fd6 2530 if (pte_access & ACC_USER_MASK)
7b52345e 2531 spte |= shadow_user_mask;
49fde340 2532
852e3c19 2533 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2534 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2535 if (tdp_enabled)
4b12f0de 2536 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d1fe9219 2537 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2538
9bdbba13 2539 if (host_writable)
1403283a 2540 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2541 else
2542 pte_access &= ~ACC_WRITE_MASK;
1403283a 2543
35149e21 2544 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2545
c2288505 2546 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2547
c2193463 2548 /*
7751babd
XG
2549 * Other vcpu creates new sp in the window between
2550 * mapping_level() and acquiring mmu-lock. We can
2551 * allow guest to retry the access, the mapping can
2552 * be fixed if guest refault.
c2193463 2553 */
852e3c19 2554 if (level > PT_PAGE_TABLE_LEVEL &&
92f94f1e 2555 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
be38d276 2556 goto done;
38187c83 2557
49fde340 2558 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2559
ecc5589f
MT
2560 /*
2561 * Optimization: for pte sync, if spte was writable the hash
2562 * lookup is unnecessary (and expensive). Write protection
2563 * is responsibility of mmu_get_page / kvm_sync_page.
2564 * Same reasoning can be applied to dirty page accounting.
2565 */
8dae4445 2566 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2567 goto set_pte;
2568
4731d4c7 2569 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2570 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2571 __func__, gfn);
1e73f9dd 2572 ret = 1;
1c4f1fd6 2573 pte_access &= ~ACC_WRITE_MASK;
49fde340 2574 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2575 }
2576 }
2577
9b51a630 2578 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 2579 kvm_vcpu_mark_page_dirty(vcpu, gfn);
9b51a630
KH
2580 spte |= shadow_dirty_mask;
2581 }
1c4f1fd6 2582
38187c83 2583set_pte:
6e7d0354 2584 if (mmu_spte_update(sptep, spte))
b330aa0c 2585 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2586done:
1e73f9dd
MT
2587 return ret;
2588}
2589
029499b4 2590static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
ba049e93 2591 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
029499b4 2592 bool speculative, bool host_writable)
1e73f9dd
MT
2593{
2594 int was_rmapped = 0;
53a27b39 2595 int rmap_count;
029499b4 2596 bool emulate = false;
1e73f9dd 2597
f7616203
XG
2598 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2599 *sptep, write_fault, gfn);
1e73f9dd 2600
afd28fe1 2601 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
2602 /*
2603 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2604 * the parent of the now unreachable PTE.
2605 */
852e3c19
JR
2606 if (level > PT_PAGE_TABLE_LEVEL &&
2607 !is_large_pte(*sptep)) {
1e73f9dd 2608 struct kvm_mmu_page *child;
d555c333 2609 u64 pte = *sptep;
1e73f9dd
MT
2610
2611 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2612 drop_parent_pte(child, sptep);
3be2264b 2613 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2614 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2615 pgprintk("hfn old %llx new %llx\n",
d555c333 2616 spte_to_pfn(*sptep), pfn);
c3707958 2617 drop_spte(vcpu->kvm, sptep);
91546356 2618 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2619 } else
2620 was_rmapped = 1;
1e73f9dd 2621 }
852e3c19 2622
c2288505
XG
2623 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2624 true, host_writable)) {
1e73f9dd 2625 if (write_fault)
029499b4 2626 emulate = true;
77c3913b 2627 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 2628 }
1e73f9dd 2629
029499b4
TY
2630 if (unlikely(is_mmio_spte(*sptep)))
2631 emulate = true;
ce88decf 2632
d555c333 2633 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2634 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2635 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2636 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2637 *sptep, sptep);
d555c333 2638 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2639 ++vcpu->kvm->stat.lpages;
2640
ffb61bb3 2641 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2642 if (!was_rmapped) {
2643 rmap_count = rmap_add(vcpu, sptep, gfn);
2644 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2645 rmap_recycle(vcpu, sptep, gfn);
2646 }
1c4f1fd6 2647 }
cb9aaa30 2648
f3ac1a4b 2649 kvm_release_pfn_clean(pfn);
029499b4
TY
2650
2651 return emulate;
1c4f1fd6
AK
2652}
2653
ba049e93 2654static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
2655 bool no_dirty_log)
2656{
2657 struct kvm_memory_slot *slot;
957ed9ef 2658
5d163b1c 2659 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2660 if (!slot)
6c8ee57b 2661 return KVM_PFN_ERR_FAULT;
957ed9ef 2662
037d92dc 2663 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2664}
2665
2666static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2667 struct kvm_mmu_page *sp,
2668 u64 *start, u64 *end)
2669{
2670 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2671 struct kvm_memory_slot *slot;
957ed9ef
XG
2672 unsigned access = sp->role.access;
2673 int i, ret;
2674 gfn_t gfn;
2675
2676 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2677 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2678 if (!slot)
957ed9ef
XG
2679 return -1;
2680
d9ef13c2 2681 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2682 if (ret <= 0)
2683 return -1;
2684
2685 for (i = 0; i < ret; i++, gfn++, start++)
029499b4
TY
2686 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2687 page_to_pfn(pages[i]), true, true);
957ed9ef
XG
2688
2689 return 0;
2690}
2691
2692static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2693 struct kvm_mmu_page *sp, u64 *sptep)
2694{
2695 u64 *spte, *start = NULL;
2696 int i;
2697
2698 WARN_ON(!sp->role.direct);
2699
2700 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2701 spte = sp->spt + i;
2702
2703 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2704 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2705 if (!start)
2706 continue;
2707 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2708 break;
2709 start = NULL;
2710 } else if (!start)
2711 start = spte;
2712 }
2713}
2714
2715static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2716{
2717 struct kvm_mmu_page *sp;
2718
2719 /*
2720 * Since it's no accessed bit on EPT, it's no way to
2721 * distinguish between actually accessed translations
2722 * and prefetched, so disable pte prefetch if EPT is
2723 * enabled.
2724 */
2725 if (!shadow_accessed_mask)
2726 return;
2727
2728 sp = page_header(__pa(sptep));
2729 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2730 return;
2731
2732 __direct_pte_prefetch(vcpu, sp, sptep);
2733}
2734
7ee0e5b2 2735static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
ba049e93 2736 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
140754bc 2737{
9f652d21 2738 struct kvm_shadow_walk_iterator iterator;
140754bc 2739 struct kvm_mmu_page *sp;
b90a0e6c 2740 int emulate = 0;
140754bc 2741 gfn_t pseudo_gfn;
6aa8b732 2742
989c6b34
MT
2743 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2744 return 0;
2745
9f652d21 2746 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2747 if (iterator.level == level) {
029499b4
TY
2748 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2749 write, level, gfn, pfn, prefault,
2750 map_writable);
957ed9ef 2751 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2752 ++vcpu->stat.pf_fixed;
2753 break;
6aa8b732
AK
2754 }
2755
404381c5 2756 drop_large_spte(vcpu, iterator.sptep);
c3707958 2757 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2758 u64 base_addr = iterator.addr;
2759
2760 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2761 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21 2762 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
bb11c6c9 2763 iterator.level - 1, 1, ACC_ALL);
140754bc 2764
98bba238 2765 link_shadow_page(vcpu, iterator.sptep, sp);
9f652d21
AK
2766 }
2767 }
b90a0e6c 2768 return emulate;
6aa8b732
AK
2769}
2770
77db5cbd 2771static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2772{
77db5cbd
HY
2773 siginfo_t info;
2774
2775 info.si_signo = SIGBUS;
2776 info.si_errno = 0;
2777 info.si_code = BUS_MCEERR_AR;
2778 info.si_addr = (void __user *)address;
2779 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2780
77db5cbd 2781 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2782}
2783
ba049e93 2784static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 2785{
4d8b81ab
XG
2786 /*
2787 * Do not cache the mmio info caused by writing the readonly gfn
2788 * into the spte otherwise read access on readonly gfn also can
2789 * caused mmio page fault and treat it as mmio access.
2790 * Return 1 to tell kvm to emulate it.
2791 */
2792 if (pfn == KVM_PFN_ERR_RO_FAULT)
2793 return 1;
2794
e6c1502b 2795 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 2796 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
bf998156 2797 return 0;
d7c55201 2798 }
edba23e5 2799
d7c55201 2800 return -EFAULT;
bf998156
HY
2801}
2802
936a5fe6 2803static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
ba049e93
DW
2804 gfn_t *gfnp, kvm_pfn_t *pfnp,
2805 int *levelp)
936a5fe6 2806{
ba049e93 2807 kvm_pfn_t pfn = *pfnp;
936a5fe6
AA
2808 gfn_t gfn = *gfnp;
2809 int level = *levelp;
2810
2811 /*
2812 * Check if it's a transparent hugepage. If this would be an
2813 * hugetlbfs page, level wouldn't be set to
2814 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2815 * here.
2816 */
bf4bea8e 2817 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6
AA
2818 level == PT_PAGE_TABLE_LEVEL &&
2819 PageTransCompound(pfn_to_page(pfn)) &&
92f94f1e 2820 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
936a5fe6
AA
2821 unsigned long mask;
2822 /*
2823 * mmu_notifier_retry was successful and we hold the
2824 * mmu_lock here, so the pmd can't become splitting
2825 * from under us, and in turn
2826 * __split_huge_page_refcount() can't run from under
2827 * us and we can safely transfer the refcount from
2828 * PG_tail to PG_head as we switch the pfn to tail to
2829 * head.
2830 */
2831 *levelp = level = PT_DIRECTORY_LEVEL;
2832 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2833 VM_BUG_ON((gfn & mask) != (pfn & mask));
2834 if (pfn & mask) {
2835 gfn &= ~mask;
2836 *gfnp = gfn;
2837 kvm_release_pfn_clean(pfn);
2838 pfn &= ~mask;
c3586667 2839 kvm_get_pfn(pfn);
936a5fe6
AA
2840 *pfnp = pfn;
2841 }
2842 }
2843}
2844
d7c55201 2845static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
ba049e93 2846 kvm_pfn_t pfn, unsigned access, int *ret_val)
d7c55201 2847{
d7c55201 2848 /* The pfn is invalid, report the error! */
81c52c56 2849 if (unlikely(is_error_pfn(pfn))) {
d7c55201 2850 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 2851 return true;
d7c55201
XG
2852 }
2853
ce88decf 2854 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2855 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201 2856
798e88b3 2857 return false;
d7c55201
XG
2858}
2859
e5552fd2 2860static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2861{
1c118b82
XG
2862 /*
2863 * Do not fix the mmio spte with invalid generation number which
2864 * need to be updated by slow page fault path.
2865 */
2866 if (unlikely(error_code & PFERR_RSVD_MASK))
2867 return false;
2868
c7ba5b48
XG
2869 /*
2870 * #PF can be fast only if the shadow page table is present and it
2871 * is caused by write-protect, that means we just need change the
2872 * W bit of the spte which can be done out of mmu-lock.
2873 */
2874 if (!(error_code & PFERR_PRESENT_MASK) ||
2875 !(error_code & PFERR_WRITE_MASK))
2876 return false;
2877
2878 return true;
2879}
2880
2881static bool
92a476cb
XG
2882fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2883 u64 *sptep, u64 spte)
c7ba5b48 2884{
c7ba5b48
XG
2885 gfn_t gfn;
2886
2887 WARN_ON(!sp->role.direct);
2888
2889 /*
2890 * The gfn of direct spte is stable since it is calculated
2891 * by sp->gfn.
2892 */
2893 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2894
9b51a630
KH
2895 /*
2896 * Theoretically we could also set dirty bit (and flush TLB) here in
2897 * order to eliminate unnecessary PML logging. See comments in
2898 * set_spte. But fast_page_fault is very unlikely to happen with PML
2899 * enabled, so we do not do this. This might result in the same GPA
2900 * to be logged in PML buffer again when the write really happens, and
2901 * eventually to be called by mark_page_dirty twice. But it's also no
2902 * harm. This also avoids the TLB flush needed after setting dirty bit
2903 * so non-PML cases won't be impacted.
2904 *
2905 * Compare with set_spte where instead shadow_dirty_mask is set.
2906 */
c7ba5b48 2907 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
54bf36aa 2908 kvm_vcpu_mark_page_dirty(vcpu, gfn);
c7ba5b48
XG
2909
2910 return true;
2911}
2912
2913/*
2914 * Return value:
2915 * - true: let the vcpu to access on the same address again.
2916 * - false: let the real page fault path to fix it.
2917 */
2918static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2919 u32 error_code)
2920{
2921 struct kvm_shadow_walk_iterator iterator;
92a476cb 2922 struct kvm_mmu_page *sp;
c7ba5b48
XG
2923 bool ret = false;
2924 u64 spte = 0ull;
2925
37f6a4e2
MT
2926 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2927 return false;
2928
e5552fd2 2929 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
2930 return false;
2931
2932 walk_shadow_page_lockless_begin(vcpu);
2933 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2934 if (!is_shadow_present_pte(spte) || iterator.level < level)
2935 break;
2936
2937 /*
2938 * If the mapping has been changed, let the vcpu fault on the
2939 * same address again.
2940 */
afd28fe1 2941 if (!is_shadow_present_pte(spte)) {
c7ba5b48
XG
2942 ret = true;
2943 goto exit;
2944 }
2945
92a476cb
XG
2946 sp = page_header(__pa(iterator.sptep));
2947 if (!is_last_spte(spte, sp->role.level))
c7ba5b48
XG
2948 goto exit;
2949
2950 /*
2951 * Check if it is a spurious fault caused by TLB lazily flushed.
2952 *
2953 * Need not check the access of upper level table entries since
2954 * they are always ACC_ALL.
2955 */
2956 if (is_writable_pte(spte)) {
2957 ret = true;
2958 goto exit;
2959 }
2960
2961 /*
2962 * Currently, to simplify the code, only the spte write-protected
2963 * by dirty-log can be fast fixed.
2964 */
2965 if (!spte_is_locklessly_modifiable(spte))
2966 goto exit;
2967
c126d94f
XG
2968 /*
2969 * Do not fix write-permission on the large spte since we only dirty
2970 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2971 * that means other pages are missed if its slot is dirty-logged.
2972 *
2973 * Instead, we let the slow page fault path create a normal spte to
2974 * fix the access.
2975 *
2976 * See the comments in kvm_arch_commit_memory_region().
2977 */
2978 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2979 goto exit;
2980
c7ba5b48
XG
2981 /*
2982 * Currently, fast page fault only works for direct mapping since
2983 * the gfn is not stable for indirect shadow page.
2984 * See Documentation/virtual/kvm/locking.txt to get more detail.
2985 */
92a476cb 2986 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
c7ba5b48 2987exit:
a72faf25
XG
2988 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2989 spte, ret);
c7ba5b48
XG
2990 walk_shadow_page_lockless_end(vcpu);
2991
2992 return ret;
2993}
2994
78b2c54a 2995static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 2996 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
450e0b41 2997static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 2998
c7ba5b48
XG
2999static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3000 gfn_t gfn, bool prefault)
10589a46
MT
3001{
3002 int r;
852e3c19 3003 int level;
fd136902 3004 bool force_pt_level = false;
ba049e93 3005 kvm_pfn_t pfn;
e930bffe 3006 unsigned long mmu_seq;
c7ba5b48 3007 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 3008
fd136902 3009 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3010 if (likely(!force_pt_level)) {
936a5fe6
AA
3011 /*
3012 * This path builds a PAE pagetable - so we can map
3013 * 2mb pages at maximum. Therefore check if the level
3014 * is larger than that.
3015 */
3016 if (level > PT_DIRECTORY_LEVEL)
3017 level = PT_DIRECTORY_LEVEL;
852e3c19 3018
936a5fe6 3019 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3020 }
05da4558 3021
c7ba5b48
XG
3022 if (fast_page_fault(vcpu, v, level, error_code))
3023 return 0;
3024
e930bffe 3025 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3026 smp_rmb();
060c2abe 3027
78b2c54a 3028 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 3029 return 0;
aaee2c94 3030
d7c55201
XG
3031 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3032 return r;
d196e343 3033
aaee2c94 3034 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3035 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3036 goto out_unlock;
450e0b41 3037 make_mmu_pages_available(vcpu);
936a5fe6
AA
3038 if (likely(!force_pt_level))
3039 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3040 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
aaee2c94
MT
3041 spin_unlock(&vcpu->kvm->mmu_lock);
3042
10589a46 3043 return r;
e930bffe
AA
3044
3045out_unlock:
3046 spin_unlock(&vcpu->kvm->mmu_lock);
3047 kvm_release_pfn_clean(pfn);
3048 return 0;
10589a46
MT
3049}
3050
3051
17ac10ad
AK
3052static void mmu_free_roots(struct kvm_vcpu *vcpu)
3053{
3054 int i;
4db35314 3055 struct kvm_mmu_page *sp;
d98ba053 3056 LIST_HEAD(invalid_list);
17ac10ad 3057
ad312c7c 3058 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 3059 return;
35af577a 3060
81407ca5
JR
3061 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3062 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3063 vcpu->arch.mmu.direct_map)) {
ad312c7c 3064 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3065
35af577a 3066 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
3067 sp = page_header(root);
3068 --sp->root_count;
d98ba053
XG
3069 if (!sp->root_count && sp->role.invalid) {
3070 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3071 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3072 }
aaee2c94 3073 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 3074 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3075 return;
3076 }
35af577a
GN
3077
3078 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3079 for (i = 0; i < 4; ++i) {
ad312c7c 3080 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3081
417726a3 3082 if (root) {
417726a3 3083 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
3084 sp = page_header(root);
3085 --sp->root_count;
2e53d63a 3086 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
3087 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3088 &invalid_list);
417726a3 3089 }
ad312c7c 3090 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3091 }
d98ba053 3092 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3093 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3094 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3095}
3096
8986ecc0
MT
3097static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3098{
3099 int ret = 0;
3100
3101 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3102 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3103 ret = 1;
3104 }
3105
3106 return ret;
3107}
3108
651dd37a
JR
3109static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3110{
3111 struct kvm_mmu_page *sp;
7ebaf15e 3112 unsigned i;
651dd37a
JR
3113
3114 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3115 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3116 make_mmu_pages_available(vcpu);
bb11c6c9 3117 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3118 ++sp->root_count;
3119 spin_unlock(&vcpu->kvm->mmu_lock);
3120 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3121 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3122 for (i = 0; i < 4; ++i) {
3123 hpa_t root = vcpu->arch.mmu.pae_root[i];
3124
fa4a2c08 3125 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3126 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3127 make_mmu_pages_available(vcpu);
649497d1 3128 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
bb11c6c9 3129 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3130 root = __pa(sp->spt);
3131 ++sp->root_count;
3132 spin_unlock(&vcpu->kvm->mmu_lock);
3133 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3134 }
6292757f 3135 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3136 } else
3137 BUG();
3138
3139 return 0;
3140}
3141
3142static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3143{
4db35314 3144 struct kvm_mmu_page *sp;
81407ca5
JR
3145 u64 pdptr, pm_mask;
3146 gfn_t root_gfn;
3147 int i;
3bb65a22 3148
5777ed34 3149 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3150
651dd37a
JR
3151 if (mmu_check_root(vcpu, root_gfn))
3152 return 1;
3153
3154 /*
3155 * Do we shadow a long mode page table? If so we need to
3156 * write-protect the guests page table root.
3157 */
3158 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 3159 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3160
fa4a2c08 3161 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3162
8facbbff 3163 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3164 make_mmu_pages_available(vcpu);
651dd37a 3165 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
bb11c6c9 3166 0, ACC_ALL);
4db35314
AK
3167 root = __pa(sp->spt);
3168 ++sp->root_count;
8facbbff 3169 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3170 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3171 return 0;
17ac10ad 3172 }
f87f9288 3173
651dd37a
JR
3174 /*
3175 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3176 * or a PAE 3-level page table. In either case we need to be aware that
3177 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3178 */
81407ca5
JR
3179 pm_mask = PT_PRESENT_MASK;
3180 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3181 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3182
17ac10ad 3183 for (i = 0; i < 4; ++i) {
ad312c7c 3184 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3185
fa4a2c08 3186 MMU_WARN_ON(VALID_PAGE(root));
ad312c7c 3187 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3188 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3189 if (!is_present_gpte(pdptr)) {
ad312c7c 3190 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3191 continue;
3192 }
6de4f3ad 3193 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3194 if (mmu_check_root(vcpu, root_gfn))
3195 return 1;
5a7388c2 3196 }
8facbbff 3197 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3198 make_mmu_pages_available(vcpu);
bb11c6c9
TY
3199 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3200 0, ACC_ALL);
4db35314
AK
3201 root = __pa(sp->spt);
3202 ++sp->root_count;
8facbbff
AK
3203 spin_unlock(&vcpu->kvm->mmu_lock);
3204
81407ca5 3205 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3206 }
6292757f 3207 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3208
3209 /*
3210 * If we shadow a 32 bit page table with a long mode page
3211 * table we enter this path.
3212 */
3213 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3214 if (vcpu->arch.mmu.lm_root == NULL) {
3215 /*
3216 * The additional page necessary for this is only
3217 * allocated on demand.
3218 */
3219
3220 u64 *lm_root;
3221
3222 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3223 if (lm_root == NULL)
3224 return 1;
3225
3226 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3227
3228 vcpu->arch.mmu.lm_root = lm_root;
3229 }
3230
3231 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3232 }
3233
8986ecc0 3234 return 0;
17ac10ad
AK
3235}
3236
651dd37a
JR
3237static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3238{
3239 if (vcpu->arch.mmu.direct_map)
3240 return mmu_alloc_direct_roots(vcpu);
3241 else
3242 return mmu_alloc_shadow_roots(vcpu);
3243}
3244
0ba73cda
MT
3245static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3246{
3247 int i;
3248 struct kvm_mmu_page *sp;
3249
81407ca5
JR
3250 if (vcpu->arch.mmu.direct_map)
3251 return;
3252
0ba73cda
MT
3253 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3254 return;
6903074c 3255
56f17dd3 3256 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
0375f7fa 3257 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3258 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3259 hpa_t root = vcpu->arch.mmu.root_hpa;
3260 sp = page_header(root);
3261 mmu_sync_children(vcpu, sp);
0375f7fa 3262 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3263 return;
3264 }
3265 for (i = 0; i < 4; ++i) {
3266 hpa_t root = vcpu->arch.mmu.pae_root[i];
3267
8986ecc0 3268 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3269 root &= PT64_BASE_ADDR_MASK;
3270 sp = page_header(root);
3271 mmu_sync_children(vcpu, sp);
3272 }
3273 }
0375f7fa 3274 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3275}
3276
3277void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3278{
3279 spin_lock(&vcpu->kvm->mmu_lock);
3280 mmu_sync_roots(vcpu);
6cffe8ca 3281 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3282}
bfd0a56b 3283EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3284
1871c602 3285static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3286 u32 access, struct x86_exception *exception)
6aa8b732 3287{
ab9ae313
AK
3288 if (exception)
3289 exception->error_code = 0;
6aa8b732
AK
3290 return vaddr;
3291}
3292
6539e738 3293static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3294 u32 access,
3295 struct x86_exception *exception)
6539e738 3296{
ab9ae313
AK
3297 if (exception)
3298 exception->error_code = 0;
54987b7a 3299 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3300}
3301
d625b155
XG
3302static bool
3303__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3304{
3305 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3306
3307 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3308 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3309}
3310
3311static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3312{
3313 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3314}
3315
3316static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3317{
3318 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3319}
3320
ded58749 3321static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3322{
3323 if (direct)
3324 return vcpu_match_mmio_gpa(vcpu, addr);
3325
3326 return vcpu_match_mmio_gva(vcpu, addr);
3327}
3328
47ab8751
XG
3329/* return true if reserved bit is detected on spte. */
3330static bool
3331walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3332{
3333 struct kvm_shadow_walk_iterator iterator;
47ab8751
XG
3334 u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3335 int root, leaf;
3336 bool reserved = false;
ce88decf 3337
37f6a4e2 3338 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
47ab8751 3339 goto exit;
37f6a4e2 3340
ce88decf 3341 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3342
29ecd660
PB
3343 for (shadow_walk_init(&iterator, vcpu, addr),
3344 leaf = root = iterator.level;
47ab8751
XG
3345 shadow_walk_okay(&iterator);
3346 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3347 spte = mmu_spte_get_lockless(iterator.sptep);
3348
3349 sptes[leaf - 1] = spte;
29ecd660 3350 leaf--;
47ab8751 3351
ce88decf
XG
3352 if (!is_shadow_present_pte(spte))
3353 break;
47ab8751
XG
3354
3355 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
58c95070 3356 iterator.level);
47ab8751
XG
3357 }
3358
ce88decf
XG
3359 walk_shadow_page_lockless_end(vcpu);
3360
47ab8751
XG
3361 if (reserved) {
3362 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3363 __func__, addr);
29ecd660 3364 while (root > leaf) {
47ab8751
XG
3365 pr_err("------ spte 0x%llx level %d.\n",
3366 sptes[root - 1], root);
3367 root--;
3368 }
3369 }
3370exit:
3371 *sptep = spte;
3372 return reserved;
ce88decf
XG
3373}
3374
450869d6 3375int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3376{
3377 u64 spte;
47ab8751 3378 bool reserved;
ce88decf 3379
ded58749 3380 if (mmio_info_in_cache(vcpu, addr, direct))
b37fbea6 3381 return RET_MMIO_PF_EMULATE;
ce88decf 3382
47ab8751 3383 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 3384 if (WARN_ON(reserved))
47ab8751 3385 return RET_MMIO_PF_BUG;
ce88decf
XG
3386
3387 if (is_mmio_spte(spte)) {
3388 gfn_t gfn = get_mmio_spte_gfn(spte);
3389 unsigned access = get_mmio_spte_access(spte);
3390
54bf36aa 3391 if (!check_mmio_spte(vcpu, spte))
f8f55942
XG
3392 return RET_MMIO_PF_INVALID;
3393
ce88decf
XG
3394 if (direct)
3395 addr = 0;
4f022648
XG
3396
3397 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3398 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
b37fbea6 3399 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3400 }
3401
ce88decf
XG
3402 /*
3403 * If the page table is zapped by other cpus, let CPU fault again on
3404 * the address.
3405 */
b37fbea6 3406 return RET_MMIO_PF_RETRY;
ce88decf 3407}
450869d6 3408EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
ce88decf 3409
3d0c27ad
XG
3410static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3411 u32 error_code, gfn_t gfn)
3412{
3413 if (unlikely(error_code & PFERR_RSVD_MASK))
3414 return false;
3415
3416 if (!(error_code & PFERR_PRESENT_MASK) ||
3417 !(error_code & PFERR_WRITE_MASK))
3418 return false;
3419
3420 /*
3421 * guest is writing the page which is write tracked which can
3422 * not be fixed by page fault handler.
3423 */
3424 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3425 return true;
3426
3427 return false;
3428}
3429
e5691a81
XG
3430static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3431{
3432 struct kvm_shadow_walk_iterator iterator;
3433 u64 spte;
3434
3435 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3436 return;
3437
3438 walk_shadow_page_lockless_begin(vcpu);
3439 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3440 clear_sp_write_flooding_count(iterator.sptep);
3441 if (!is_shadow_present_pte(spte))
3442 break;
3443 }
3444 walk_shadow_page_lockless_end(vcpu);
3445}
3446
6aa8b732 3447static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3448 u32 error_code, bool prefault)
6aa8b732 3449{
3d0c27ad 3450 gfn_t gfn = gva >> PAGE_SHIFT;
e2dec939 3451 int r;
6aa8b732 3452
b8688d51 3453 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3454
3d0c27ad
XG
3455 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3456 return 1;
ce88decf 3457
e2dec939
AK
3458 r = mmu_topup_memory_caches(vcpu);
3459 if (r)
3460 return r;
714b93da 3461
fa4a2c08 3462 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3463
6aa8b732 3464
e833240f 3465 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3466 error_code, gfn, prefault);
6aa8b732
AK
3467}
3468
7e1fbeac 3469static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3470{
3471 struct kvm_arch_async_pf arch;
fb67e14f 3472
7c90705b 3473 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3474 arch.gfn = gfn;
c4806acd 3475 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3476 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92 3477
54bf36aa 3478 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3479}
3480
3481static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3482{
35754c98 3483 if (unlikely(!lapic_in_kernel(vcpu) ||
af585b92
GN
3484 kvm_event_needs_reinjection(vcpu)))
3485 return false;
3486
3487 return kvm_x86_ops->interrupt_allowed(vcpu);
3488}
3489
78b2c54a 3490static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3491 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
af585b92 3492{
3520469d 3493 struct kvm_memory_slot *slot;
af585b92
GN
3494 bool async;
3495
54bf36aa 3496 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
3497 async = false;
3498 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
3499 if (!async)
3500 return false; /* *pfn has correct page already */
3501
78b2c54a 3502 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3503 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3504 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3505 trace_kvm_async_pf_doublefault(gva, gfn);
3506 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3507 return true;
3508 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3509 return true;
3510 }
3511
3520469d 3512 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
3513 return false;
3514}
3515
6a39bbc5
XG
3516static bool
3517check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3518{
3519 int page_num = KVM_PAGES_PER_HPAGE(level);
3520
3521 gfn &= ~(page_num - 1);
3522
3523 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3524}
3525
56028d08 3526static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3527 bool prefault)
fb72d167 3528{
ba049e93 3529 kvm_pfn_t pfn;
fb72d167 3530 int r;
852e3c19 3531 int level;
cd1872f0 3532 bool force_pt_level;
05da4558 3533 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3534 unsigned long mmu_seq;
612819c3
MT
3535 int write = error_code & PFERR_WRITE_MASK;
3536 bool map_writable;
fb72d167 3537
fa4a2c08 3538 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
fb72d167 3539
3d0c27ad
XG
3540 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3541 return 1;
ce88decf 3542
fb72d167
JR
3543 r = mmu_topup_memory_caches(vcpu);
3544 if (r)
3545 return r;
3546
fd136902
TY
3547 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3548 PT_DIRECTORY_LEVEL);
3549 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3550 if (likely(!force_pt_level)) {
6a39bbc5
XG
3551 if (level > PT_DIRECTORY_LEVEL &&
3552 !check_hugepage_cache_consistency(vcpu, gfn, level))
3553 level = PT_DIRECTORY_LEVEL;
936a5fe6 3554 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3555 }
852e3c19 3556
c7ba5b48
XG
3557 if (fast_page_fault(vcpu, gpa, level, error_code))
3558 return 0;
3559
e930bffe 3560 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3561 smp_rmb();
af585b92 3562
78b2c54a 3563 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3564 return 0;
3565
d7c55201
XG
3566 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3567 return r;
3568
fb72d167 3569 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3570 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3571 goto out_unlock;
450e0b41 3572 make_mmu_pages_available(vcpu);
936a5fe6
AA
3573 if (likely(!force_pt_level))
3574 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3575 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
fb72d167 3576 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3577
3578 return r;
e930bffe
AA
3579
3580out_unlock:
3581 spin_unlock(&vcpu->kvm->mmu_lock);
3582 kvm_release_pfn_clean(pfn);
3583 return 0;
fb72d167
JR
3584}
3585
8a3c1a33
PB
3586static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3587 struct kvm_mmu *context)
6aa8b732 3588{
6aa8b732 3589 context->page_fault = nonpaging_page_fault;
6aa8b732 3590 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3591 context->sync_page = nonpaging_sync_page;
a7052897 3592 context->invlpg = nonpaging_invlpg;
0f53b5b1 3593 context->update_pte = nonpaging_update_pte;
cea0f0e7 3594 context->root_level = 0;
6aa8b732 3595 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3596 context->root_hpa = INVALID_PAGE;
c5a78f2b 3597 context->direct_map = true;
2d48a985 3598 context->nx = false;
6aa8b732
AK
3599}
3600
d8d173da 3601void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
6aa8b732 3602{
cea0f0e7 3603 mmu_free_roots(vcpu);
6aa8b732
AK
3604}
3605
5777ed34
JR
3606static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3607{
9f8fe504 3608 return kvm_read_cr3(vcpu);
5777ed34
JR
3609}
3610
6389ee94
AK
3611static void inject_page_fault(struct kvm_vcpu *vcpu,
3612 struct x86_exception *fault)
6aa8b732 3613{
6389ee94 3614 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3615}
3616
54bf36aa 3617static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 3618 unsigned access, int *nr_present)
ce88decf
XG
3619{
3620 if (unlikely(is_mmio_spte(*sptep))) {
3621 if (gfn != get_mmio_spte_gfn(*sptep)) {
3622 mmu_spte_clear_no_track(sptep);
3623 return true;
3624 }
3625
3626 (*nr_present)++;
54bf36aa 3627 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
3628 return true;
3629 }
3630
3631 return false;
3632}
3633
6bb69c9b
PB
3634static inline bool is_last_gpte(struct kvm_mmu *mmu,
3635 unsigned level, unsigned gpte)
6fd01b71 3636{
6bb69c9b
PB
3637 /*
3638 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
3639 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3640 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3641 */
3642 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
6fd01b71 3643
6bb69c9b
PB
3644 /*
3645 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3646 * If it is clear, there are no large pages at this level, so clear
3647 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3648 */
3649 gpte &= level - mmu->last_nonleaf_level;
3650
3651 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
3652}
3653
37406aaa
NHE
3654#define PTTYPE_EPT 18 /* arbitrary */
3655#define PTTYPE PTTYPE_EPT
3656#include "paging_tmpl.h"
3657#undef PTTYPE
3658
6aa8b732
AK
3659#define PTTYPE 64
3660#include "paging_tmpl.h"
3661#undef PTTYPE
3662
3663#define PTTYPE 32
3664#include "paging_tmpl.h"
3665#undef PTTYPE
3666
6dc98b86
XG
3667static void
3668__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3669 struct rsvd_bits_validate *rsvd_check,
3670 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 3671 bool pse, bool amd)
82725b20 3672{
82725b20 3673 u64 exb_bit_rsvd = 0;
5f7dde7b 3674 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3675 u64 nonleaf_bit8_rsvd = 0;
82725b20 3676
a0a64f50 3677 rsvd_check->bad_mt_xwr = 0;
25d92081 3678
6dc98b86 3679 if (!nx)
82725b20 3680 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 3681 if (!gbpages)
5f7dde7b 3682 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
3683
3684 /*
3685 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3686 * leaf entries) on AMD CPUs only.
3687 */
6fec2144 3688 if (amd)
a0c0feb5
PB
3689 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3690
6dc98b86 3691 switch (level) {
82725b20
DE
3692 case PT32_ROOT_LEVEL:
3693 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
3694 rsvd_check->rsvd_bits_mask[0][1] = 0;
3695 rsvd_check->rsvd_bits_mask[0][0] = 0;
3696 rsvd_check->rsvd_bits_mask[1][0] =
3697 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 3698
6dc98b86 3699 if (!pse) {
a0a64f50 3700 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
3701 break;
3702 }
3703
82725b20
DE
3704 if (is_cpuid_PSE36())
3705 /* 36bits PSE 4MB page */
a0a64f50 3706 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
3707 else
3708 /* 32 bits PSE 4MB page */
a0a64f50 3709 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3710 break;
3711 case PT32E_ROOT_LEVEL:
a0a64f50 3712 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 3713 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 3714 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 3715 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3716 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 3717 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 3718 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 3719 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
3720 rsvd_bits(maxphyaddr, 62) |
3721 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3722 rsvd_check->rsvd_bits_mask[1][0] =
3723 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3724 break;
3725 case PT64_ROOT_LEVEL:
a0a64f50
XG
3726 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3727 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 3728 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3729 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3730 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 3731 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3732 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3733 rsvd_bits(maxphyaddr, 51);
3734 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3735 rsvd_bits(maxphyaddr, 51);
3736 rsvd_check->rsvd_bits_mask[1][3] =
3737 rsvd_check->rsvd_bits_mask[0][3];
3738 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 3739 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 3740 rsvd_bits(13, 29);
a0a64f50 3741 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3742 rsvd_bits(maxphyaddr, 51) |
3743 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3744 rsvd_check->rsvd_bits_mask[1][0] =
3745 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3746 break;
3747 }
3748}
3749
6dc98b86
XG
3750static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3751 struct kvm_mmu *context)
3752{
3753 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3754 cpuid_maxphyaddr(vcpu), context->root_level,
3755 context->nx, guest_cpuid_has_gbpages(vcpu),
6fec2144 3756 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
6dc98b86
XG
3757}
3758
81b8eebb
XG
3759static void
3760__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3761 int maxphyaddr, bool execonly)
25d92081 3762{
951f9fd7 3763 u64 bad_mt_xwr;
25d92081 3764
a0a64f50 3765 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 3766 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 3767 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 3768 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 3769 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 3770 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 3771 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
3772
3773 /* large page */
a0a64f50
XG
3774 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3775 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 3776 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 3777 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 3778 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 3779 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 3780
951f9fd7
PB
3781 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
3782 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
3783 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
3784 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
3785 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
3786 if (!execonly) {
3787 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3788 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 3789 }
951f9fd7 3790 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
3791}
3792
81b8eebb
XG
3793static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3794 struct kvm_mmu *context, bool execonly)
3795{
3796 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3797 cpuid_maxphyaddr(vcpu), execonly);
3798}
3799
c258b62b
XG
3800/*
3801 * the page table on host is the shadow page table for the page
3802 * table in guest or amd nested guest, its mmu features completely
3803 * follow the features in guest.
3804 */
3805void
3806reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3807{
5f0b8199
PB
3808 bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
3809
6fec2144
PB
3810 /*
3811 * Passing "true" to the last argument is okay; it adds a check
3812 * on bit 8 of the SPTEs which KVM doesn't use anyway.
3813 */
c258b62b
XG
3814 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3815 boot_cpu_data.x86_phys_bits,
5f0b8199 3816 context->shadow_root_level, uses_nx,
6fec2144
PB
3817 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3818 true);
c258b62b
XG
3819}
3820EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3821
6fec2144
PB
3822static inline bool boot_cpu_is_amd(void)
3823{
3824 WARN_ON_ONCE(!tdp_enabled);
3825 return shadow_x_mask == 0;
3826}
3827
c258b62b
XG
3828/*
3829 * the direct page table on host, use as much mmu features as
3830 * possible, however, kvm currently does not do execution-protection.
3831 */
3832static void
3833reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3834 struct kvm_mmu *context)
3835{
6fec2144 3836 if (boot_cpu_is_amd())
c258b62b
XG
3837 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3838 boot_cpu_data.x86_phys_bits,
3839 context->shadow_root_level, false,
6fec2144 3840 cpu_has_gbpages, true, true);
c258b62b
XG
3841 else
3842 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3843 boot_cpu_data.x86_phys_bits,
3844 false);
3845
3846}
3847
3848/*
3849 * as the comments in reset_shadow_zero_bits_mask() except it
3850 * is the shadow page table for intel nested guest.
3851 */
3852static void
3853reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3854 struct kvm_mmu *context, bool execonly)
3855{
3856 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3857 boot_cpu_data.x86_phys_bits, execonly);
3858}
3859
edc90b7d
XG
3860static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3861 struct kvm_mmu *mmu, bool ept)
97d64b78
AK
3862{
3863 unsigned bit, byte, pfec;
3864 u8 map;
66386ade 3865 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
97d64b78 3866
66386ade 3867 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
97ec8c06 3868 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
97d64b78
AK
3869 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3870 pfec = byte << 1;
3871 map = 0;
3872 wf = pfec & PFERR_WRITE_MASK;
3873 uf = pfec & PFERR_USER_MASK;
3874 ff = pfec & PFERR_FETCH_MASK;
97ec8c06
FW
3875 /*
3876 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3877 * subject to SMAP restrictions, and cleared otherwise. The
3878 * bit is only meaningful if the SMAP bit is set in CR4.
3879 */
3880 smapf = !(pfec & PFERR_RSVD_MASK);
97d64b78
AK
3881 for (bit = 0; bit < 8; ++bit) {
3882 x = bit & ACC_EXEC_MASK;
3883 w = bit & ACC_WRITE_MASK;
3884 u = bit & ACC_USER_MASK;
3885
25d92081
YZ
3886 if (!ept) {
3887 /* Not really needed: !nx will cause pte.nx to fault */
3888 x |= !mmu->nx;
3889 /* Allow supervisor writes if !cr0.wp */
3890 w |= !is_write_protection(vcpu) && !uf;
3891 /* Disallow supervisor fetches of user code if cr4.smep */
66386ade 3892 x &= !(cr4_smep && u && !uf);
97ec8c06
FW
3893
3894 /*
3895 * SMAP:kernel-mode data accesses from user-mode
3896 * mappings should fault. A fault is considered
3897 * as a SMAP violation if all of the following
3898 * conditions are ture:
3899 * - X86_CR4_SMAP is set in CR4
3900 * - An user page is accessed
3901 * - Page fault in kernel mode
3902 * - if CPL = 3 or X86_EFLAGS_AC is clear
3903 *
3904 * Here, we cover the first three conditions.
3905 * The fourth is computed dynamically in
3906 * permission_fault() and is in smapf.
3907 *
3908 * Also, SMAP does not affect instruction
3909 * fetches, add the !ff check here to make it
3910 * clearer.
3911 */
3912 smap = cr4_smap && u && !uf && !ff;
25d92081
YZ
3913 } else
3914 /* Not really needed: no U/S accesses on ept */
3915 u = 1;
97d64b78 3916
97ec8c06
FW
3917 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3918 (smapf && smap);
97d64b78
AK
3919 map |= fault << bit;
3920 }
3921 mmu->permissions[byte] = map;
3922 }
3923}
3924
2d344105
HH
3925/*
3926* PKU is an additional mechanism by which the paging controls access to
3927* user-mode addresses based on the value in the PKRU register. Protection
3928* key violations are reported through a bit in the page fault error code.
3929* Unlike other bits of the error code, the PK bit is not known at the
3930* call site of e.g. gva_to_gpa; it must be computed directly in
3931* permission_fault based on two bits of PKRU, on some machine state (CR4,
3932* CR0, EFER, CPL), and on other bits of the error code and the page tables.
3933*
3934* In particular the following conditions come from the error code, the
3935* page tables and the machine state:
3936* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
3937* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
3938* - PK is always zero if U=0 in the page tables
3939* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
3940*
3941* The PKRU bitmask caches the result of these four conditions. The error
3942* code (minus the P bit) and the page table's U bit form an index into the
3943* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
3944* with the two bits of the PKRU register corresponding to the protection key.
3945* For the first three conditions above the bits will be 00, thus masking
3946* away both AD and WD. For all reads or if the last condition holds, WD
3947* only will be masked away.
3948*/
3949static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3950 bool ept)
3951{
3952 unsigned bit;
3953 bool wp;
3954
3955 if (ept) {
3956 mmu->pkru_mask = 0;
3957 return;
3958 }
3959
3960 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
3961 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
3962 mmu->pkru_mask = 0;
3963 return;
3964 }
3965
3966 wp = is_write_protection(vcpu);
3967
3968 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
3969 unsigned pfec, pkey_bits;
3970 bool check_pkey, check_write, ff, uf, wf, pte_user;
3971
3972 pfec = bit << 1;
3973 ff = pfec & PFERR_FETCH_MASK;
3974 uf = pfec & PFERR_USER_MASK;
3975 wf = pfec & PFERR_WRITE_MASK;
3976
3977 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
3978 pte_user = pfec & PFERR_RSVD_MASK;
3979
3980 /*
3981 * Only need to check the access which is not an
3982 * instruction fetch and is to a user page.
3983 */
3984 check_pkey = (!ff && pte_user);
3985 /*
3986 * write access is controlled by PKRU if it is a
3987 * user access or CR0.WP = 1.
3988 */
3989 check_write = check_pkey && wf && (uf || wp);
3990
3991 /* PKRU.AD stops both read and write access. */
3992 pkey_bits = !!check_pkey;
3993 /* PKRU.WD stops write access. */
3994 pkey_bits |= (!!check_write) << 1;
3995
3996 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
3997 }
3998}
3999
6bb69c9b 4000static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4001{
6bb69c9b
PB
4002 unsigned root_level = mmu->root_level;
4003
4004 mmu->last_nonleaf_level = root_level;
4005 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4006 mmu->last_nonleaf_level++;
6fd01b71
AK
4007}
4008
8a3c1a33
PB
4009static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4010 struct kvm_mmu *context,
4011 int level)
6aa8b732 4012{
2d48a985 4013 context->nx = is_nx(vcpu);
4d6931c3 4014 context->root_level = level;
2d48a985 4015
4d6931c3 4016 reset_rsvds_bits_mask(vcpu, context);
25d92081 4017 update_permission_bitmask(vcpu, context, false);
2d344105 4018 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4019 update_last_nonleaf_level(vcpu, context);
6aa8b732 4020
fa4a2c08 4021 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4022 context->page_fault = paging64_page_fault;
6aa8b732 4023 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4024 context->sync_page = paging64_sync_page;
a7052897 4025 context->invlpg = paging64_invlpg;
0f53b5b1 4026 context->update_pte = paging64_update_pte;
17ac10ad 4027 context->shadow_root_level = level;
17c3ba9d 4028 context->root_hpa = INVALID_PAGE;
c5a78f2b 4029 context->direct_map = false;
6aa8b732
AK
4030}
4031
8a3c1a33
PB
4032static void paging64_init_context(struct kvm_vcpu *vcpu,
4033 struct kvm_mmu *context)
17ac10ad 4034{
8a3c1a33 4035 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
4036}
4037
8a3c1a33
PB
4038static void paging32_init_context(struct kvm_vcpu *vcpu,
4039 struct kvm_mmu *context)
6aa8b732 4040{
2d48a985 4041 context->nx = false;
4d6931c3 4042 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4043
4d6931c3 4044 reset_rsvds_bits_mask(vcpu, context);
25d92081 4045 update_permission_bitmask(vcpu, context, false);
2d344105 4046 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4047 update_last_nonleaf_level(vcpu, context);
6aa8b732 4048
6aa8b732 4049 context->page_fault = paging32_page_fault;
6aa8b732 4050 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4051 context->sync_page = paging32_sync_page;
a7052897 4052 context->invlpg = paging32_invlpg;
0f53b5b1 4053 context->update_pte = paging32_update_pte;
6aa8b732 4054 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 4055 context->root_hpa = INVALID_PAGE;
c5a78f2b 4056 context->direct_map = false;
6aa8b732
AK
4057}
4058
8a3c1a33
PB
4059static void paging32E_init_context(struct kvm_vcpu *vcpu,
4060 struct kvm_mmu *context)
6aa8b732 4061{
8a3c1a33 4062 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4063}
4064
8a3c1a33 4065static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4066{
ad896af0 4067 struct kvm_mmu *context = &vcpu->arch.mmu;
fb72d167 4068
c445f8ef 4069 context->base_role.word = 0;
699023e2 4070 context->base_role.smm = is_smm(vcpu);
fb72d167 4071 context->page_fault = tdp_page_fault;
e8bc217a 4072 context->sync_page = nonpaging_sync_page;
a7052897 4073 context->invlpg = nonpaging_invlpg;
0f53b5b1 4074 context->update_pte = nonpaging_update_pte;
67253af5 4075 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 4076 context->root_hpa = INVALID_PAGE;
c5a78f2b 4077 context->direct_map = true;
1c97f0a0 4078 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 4079 context->get_cr3 = get_cr3;
e4e517b4 4080 context->get_pdptr = kvm_pdptr_read;
cb659db8 4081 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4082
4083 if (!is_paging(vcpu)) {
2d48a985 4084 context->nx = false;
fb72d167
JR
4085 context->gva_to_gpa = nonpaging_gva_to_gpa;
4086 context->root_level = 0;
4087 } else if (is_long_mode(vcpu)) {
2d48a985 4088 context->nx = is_nx(vcpu);
fb72d167 4089 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
4090 reset_rsvds_bits_mask(vcpu, context);
4091 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4092 } else if (is_pae(vcpu)) {
2d48a985 4093 context->nx = is_nx(vcpu);
fb72d167 4094 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4095 reset_rsvds_bits_mask(vcpu, context);
4096 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4097 } else {
2d48a985 4098 context->nx = false;
fb72d167 4099 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4100 reset_rsvds_bits_mask(vcpu, context);
4101 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4102 }
4103
25d92081 4104 update_permission_bitmask(vcpu, context, false);
2d344105 4105 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4106 update_last_nonleaf_level(vcpu, context);
c258b62b 4107 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4108}
4109
ad896af0 4110void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
6aa8b732 4111{
411c588d 4112 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
edc90b7d 4113 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
ad896af0
PB
4114 struct kvm_mmu *context = &vcpu->arch.mmu;
4115
fa4a2c08 4116 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
6aa8b732
AK
4117
4118 if (!is_paging(vcpu))
8a3c1a33 4119 nonpaging_init_context(vcpu, context);
a9058ecd 4120 else if (is_long_mode(vcpu))
8a3c1a33 4121 paging64_init_context(vcpu, context);
6aa8b732 4122 else if (is_pae(vcpu))
8a3c1a33 4123 paging32E_init_context(vcpu, context);
6aa8b732 4124 else
8a3c1a33 4125 paging32_init_context(vcpu, context);
a770f6f2 4126
ad896af0
PB
4127 context->base_role.nxe = is_nx(vcpu);
4128 context->base_role.cr4_pae = !!is_pae(vcpu);
4129 context->base_role.cr0_wp = is_write_protection(vcpu);
4130 context->base_role.smep_andnot_wp
411c588d 4131 = smep && !is_write_protection(vcpu);
edc90b7d
XG
4132 context->base_role.smap_andnot_wp
4133 = smap && !is_write_protection(vcpu);
699023e2 4134 context->base_role.smm = is_smm(vcpu);
c258b62b 4135 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
4136}
4137EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4138
ad896af0 4139void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
155a97a3 4140{
ad896af0
PB
4141 struct kvm_mmu *context = &vcpu->arch.mmu;
4142
fa4a2c08 4143 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
155a97a3
NHE
4144
4145 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4146
4147 context->nx = true;
155a97a3
NHE
4148 context->page_fault = ept_page_fault;
4149 context->gva_to_gpa = ept_gva_to_gpa;
4150 context->sync_page = ept_sync_page;
4151 context->invlpg = ept_invlpg;
4152 context->update_pte = ept_update_pte;
155a97a3
NHE
4153 context->root_level = context->shadow_root_level;
4154 context->root_hpa = INVALID_PAGE;
4155 context->direct_map = false;
4156
4157 update_permission_bitmask(vcpu, context, true);
2d344105 4158 update_pkru_bitmask(vcpu, context, true);
155a97a3 4159 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4160 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4161}
4162EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4163
8a3c1a33 4164static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4165{
ad896af0
PB
4166 struct kvm_mmu *context = &vcpu->arch.mmu;
4167
4168 kvm_init_shadow_mmu(vcpu);
4169 context->set_cr3 = kvm_x86_ops->set_cr3;
4170 context->get_cr3 = get_cr3;
4171 context->get_pdptr = kvm_pdptr_read;
4172 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4173}
4174
8a3c1a33 4175static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
4176{
4177 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4178
4179 g_context->get_cr3 = get_cr3;
e4e517b4 4180 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4181 g_context->inject_page_fault = kvm_inject_page_fault;
4182
4183 /*
0af2593b
DM
4184 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4185 * L1's nested page tables (e.g. EPT12). The nested translation
4186 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4187 * L2's page tables as the first level of translation and L1's
4188 * nested page tables as the second level of translation. Basically
4189 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
4190 */
4191 if (!is_paging(vcpu)) {
2d48a985 4192 g_context->nx = false;
02f59dc9
JR
4193 g_context->root_level = 0;
4194 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4195 } else if (is_long_mode(vcpu)) {
2d48a985 4196 g_context->nx = is_nx(vcpu);
02f59dc9 4197 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 4198 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4199 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4200 } else if (is_pae(vcpu)) {
2d48a985 4201 g_context->nx = is_nx(vcpu);
02f59dc9 4202 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4203 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4204 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4205 } else {
2d48a985 4206 g_context->nx = false;
02f59dc9 4207 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4208 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4209 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4210 }
4211
25d92081 4212 update_permission_bitmask(vcpu, g_context, false);
2d344105 4213 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 4214 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
4215}
4216
8a3c1a33 4217static void init_kvm_mmu(struct kvm_vcpu *vcpu)
fb72d167 4218{
02f59dc9 4219 if (mmu_is_nested(vcpu))
e0c6db3e 4220 init_kvm_nested_mmu(vcpu);
02f59dc9 4221 else if (tdp_enabled)
e0c6db3e 4222 init_kvm_tdp_mmu(vcpu);
fb72d167 4223 else
e0c6db3e 4224 init_kvm_softmmu(vcpu);
fb72d167
JR
4225}
4226
8a3c1a33 4227void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4228{
95f93af4 4229 kvm_mmu_unload(vcpu);
8a3c1a33 4230 init_kvm_mmu(vcpu);
17c3ba9d 4231}
8668a3c4 4232EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4233
4234int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4235{
714b93da
AK
4236 int r;
4237
e2dec939 4238 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
4239 if (r)
4240 goto out;
8986ecc0 4241 r = mmu_alloc_roots(vcpu);
e2858b4a 4242 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4243 if (r)
4244 goto out;
3662cb1c 4245 /* set_cr3() should ensure TLB has been flushed */
f43addd4 4246 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
4247out:
4248 return r;
6aa8b732 4249}
17c3ba9d
AK
4250EXPORT_SYMBOL_GPL(kvm_mmu_load);
4251
4252void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4253{
4254 mmu_free_roots(vcpu);
95f93af4 4255 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
17c3ba9d 4256}
4b16184c 4257EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4258
0028425f 4259static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
4260 struct kvm_mmu_page *sp, u64 *spte,
4261 const void *new)
0028425f 4262{
30945387 4263 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
4264 ++vcpu->kvm->stat.mmu_pde_zapped;
4265 return;
30945387 4266 }
0028425f 4267
4cee5764 4268 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 4269 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
4270}
4271
79539cec
AK
4272static bool need_remote_flush(u64 old, u64 new)
4273{
4274 if (!is_shadow_present_pte(old))
4275 return false;
4276 if (!is_shadow_present_pte(new))
4277 return true;
4278 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4279 return true;
53166229
GN
4280 old ^= shadow_nx_mask;
4281 new ^= shadow_nx_mask;
79539cec
AK
4282 return (old & ~new & PT64_PERM_MASK) != 0;
4283}
4284
889e5cbc
XG
4285static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4286 const u8 *new, int *bytes)
da4a00f0 4287{
889e5cbc
XG
4288 u64 gentry;
4289 int r;
72016f3a 4290
72016f3a
AK
4291 /*
4292 * Assume that the pte write on a page table of the same type
49b26e26
XG
4293 * as the current vcpu paging mode since we update the sptes only
4294 * when they have the same mode.
72016f3a 4295 */
889e5cbc 4296 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4297 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4298 *gpa &= ~(gpa_t)7;
4299 *bytes = 8;
54bf36aa 4300 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
72016f3a
AK
4301 if (r)
4302 gentry = 0;
08e850c6
AK
4303 new = (const u8 *)&gentry;
4304 }
4305
889e5cbc 4306 switch (*bytes) {
08e850c6
AK
4307 case 4:
4308 gentry = *(const u32 *)new;
4309 break;
4310 case 8:
4311 gentry = *(const u64 *)new;
4312 break;
4313 default:
4314 gentry = 0;
4315 break;
72016f3a
AK
4316 }
4317
889e5cbc
XG
4318 return gentry;
4319}
4320
4321/*
4322 * If we're seeing too many writes to a page, it may no longer be a page table,
4323 * or we may be forking, in which case it is better to unmap the page.
4324 */
a138fe75 4325static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4326{
a30f47cb
XG
4327 /*
4328 * Skip write-flooding detected for the sp whose level is 1, because
4329 * it can become unsync, then the guest page is not write-protected.
4330 */
f71fa31f 4331 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 4332 return false;
3246af0e 4333
e5691a81
XG
4334 atomic_inc(&sp->write_flooding_count);
4335 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
4336}
4337
4338/*
4339 * Misaligned accesses are too much trouble to fix up; also, they usually
4340 * indicate a page is not used as a page table.
4341 */
4342static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4343 int bytes)
4344{
4345 unsigned offset, pte_size, misaligned;
4346
4347 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4348 gpa, bytes, sp->role.word);
4349
4350 offset = offset_in_page(gpa);
4351 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
4352
4353 /*
4354 * Sometimes, the OS only writes the last one bytes to update status
4355 * bits, for example, in linux, andb instruction is used in clear_bit().
4356 */
4357 if (!(offset & (pte_size - 1)) && bytes == 1)
4358 return false;
4359
889e5cbc
XG
4360 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4361 misaligned |= bytes < 4;
4362
4363 return misaligned;
4364}
4365
4366static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4367{
4368 unsigned page_offset, quadrant;
4369 u64 *spte;
4370 int level;
4371
4372 page_offset = offset_in_page(gpa);
4373 level = sp->role.level;
4374 *nspte = 1;
4375 if (!sp->role.cr4_pae) {
4376 page_offset <<= 1; /* 32->64 */
4377 /*
4378 * A 32-bit pde maps 4MB while the shadow pdes map
4379 * only 2MB. So we need to double the offset again
4380 * and zap two pdes instead of one.
4381 */
4382 if (level == PT32_ROOT_LEVEL) {
4383 page_offset &= ~7; /* kill rounding error */
4384 page_offset <<= 1;
4385 *nspte = 2;
4386 }
4387 quadrant = page_offset >> PAGE_SHIFT;
4388 page_offset &= ~PAGE_MASK;
4389 if (quadrant != sp->role.quadrant)
4390 return NULL;
4391 }
4392
4393 spte = &sp->spt[page_offset / sizeof(*spte)];
4394 return spte;
4395}
4396
13d268ca
XG
4397static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4398 const u8 *new, int bytes)
889e5cbc
XG
4399{
4400 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4401 struct kvm_mmu_page *sp;
889e5cbc
XG
4402 LIST_HEAD(invalid_list);
4403 u64 entry, gentry, *spte;
4404 int npte;
b8c67b7a 4405 bool remote_flush, local_flush;
4141259b
AM
4406 union kvm_mmu_page_role mask = { };
4407
4408 mask.cr0_wp = 1;
4409 mask.cr4_pae = 1;
4410 mask.nxe = 1;
4411 mask.smep_andnot_wp = 1;
4412 mask.smap_andnot_wp = 1;
699023e2 4413 mask.smm = 1;
889e5cbc
XG
4414
4415 /*
4416 * If we don't have indirect shadow pages, it means no page is
4417 * write-protected, so we can exit simply.
4418 */
4419 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4420 return;
4421
b8c67b7a 4422 remote_flush = local_flush = false;
889e5cbc
XG
4423
4424 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4425
4426 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4427
4428 /*
4429 * No need to care whether allocation memory is successful
4430 * or not since pte prefetch is skiped if it does not have
4431 * enough objects in the cache.
4432 */
4433 mmu_topup_memory_caches(vcpu);
4434
4435 spin_lock(&vcpu->kvm->mmu_lock);
4436 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4437 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4438
b67bfe0d 4439 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4440 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4441 detect_write_flooding(sp)) {
b8c67b7a 4442 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 4443 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4444 continue;
4445 }
889e5cbc
XG
4446
4447 spte = get_written_sptes(sp, gpa, &npte);
4448 if (!spte)
4449 continue;
4450
0671a8e7 4451 local_flush = true;
ac1b714e 4452 while (npte--) {
79539cec 4453 entry = *spte;
38e3b2b2 4454 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4455 if (gentry &&
4456 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4457 & mask.word) && rmap_can_add(vcpu))
7c562522 4458 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4459 if (need_remote_flush(entry, *spte))
0671a8e7 4460 remote_flush = true;
ac1b714e 4461 ++spte;
9b7a0325 4462 }
9b7a0325 4463 }
b8c67b7a 4464 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 4465 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4466 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4467}
4468
a436036b
AK
4469int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4470{
10589a46
MT
4471 gpa_t gpa;
4472 int r;
a436036b 4473
c5a78f2b 4474 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4475 return 0;
4476
1871c602 4477 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4478
10589a46 4479 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4480
10589a46 4481 return r;
a436036b 4482}
577bdc49 4483EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4484
81f4f76b 4485static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4486{
d98ba053 4487 LIST_HEAD(invalid_list);
103ad25a 4488
81f4f76b
TY
4489 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4490 return;
4491
5da59607
TY
4492 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4493 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4494 break;
ebeace86 4495
4cee5764 4496 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4497 }
aa6bd187 4498 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4499}
ebeace86 4500
dc25e89e
AP
4501int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4502 void *insn, int insn_len)
3067714c 4503{
1cb3f3ae 4504 int r, emulation_type = EMULTYPE_RETRY;
3067714c 4505 enum emulation_result er;
ded58749 4506 bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
3067714c 4507
e9ee956e
TY
4508 if (unlikely(error_code & PFERR_RSVD_MASK)) {
4509 r = handle_mmio_page_fault(vcpu, cr2, direct);
4510 if (r == RET_MMIO_PF_EMULATE) {
4511 emulation_type = 0;
4512 goto emulate;
4513 }
4514 if (r == RET_MMIO_PF_RETRY)
4515 return 1;
4516 if (r < 0)
4517 return r;
4518 }
3067714c 4519
56028d08 4520 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c 4521 if (r < 0)
e9ee956e
TY
4522 return r;
4523 if (!r)
4524 return 1;
3067714c 4525
ded58749 4526 if (mmio_info_in_cache(vcpu, cr2, direct))
1cb3f3ae 4527 emulation_type = 0;
e9ee956e 4528emulate:
1cb3f3ae 4529 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4530
4531 switch (er) {
4532 case EMULATE_DONE:
4533 return 1;
ac0a48c3 4534 case EMULATE_USER_EXIT:
3067714c 4535 ++vcpu->stat.mmio_exits;
6d77dbfc 4536 /* fall through */
3067714c 4537 case EMULATE_FAIL:
3f5d18a9 4538 return 0;
3067714c
AK
4539 default:
4540 BUG();
4541 }
3067714c
AK
4542}
4543EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4544
a7052897
MT
4545void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4546{
a7052897 4547 vcpu->arch.mmu.invlpg(vcpu, gva);
77c3913b 4548 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a7052897
MT
4549 ++vcpu->stat.invlpg;
4550}
4551EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4552
18552672
JR
4553void kvm_enable_tdp(void)
4554{
4555 tdp_enabled = true;
4556}
4557EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4558
5f4cb662
JR
4559void kvm_disable_tdp(void)
4560{
4561 tdp_enabled = false;
4562}
4563EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4564
6aa8b732
AK
4565static void free_mmu_pages(struct kvm_vcpu *vcpu)
4566{
ad312c7c 4567 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4568 if (vcpu->arch.mmu.lm_root != NULL)
4569 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4570}
4571
4572static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4573{
17ac10ad 4574 struct page *page;
6aa8b732
AK
4575 int i;
4576
17ac10ad
AK
4577 /*
4578 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4579 * Therefore we need to allocate shadow page tables in the first
4580 * 4GB of memory, which happens to fit the DMA32 zone.
4581 */
4582 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4583 if (!page)
d7fa6ab2
WY
4584 return -ENOMEM;
4585
ad312c7c 4586 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4587 for (i = 0; i < 4; ++i)
ad312c7c 4588 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4589
6aa8b732 4590 return 0;
6aa8b732
AK
4591}
4592
8018c27b 4593int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4594{
e459e322
XG
4595 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4596 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4597 vcpu->arch.mmu.translate_gpa = translate_gpa;
4598 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4599
8018c27b
IM
4600 return alloc_mmu_pages(vcpu);
4601}
6aa8b732 4602
8a3c1a33 4603void kvm_mmu_setup(struct kvm_vcpu *vcpu)
8018c27b 4604{
fa4a2c08 4605 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4606
8a3c1a33 4607 init_kvm_mmu(vcpu);
6aa8b732
AK
4608}
4609
13d268ca
XG
4610void kvm_mmu_init_vm(struct kvm *kvm)
4611{
4612 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4613
4614 node->track_write = kvm_mmu_pte_write;
4615 kvm_page_track_register_notifier(kvm, node);
4616}
4617
4618void kvm_mmu_uninit_vm(struct kvm *kvm)
4619{
4620 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4621
4622 kvm_page_track_unregister_notifier(kvm, node);
4623}
4624
1bad2b2a 4625/* The return value indicates if tlb flush on all vcpus is needed. */
018aabb5 4626typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
1bad2b2a
XG
4627
4628/* The caller should hold mmu-lock before calling this function. */
4629static bool
4630slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4631 slot_level_handler fn, int start_level, int end_level,
4632 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4633{
4634 struct slot_rmap_walk_iterator iterator;
4635 bool flush = false;
4636
4637 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4638 end_gfn, &iterator) {
4639 if (iterator.rmap)
4640 flush |= fn(kvm, iterator.rmap);
4641
4642 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4643 if (flush && lock_flush_tlb) {
4644 kvm_flush_remote_tlbs(kvm);
4645 flush = false;
4646 }
4647 cond_resched_lock(&kvm->mmu_lock);
4648 }
4649 }
4650
4651 if (flush && lock_flush_tlb) {
4652 kvm_flush_remote_tlbs(kvm);
4653 flush = false;
4654 }
4655
4656 return flush;
4657}
4658
4659static bool
4660slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4661 slot_level_handler fn, int start_level, int end_level,
4662 bool lock_flush_tlb)
4663{
4664 return slot_handle_level_range(kvm, memslot, fn, start_level,
4665 end_level, memslot->base_gfn,
4666 memslot->base_gfn + memslot->npages - 1,
4667 lock_flush_tlb);
4668}
4669
4670static bool
4671slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4672 slot_level_handler fn, bool lock_flush_tlb)
4673{
4674 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4675 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4676}
4677
4678static bool
4679slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4680 slot_level_handler fn, bool lock_flush_tlb)
4681{
4682 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4683 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4684}
4685
4686static bool
4687slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4688 slot_level_handler fn, bool lock_flush_tlb)
4689{
4690 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4691 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4692}
4693
efdfe536
XG
4694void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4695{
4696 struct kvm_memslots *slots;
4697 struct kvm_memory_slot *memslot;
9da0e4d5 4698 int i;
efdfe536
XG
4699
4700 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
4701 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4702 slots = __kvm_memslots(kvm, i);
4703 kvm_for_each_memslot(memslot, slots) {
4704 gfn_t start, end;
4705
4706 start = max(gfn_start, memslot->base_gfn);
4707 end = min(gfn_end, memslot->base_gfn + memslot->npages);
4708 if (start >= end)
4709 continue;
efdfe536 4710
9da0e4d5
PB
4711 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4712 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4713 start, end - 1, true);
4714 }
efdfe536
XG
4715 }
4716
4717 spin_unlock(&kvm->mmu_lock);
4718}
4719
018aabb5
TY
4720static bool slot_rmap_write_protect(struct kvm *kvm,
4721 struct kvm_rmap_head *rmap_head)
d77aa73c 4722{
018aabb5 4723 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
4724}
4725
1c91cad4
KH
4726void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4727 struct kvm_memory_slot *memslot)
6aa8b732 4728{
d77aa73c 4729 bool flush;
6aa8b732 4730
9d1beefb 4731 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4732 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4733 false);
9d1beefb 4734 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
4735
4736 /*
4737 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4738 * which do tlb flush out of mmu-lock should be serialized by
4739 * kvm->slots_lock otherwise tlb flush would be missed.
4740 */
4741 lockdep_assert_held(&kvm->slots_lock);
4742
4743 /*
4744 * We can flush all the TLBs out of the mmu lock without TLB
4745 * corruption since we just change the spte from writable to
4746 * readonly so that we only need to care the case of changing
4747 * spte from present to present (changing the spte from present
4748 * to nonpresent will flush all the TLBs immediately), in other
4749 * words, the only case we care is mmu_spte_update() where we
4750 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4751 * instead of PT_WRITABLE_MASK, that means it does not depend
4752 * on PT_WRITABLE_MASK anymore.
4753 */
d91ffee9
KH
4754 if (flush)
4755 kvm_flush_remote_tlbs(kvm);
6aa8b732 4756}
37a7d8b0 4757
3ea3b7fa 4758static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 4759 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
4760{
4761 u64 *sptep;
4762 struct rmap_iterator iter;
4763 int need_tlb_flush = 0;
ba049e93 4764 kvm_pfn_t pfn;
3ea3b7fa
WL
4765 struct kvm_mmu_page *sp;
4766
0d536790 4767restart:
018aabb5 4768 for_each_rmap_spte(rmap_head, &iter, sptep) {
3ea3b7fa
WL
4769 sp = page_header(__pa(sptep));
4770 pfn = spte_to_pfn(*sptep);
4771
4772 /*
decf6333
XG
4773 * We cannot do huge page mapping for indirect shadow pages,
4774 * which are found on the last rmap (level = 1) when not using
4775 * tdp; such shadow pages are synced with the page table in
4776 * the guest, and the guest page table is using 4K page size
4777 * mapping if the indirect sp has level = 1.
3ea3b7fa
WL
4778 */
4779 if (sp->role.direct &&
4780 !kvm_is_reserved_pfn(pfn) &&
4781 PageTransCompound(pfn_to_page(pfn))) {
4782 drop_spte(kvm, sptep);
3ea3b7fa 4783 need_tlb_flush = 1;
0d536790
XG
4784 goto restart;
4785 }
3ea3b7fa
WL
4786 }
4787
4788 return need_tlb_flush;
4789}
4790
4791void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 4792 const struct kvm_memory_slot *memslot)
3ea3b7fa 4793{
f36f3f28 4794 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 4795 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
4796 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4797 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
4798 spin_unlock(&kvm->mmu_lock);
4799}
4800
f4b4b180
KH
4801void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4802 struct kvm_memory_slot *memslot)
4803{
d77aa73c 4804 bool flush;
f4b4b180
KH
4805
4806 spin_lock(&kvm->mmu_lock);
d77aa73c 4807 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
4808 spin_unlock(&kvm->mmu_lock);
4809
4810 lockdep_assert_held(&kvm->slots_lock);
4811
4812 /*
4813 * It's also safe to flush TLBs out of mmu lock here as currently this
4814 * function is only used for dirty logging, in which case flushing TLB
4815 * out of mmu lock also guarantees no dirty pages will be lost in
4816 * dirty_bitmap.
4817 */
4818 if (flush)
4819 kvm_flush_remote_tlbs(kvm);
4820}
4821EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4822
4823void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4824 struct kvm_memory_slot *memslot)
4825{
d77aa73c 4826 bool flush;
f4b4b180
KH
4827
4828 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4829 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4830 false);
f4b4b180
KH
4831 spin_unlock(&kvm->mmu_lock);
4832
4833 /* see kvm_mmu_slot_remove_write_access */
4834 lockdep_assert_held(&kvm->slots_lock);
4835
4836 if (flush)
4837 kvm_flush_remote_tlbs(kvm);
4838}
4839EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4840
4841void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4842 struct kvm_memory_slot *memslot)
4843{
d77aa73c 4844 bool flush;
f4b4b180
KH
4845
4846 spin_lock(&kvm->mmu_lock);
d77aa73c 4847 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
4848 spin_unlock(&kvm->mmu_lock);
4849
4850 lockdep_assert_held(&kvm->slots_lock);
4851
4852 /* see kvm_mmu_slot_leaf_clear_dirty */
4853 if (flush)
4854 kvm_flush_remote_tlbs(kvm);
4855}
4856EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4857
e7d11c7a 4858#define BATCH_ZAP_PAGES 10
5304b8d3
XG
4859static void kvm_zap_obsolete_pages(struct kvm *kvm)
4860{
4861 struct kvm_mmu_page *sp, *node;
e7d11c7a 4862 int batch = 0;
5304b8d3
XG
4863
4864restart:
4865 list_for_each_entry_safe_reverse(sp, node,
4866 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
4867 int ret;
4868
5304b8d3
XG
4869 /*
4870 * No obsolete page exists before new created page since
4871 * active_mmu_pages is the FIFO list.
4872 */
4873 if (!is_obsolete_sp(kvm, sp))
4874 break;
4875
4876 /*
5304b8d3
XG
4877 * Since we are reversely walking the list and the invalid
4878 * list will be moved to the head, skip the invalid page
4879 * can help us to avoid the infinity list walking.
4880 */
4881 if (sp->role.invalid)
4882 continue;
4883
f34d251d
XG
4884 /*
4885 * Need not flush tlb since we only zap the sp with invalid
4886 * generation number.
4887 */
e7d11c7a 4888 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 4889 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 4890 batch = 0;
5304b8d3
XG
4891 goto restart;
4892 }
4893
365c8868
XG
4894 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4895 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
4896 batch += ret;
4897
4898 if (ret)
5304b8d3
XG
4899 goto restart;
4900 }
4901
f34d251d
XG
4902 /*
4903 * Should flush tlb before free page tables since lockless-walking
4904 * may use the pages.
4905 */
365c8868 4906 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
4907}
4908
4909/*
4910 * Fast invalidate all shadow pages and use lock-break technique
4911 * to zap obsolete pages.
4912 *
4913 * It's required when memslot is being deleted or VM is being
4914 * destroyed, in these cases, we should ensure that KVM MMU does
4915 * not use any resource of the being-deleted slot or all slots
4916 * after calling the function.
4917 */
4918void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4919{
4920 spin_lock(&kvm->mmu_lock);
35006126 4921 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
4922 kvm->arch.mmu_valid_gen++;
4923
f34d251d
XG
4924 /*
4925 * Notify all vcpus to reload its shadow page table
4926 * and flush TLB. Then all vcpus will switch to new
4927 * shadow page table with the new mmu_valid_gen.
4928 *
4929 * Note: we should do this under the protection of
4930 * mmu-lock, otherwise, vcpu would purge shadow page
4931 * but miss tlb flush.
4932 */
4933 kvm_reload_remote_mmus(kvm);
4934
5304b8d3
XG
4935 kvm_zap_obsolete_pages(kvm);
4936 spin_unlock(&kvm->mmu_lock);
4937}
4938
365c8868
XG
4939static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4940{
4941 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4942}
4943
54bf36aa 4944void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
f8f55942
XG
4945{
4946 /*
4947 * The very rare case: if the generation-number is round,
4948 * zap all shadow pages.
f8f55942 4949 */
54bf36aa 4950 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
a629df7e 4951 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 4952 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 4953 }
f8f55942
XG
4954}
4955
70534a73
DC
4956static unsigned long
4957mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4958{
4959 struct kvm *kvm;
1495f230 4960 int nr_to_scan = sc->nr_to_scan;
70534a73 4961 unsigned long freed = 0;
3ee16c81 4962
2f303b74 4963 spin_lock(&kvm_lock);
3ee16c81
IE
4964
4965 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4966 int idx;
d98ba053 4967 LIST_HEAD(invalid_list);
3ee16c81 4968
35f2d16b
TY
4969 /*
4970 * Never scan more than sc->nr_to_scan VM instances.
4971 * Will not hit this condition practically since we do not try
4972 * to shrink more than one VM and it is very unlikely to see
4973 * !n_used_mmu_pages so many times.
4974 */
4975 if (!nr_to_scan--)
4976 break;
19526396
GN
4977 /*
4978 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4979 * here. We may skip a VM instance errorneosly, but we do not
4980 * want to shrink a VM that only started to populate its MMU
4981 * anyway.
4982 */
365c8868
XG
4983 if (!kvm->arch.n_used_mmu_pages &&
4984 !kvm_has_zapped_obsolete_pages(kvm))
19526396 4985 continue;
19526396 4986
f656ce01 4987 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4988 spin_lock(&kvm->mmu_lock);
3ee16c81 4989
365c8868
XG
4990 if (kvm_has_zapped_obsolete_pages(kvm)) {
4991 kvm_mmu_commit_zap_page(kvm,
4992 &kvm->arch.zapped_obsolete_pages);
4993 goto unlock;
4994 }
4995
70534a73
DC
4996 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4997 freed++;
d98ba053 4998 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4999
365c8868 5000unlock:
3ee16c81 5001 spin_unlock(&kvm->mmu_lock);
f656ce01 5002 srcu_read_unlock(&kvm->srcu, idx);
19526396 5003
70534a73
DC
5004 /*
5005 * unfair on small ones
5006 * per-vm shrinkers cry out
5007 * sadness comes quickly
5008 */
19526396
GN
5009 list_move_tail(&kvm->vm_list, &vm_list);
5010 break;
3ee16c81 5011 }
3ee16c81 5012
2f303b74 5013 spin_unlock(&kvm_lock);
70534a73 5014 return freed;
70534a73
DC
5015}
5016
5017static unsigned long
5018mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5019{
45221ab6 5020 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
5021}
5022
5023static struct shrinker mmu_shrinker = {
70534a73
DC
5024 .count_objects = mmu_shrink_count,
5025 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
5026 .seeks = DEFAULT_SEEKS * 10,
5027};
5028
2ddfd20e 5029static void mmu_destroy_caches(void)
b5a33a75 5030{
53c07b18
XG
5031 if (pte_list_desc_cache)
5032 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
5033 if (mmu_page_header_cache)
5034 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
5035}
5036
5037int kvm_mmu_module_init(void)
5038{
53c07b18
XG
5039 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5040 sizeof(struct pte_list_desc),
20c2df83 5041 0, 0, NULL);
53c07b18 5042 if (!pte_list_desc_cache)
b5a33a75
AK
5043 goto nomem;
5044
d3d25b04
AK
5045 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5046 sizeof(struct kvm_mmu_page),
20c2df83 5047 0, 0, NULL);
d3d25b04
AK
5048 if (!mmu_page_header_cache)
5049 goto nomem;
5050
908c7f19 5051 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
45bf21a8
WY
5052 goto nomem;
5053
3ee16c81
IE
5054 register_shrinker(&mmu_shrinker);
5055
b5a33a75
AK
5056 return 0;
5057
5058nomem:
3ee16c81 5059 mmu_destroy_caches();
b5a33a75
AK
5060 return -ENOMEM;
5061}
5062
3ad82a7e
ZX
5063/*
5064 * Caculate mmu pages needed for kvm.
5065 */
5066unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5067{
3ad82a7e
ZX
5068 unsigned int nr_mmu_pages;
5069 unsigned int nr_pages = 0;
bc6678a3 5070 struct kvm_memslots *slots;
be6ba0f0 5071 struct kvm_memory_slot *memslot;
9da0e4d5 5072 int i;
3ad82a7e 5073
9da0e4d5
PB
5074 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5075 slots = __kvm_memslots(kvm, i);
90d83dc3 5076
9da0e4d5
PB
5077 kvm_for_each_memslot(memslot, slots)
5078 nr_pages += memslot->npages;
5079 }
3ad82a7e
ZX
5080
5081 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5082 nr_mmu_pages = max(nr_mmu_pages,
9da0e4d5 5083 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
5084
5085 return nr_mmu_pages;
5086}
5087
c42fffe3
XG
5088void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5089{
95f93af4 5090 kvm_mmu_unload(vcpu);
c42fffe3
XG
5091 free_mmu_pages(vcpu);
5092 mmu_free_memory_caches(vcpu);
b034cf01
XG
5093}
5094
b034cf01
XG
5095void kvm_mmu_module_exit(void)
5096{
5097 mmu_destroy_caches();
5098 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5099 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
5100 mmu_audit_disable();
5101}
This page took 1.100761 seconds and 5 git commands to generate.