KVM: MMU: cleanup FNAME(page_fault)
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c 62#undef MMU_DEBUG
37a7d8b0
AK
63
64#ifdef MMU_DEBUG
65
66#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69#else
70
71#define pgprintk(x...) do { } while (0)
72#define rmap_printk(x...) do { } while (0)
73
74#endif
75
8b1fe17c 76#ifdef MMU_DEBUG
476bc001 77static bool dbg = 0;
6ada8cca 78module_param(dbg, bool, 0644);
37a7d8b0 79#endif
6aa8b732 80
d6c69ee9
YD
81#ifndef MMU_DEBUG
82#define ASSERT(x) do { } while (0)
83#else
6aa8b732
AK
84#define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
d6c69ee9 89#endif
6aa8b732 90
957ed9ef
XG
91#define PTE_PREFETCH_NUM 8
92
00763e41 93#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
94#define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
6aa8b732
AK
96#define PT64_LEVEL_BITS 9
97
98#define PT64_LEVEL_SHIFT(level) \
d77c26fc 99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 100
6aa8b732
AK
101#define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105#define PT32_LEVEL_BITS 10
106
107#define PT32_LEVEL_SHIFT(level) \
d77c26fc 108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 109
e04da980
JR
110#define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
113
114#define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
27aba766 118#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
119#define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
121#define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124#define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
127
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
79539cec
AK
135#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
6aa8b732 137
fe135d2c
AK
138#define ACC_EXEC_MASK 1
139#define ACC_WRITE_MASK PT_WRITABLE_MASK
140#define ACC_USER_MASK PT_USER_MASK
141#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
90bb6fc5
AK
143#include <trace/events/kvm.h>
144
07420171
AK
145#define CREATE_TRACE_POINTS
146#include "mmutrace.h"
147
49fde340
XG
148#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 150
135f8c2b
AK
151#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
220f773a
TY
153/* make pte_list_desc fit well in cache line */
154#define PTE_LIST_EXT 3
155
53c07b18
XG
156struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
cd4a4e53
AK
159};
160
2d11123a
AK
161struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
2d11123a 164 u64 *sptep;
dd3bfd59 165 int level;
2d11123a
AK
166 unsigned index;
167};
168
169#define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
c2a2ac2b
XG
174#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
53c07b18 180static struct kmem_cache *pte_list_desc_cache;
d3d25b04 181static struct kmem_cache *mmu_page_header_cache;
45221ab6 182static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 183
7b52345e
SY
184static u64 __read_mostly shadow_nx_mask;
185static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186static u64 __read_mostly shadow_user_mask;
187static u64 __read_mostly shadow_accessed_mask;
188static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
189static u64 __read_mostly shadow_mmio_mask;
190
191static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 192static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
193
194void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195{
196 shadow_mmio_mask = mmio_mask;
197}
198EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201{
202 access &= ACC_WRITE_MASK | ACC_USER_MASK;
203
4f022648 204 trace_mark_mmio_spte(sptep, gfn, access);
ce88decf
XG
205 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
206}
207
208static bool is_mmio_spte(u64 spte)
209{
210 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
211}
212
213static gfn_t get_mmio_spte_gfn(u64 spte)
214{
215 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
216}
217
218static unsigned get_mmio_spte_access(u64 spte)
219{
220 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
221}
222
223static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
224{
225 if (unlikely(is_noslot_pfn(pfn))) {
226 mark_mmio_spte(sptep, gfn, access);
227 return true;
228 }
229
230 return false;
231}
c7addb90 232
82725b20
DE
233static inline u64 rsvd_bits(int s, int e)
234{
235 return ((1ULL << (e - s + 1)) - 1) << s;
236}
237
7b52345e 238void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 239 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
240{
241 shadow_user_mask = user_mask;
242 shadow_accessed_mask = accessed_mask;
243 shadow_dirty_mask = dirty_mask;
244 shadow_nx_mask = nx_mask;
245 shadow_x_mask = x_mask;
246}
247EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
248
6aa8b732
AK
249static int is_cpuid_PSE36(void)
250{
251 return 1;
252}
253
73b1087e
AK
254static int is_nx(struct kvm_vcpu *vcpu)
255{
f6801dff 256 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
257}
258
c7addb90
AK
259static int is_shadow_present_pte(u64 pte)
260{
ce88decf 261 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
262}
263
05da4558
MT
264static int is_large_pte(u64 pte)
265{
266 return pte & PT_PAGE_SIZE_MASK;
267}
268
43a3795a 269static int is_dirty_gpte(unsigned long pte)
e3c5e7ec 270{
439e218a 271 return pte & PT_DIRTY_MASK;
e3c5e7ec
AK
272}
273
43a3795a 274static int is_rmap_spte(u64 pte)
cd4a4e53 275{
4b1a80fa 276 return is_shadow_present_pte(pte);
cd4a4e53
AK
277}
278
776e6633
MT
279static int is_last_spte(u64 pte, int level)
280{
281 if (level == PT_PAGE_TABLE_LEVEL)
282 return 1;
852e3c19 283 if (is_large_pte(pte))
776e6633
MT
284 return 1;
285 return 0;
286}
287
35149e21 288static pfn_t spte_to_pfn(u64 pte)
0b49ea86 289{
35149e21 290 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
291}
292
da928521
AK
293static gfn_t pse36_gfn_delta(u32 gpte)
294{
295 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
296
297 return (gpte & PT32_DIR_PSE36_MASK) << shift;
298}
299
603e0651 300#ifdef CONFIG_X86_64
d555c333 301static void __set_spte(u64 *sptep, u64 spte)
e663ee64 302{
603e0651 303 *sptep = spte;
e663ee64
AK
304}
305
603e0651 306static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 307{
603e0651
XG
308 *sptep = spte;
309}
310
311static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
312{
313 return xchg(sptep, spte);
314}
c2a2ac2b
XG
315
316static u64 __get_spte_lockless(u64 *sptep)
317{
318 return ACCESS_ONCE(*sptep);
319}
ce88decf
XG
320
321static bool __check_direct_spte_mmio_pf(u64 spte)
322{
323 /* It is valid if the spte is zapped. */
324 return spte == 0ull;
325}
a9221dd5 326#else
603e0651
XG
327union split_spte {
328 struct {
329 u32 spte_low;
330 u32 spte_high;
331 };
332 u64 spte;
333};
a9221dd5 334
c2a2ac2b
XG
335static void count_spte_clear(u64 *sptep, u64 spte)
336{
337 struct kvm_mmu_page *sp = page_header(__pa(sptep));
338
339 if (is_shadow_present_pte(spte))
340 return;
341
342 /* Ensure the spte is completely set before we increase the count */
343 smp_wmb();
344 sp->clear_spte_count++;
345}
346
603e0651
XG
347static void __set_spte(u64 *sptep, u64 spte)
348{
349 union split_spte *ssptep, sspte;
a9221dd5 350
603e0651
XG
351 ssptep = (union split_spte *)sptep;
352 sspte = (union split_spte)spte;
353
354 ssptep->spte_high = sspte.spte_high;
355
356 /*
357 * If we map the spte from nonpresent to present, We should store
358 * the high bits firstly, then set present bit, so cpu can not
359 * fetch this spte while we are setting the spte.
360 */
361 smp_wmb();
362
363 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
364}
365
603e0651
XG
366static void __update_clear_spte_fast(u64 *sptep, u64 spte)
367{
368 union split_spte *ssptep, sspte;
369
370 ssptep = (union split_spte *)sptep;
371 sspte = (union split_spte)spte;
372
373 ssptep->spte_low = sspte.spte_low;
374
375 /*
376 * If we map the spte from present to nonpresent, we should clear
377 * present bit firstly to avoid vcpu fetch the old high bits.
378 */
379 smp_wmb();
380
381 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 382 count_spte_clear(sptep, spte);
603e0651
XG
383}
384
385static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
386{
387 union split_spte *ssptep, sspte, orig;
388
389 ssptep = (union split_spte *)sptep;
390 sspte = (union split_spte)spte;
391
392 /* xchg acts as a barrier before the setting of the high bits */
393 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
394 orig.spte_high = ssptep->spte_high;
395 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 396 count_spte_clear(sptep, spte);
603e0651
XG
397
398 return orig.spte;
399}
c2a2ac2b
XG
400
401/*
402 * The idea using the light way get the spte on x86_32 guest is from
403 * gup_get_pte(arch/x86/mm/gup.c).
404 * The difference is we can not catch the spte tlb flush if we leave
405 * guest mode, so we emulate it by increase clear_spte_count when spte
406 * is cleared.
407 */
408static u64 __get_spte_lockless(u64 *sptep)
409{
410 struct kvm_mmu_page *sp = page_header(__pa(sptep));
411 union split_spte spte, *orig = (union split_spte *)sptep;
412 int count;
413
414retry:
415 count = sp->clear_spte_count;
416 smp_rmb();
417
418 spte.spte_low = orig->spte_low;
419 smp_rmb();
420
421 spte.spte_high = orig->spte_high;
422 smp_rmb();
423
424 if (unlikely(spte.spte_low != orig->spte_low ||
425 count != sp->clear_spte_count))
426 goto retry;
427
428 return spte.spte;
429}
ce88decf
XG
430
431static bool __check_direct_spte_mmio_pf(u64 spte)
432{
433 union split_spte sspte = (union split_spte)spte;
434 u32 high_mmio_mask = shadow_mmio_mask >> 32;
435
436 /* It is valid if the spte is zapped. */
437 if (spte == 0ull)
438 return true;
439
440 /* It is valid if the spte is being zapped. */
441 if (sspte.spte_low == 0ull &&
442 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
443 return true;
444
445 return false;
446}
603e0651
XG
447#endif
448
c7ba5b48
XG
449static bool spte_is_locklessly_modifiable(u64 spte)
450{
451 return !(~spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE));
452}
453
8672b721
XG
454static bool spte_has_volatile_bits(u64 spte)
455{
c7ba5b48
XG
456 /*
457 * Always atomicly update spte if it can be updated
458 * out of mmu-lock, it can ensure dirty bit is not lost,
459 * also, it can help us to get a stable is_writable_pte()
460 * to ensure tlb flush is not missed.
461 */
462 if (spte_is_locklessly_modifiable(spte))
463 return true;
464
8672b721
XG
465 if (!shadow_accessed_mask)
466 return false;
467
468 if (!is_shadow_present_pte(spte))
469 return false;
470
4132779b
XG
471 if ((spte & shadow_accessed_mask) &&
472 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
473 return false;
474
475 return true;
476}
477
4132779b
XG
478static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
479{
480 return (old_spte & bit_mask) && !(new_spte & bit_mask);
481}
482
1df9f2dc
XG
483/* Rules for using mmu_spte_set:
484 * Set the sptep from nonpresent to present.
485 * Note: the sptep being assigned *must* be either not present
486 * or in a state where the hardware will not attempt to update
487 * the spte.
488 */
489static void mmu_spte_set(u64 *sptep, u64 new_spte)
490{
491 WARN_ON(is_shadow_present_pte(*sptep));
492 __set_spte(sptep, new_spte);
493}
494
495/* Rules for using mmu_spte_update:
496 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
497 *
498 * Whenever we overwrite a writable spte with a read-only one we
499 * should flush remote TLBs. Otherwise rmap_write_protect
500 * will find a read-only spte, even though the writable spte
501 * might be cached on a CPU's TLB, the return value indicates this
502 * case.
1df9f2dc 503 */
6e7d0354 504static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 505{
c7ba5b48 506 u64 old_spte = *sptep;
6e7d0354 507 bool ret = false;
4132779b
XG
508
509 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 510
6e7d0354
XG
511 if (!is_shadow_present_pte(old_spte)) {
512 mmu_spte_set(sptep, new_spte);
513 return ret;
514 }
4132779b 515
c7ba5b48 516 if (!spte_has_volatile_bits(old_spte))
603e0651 517 __update_clear_spte_fast(sptep, new_spte);
4132779b 518 else
603e0651 519 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 520
c7ba5b48
XG
521 /*
522 * For the spte updated out of mmu-lock is safe, since
523 * we always atomicly update it, see the comments in
524 * spte_has_volatile_bits().
525 */
6e7d0354
XG
526 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
527 ret = true;
528
4132779b 529 if (!shadow_accessed_mask)
6e7d0354 530 return ret;
4132779b
XG
531
532 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
533 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
534 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
535 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
536
537 return ret;
b79b93f9
AK
538}
539
1df9f2dc
XG
540/*
541 * Rules for using mmu_spte_clear_track_bits:
542 * It sets the sptep from present to nonpresent, and track the
543 * state bits, it is used to clear the last level sptep.
544 */
545static int mmu_spte_clear_track_bits(u64 *sptep)
546{
547 pfn_t pfn;
548 u64 old_spte = *sptep;
549
550 if (!spte_has_volatile_bits(old_spte))
603e0651 551 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 552 else
603e0651 553 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
554
555 if (!is_rmap_spte(old_spte))
556 return 0;
557
558 pfn = spte_to_pfn(old_spte);
86fde74c
XG
559
560 /*
561 * KVM does not hold the refcount of the page used by
562 * kvm mmu, before reclaiming the page, we should
563 * unmap it from mmu first.
564 */
565 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
566
1df9f2dc
XG
567 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
568 kvm_set_pfn_accessed(pfn);
569 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
570 kvm_set_pfn_dirty(pfn);
571 return 1;
572}
573
574/*
575 * Rules for using mmu_spte_clear_no_track:
576 * Directly clear spte without caring the state bits of sptep,
577 * it is used to set the upper level spte.
578 */
579static void mmu_spte_clear_no_track(u64 *sptep)
580{
603e0651 581 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
582}
583
c2a2ac2b
XG
584static u64 mmu_spte_get_lockless(u64 *sptep)
585{
586 return __get_spte_lockless(sptep);
587}
588
589static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
590{
c142786c
AK
591 /*
592 * Prevent page table teardown by making any free-er wait during
593 * kvm_flush_remote_tlbs() IPI to all active vcpus.
594 */
595 local_irq_disable();
596 vcpu->mode = READING_SHADOW_PAGE_TABLES;
597 /*
598 * Make sure a following spte read is not reordered ahead of the write
599 * to vcpu->mode.
600 */
601 smp_mb();
c2a2ac2b
XG
602}
603
604static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
605{
c142786c
AK
606 /*
607 * Make sure the write to vcpu->mode is not reordered in front of
608 * reads to sptes. If it does, kvm_commit_zap_page() can see us
609 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
610 */
611 smp_mb();
612 vcpu->mode = OUTSIDE_GUEST_MODE;
613 local_irq_enable();
c2a2ac2b
XG
614}
615
e2dec939 616static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 617 struct kmem_cache *base_cache, int min)
714b93da
AK
618{
619 void *obj;
620
621 if (cache->nobjs >= min)
e2dec939 622 return 0;
714b93da 623 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 624 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 625 if (!obj)
e2dec939 626 return -ENOMEM;
714b93da
AK
627 cache->objects[cache->nobjs++] = obj;
628 }
e2dec939 629 return 0;
714b93da
AK
630}
631
f759e2b4
XG
632static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
633{
634 return cache->nobjs;
635}
636
e8ad9a70
XG
637static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
638 struct kmem_cache *cache)
714b93da
AK
639{
640 while (mc->nobjs)
e8ad9a70 641 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
642}
643
c1158e63 644static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 645 int min)
c1158e63 646{
842f22ed 647 void *page;
c1158e63
AK
648
649 if (cache->nobjs >= min)
650 return 0;
651 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 652 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
653 if (!page)
654 return -ENOMEM;
842f22ed 655 cache->objects[cache->nobjs++] = page;
c1158e63
AK
656 }
657 return 0;
658}
659
660static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
661{
662 while (mc->nobjs)
c4d198d5 663 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
664}
665
2e3e5882 666static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 667{
e2dec939
AK
668 int r;
669
53c07b18 670 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 671 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
672 if (r)
673 goto out;
ad312c7c 674 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
675 if (r)
676 goto out;
ad312c7c 677 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 678 mmu_page_header_cache, 4);
e2dec939
AK
679out:
680 return r;
714b93da
AK
681}
682
683static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
684{
53c07b18
XG
685 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
686 pte_list_desc_cache);
ad312c7c 687 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
688 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
689 mmu_page_header_cache);
714b93da
AK
690}
691
80feb89a 692static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
693{
694 void *p;
695
696 BUG_ON(!mc->nobjs);
697 p = mc->objects[--mc->nobjs];
714b93da
AK
698 return p;
699}
700
53c07b18 701static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 702{
80feb89a 703 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
704}
705
53c07b18 706static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 707{
53c07b18 708 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
709}
710
2032a93d
LJ
711static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
712{
713 if (!sp->role.direct)
714 return sp->gfns[index];
715
716 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
717}
718
719static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
720{
721 if (sp->role.direct)
722 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
723 else
724 sp->gfns[index] = gfn;
725}
726
05da4558 727/*
d4dbf470
TY
728 * Return the pointer to the large page information for a given gfn,
729 * handling slots that are not large page aligned.
05da4558 730 */
d4dbf470
TY
731static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
732 struct kvm_memory_slot *slot,
733 int level)
05da4558
MT
734{
735 unsigned long idx;
736
fb03cb6f 737 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 738 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
739}
740
741static void account_shadowed(struct kvm *kvm, gfn_t gfn)
742{
d25797b2 743 struct kvm_memory_slot *slot;
d4dbf470 744 struct kvm_lpage_info *linfo;
d25797b2 745 int i;
05da4558 746
a1f4d395 747 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
748 for (i = PT_DIRECTORY_LEVEL;
749 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
750 linfo = lpage_info_slot(gfn, slot, i);
751 linfo->write_count += 1;
d25797b2 752 }
332b207d 753 kvm->arch.indirect_shadow_pages++;
05da4558
MT
754}
755
756static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
757{
d25797b2 758 struct kvm_memory_slot *slot;
d4dbf470 759 struct kvm_lpage_info *linfo;
d25797b2 760 int i;
05da4558 761
a1f4d395 762 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
763 for (i = PT_DIRECTORY_LEVEL;
764 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
765 linfo = lpage_info_slot(gfn, slot, i);
766 linfo->write_count -= 1;
767 WARN_ON(linfo->write_count < 0);
d25797b2 768 }
332b207d 769 kvm->arch.indirect_shadow_pages--;
05da4558
MT
770}
771
d25797b2
JR
772static int has_wrprotected_page(struct kvm *kvm,
773 gfn_t gfn,
774 int level)
05da4558 775{
2843099f 776 struct kvm_memory_slot *slot;
d4dbf470 777 struct kvm_lpage_info *linfo;
05da4558 778
a1f4d395 779 slot = gfn_to_memslot(kvm, gfn);
05da4558 780 if (slot) {
d4dbf470
TY
781 linfo = lpage_info_slot(gfn, slot, level);
782 return linfo->write_count;
05da4558
MT
783 }
784
785 return 1;
786}
787
d25797b2 788static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 789{
8f0b1ab6 790 unsigned long page_size;
d25797b2 791 int i, ret = 0;
05da4558 792
8f0b1ab6 793 page_size = kvm_host_page_size(kvm, gfn);
05da4558 794
d25797b2
JR
795 for (i = PT_PAGE_TABLE_LEVEL;
796 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
797 if (page_size >= KVM_HPAGE_SIZE(i))
798 ret = i;
799 else
800 break;
801 }
802
4c2155ce 803 return ret;
05da4558
MT
804}
805
5d163b1c
XG
806static struct kvm_memory_slot *
807gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
808 bool no_dirty_log)
05da4558
MT
809{
810 struct kvm_memory_slot *slot;
5d163b1c
XG
811
812 slot = gfn_to_memslot(vcpu->kvm, gfn);
813 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
814 (no_dirty_log && slot->dirty_bitmap))
815 slot = NULL;
816
817 return slot;
818}
819
820static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
821{
a0a8eaba 822 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
823}
824
825static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
826{
827 int host_level, level, max_level;
05da4558 828
d25797b2
JR
829 host_level = host_mapping_level(vcpu->kvm, large_gfn);
830
831 if (host_level == PT_PAGE_TABLE_LEVEL)
832 return host_level;
833
878403b7
SY
834 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
835 kvm_x86_ops->get_lpage_level() : host_level;
836
837 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
838 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
839 break;
d25797b2
JR
840
841 return level - 1;
05da4558
MT
842}
843
290fc38d 844/*
53c07b18 845 * Pte mapping structures:
cd4a4e53 846 *
53c07b18 847 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 848 *
53c07b18
XG
849 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
850 * pte_list_desc containing more mappings.
53a27b39 851 *
53c07b18 852 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
853 * the spte was not added.
854 *
cd4a4e53 855 */
53c07b18
XG
856static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
857 unsigned long *pte_list)
cd4a4e53 858{
53c07b18 859 struct pte_list_desc *desc;
53a27b39 860 int i, count = 0;
cd4a4e53 861
53c07b18
XG
862 if (!*pte_list) {
863 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
864 *pte_list = (unsigned long)spte;
865 } else if (!(*pte_list & 1)) {
866 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
867 desc = mmu_alloc_pte_list_desc(vcpu);
868 desc->sptes[0] = (u64 *)*pte_list;
d555c333 869 desc->sptes[1] = spte;
53c07b18 870 *pte_list = (unsigned long)desc | 1;
cb16a7b3 871 ++count;
cd4a4e53 872 } else {
53c07b18
XG
873 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
874 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
875 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 876 desc = desc->more;
53c07b18 877 count += PTE_LIST_EXT;
53a27b39 878 }
53c07b18
XG
879 if (desc->sptes[PTE_LIST_EXT-1]) {
880 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
881 desc = desc->more;
882 }
d555c333 883 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 884 ++count;
d555c333 885 desc->sptes[i] = spte;
cd4a4e53 886 }
53a27b39 887 return count;
cd4a4e53
AK
888}
889
53c07b18
XG
890static void
891pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
892 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
893{
894 int j;
895
53c07b18 896 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 897 ;
d555c333
AK
898 desc->sptes[i] = desc->sptes[j];
899 desc->sptes[j] = NULL;
cd4a4e53
AK
900 if (j != 0)
901 return;
902 if (!prev_desc && !desc->more)
53c07b18 903 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
904 else
905 if (prev_desc)
906 prev_desc->more = desc->more;
907 else
53c07b18
XG
908 *pte_list = (unsigned long)desc->more | 1;
909 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
910}
911
53c07b18 912static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 913{
53c07b18
XG
914 struct pte_list_desc *desc;
915 struct pte_list_desc *prev_desc;
cd4a4e53
AK
916 int i;
917
53c07b18
XG
918 if (!*pte_list) {
919 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 920 BUG();
53c07b18
XG
921 } else if (!(*pte_list & 1)) {
922 rmap_printk("pte_list_remove: %p 1->0\n", spte);
923 if ((u64 *)*pte_list != spte) {
924 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
925 BUG();
926 }
53c07b18 927 *pte_list = 0;
cd4a4e53 928 } else {
53c07b18
XG
929 rmap_printk("pte_list_remove: %p many->many\n", spte);
930 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
931 prev_desc = NULL;
932 while (desc) {
53c07b18 933 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 934 if (desc->sptes[i] == spte) {
53c07b18 935 pte_list_desc_remove_entry(pte_list,
714b93da 936 desc, i,
cd4a4e53
AK
937 prev_desc);
938 return;
939 }
940 prev_desc = desc;
941 desc = desc->more;
942 }
53c07b18 943 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
944 BUG();
945 }
946}
947
67052b35
XG
948typedef void (*pte_list_walk_fn) (u64 *spte);
949static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
950{
951 struct pte_list_desc *desc;
952 int i;
953
954 if (!*pte_list)
955 return;
956
957 if (!(*pte_list & 1))
958 return fn((u64 *)*pte_list);
959
960 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
961 while (desc) {
962 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
963 fn(desc->sptes[i]);
964 desc = desc->more;
965 }
966}
967
9373e2c0 968static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 969 struct kvm_memory_slot *slot)
53c07b18 970{
77d11309 971 unsigned long idx;
53c07b18 972
77d11309 973 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 974 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
975}
976
9b9b1492
TY
977/*
978 * Take gfn and return the reverse mapping to it.
979 */
980static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
981{
982 struct kvm_memory_slot *slot;
983
984 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 985 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
986}
987
f759e2b4
XG
988static bool rmap_can_add(struct kvm_vcpu *vcpu)
989{
990 struct kvm_mmu_memory_cache *cache;
991
992 cache = &vcpu->arch.mmu_pte_list_desc_cache;
993 return mmu_memory_cache_free_objects(cache);
994}
995
53c07b18
XG
996static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
997{
998 struct kvm_mmu_page *sp;
999 unsigned long *rmapp;
1000
53c07b18
XG
1001 sp = page_header(__pa(spte));
1002 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1003 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1004 return pte_list_add(vcpu, spte, rmapp);
1005}
1006
53c07b18
XG
1007static void rmap_remove(struct kvm *kvm, u64 *spte)
1008{
1009 struct kvm_mmu_page *sp;
1010 gfn_t gfn;
1011 unsigned long *rmapp;
1012
1013 sp = page_header(__pa(spte));
1014 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1015 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1016 pte_list_remove(spte, rmapp);
1017}
1018
1e3f42f0
TY
1019/*
1020 * Used by the following functions to iterate through the sptes linked by a
1021 * rmap. All fields are private and not assumed to be used outside.
1022 */
1023struct rmap_iterator {
1024 /* private fields */
1025 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1026 int pos; /* index of the sptep */
1027};
1028
1029/*
1030 * Iteration must be started by this function. This should also be used after
1031 * removing/dropping sptes from the rmap link because in such cases the
1032 * information in the itererator may not be valid.
1033 *
1034 * Returns sptep if found, NULL otherwise.
1035 */
1036static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1037{
1038 if (!rmap)
1039 return NULL;
1040
1041 if (!(rmap & 1)) {
1042 iter->desc = NULL;
1043 return (u64 *)rmap;
1044 }
1045
1046 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1047 iter->pos = 0;
1048 return iter->desc->sptes[iter->pos];
1049}
1050
1051/*
1052 * Must be used with a valid iterator: e.g. after rmap_get_first().
1053 *
1054 * Returns sptep if found, NULL otherwise.
1055 */
1056static u64 *rmap_get_next(struct rmap_iterator *iter)
1057{
1058 if (iter->desc) {
1059 if (iter->pos < PTE_LIST_EXT - 1) {
1060 u64 *sptep;
1061
1062 ++iter->pos;
1063 sptep = iter->desc->sptes[iter->pos];
1064 if (sptep)
1065 return sptep;
1066 }
1067
1068 iter->desc = iter->desc->more;
1069
1070 if (iter->desc) {
1071 iter->pos = 0;
1072 /* desc->sptes[0] cannot be NULL */
1073 return iter->desc->sptes[iter->pos];
1074 }
1075 }
1076
1077 return NULL;
1078}
1079
c3707958 1080static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1081{
1df9f2dc 1082 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1083 rmap_remove(kvm, sptep);
be38d276
AK
1084}
1085
8e22f955
XG
1086
1087static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1088{
1089 if (is_large_pte(*sptep)) {
1090 WARN_ON(page_header(__pa(sptep))->role.level ==
1091 PT_PAGE_TABLE_LEVEL);
1092 drop_spte(kvm, sptep);
1093 --kvm->stat.lpages;
1094 return true;
1095 }
1096
1097 return false;
1098}
1099
1100static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1101{
1102 if (__drop_large_spte(vcpu->kvm, sptep))
1103 kvm_flush_remote_tlbs(vcpu->kvm);
1104}
1105
1106/*
49fde340
XG
1107 * Write-protect on the specified @sptep, @pt_protect indicates whether
1108 * spte writ-protection is caused by protecting shadow page table.
1109 * @flush indicates whether tlb need be flushed.
1110 *
1111 * Note: write protection is difference between drity logging and spte
1112 * protection:
1113 * - for dirty logging, the spte can be set to writable at anytime if
1114 * its dirty bitmap is properly set.
1115 * - for spte protection, the spte can be writable only after unsync-ing
1116 * shadow page.
8e22f955
XG
1117 *
1118 * Return true if the spte is dropped.
1119 */
49fde340
XG
1120static bool
1121spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
d13bc5b5
XG
1122{
1123 u64 spte = *sptep;
1124
49fde340
XG
1125 if (!is_writable_pte(spte) &&
1126 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1127 return false;
1128
1129 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1130
49fde340
XG
1131 if (__drop_large_spte(kvm, sptep)) {
1132 *flush |= true;
d13bc5b5 1133 return true;
49fde340 1134 }
d13bc5b5 1135
49fde340
XG
1136 if (pt_protect)
1137 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1138 spte = spte & ~PT_WRITABLE_MASK;
49fde340
XG
1139
1140 *flush |= mmu_spte_update(sptep, spte);
d13bc5b5
XG
1141 return false;
1142}
1143
49fde340
XG
1144static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1145 int level, bool pt_protect)
98348e95 1146{
1e3f42f0
TY
1147 u64 *sptep;
1148 struct rmap_iterator iter;
d13bc5b5 1149 bool flush = false;
374cbac0 1150
1e3f42f0
TY
1151 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1152 BUG_ON(!(*sptep & PT_PRESENT_MASK));
49fde340 1153 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1e3f42f0 1154 sptep = rmap_get_first(*rmapp, &iter);
d13bc5b5 1155 continue;
caa5b8a5 1156 }
a0ed4607 1157
d13bc5b5 1158 sptep = rmap_get_next(&iter);
374cbac0 1159 }
855149aa 1160
d13bc5b5 1161 return flush;
a0ed4607
TY
1162}
1163
5dc99b23
TY
1164/**
1165 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1166 * @kvm: kvm instance
1167 * @slot: slot to protect
1168 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1169 * @mask: indicates which pages we should protect
1170 *
1171 * Used when we do not need to care about huge page mappings: e.g. during dirty
1172 * logging we do not have any such mappings.
1173 */
1174void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1175 struct kvm_memory_slot *slot,
1176 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1177{
1178 unsigned long *rmapp;
a0ed4607 1179
5dc99b23 1180 while (mask) {
65fbe37c
TY
1181 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1182 PT_PAGE_TABLE_LEVEL, slot);
49fde340 1183 __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL, false);
05da4558 1184
5dc99b23
TY
1185 /* clear the first set bit */
1186 mask &= mask - 1;
1187 }
374cbac0
AK
1188}
1189
2f84569f 1190static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1191{
1192 struct kvm_memory_slot *slot;
5dc99b23
TY
1193 unsigned long *rmapp;
1194 int i;
2f84569f 1195 bool write_protected = false;
95d4c16c
TY
1196
1197 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1198
1199 for (i = PT_PAGE_TABLE_LEVEL;
1200 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1201 rmapp = __gfn_to_rmap(gfn, i, slot);
49fde340 1202 write_protected |= __rmap_write_protect(kvm, rmapp, i, true);
5dc99b23
TY
1203 }
1204
1205 return write_protected;
95d4c16c
TY
1206}
1207
8a8365c5 1208static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1209 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1210{
1e3f42f0
TY
1211 u64 *sptep;
1212 struct rmap_iterator iter;
e930bffe
AA
1213 int need_tlb_flush = 0;
1214
1e3f42f0
TY
1215 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1216 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1217 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1218
1219 drop_spte(kvm, sptep);
e930bffe
AA
1220 need_tlb_flush = 1;
1221 }
1e3f42f0 1222
e930bffe
AA
1223 return need_tlb_flush;
1224}
1225
8a8365c5 1226static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1227 struct kvm_memory_slot *slot, unsigned long data)
3da0dd43 1228{
1e3f42f0
TY
1229 u64 *sptep;
1230 struct rmap_iterator iter;
3da0dd43 1231 int need_flush = 0;
1e3f42f0 1232 u64 new_spte;
3da0dd43
IE
1233 pte_t *ptep = (pte_t *)data;
1234 pfn_t new_pfn;
1235
1236 WARN_ON(pte_huge(*ptep));
1237 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1238
1239 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1240 BUG_ON(!is_shadow_present_pte(*sptep));
1241 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1242
3da0dd43 1243 need_flush = 1;
1e3f42f0 1244
3da0dd43 1245 if (pte_write(*ptep)) {
1e3f42f0
TY
1246 drop_spte(kvm, sptep);
1247 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1248 } else {
1e3f42f0 1249 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1250 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1251
1252 new_spte &= ~PT_WRITABLE_MASK;
1253 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1254 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1255
1256 mmu_spte_clear_track_bits(sptep);
1257 mmu_spte_set(sptep, new_spte);
1258 sptep = rmap_get_next(&iter);
3da0dd43
IE
1259 }
1260 }
1e3f42f0 1261
3da0dd43
IE
1262 if (need_flush)
1263 kvm_flush_remote_tlbs(kvm);
1264
1265 return 0;
1266}
1267
84504ef3
TY
1268static int kvm_handle_hva_range(struct kvm *kvm,
1269 unsigned long start,
1270 unsigned long end,
1271 unsigned long data,
1272 int (*handler)(struct kvm *kvm,
1273 unsigned long *rmapp,
048212d0 1274 struct kvm_memory_slot *slot,
84504ef3 1275 unsigned long data))
e930bffe 1276{
be6ba0f0 1277 int j;
f395302e 1278 int ret = 0;
bc6678a3 1279 struct kvm_memslots *slots;
be6ba0f0 1280 struct kvm_memory_slot *memslot;
bc6678a3 1281
90d83dc3 1282 slots = kvm_memslots(kvm);
e930bffe 1283
be6ba0f0 1284 kvm_for_each_memslot(memslot, slots) {
84504ef3 1285 unsigned long hva_start, hva_end;
bcd3ef58 1286 gfn_t gfn_start, gfn_end;
e930bffe 1287
84504ef3
TY
1288 hva_start = max(start, memslot->userspace_addr);
1289 hva_end = min(end, memslot->userspace_addr +
1290 (memslot->npages << PAGE_SHIFT));
1291 if (hva_start >= hva_end)
1292 continue;
1293 /*
1294 * {gfn(page) | page intersects with [hva_start, hva_end)} =
bcd3ef58 1295 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
84504ef3 1296 */
bcd3ef58 1297 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
84504ef3 1298 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
852e3c19 1299
bcd3ef58
TY
1300 for (j = PT_PAGE_TABLE_LEVEL;
1301 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1302 unsigned long idx, idx_end;
1303 unsigned long *rmapp;
d4dbf470 1304
bcd3ef58
TY
1305 /*
1306 * {idx(page_j) | page_j intersects with
1307 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1308 */
1309 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1310 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
852e3c19 1311
bcd3ef58 1312 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
d4dbf470 1313
bcd3ef58
TY
1314 for (; idx <= idx_end; ++idx)
1315 ret |= handler(kvm, rmapp++, memslot, data);
e930bffe
AA
1316 }
1317 }
1318
f395302e 1319 return ret;
e930bffe
AA
1320}
1321
84504ef3
TY
1322static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1323 unsigned long data,
1324 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1325 struct kvm_memory_slot *slot,
84504ef3
TY
1326 unsigned long data))
1327{
1328 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1329}
1330
1331int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1332{
3da0dd43
IE
1333 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1334}
1335
b3ae2096
TY
1336int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1337{
1338 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1339}
1340
3da0dd43
IE
1341void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1342{
8a8365c5 1343 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1344}
1345
8a8365c5 1346static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1347 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1348{
1e3f42f0 1349 u64 *sptep;
79f702a6 1350 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1351 int young = 0;
1352
6316e1c8 1353 /*
3f6d8c8a
XH
1354 * In case of absence of EPT Access and Dirty Bits supports,
1355 * emulate the accessed bit for EPT, by checking if this page has
6316e1c8
RR
1356 * an EPT mapping, and clearing it if it does. On the next access,
1357 * a new EPT mapping will be established.
1358 * This has some overhead, but not as much as the cost of swapping
1359 * out actively used pages or breaking up actively used hugepages.
1360 */
f395302e
TY
1361 if (!shadow_accessed_mask) {
1362 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1363 goto out;
1364 }
534e38b4 1365
1e3f42f0
TY
1366 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1367 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1368 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1369
3f6d8c8a 1370 if (*sptep & shadow_accessed_mask) {
e930bffe 1371 young = 1;
3f6d8c8a
XH
1372 clear_bit((ffs(shadow_accessed_mask) - 1),
1373 (unsigned long *)sptep);
e930bffe 1374 }
e930bffe 1375 }
f395302e
TY
1376out:
1377 /* @data has hva passed to kvm_age_hva(). */
1378 trace_kvm_age_page(data, slot, young);
e930bffe
AA
1379 return young;
1380}
1381
8ee53820 1382static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1383 struct kvm_memory_slot *slot, unsigned long data)
8ee53820 1384{
1e3f42f0
TY
1385 u64 *sptep;
1386 struct rmap_iterator iter;
8ee53820
AA
1387 int young = 0;
1388
1389 /*
1390 * If there's no access bit in the secondary pte set by the
1391 * hardware it's up to gup-fast/gup to set the access bit in
1392 * the primary pte or in the page structure.
1393 */
1394 if (!shadow_accessed_mask)
1395 goto out;
1396
1e3f42f0
TY
1397 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1398 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1399 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1400
3f6d8c8a 1401 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1402 young = 1;
1403 break;
1404 }
8ee53820
AA
1405 }
1406out:
1407 return young;
1408}
1409
53a27b39
MT
1410#define RMAP_RECYCLE_THRESHOLD 1000
1411
852e3c19 1412static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1413{
1414 unsigned long *rmapp;
852e3c19
JR
1415 struct kvm_mmu_page *sp;
1416
1417 sp = page_header(__pa(spte));
53a27b39 1418
852e3c19 1419 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1420
048212d0 1421 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
53a27b39
MT
1422 kvm_flush_remote_tlbs(vcpu->kvm);
1423}
1424
e930bffe
AA
1425int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1426{
f395302e 1427 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
e930bffe
AA
1428}
1429
8ee53820
AA
1430int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1431{
1432 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1433}
1434
d6c69ee9 1435#ifdef MMU_DEBUG
47ad8e68 1436static int is_empty_shadow_page(u64 *spt)
6aa8b732 1437{
139bdb2d
AK
1438 u64 *pos;
1439 u64 *end;
1440
47ad8e68 1441 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1442 if (is_shadow_present_pte(*pos)) {
b8688d51 1443 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1444 pos, *pos);
6aa8b732 1445 return 0;
139bdb2d 1446 }
6aa8b732
AK
1447 return 1;
1448}
d6c69ee9 1449#endif
6aa8b732 1450
45221ab6
DH
1451/*
1452 * This value is the sum of all of the kvm instances's
1453 * kvm->arch.n_used_mmu_pages values. We need a global,
1454 * aggregate version in order to make the slab shrinker
1455 * faster
1456 */
1457static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1458{
1459 kvm->arch.n_used_mmu_pages += nr;
1460 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1461}
1462
bd4c86ea
XG
1463/*
1464 * Remove the sp from shadow page cache, after call it,
1465 * we can not find this sp from the cache, and the shadow
1466 * page table is still valid.
1467 * It should be under the protection of mmu lock.
1468 */
1469static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
260746c0 1470{
4db35314 1471 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1472 hlist_del(&sp->hash_link);
2032a93d 1473 if (!sp->role.direct)
842f22ed 1474 free_page((unsigned long)sp->gfns);
bd4c86ea
XG
1475}
1476
1477/*
1478 * Free the shadow page table and the sp, we can do it
1479 * out of the protection of mmu lock.
1480 */
1481static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1482{
1483 list_del(&sp->link);
1484 free_page((unsigned long)sp->spt);
e8ad9a70 1485 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1486}
1487
cea0f0e7
AK
1488static unsigned kvm_page_table_hashfn(gfn_t gfn)
1489{
1ae0a13d 1490 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1491}
1492
714b93da 1493static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1494 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1495{
cea0f0e7
AK
1496 if (!parent_pte)
1497 return;
cea0f0e7 1498
67052b35 1499 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1500}
1501
4db35314 1502static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1503 u64 *parent_pte)
1504{
67052b35 1505 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1506}
1507
bcdd9a93
XG
1508static void drop_parent_pte(struct kvm_mmu_page *sp,
1509 u64 *parent_pte)
1510{
1511 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1512 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1513}
1514
67052b35
XG
1515static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1516 u64 *parent_pte, int direct)
ad8cfbe3 1517{
67052b35 1518 struct kvm_mmu_page *sp;
80feb89a
TY
1519 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1520 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1521 if (!direct)
80feb89a 1522 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35
XG
1523 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1524 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
93a5cef0 1525 bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
67052b35
XG
1526 sp->parent_ptes = 0;
1527 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1528 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1529 return sp;
ad8cfbe3
MT
1530}
1531
67052b35 1532static void mark_unsync(u64 *spte);
1047df1f 1533static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1534{
67052b35 1535 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1536}
1537
67052b35 1538static void mark_unsync(u64 *spte)
0074ff63 1539{
67052b35 1540 struct kvm_mmu_page *sp;
1047df1f 1541 unsigned int index;
0074ff63 1542
67052b35 1543 sp = page_header(__pa(spte));
1047df1f
XG
1544 index = spte - sp->spt;
1545 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1546 return;
1047df1f 1547 if (sp->unsync_children++)
0074ff63 1548 return;
1047df1f 1549 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1550}
1551
e8bc217a 1552static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1553 struct kvm_mmu_page *sp)
e8bc217a
MT
1554{
1555 return 1;
1556}
1557
a7052897
MT
1558static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1559{
1560}
1561
0f53b5b1
XG
1562static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1563 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1564 const void *pte)
0f53b5b1
XG
1565{
1566 WARN_ON(1);
1567}
1568
60c8aec6
MT
1569#define KVM_PAGE_ARRAY_NR 16
1570
1571struct kvm_mmu_pages {
1572 struct mmu_page_and_offset {
1573 struct kvm_mmu_page *sp;
1574 unsigned int idx;
1575 } page[KVM_PAGE_ARRAY_NR];
1576 unsigned int nr;
1577};
1578
cded19f3
HE
1579static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1580 int idx)
4731d4c7 1581{
60c8aec6 1582 int i;
4731d4c7 1583
60c8aec6
MT
1584 if (sp->unsync)
1585 for (i=0; i < pvec->nr; i++)
1586 if (pvec->page[i].sp == sp)
1587 return 0;
1588
1589 pvec->page[pvec->nr].sp = sp;
1590 pvec->page[pvec->nr].idx = idx;
1591 pvec->nr++;
1592 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1593}
1594
1595static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1596 struct kvm_mmu_pages *pvec)
1597{
1598 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1599
37178b8b 1600 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1601 struct kvm_mmu_page *child;
4731d4c7
MT
1602 u64 ent = sp->spt[i];
1603
7a8f1a74
XG
1604 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1605 goto clear_child_bitmap;
1606
1607 child = page_header(ent & PT64_BASE_ADDR_MASK);
1608
1609 if (child->unsync_children) {
1610 if (mmu_pages_add(pvec, child, i))
1611 return -ENOSPC;
1612
1613 ret = __mmu_unsync_walk(child, pvec);
1614 if (!ret)
1615 goto clear_child_bitmap;
1616 else if (ret > 0)
1617 nr_unsync_leaf += ret;
1618 else
1619 return ret;
1620 } else if (child->unsync) {
1621 nr_unsync_leaf++;
1622 if (mmu_pages_add(pvec, child, i))
1623 return -ENOSPC;
1624 } else
1625 goto clear_child_bitmap;
1626
1627 continue;
1628
1629clear_child_bitmap:
1630 __clear_bit(i, sp->unsync_child_bitmap);
1631 sp->unsync_children--;
1632 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1633 }
1634
4731d4c7 1635
60c8aec6
MT
1636 return nr_unsync_leaf;
1637}
1638
1639static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1640 struct kvm_mmu_pages *pvec)
1641{
1642 if (!sp->unsync_children)
1643 return 0;
1644
1645 mmu_pages_add(pvec, sp, 0);
1646 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1647}
1648
4731d4c7
MT
1649static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1650{
1651 WARN_ON(!sp->unsync);
5e1b3ddb 1652 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1653 sp->unsync = 0;
1654 --kvm->stat.mmu_unsync;
1655}
1656
7775834a
XG
1657static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1658 struct list_head *invalid_list);
1659static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1660 struct list_head *invalid_list);
4731d4c7 1661
f41d335a
XG
1662#define for_each_gfn_sp(kvm, sp, gfn, pos) \
1663 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1664 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1665 if ((sp)->gfn != (gfn)) {} else
1666
f41d335a
XG
1667#define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1668 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1669 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1670 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1671 (sp)->role.invalid) {} else
1672
f918b443 1673/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1674static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1675 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1676{
5b7e0102 1677 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1678 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1679 return 1;
1680 }
1681
f918b443 1682 if (clear_unsync)
1d9dc7e0 1683 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1684
a4a8e6f7 1685 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1686 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1687 return 1;
1688 }
1689
1690 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1691 return 0;
1692}
1693
1d9dc7e0
XG
1694static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1695 struct kvm_mmu_page *sp)
1696{
d98ba053 1697 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1698 int ret;
1699
d98ba053 1700 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1701 if (ret)
d98ba053
XG
1702 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1703
1d9dc7e0
XG
1704 return ret;
1705}
1706
e37fa785
XG
1707#ifdef CONFIG_KVM_MMU_AUDIT
1708#include "mmu_audit.c"
1709#else
1710static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1711static void mmu_audit_disable(void) { }
1712#endif
1713
d98ba053
XG
1714static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1715 struct list_head *invalid_list)
1d9dc7e0 1716{
d98ba053 1717 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1718}
1719
9f1a122f
XG
1720/* @gfn should be write-protected at the call site */
1721static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1722{
9f1a122f 1723 struct kvm_mmu_page *s;
f41d335a 1724 struct hlist_node *node;
d98ba053 1725 LIST_HEAD(invalid_list);
9f1a122f
XG
1726 bool flush = false;
1727
f41d335a 1728 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 1729 if (!s->unsync)
9f1a122f
XG
1730 continue;
1731
1732 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1733 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1734 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1735 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1736 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1737 continue;
1738 }
9f1a122f
XG
1739 flush = true;
1740 }
1741
d98ba053 1742 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1743 if (flush)
1744 kvm_mmu_flush_tlb(vcpu);
1745}
1746
60c8aec6
MT
1747struct mmu_page_path {
1748 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1749 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1750};
1751
60c8aec6
MT
1752#define for_each_sp(pvec, sp, parents, i) \
1753 for (i = mmu_pages_next(&pvec, &parents, -1), \
1754 sp = pvec.page[i].sp; \
1755 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1756 i = mmu_pages_next(&pvec, &parents, i))
1757
cded19f3
HE
1758static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1759 struct mmu_page_path *parents,
1760 int i)
60c8aec6
MT
1761{
1762 int n;
1763
1764 for (n = i+1; n < pvec->nr; n++) {
1765 struct kvm_mmu_page *sp = pvec->page[n].sp;
1766
1767 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1768 parents->idx[0] = pvec->page[n].idx;
1769 return n;
1770 }
1771
1772 parents->parent[sp->role.level-2] = sp;
1773 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1774 }
1775
1776 return n;
1777}
1778
cded19f3 1779static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1780{
60c8aec6
MT
1781 struct kvm_mmu_page *sp;
1782 unsigned int level = 0;
1783
1784 do {
1785 unsigned int idx = parents->idx[level];
4731d4c7 1786
60c8aec6
MT
1787 sp = parents->parent[level];
1788 if (!sp)
1789 return;
1790
1791 --sp->unsync_children;
1792 WARN_ON((int)sp->unsync_children < 0);
1793 __clear_bit(idx, sp->unsync_child_bitmap);
1794 level++;
1795 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1796}
1797
60c8aec6
MT
1798static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1799 struct mmu_page_path *parents,
1800 struct kvm_mmu_pages *pvec)
4731d4c7 1801{
60c8aec6
MT
1802 parents->parent[parent->role.level-1] = NULL;
1803 pvec->nr = 0;
1804}
4731d4c7 1805
60c8aec6
MT
1806static void mmu_sync_children(struct kvm_vcpu *vcpu,
1807 struct kvm_mmu_page *parent)
1808{
1809 int i;
1810 struct kvm_mmu_page *sp;
1811 struct mmu_page_path parents;
1812 struct kvm_mmu_pages pages;
d98ba053 1813 LIST_HEAD(invalid_list);
60c8aec6
MT
1814
1815 kvm_mmu_pages_init(parent, &parents, &pages);
1816 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1817 bool protected = false;
b1a36821
MT
1818
1819 for_each_sp(pages, sp, parents, i)
1820 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1821
1822 if (protected)
1823 kvm_flush_remote_tlbs(vcpu->kvm);
1824
60c8aec6 1825 for_each_sp(pages, sp, parents, i) {
d98ba053 1826 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1827 mmu_pages_clear_parents(&parents);
1828 }
d98ba053 1829 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1830 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1831 kvm_mmu_pages_init(parent, &parents, &pages);
1832 }
4731d4c7
MT
1833}
1834
c3707958
XG
1835static void init_shadow_page_table(struct kvm_mmu_page *sp)
1836{
1837 int i;
1838
1839 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1840 sp->spt[i] = 0ull;
1841}
1842
a30f47cb
XG
1843static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1844{
1845 sp->write_flooding_count = 0;
1846}
1847
1848static void clear_sp_write_flooding_count(u64 *spte)
1849{
1850 struct kvm_mmu_page *sp = page_header(__pa(spte));
1851
1852 __clear_sp_write_flooding_count(sp);
1853}
1854
cea0f0e7
AK
1855static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1856 gfn_t gfn,
1857 gva_t gaddr,
1858 unsigned level,
f6e2c02b 1859 int direct,
41074d07 1860 unsigned access,
f7d9c7b7 1861 u64 *parent_pte)
cea0f0e7
AK
1862{
1863 union kvm_mmu_page_role role;
cea0f0e7 1864 unsigned quadrant;
9f1a122f 1865 struct kvm_mmu_page *sp;
f41d335a 1866 struct hlist_node *node;
9f1a122f 1867 bool need_sync = false;
cea0f0e7 1868
a770f6f2 1869 role = vcpu->arch.mmu.base_role;
cea0f0e7 1870 role.level = level;
f6e2c02b 1871 role.direct = direct;
84b0c8c6 1872 if (role.direct)
5b7e0102 1873 role.cr4_pae = 0;
41074d07 1874 role.access = access;
c5a78f2b
JR
1875 if (!vcpu->arch.mmu.direct_map
1876 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1877 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1878 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1879 role.quadrant = quadrant;
1880 }
f41d335a 1881 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
7ae680eb
XG
1882 if (!need_sync && sp->unsync)
1883 need_sync = true;
4731d4c7 1884
7ae680eb
XG
1885 if (sp->role.word != role.word)
1886 continue;
4731d4c7 1887
7ae680eb
XG
1888 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1889 break;
e02aa901 1890
7ae680eb
XG
1891 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1892 if (sp->unsync_children) {
a8eeb04a 1893 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1894 kvm_mmu_mark_parents_unsync(sp);
1895 } else if (sp->unsync)
1896 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1897
a30f47cb 1898 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1899 trace_kvm_mmu_get_page(sp, false);
1900 return sp;
1901 }
dfc5aa00 1902 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1903 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1904 if (!sp)
1905 return sp;
4db35314
AK
1906 sp->gfn = gfn;
1907 sp->role = role;
7ae680eb
XG
1908 hlist_add_head(&sp->hash_link,
1909 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1910 if (!direct) {
b1a36821
MT
1911 if (rmap_write_protect(vcpu->kvm, gfn))
1912 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1913 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1914 kvm_sync_pages(vcpu, gfn);
1915
4731d4c7
MT
1916 account_shadowed(vcpu->kvm, gfn);
1917 }
c3707958 1918 init_shadow_page_table(sp);
f691fe1d 1919 trace_kvm_mmu_get_page(sp, true);
4db35314 1920 return sp;
cea0f0e7
AK
1921}
1922
2d11123a
AK
1923static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1924 struct kvm_vcpu *vcpu, u64 addr)
1925{
1926 iterator->addr = addr;
1927 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1928 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1929
1930 if (iterator->level == PT64_ROOT_LEVEL &&
1931 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1932 !vcpu->arch.mmu.direct_map)
1933 --iterator->level;
1934
2d11123a
AK
1935 if (iterator->level == PT32E_ROOT_LEVEL) {
1936 iterator->shadow_addr
1937 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1938 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1939 --iterator->level;
1940 if (!iterator->shadow_addr)
1941 iterator->level = 0;
1942 }
1943}
1944
1945static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1946{
1947 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1948 return false;
4d88954d 1949
2d11123a
AK
1950 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1951 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1952 return true;
1953}
1954
c2a2ac2b
XG
1955static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1956 u64 spte)
2d11123a 1957{
c2a2ac2b 1958 if (is_last_spte(spte, iterator->level)) {
052331be
XG
1959 iterator->level = 0;
1960 return;
1961 }
1962
c2a2ac2b 1963 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
1964 --iterator->level;
1965}
1966
c2a2ac2b
XG
1967static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1968{
1969 return __shadow_walk_next(iterator, *iterator->sptep);
1970}
1971
32ef26a3
AK
1972static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1973{
1974 u64 spte;
1975
1976 spte = __pa(sp->spt)
1977 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1978 | PT_WRITABLE_MASK | PT_USER_MASK;
1df9f2dc 1979 mmu_spte_set(sptep, spte);
32ef26a3
AK
1980}
1981
a357bd22
AK
1982static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1983 unsigned direct_access)
1984{
1985 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1986 struct kvm_mmu_page *child;
1987
1988 /*
1989 * For the direct sp, if the guest pte's dirty bit
1990 * changed form clean to dirty, it will corrupt the
1991 * sp's access: allow writable in the read-only sp,
1992 * so we should update the spte at this point to get
1993 * a new sp with the correct access.
1994 */
1995 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1996 if (child->role.access == direct_access)
1997 return;
1998
bcdd9a93 1999 drop_parent_pte(child, sptep);
a357bd22
AK
2000 kvm_flush_remote_tlbs(vcpu->kvm);
2001 }
2002}
2003
505aef8f 2004static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2005 u64 *spte)
2006{
2007 u64 pte;
2008 struct kvm_mmu_page *child;
2009
2010 pte = *spte;
2011 if (is_shadow_present_pte(pte)) {
505aef8f 2012 if (is_last_spte(pte, sp->role.level)) {
c3707958 2013 drop_spte(kvm, spte);
505aef8f
XG
2014 if (is_large_pte(pte))
2015 --kvm->stat.lpages;
2016 } else {
38e3b2b2 2017 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2018 drop_parent_pte(child, spte);
38e3b2b2 2019 }
505aef8f
XG
2020 return true;
2021 }
2022
2023 if (is_mmio_spte(pte))
ce88decf 2024 mmu_spte_clear_no_track(spte);
c3707958 2025
505aef8f 2026 return false;
38e3b2b2
XG
2027}
2028
90cb0529 2029static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2030 struct kvm_mmu_page *sp)
a436036b 2031{
697fe2e2 2032 unsigned i;
697fe2e2 2033
38e3b2b2
XG
2034 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2035 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2036}
2037
4db35314 2038static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2039{
4db35314 2040 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2041}
2042
31aa2b44 2043static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2044{
1e3f42f0
TY
2045 u64 *sptep;
2046 struct rmap_iterator iter;
a436036b 2047
1e3f42f0
TY
2048 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2049 drop_parent_pte(sp, sptep);
31aa2b44
AK
2050}
2051
60c8aec6 2052static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2053 struct kvm_mmu_page *parent,
2054 struct list_head *invalid_list)
4731d4c7 2055{
60c8aec6
MT
2056 int i, zapped = 0;
2057 struct mmu_page_path parents;
2058 struct kvm_mmu_pages pages;
4731d4c7 2059
60c8aec6 2060 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2061 return 0;
60c8aec6
MT
2062
2063 kvm_mmu_pages_init(parent, &parents, &pages);
2064 while (mmu_unsync_walk(parent, &pages)) {
2065 struct kvm_mmu_page *sp;
2066
2067 for_each_sp(pages, sp, parents, i) {
7775834a 2068 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2069 mmu_pages_clear_parents(&parents);
77662e00 2070 zapped++;
60c8aec6 2071 }
60c8aec6
MT
2072 kvm_mmu_pages_init(parent, &parents, &pages);
2073 }
2074
2075 return zapped;
4731d4c7
MT
2076}
2077
7775834a
XG
2078static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2079 struct list_head *invalid_list)
31aa2b44 2080{
4731d4c7 2081 int ret;
f691fe1d 2082
7775834a 2083 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2084 ++kvm->stat.mmu_shadow_zapped;
7775834a 2085 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2086 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2087 kvm_mmu_unlink_parents(kvm, sp);
f6e2c02b 2088 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 2089 unaccount_shadowed(kvm, sp->gfn);
4731d4c7
MT
2090 if (sp->unsync)
2091 kvm_unlink_unsync_page(kvm, sp);
4db35314 2092 if (!sp->root_count) {
54a4f023
GJ
2093 /* Count self */
2094 ret++;
7775834a 2095 list_move(&sp->link, invalid_list);
aa6bd187 2096 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2097 } else {
5b5c6a5a 2098 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2e53d63a
MT
2099 kvm_reload_remote_mmus(kvm);
2100 }
7775834a
XG
2101
2102 sp->role.invalid = 1;
4731d4c7 2103 return ret;
a436036b
AK
2104}
2105
7775834a
XG
2106static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2107 struct list_head *invalid_list)
2108{
2109 struct kvm_mmu_page *sp;
2110
2111 if (list_empty(invalid_list))
2112 return;
2113
c142786c
AK
2114 /*
2115 * wmb: make sure everyone sees our modifications to the page tables
2116 * rmb: make sure we see changes to vcpu->mode
2117 */
2118 smp_mb();
4f022648 2119
c142786c
AK
2120 /*
2121 * Wait for all vcpus to exit guest mode and/or lockless shadow
2122 * page table walks.
2123 */
2124 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2125
7775834a
XG
2126 do {
2127 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2128 WARN_ON(!sp->role.invalid || sp->root_count);
bd4c86ea 2129 kvm_mmu_isolate_page(sp);
aa6bd187 2130 kvm_mmu_free_page(sp);
7775834a 2131 } while (!list_empty(invalid_list));
7775834a
XG
2132}
2133
82ce2c96
IE
2134/*
2135 * Changing the number of mmu pages allocated to the vm
49d5ca26 2136 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2137 */
49d5ca26 2138void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2139{
d98ba053 2140 LIST_HEAD(invalid_list);
82ce2c96
IE
2141 /*
2142 * If we set the number of mmu pages to be smaller be than the
2143 * number of actived pages , we must to free some mmu pages before we
2144 * change the value
2145 */
2146
49d5ca26
DH
2147 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2148 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
77662e00 2149 !list_empty(&kvm->arch.active_mmu_pages)) {
82ce2c96
IE
2150 struct kvm_mmu_page *page;
2151
f05e70ac 2152 page = container_of(kvm->arch.active_mmu_pages.prev,
82ce2c96 2153 struct kvm_mmu_page, link);
80b63faf 2154 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
82ce2c96 2155 }
aa6bd187 2156 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2157 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2158 }
82ce2c96 2159
49d5ca26 2160 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
82ce2c96
IE
2161}
2162
1cb3f3ae 2163int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2164{
4db35314 2165 struct kvm_mmu_page *sp;
f41d335a 2166 struct hlist_node *node;
d98ba053 2167 LIST_HEAD(invalid_list);
a436036b
AK
2168 int r;
2169
9ad17b10 2170 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2171 r = 0;
1cb3f3ae 2172 spin_lock(&kvm->mmu_lock);
f41d335a 2173 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
9ad17b10 2174 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2175 sp->role.word);
2176 r = 1;
f41d335a 2177 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2178 }
d98ba053 2179 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2180 spin_unlock(&kvm->mmu_lock);
2181
a436036b 2182 return r;
cea0f0e7 2183}
1cb3f3ae 2184EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2185
38c335f1 2186static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
6aa8b732 2187{
bc6678a3 2188 int slot = memslot_id(kvm, gfn);
4db35314 2189 struct kvm_mmu_page *sp = page_header(__pa(pte));
6aa8b732 2190
291f26bc 2191 __set_bit(slot, sp->slot_bitmap);
6aa8b732
AK
2192}
2193
74be52e3
SY
2194/*
2195 * The function is based on mtrr_type_lookup() in
2196 * arch/x86/kernel/cpu/mtrr/generic.c
2197 */
2198static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2199 u64 start, u64 end)
2200{
2201 int i;
2202 u64 base, mask;
2203 u8 prev_match, curr_match;
2204 int num_var_ranges = KVM_NR_VAR_MTRR;
2205
2206 if (!mtrr_state->enabled)
2207 return 0xFF;
2208
2209 /* Make end inclusive end, instead of exclusive */
2210 end--;
2211
2212 /* Look in fixed ranges. Just return the type as per start */
2213 if (mtrr_state->have_fixed && (start < 0x100000)) {
2214 int idx;
2215
2216 if (start < 0x80000) {
2217 idx = 0;
2218 idx += (start >> 16);
2219 return mtrr_state->fixed_ranges[idx];
2220 } else if (start < 0xC0000) {
2221 idx = 1 * 8;
2222 idx += ((start - 0x80000) >> 14);
2223 return mtrr_state->fixed_ranges[idx];
2224 } else if (start < 0x1000000) {
2225 idx = 3 * 8;
2226 idx += ((start - 0xC0000) >> 12);
2227 return mtrr_state->fixed_ranges[idx];
2228 }
2229 }
2230
2231 /*
2232 * Look in variable ranges
2233 * Look of multiple ranges matching this address and pick type
2234 * as per MTRR precedence
2235 */
2236 if (!(mtrr_state->enabled & 2))
2237 return mtrr_state->def_type;
2238
2239 prev_match = 0xFF;
2240 for (i = 0; i < num_var_ranges; ++i) {
2241 unsigned short start_state, end_state;
2242
2243 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2244 continue;
2245
2246 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2247 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2248 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2249 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2250
2251 start_state = ((start & mask) == (base & mask));
2252 end_state = ((end & mask) == (base & mask));
2253 if (start_state != end_state)
2254 return 0xFE;
2255
2256 if ((start & mask) != (base & mask))
2257 continue;
2258
2259 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2260 if (prev_match == 0xFF) {
2261 prev_match = curr_match;
2262 continue;
2263 }
2264
2265 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2266 curr_match == MTRR_TYPE_UNCACHABLE)
2267 return MTRR_TYPE_UNCACHABLE;
2268
2269 if ((prev_match == MTRR_TYPE_WRBACK &&
2270 curr_match == MTRR_TYPE_WRTHROUGH) ||
2271 (prev_match == MTRR_TYPE_WRTHROUGH &&
2272 curr_match == MTRR_TYPE_WRBACK)) {
2273 prev_match = MTRR_TYPE_WRTHROUGH;
2274 curr_match = MTRR_TYPE_WRTHROUGH;
2275 }
2276
2277 if (prev_match != curr_match)
2278 return MTRR_TYPE_UNCACHABLE;
2279 }
2280
2281 if (prev_match != 0xFF)
2282 return prev_match;
2283
2284 return mtrr_state->def_type;
2285}
2286
4b12f0de 2287u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2288{
2289 u8 mtrr;
2290
2291 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2292 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2293 if (mtrr == 0xfe || mtrr == 0xff)
2294 mtrr = MTRR_TYPE_WRBACK;
2295 return mtrr;
2296}
4b12f0de 2297EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2298
9cf5cf5a
XG
2299static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2300{
2301 trace_kvm_mmu_unsync_page(sp);
2302 ++vcpu->kvm->stat.mmu_unsync;
2303 sp->unsync = 1;
2304
2305 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2306}
2307
2308static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2309{
4731d4c7 2310 struct kvm_mmu_page *s;
f41d335a 2311 struct hlist_node *node;
9cf5cf5a 2312
f41d335a 2313 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 2314 if (s->unsync)
4731d4c7 2315 continue;
9cf5cf5a
XG
2316 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2317 __kvm_unsync_page(vcpu, s);
4731d4c7 2318 }
4731d4c7
MT
2319}
2320
2321static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2322 bool can_unsync)
2323{
9cf5cf5a 2324 struct kvm_mmu_page *s;
f41d335a 2325 struct hlist_node *node;
9cf5cf5a
XG
2326 bool need_unsync = false;
2327
f41d335a 2328 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
36a2e677
XG
2329 if (!can_unsync)
2330 return 1;
2331
9cf5cf5a 2332 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2333 return 1;
9cf5cf5a
XG
2334
2335 if (!need_unsync && !s->unsync) {
9cf5cf5a
XG
2336 need_unsync = true;
2337 }
4731d4c7 2338 }
9cf5cf5a
XG
2339 if (need_unsync)
2340 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2341 return 0;
2342}
2343
d555c333 2344static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2345 unsigned pte_access, int user_fault,
640d9b0d 2346 int write_fault, int level,
c2d0ee46 2347 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2348 bool can_unsync, bool host_writable)
1c4f1fd6 2349{
6e7d0354 2350 u64 spte;
1e73f9dd 2351 int ret = 0;
64d4d521 2352
ce88decf
XG
2353 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2354 return 0;
2355
982c2565 2356 spte = PT_PRESENT_MASK;
947da538 2357 if (!speculative)
3201b5d9 2358 spte |= shadow_accessed_mask;
640d9b0d 2359
7b52345e
SY
2360 if (pte_access & ACC_EXEC_MASK)
2361 spte |= shadow_x_mask;
2362 else
2363 spte |= shadow_nx_mask;
49fde340 2364
1c4f1fd6 2365 if (pte_access & ACC_USER_MASK)
7b52345e 2366 spte |= shadow_user_mask;
49fde340 2367
852e3c19 2368 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2369 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2370 if (tdp_enabled)
4b12f0de
SY
2371 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2372 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2373
9bdbba13 2374 if (host_writable)
1403283a 2375 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2376 else
2377 pte_access &= ~ACC_WRITE_MASK;
1403283a 2378
35149e21 2379 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6
AK
2380
2381 if ((pte_access & ACC_WRITE_MASK)
c5a78f2b
JR
2382 || (!vcpu->arch.mmu.direct_map && write_fault
2383 && !is_write_protection(vcpu) && !user_fault)) {
1c4f1fd6 2384
852e3c19
JR
2385 if (level > PT_PAGE_TABLE_LEVEL &&
2386 has_wrprotected_page(vcpu->kvm, gfn, level)) {
38187c83 2387 ret = 1;
c3707958 2388 drop_spte(vcpu->kvm, sptep);
be38d276 2389 goto done;
38187c83
MT
2390 }
2391
49fde340 2392 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2393
c5a78f2b 2394 if (!vcpu->arch.mmu.direct_map
411c588d 2395 && !(pte_access & ACC_WRITE_MASK)) {
69325a12 2396 spte &= ~PT_USER_MASK;
411c588d
AK
2397 /*
2398 * If we converted a user page to a kernel page,
2399 * so that the kernel can write to it when cr0.wp=0,
2400 * then we should prevent the kernel from executing it
2401 * if SMEP is enabled.
2402 */
2403 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2404 spte |= PT64_NX_MASK;
2405 }
69325a12 2406
ecc5589f
MT
2407 /*
2408 * Optimization: for pte sync, if spte was writable the hash
2409 * lookup is unnecessary (and expensive). Write protection
2410 * is responsibility of mmu_get_page / kvm_sync_page.
2411 * Same reasoning can be applied to dirty page accounting.
2412 */
8dae4445 2413 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2414 goto set_pte;
2415
4731d4c7 2416 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2417 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2418 __func__, gfn);
1e73f9dd 2419 ret = 1;
1c4f1fd6 2420 pte_access &= ~ACC_WRITE_MASK;
49fde340 2421 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2422 }
2423 }
2424
1c4f1fd6
AK
2425 if (pte_access & ACC_WRITE_MASK)
2426 mark_page_dirty(vcpu->kvm, gfn);
2427
38187c83 2428set_pte:
6e7d0354 2429 if (mmu_spte_update(sptep, spte))
b330aa0c 2430 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2431done:
1e73f9dd
MT
2432 return ret;
2433}
2434
d555c333 2435static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2436 unsigned pt_access, unsigned pte_access,
640d9b0d 2437 int user_fault, int write_fault,
b90a0e6c 2438 int *emulate, int level, gfn_t gfn,
1403283a 2439 pfn_t pfn, bool speculative,
9bdbba13 2440 bool host_writable)
1e73f9dd
MT
2441{
2442 int was_rmapped = 0;
53a27b39 2443 int rmap_count;
1e73f9dd
MT
2444
2445 pgprintk("%s: spte %llx access %x write_fault %d"
9ad17b10 2446 " user_fault %d gfn %llx\n",
d555c333 2447 __func__, *sptep, pt_access,
1e73f9dd
MT
2448 write_fault, user_fault, gfn);
2449
d555c333 2450 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2451 /*
2452 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2453 * the parent of the now unreachable PTE.
2454 */
852e3c19
JR
2455 if (level > PT_PAGE_TABLE_LEVEL &&
2456 !is_large_pte(*sptep)) {
1e73f9dd 2457 struct kvm_mmu_page *child;
d555c333 2458 u64 pte = *sptep;
1e73f9dd
MT
2459
2460 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2461 drop_parent_pte(child, sptep);
3be2264b 2462 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2463 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2464 pgprintk("hfn old %llx new %llx\n",
d555c333 2465 spte_to_pfn(*sptep), pfn);
c3707958 2466 drop_spte(vcpu->kvm, sptep);
91546356 2467 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2468 } else
2469 was_rmapped = 1;
1e73f9dd 2470 }
852e3c19 2471
d555c333 2472 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
640d9b0d 2473 level, gfn, pfn, speculative, true,
9bdbba13 2474 host_writable)) {
1e73f9dd 2475 if (write_fault)
b90a0e6c 2476 *emulate = 1;
5304efde 2477 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2478 }
1e73f9dd 2479
ce88decf
XG
2480 if (unlikely(is_mmio_spte(*sptep) && emulate))
2481 *emulate = 1;
2482
d555c333 2483 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2484 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2485 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2486 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2487 *sptep, sptep);
d555c333 2488 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2489 ++vcpu->kvm->stat.lpages;
2490
ffb61bb3
XG
2491 if (is_shadow_present_pte(*sptep)) {
2492 page_header_update_slot(vcpu->kvm, sptep, gfn);
2493 if (!was_rmapped) {
2494 rmap_count = rmap_add(vcpu, sptep, gfn);
2495 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2496 rmap_recycle(vcpu, sptep, gfn);
2497 }
1c4f1fd6 2498 }
cb9aaa30
XG
2499
2500 if (!is_error_pfn(pfn))
2501 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2502}
2503
6aa8b732
AK
2504static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2505{
e676505a 2506 mmu_free_roots(vcpu);
6aa8b732
AK
2507}
2508
957ed9ef
XG
2509static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2510 bool no_dirty_log)
2511{
2512 struct kvm_memory_slot *slot;
957ed9ef 2513
5d163b1c 2514 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2515 if (!slot)
6c8ee57b 2516 return KVM_PFN_ERR_FAULT;
957ed9ef 2517
037d92dc 2518 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2519}
2520
2521static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2522 struct kvm_mmu_page *sp,
2523 u64 *start, u64 *end)
2524{
2525 struct page *pages[PTE_PREFETCH_NUM];
2526 unsigned access = sp->role.access;
2527 int i, ret;
2528 gfn_t gfn;
2529
2530 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2531 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2532 return -1;
2533
2534 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2535 if (ret <= 0)
2536 return -1;
2537
2538 for (i = 0; i < ret; i++, gfn++, start++)
2539 mmu_set_spte(vcpu, start, ACC_ALL,
640d9b0d 2540 access, 0, 0, NULL,
957ed9ef
XG
2541 sp->role.level, gfn,
2542 page_to_pfn(pages[i]), true, true);
2543
2544 return 0;
2545}
2546
2547static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2548 struct kvm_mmu_page *sp, u64 *sptep)
2549{
2550 u64 *spte, *start = NULL;
2551 int i;
2552
2553 WARN_ON(!sp->role.direct);
2554
2555 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2556 spte = sp->spt + i;
2557
2558 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2559 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2560 if (!start)
2561 continue;
2562 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2563 break;
2564 start = NULL;
2565 } else if (!start)
2566 start = spte;
2567 }
2568}
2569
2570static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2571{
2572 struct kvm_mmu_page *sp;
2573
2574 /*
2575 * Since it's no accessed bit on EPT, it's no way to
2576 * distinguish between actually accessed translations
2577 * and prefetched, so disable pte prefetch if EPT is
2578 * enabled.
2579 */
2580 if (!shadow_accessed_mask)
2581 return;
2582
2583 sp = page_header(__pa(sptep));
2584 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2585 return;
2586
2587 __direct_pte_prefetch(vcpu, sp, sptep);
2588}
2589
9f652d21 2590static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2591 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2592 bool prefault)
140754bc 2593{
9f652d21 2594 struct kvm_shadow_walk_iterator iterator;
140754bc 2595 struct kvm_mmu_page *sp;
b90a0e6c 2596 int emulate = 0;
140754bc 2597 gfn_t pseudo_gfn;
6aa8b732 2598
9f652d21 2599 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2600 if (iterator.level == level) {
612819c3
MT
2601 unsigned pte_access = ACC_ALL;
2602
612819c3 2603 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
b90a0e6c 2604 0, write, &emulate,
2ec4739d 2605 level, gfn, pfn, prefault, map_writable);
957ed9ef 2606 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2607 ++vcpu->stat.pf_fixed;
2608 break;
6aa8b732
AK
2609 }
2610
c3707958 2611 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2612 u64 base_addr = iterator.addr;
2613
2614 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2615 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2616 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2617 iterator.level - 1,
2618 1, ACC_ALL, iterator.sptep);
140754bc 2619
1df9f2dc
XG
2620 mmu_spte_set(iterator.sptep,
2621 __pa(sp->spt)
2622 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2623 | shadow_user_mask | shadow_x_mask
2624 | shadow_accessed_mask);
9f652d21
AK
2625 }
2626 }
b90a0e6c 2627 return emulate;
6aa8b732
AK
2628}
2629
77db5cbd 2630static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2631{
77db5cbd
HY
2632 siginfo_t info;
2633
2634 info.si_signo = SIGBUS;
2635 info.si_errno = 0;
2636 info.si_code = BUS_MCEERR_AR;
2637 info.si_addr = (void __user *)address;
2638 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2639
77db5cbd 2640 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2641}
2642
d7c55201 2643static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156 2644{
4d8b81ab
XG
2645 /*
2646 * Do not cache the mmio info caused by writing the readonly gfn
2647 * into the spte otherwise read access on readonly gfn also can
2648 * caused mmio page fault and treat it as mmio access.
2649 * Return 1 to tell kvm to emulate it.
2650 */
2651 if (pfn == KVM_PFN_ERR_RO_FAULT)
2652 return 1;
2653
e6c1502b 2654 if (pfn == KVM_PFN_ERR_HWPOISON) {
bebb106a 2655 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2656 return 0;
d7c55201 2657 }
edba23e5 2658
d7c55201 2659 return -EFAULT;
bf998156
HY
2660}
2661
936a5fe6
AA
2662static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2663 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2664{
2665 pfn_t pfn = *pfnp;
2666 gfn_t gfn = *gfnp;
2667 int level = *levelp;
2668
2669 /*
2670 * Check if it's a transparent hugepage. If this would be an
2671 * hugetlbfs page, level wouldn't be set to
2672 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2673 * here.
2674 */
2675 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2676 level == PT_PAGE_TABLE_LEVEL &&
2677 PageTransCompound(pfn_to_page(pfn)) &&
2678 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2679 unsigned long mask;
2680 /*
2681 * mmu_notifier_retry was successful and we hold the
2682 * mmu_lock here, so the pmd can't become splitting
2683 * from under us, and in turn
2684 * __split_huge_page_refcount() can't run from under
2685 * us and we can safely transfer the refcount from
2686 * PG_tail to PG_head as we switch the pfn to tail to
2687 * head.
2688 */
2689 *levelp = level = PT_DIRECTORY_LEVEL;
2690 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2691 VM_BUG_ON((gfn & mask) != (pfn & mask));
2692 if (pfn & mask) {
2693 gfn &= ~mask;
2694 *gfnp = gfn;
2695 kvm_release_pfn_clean(pfn);
2696 pfn &= ~mask;
c3586667 2697 kvm_get_pfn(pfn);
936a5fe6
AA
2698 *pfnp = pfn;
2699 }
2700 }
2701}
2702
d7c55201
XG
2703static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2704 pfn_t pfn, unsigned access, int *ret_val)
2705{
2706 bool ret = true;
2707
2708 /* The pfn is invalid, report the error! */
2709 if (unlikely(is_invalid_pfn(pfn))) {
2710 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2711 goto exit;
2712 }
2713
ce88decf 2714 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2715 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2716
2717 ret = false;
2718exit:
2719 return ret;
2720}
2721
c7ba5b48
XG
2722static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2723{
2724 /*
2725 * #PF can be fast only if the shadow page table is present and it
2726 * is caused by write-protect, that means we just need change the
2727 * W bit of the spte which can be done out of mmu-lock.
2728 */
2729 if (!(error_code & PFERR_PRESENT_MASK) ||
2730 !(error_code & PFERR_WRITE_MASK))
2731 return false;
2732
2733 return true;
2734}
2735
2736static bool
2737fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2738{
2739 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2740 gfn_t gfn;
2741
2742 WARN_ON(!sp->role.direct);
2743
2744 /*
2745 * The gfn of direct spte is stable since it is calculated
2746 * by sp->gfn.
2747 */
2748 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2749
2750 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2751 mark_page_dirty(vcpu->kvm, gfn);
2752
2753 return true;
2754}
2755
2756/*
2757 * Return value:
2758 * - true: let the vcpu to access on the same address again.
2759 * - false: let the real page fault path to fix it.
2760 */
2761static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2762 u32 error_code)
2763{
2764 struct kvm_shadow_walk_iterator iterator;
2765 bool ret = false;
2766 u64 spte = 0ull;
2767
2768 if (!page_fault_can_be_fast(vcpu, error_code))
2769 return false;
2770
2771 walk_shadow_page_lockless_begin(vcpu);
2772 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2773 if (!is_shadow_present_pte(spte) || iterator.level < level)
2774 break;
2775
2776 /*
2777 * If the mapping has been changed, let the vcpu fault on the
2778 * same address again.
2779 */
2780 if (!is_rmap_spte(spte)) {
2781 ret = true;
2782 goto exit;
2783 }
2784
2785 if (!is_last_spte(spte, level))
2786 goto exit;
2787
2788 /*
2789 * Check if it is a spurious fault caused by TLB lazily flushed.
2790 *
2791 * Need not check the access of upper level table entries since
2792 * they are always ACC_ALL.
2793 */
2794 if (is_writable_pte(spte)) {
2795 ret = true;
2796 goto exit;
2797 }
2798
2799 /*
2800 * Currently, to simplify the code, only the spte write-protected
2801 * by dirty-log can be fast fixed.
2802 */
2803 if (!spte_is_locklessly_modifiable(spte))
2804 goto exit;
2805
2806 /*
2807 * Currently, fast page fault only works for direct mapping since
2808 * the gfn is not stable for indirect shadow page.
2809 * See Documentation/virtual/kvm/locking.txt to get more detail.
2810 */
2811 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2812exit:
a72faf25
XG
2813 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2814 spte, ret);
c7ba5b48
XG
2815 walk_shadow_page_lockless_end(vcpu);
2816
2817 return ret;
2818}
2819
78b2c54a 2820static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe
XG
2821 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2822
c7ba5b48
XG
2823static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2824 gfn_t gfn, bool prefault)
10589a46
MT
2825{
2826 int r;
852e3c19 2827 int level;
936a5fe6 2828 int force_pt_level;
35149e21 2829 pfn_t pfn;
e930bffe 2830 unsigned long mmu_seq;
c7ba5b48 2831 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2832
936a5fe6
AA
2833 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2834 if (likely(!force_pt_level)) {
2835 level = mapping_level(vcpu, gfn);
2836 /*
2837 * This path builds a PAE pagetable - so we can map
2838 * 2mb pages at maximum. Therefore check if the level
2839 * is larger than that.
2840 */
2841 if (level > PT_DIRECTORY_LEVEL)
2842 level = PT_DIRECTORY_LEVEL;
852e3c19 2843
936a5fe6
AA
2844 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2845 } else
2846 level = PT_PAGE_TABLE_LEVEL;
05da4558 2847
c7ba5b48
XG
2848 if (fast_page_fault(vcpu, v, level, error_code))
2849 return 0;
2850
e930bffe 2851 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2852 smp_rmb();
060c2abe 2853
78b2c54a 2854 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2855 return 0;
aaee2c94 2856
d7c55201
XG
2857 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2858 return r;
d196e343 2859
aaee2c94 2860 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
2861 if (mmu_notifier_retry(vcpu, mmu_seq))
2862 goto out_unlock;
eb787d10 2863 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
2864 if (likely(!force_pt_level))
2865 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2866 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2867 prefault);
aaee2c94
MT
2868 spin_unlock(&vcpu->kvm->mmu_lock);
2869
aaee2c94 2870
10589a46 2871 return r;
e930bffe
AA
2872
2873out_unlock:
2874 spin_unlock(&vcpu->kvm->mmu_lock);
2875 kvm_release_pfn_clean(pfn);
2876 return 0;
10589a46
MT
2877}
2878
2879
17ac10ad
AK
2880static void mmu_free_roots(struct kvm_vcpu *vcpu)
2881{
2882 int i;
4db35314 2883 struct kvm_mmu_page *sp;
d98ba053 2884 LIST_HEAD(invalid_list);
17ac10ad 2885
ad312c7c 2886 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2887 return;
aaee2c94 2888 spin_lock(&vcpu->kvm->mmu_lock);
81407ca5
JR
2889 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2890 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2891 vcpu->arch.mmu.direct_map)) {
ad312c7c 2892 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2893
4db35314
AK
2894 sp = page_header(root);
2895 --sp->root_count;
d98ba053
XG
2896 if (!sp->root_count && sp->role.invalid) {
2897 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2898 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2899 }
ad312c7c 2900 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
aaee2c94 2901 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad
AK
2902 return;
2903 }
17ac10ad 2904 for (i = 0; i < 4; ++i) {
ad312c7c 2905 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2906
417726a3 2907 if (root) {
417726a3 2908 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2909 sp = page_header(root);
2910 --sp->root_count;
2e53d63a 2911 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2912 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2913 &invalid_list);
417726a3 2914 }
ad312c7c 2915 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2916 }
d98ba053 2917 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2918 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2919 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2920}
2921
8986ecc0
MT
2922static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2923{
2924 int ret = 0;
2925
2926 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 2927 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
2928 ret = 1;
2929 }
2930
2931 return ret;
2932}
2933
651dd37a
JR
2934static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2935{
2936 struct kvm_mmu_page *sp;
7ebaf15e 2937 unsigned i;
651dd37a
JR
2938
2939 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2940 spin_lock(&vcpu->kvm->mmu_lock);
2941 kvm_mmu_free_some_pages(vcpu);
2942 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2943 1, ACC_ALL, NULL);
2944 ++sp->root_count;
2945 spin_unlock(&vcpu->kvm->mmu_lock);
2946 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2947 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2948 for (i = 0; i < 4; ++i) {
2949 hpa_t root = vcpu->arch.mmu.pae_root[i];
2950
2951 ASSERT(!VALID_PAGE(root));
2952 spin_lock(&vcpu->kvm->mmu_lock);
2953 kvm_mmu_free_some_pages(vcpu);
649497d1
AK
2954 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2955 i << 30,
651dd37a
JR
2956 PT32_ROOT_LEVEL, 1, ACC_ALL,
2957 NULL);
2958 root = __pa(sp->spt);
2959 ++sp->root_count;
2960 spin_unlock(&vcpu->kvm->mmu_lock);
2961 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 2962 }
6292757f 2963 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
2964 } else
2965 BUG();
2966
2967 return 0;
2968}
2969
2970static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 2971{
4db35314 2972 struct kvm_mmu_page *sp;
81407ca5
JR
2973 u64 pdptr, pm_mask;
2974 gfn_t root_gfn;
2975 int i;
3bb65a22 2976
5777ed34 2977 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 2978
651dd37a
JR
2979 if (mmu_check_root(vcpu, root_gfn))
2980 return 1;
2981
2982 /*
2983 * Do we shadow a long mode page table? If so we need to
2984 * write-protect the guests page table root.
2985 */
2986 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 2987 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
2988
2989 ASSERT(!VALID_PAGE(root));
651dd37a 2990
8facbbff 2991 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2992 kvm_mmu_free_some_pages(vcpu);
651dd37a
JR
2993 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2994 0, ACC_ALL, NULL);
4db35314
AK
2995 root = __pa(sp->spt);
2996 ++sp->root_count;
8facbbff 2997 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2998 vcpu->arch.mmu.root_hpa = root;
8986ecc0 2999 return 0;
17ac10ad 3000 }
f87f9288 3001
651dd37a
JR
3002 /*
3003 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3004 * or a PAE 3-level page table. In either case we need to be aware that
3005 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3006 */
81407ca5
JR
3007 pm_mask = PT_PRESENT_MASK;
3008 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3009 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3010
17ac10ad 3011 for (i = 0; i < 4; ++i) {
ad312c7c 3012 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
3013
3014 ASSERT(!VALID_PAGE(root));
ad312c7c 3015 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3016 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3017 if (!is_present_gpte(pdptr)) {
ad312c7c 3018 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3019 continue;
3020 }
6de4f3ad 3021 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3022 if (mmu_check_root(vcpu, root_gfn))
3023 return 1;
5a7388c2 3024 }
8facbbff 3025 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 3026 kvm_mmu_free_some_pages(vcpu);
4db35314 3027 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3028 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3029 ACC_ALL, NULL);
4db35314
AK
3030 root = __pa(sp->spt);
3031 ++sp->root_count;
8facbbff
AK
3032 spin_unlock(&vcpu->kvm->mmu_lock);
3033
81407ca5 3034 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3035 }
6292757f 3036 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3037
3038 /*
3039 * If we shadow a 32 bit page table with a long mode page
3040 * table we enter this path.
3041 */
3042 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3043 if (vcpu->arch.mmu.lm_root == NULL) {
3044 /*
3045 * The additional page necessary for this is only
3046 * allocated on demand.
3047 */
3048
3049 u64 *lm_root;
3050
3051 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3052 if (lm_root == NULL)
3053 return 1;
3054
3055 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3056
3057 vcpu->arch.mmu.lm_root = lm_root;
3058 }
3059
3060 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3061 }
3062
8986ecc0 3063 return 0;
17ac10ad
AK
3064}
3065
651dd37a
JR
3066static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3067{
3068 if (vcpu->arch.mmu.direct_map)
3069 return mmu_alloc_direct_roots(vcpu);
3070 else
3071 return mmu_alloc_shadow_roots(vcpu);
3072}
3073
0ba73cda
MT
3074static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3075{
3076 int i;
3077 struct kvm_mmu_page *sp;
3078
81407ca5
JR
3079 if (vcpu->arch.mmu.direct_map)
3080 return;
3081
0ba73cda
MT
3082 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3083 return;
6903074c 3084
bebb106a 3085 vcpu_clear_mmio_info(vcpu, ~0ul);
0375f7fa 3086 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3087 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3088 hpa_t root = vcpu->arch.mmu.root_hpa;
3089 sp = page_header(root);
3090 mmu_sync_children(vcpu, sp);
0375f7fa 3091 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3092 return;
3093 }
3094 for (i = 0; i < 4; ++i) {
3095 hpa_t root = vcpu->arch.mmu.pae_root[i];
3096
8986ecc0 3097 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3098 root &= PT64_BASE_ADDR_MASK;
3099 sp = page_header(root);
3100 mmu_sync_children(vcpu, sp);
3101 }
3102 }
0375f7fa 3103 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3104}
3105
3106void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3107{
3108 spin_lock(&vcpu->kvm->mmu_lock);
3109 mmu_sync_roots(vcpu);
6cffe8ca 3110 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3111}
3112
1871c602 3113static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3114 u32 access, struct x86_exception *exception)
6aa8b732 3115{
ab9ae313
AK
3116 if (exception)
3117 exception->error_code = 0;
6aa8b732
AK
3118 return vaddr;
3119}
3120
6539e738 3121static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3122 u32 access,
3123 struct x86_exception *exception)
6539e738 3124{
ab9ae313
AK
3125 if (exception)
3126 exception->error_code = 0;
6539e738
JR
3127 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3128}
3129
ce88decf
XG
3130static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3131{
3132 if (direct)
3133 return vcpu_match_mmio_gpa(vcpu, addr);
3134
3135 return vcpu_match_mmio_gva(vcpu, addr);
3136}
3137
3138
3139/*
3140 * On direct hosts, the last spte is only allows two states
3141 * for mmio page fault:
3142 * - It is the mmio spte
3143 * - It is zapped or it is being zapped.
3144 *
3145 * This function completely checks the spte when the last spte
3146 * is not the mmio spte.
3147 */
3148static bool check_direct_spte_mmio_pf(u64 spte)
3149{
3150 return __check_direct_spte_mmio_pf(spte);
3151}
3152
3153static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3154{
3155 struct kvm_shadow_walk_iterator iterator;
3156 u64 spte = 0ull;
3157
3158 walk_shadow_page_lockless_begin(vcpu);
3159 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3160 if (!is_shadow_present_pte(spte))
3161 break;
3162 walk_shadow_page_lockless_end(vcpu);
3163
3164 return spte;
3165}
3166
3167/*
3168 * If it is a real mmio page fault, return 1 and emulat the instruction
3169 * directly, return 0 to let CPU fault again on the address, -1 is
3170 * returned if bug is detected.
3171 */
3172int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3173{
3174 u64 spte;
3175
3176 if (quickly_check_mmio_pf(vcpu, addr, direct))
3177 return 1;
3178
3179 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3180
3181 if (is_mmio_spte(spte)) {
3182 gfn_t gfn = get_mmio_spte_gfn(spte);
3183 unsigned access = get_mmio_spte_access(spte);
3184
3185 if (direct)
3186 addr = 0;
4f022648
XG
3187
3188 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf
XG
3189 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3190 return 1;
3191 }
3192
3193 /*
3194 * It's ok if the gva is remapped by other cpus on shadow guest,
3195 * it's a BUG if the gfn is not a mmio page.
3196 */
3197 if (direct && !check_direct_spte_mmio_pf(spte))
3198 return -1;
3199
3200 /*
3201 * If the page table is zapped by other cpus, let CPU fault again on
3202 * the address.
3203 */
3204 return 0;
3205}
3206EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3207
3208static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3209 u32 error_code, bool direct)
3210{
3211 int ret;
3212
3213 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3214 WARN_ON(ret < 0);
3215 return ret;
3216}
3217
6aa8b732 3218static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3219 u32 error_code, bool prefault)
6aa8b732 3220{
e833240f 3221 gfn_t gfn;
e2dec939 3222 int r;
6aa8b732 3223
b8688d51 3224 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf
XG
3225
3226 if (unlikely(error_code & PFERR_RSVD_MASK))
3227 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3228
e2dec939
AK
3229 r = mmu_topup_memory_caches(vcpu);
3230 if (r)
3231 return r;
714b93da 3232
6aa8b732 3233 ASSERT(vcpu);
ad312c7c 3234 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3235
e833240f 3236 gfn = gva >> PAGE_SHIFT;
6aa8b732 3237
e833240f 3238 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3239 error_code, gfn, prefault);
6aa8b732
AK
3240}
3241
7e1fbeac 3242static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3243{
3244 struct kvm_arch_async_pf arch;
fb67e14f 3245
7c90705b 3246 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3247 arch.gfn = gfn;
c4806acd 3248 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3249 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3250
3251 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3252}
3253
3254static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3255{
3256 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3257 kvm_event_needs_reinjection(vcpu)))
3258 return false;
3259
3260 return kvm_x86_ops->interrupt_allowed(vcpu);
3261}
3262
78b2c54a 3263static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3264 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3265{
3266 bool async;
3267
612819c3 3268 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3269
3270 if (!async)
3271 return false; /* *pfn has correct page already */
3272
78b2c54a 3273 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3274 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3275 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3276 trace_kvm_async_pf_doublefault(gva, gfn);
3277 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3278 return true;
3279 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3280 return true;
3281 }
3282
612819c3 3283 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3284
3285 return false;
3286}
3287
56028d08 3288static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3289 bool prefault)
fb72d167 3290{
35149e21 3291 pfn_t pfn;
fb72d167 3292 int r;
852e3c19 3293 int level;
936a5fe6 3294 int force_pt_level;
05da4558 3295 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3296 unsigned long mmu_seq;
612819c3
MT
3297 int write = error_code & PFERR_WRITE_MASK;
3298 bool map_writable;
fb72d167
JR
3299
3300 ASSERT(vcpu);
3301 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3302
ce88decf
XG
3303 if (unlikely(error_code & PFERR_RSVD_MASK))
3304 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3305
fb72d167
JR
3306 r = mmu_topup_memory_caches(vcpu);
3307 if (r)
3308 return r;
3309
936a5fe6
AA
3310 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3311 if (likely(!force_pt_level)) {
3312 level = mapping_level(vcpu, gfn);
3313 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3314 } else
3315 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3316
c7ba5b48
XG
3317 if (fast_page_fault(vcpu, gpa, level, error_code))
3318 return 0;
3319
e930bffe 3320 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3321 smp_rmb();
af585b92 3322
78b2c54a 3323 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3324 return 0;
3325
d7c55201
XG
3326 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3327 return r;
3328
fb72d167 3329 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
3330 if (mmu_notifier_retry(vcpu, mmu_seq))
3331 goto out_unlock;
fb72d167 3332 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
3333 if (likely(!force_pt_level))
3334 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3335 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3336 level, gfn, pfn, prefault);
fb72d167 3337 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3338
3339 return r;
e930bffe
AA
3340
3341out_unlock:
3342 spin_unlock(&vcpu->kvm->mmu_lock);
3343 kvm_release_pfn_clean(pfn);
3344 return 0;
fb72d167
JR
3345}
3346
6aa8b732
AK
3347static void nonpaging_free(struct kvm_vcpu *vcpu)
3348{
17ac10ad 3349 mmu_free_roots(vcpu);
6aa8b732
AK
3350}
3351
52fde8df
JR
3352static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3353 struct kvm_mmu *context)
6aa8b732 3354{
6aa8b732
AK
3355 context->new_cr3 = nonpaging_new_cr3;
3356 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
3357 context->gva_to_gpa = nonpaging_gva_to_gpa;
3358 context->free = nonpaging_free;
e8bc217a 3359 context->sync_page = nonpaging_sync_page;
a7052897 3360 context->invlpg = nonpaging_invlpg;
0f53b5b1 3361 context->update_pte = nonpaging_update_pte;
cea0f0e7 3362 context->root_level = 0;
6aa8b732 3363 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3364 context->root_hpa = INVALID_PAGE;
c5a78f2b 3365 context->direct_map = true;
2d48a985 3366 context->nx = false;
6aa8b732
AK
3367 return 0;
3368}
3369
d835dfec 3370void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3371{
1165f5fe 3372 ++vcpu->stat.tlb_flush;
a8eeb04a 3373 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732
AK
3374}
3375
3376static void paging_new_cr3(struct kvm_vcpu *vcpu)
3377{
9f8fe504 3378 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
cea0f0e7 3379 mmu_free_roots(vcpu);
6aa8b732
AK
3380}
3381
5777ed34
JR
3382static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3383{
9f8fe504 3384 return kvm_read_cr3(vcpu);
5777ed34
JR
3385}
3386
6389ee94
AK
3387static void inject_page_fault(struct kvm_vcpu *vcpu,
3388 struct x86_exception *fault)
6aa8b732 3389{
6389ee94 3390 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3391}
3392
6aa8b732
AK
3393static void paging_free(struct kvm_vcpu *vcpu)
3394{
3395 nonpaging_free(vcpu);
3396}
3397
3241f22d 3398static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
82725b20
DE
3399{
3400 int bit7;
3401
3402 bit7 = (gpte >> 7) & 1;
3241f22d 3403 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
82725b20
DE
3404}
3405
8ea667f2
AK
3406static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3407{
3408 unsigned mask;
3409
3410 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3411
3412 mask = (unsigned)~ACC_WRITE_MASK;
3413 /* Allow write access to dirty gptes */
3414 mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3415 *access &= mask;
3416}
3417
ce88decf
XG
3418static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3419 int *nr_present)
3420{
3421 if (unlikely(is_mmio_spte(*sptep))) {
3422 if (gfn != get_mmio_spte_gfn(*sptep)) {
3423 mmu_spte_clear_no_track(sptep);
3424 return true;
3425 }
3426
3427 (*nr_present)++;
3428 mark_mmio_spte(sptep, gfn, access);
3429 return true;
3430 }
3431
3432 return false;
3433}
3434
3d34adec
AK
3435static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3436{
3437 unsigned access;
3438
3439 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3440 access &= ~(gpte >> PT64_NX_SHIFT);
3441
3442 return access;
3443}
3444
6fd01b71
AK
3445static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3446{
3447 unsigned index;
3448
3449 index = level - 1;
3450 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3451 return mmu->last_pte_bitmap & (1 << index);
3452}
3453
6aa8b732
AK
3454#define PTTYPE 64
3455#include "paging_tmpl.h"
3456#undef PTTYPE
3457
3458#define PTTYPE 32
3459#include "paging_tmpl.h"
3460#undef PTTYPE
3461
52fde8df 3462static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3463 struct kvm_mmu *context)
82725b20 3464{
82725b20
DE
3465 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3466 u64 exb_bit_rsvd = 0;
3467
2d48a985 3468 if (!context->nx)
82725b20 3469 exb_bit_rsvd = rsvd_bits(63, 63);
4d6931c3 3470 switch (context->root_level) {
82725b20
DE
3471 case PT32_ROOT_LEVEL:
3472 /* no rsvd bits for 2 level 4K page table entries */
3473 context->rsvd_bits_mask[0][1] = 0;
3474 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3475 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3476
3477 if (!is_pse(vcpu)) {
3478 context->rsvd_bits_mask[1][1] = 0;
3479 break;
3480 }
3481
82725b20
DE
3482 if (is_cpuid_PSE36())
3483 /* 36bits PSE 4MB page */
3484 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3485 else
3486 /* 32 bits PSE 4MB page */
3487 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3488 break;
3489 case PT32E_ROOT_LEVEL:
20c466b5
DE
3490 context->rsvd_bits_mask[0][2] =
3491 rsvd_bits(maxphyaddr, 63) |
3492 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3493 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3494 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3495 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3496 rsvd_bits(maxphyaddr, 62); /* PTE */
3497 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3498 rsvd_bits(maxphyaddr, 62) |
3499 rsvd_bits(13, 20); /* large page */
f815bce8 3500 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3501 break;
3502 case PT64_ROOT_LEVEL:
3503 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3504 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3505 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3506 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3507 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3508 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3509 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3510 rsvd_bits(maxphyaddr, 51);
3511 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3512 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3513 rsvd_bits(maxphyaddr, 51) |
3514 rsvd_bits(13, 29);
82725b20 3515 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3516 rsvd_bits(maxphyaddr, 51) |
3517 rsvd_bits(13, 20); /* large page */
f815bce8 3518 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3519 break;
3520 }
3521}
3522
97d64b78
AK
3523static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3524{
3525 unsigned bit, byte, pfec;
3526 u8 map;
3527 bool fault, x, w, u, wf, uf, ff, smep;
3528
3529 smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3530 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3531 pfec = byte << 1;
3532 map = 0;
3533 wf = pfec & PFERR_WRITE_MASK;
3534 uf = pfec & PFERR_USER_MASK;
3535 ff = pfec & PFERR_FETCH_MASK;
3536 for (bit = 0; bit < 8; ++bit) {
3537 x = bit & ACC_EXEC_MASK;
3538 w = bit & ACC_WRITE_MASK;
3539 u = bit & ACC_USER_MASK;
3540
3541 /* Not really needed: !nx will cause pte.nx to fault */
3542 x |= !mmu->nx;
3543 /* Allow supervisor writes if !cr0.wp */
3544 w |= !is_write_protection(vcpu) && !uf;
3545 /* Disallow supervisor fetches of user code if cr4.smep */
3546 x &= !(smep && u && !uf);
3547
3548 fault = (ff && !x) || (uf && !u) || (wf && !w);
3549 map |= fault << bit;
3550 }
3551 mmu->permissions[byte] = map;
3552 }
3553}
3554
6fd01b71
AK
3555static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3556{
3557 u8 map;
3558 unsigned level, root_level = mmu->root_level;
3559 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3560
3561 if (root_level == PT32E_ROOT_LEVEL)
3562 --root_level;
3563 /* PT_PAGE_TABLE_LEVEL always terminates */
3564 map = 1 | (1 << ps_set_index);
3565 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3566 if (level <= PT_PDPE_LEVEL
3567 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3568 map |= 1 << (ps_set_index | (level - 1));
3569 }
3570 mmu->last_pte_bitmap = map;
3571}
3572
52fde8df
JR
3573static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3574 struct kvm_mmu *context,
3575 int level)
6aa8b732 3576{
2d48a985 3577 context->nx = is_nx(vcpu);
4d6931c3 3578 context->root_level = level;
2d48a985 3579
4d6931c3 3580 reset_rsvds_bits_mask(vcpu, context);
97d64b78 3581 update_permission_bitmask(vcpu, context);
6fd01b71 3582 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3583
3584 ASSERT(is_pae(vcpu));
3585 context->new_cr3 = paging_new_cr3;
3586 context->page_fault = paging64_page_fault;
6aa8b732 3587 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3588 context->sync_page = paging64_sync_page;
a7052897 3589 context->invlpg = paging64_invlpg;
0f53b5b1 3590 context->update_pte = paging64_update_pte;
6aa8b732 3591 context->free = paging_free;
17ac10ad 3592 context->shadow_root_level = level;
17c3ba9d 3593 context->root_hpa = INVALID_PAGE;
c5a78f2b 3594 context->direct_map = false;
6aa8b732
AK
3595 return 0;
3596}
3597
52fde8df
JR
3598static int paging64_init_context(struct kvm_vcpu *vcpu,
3599 struct kvm_mmu *context)
17ac10ad 3600{
52fde8df 3601 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3602}
3603
52fde8df
JR
3604static int paging32_init_context(struct kvm_vcpu *vcpu,
3605 struct kvm_mmu *context)
6aa8b732 3606{
2d48a985 3607 context->nx = false;
4d6931c3 3608 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3609
4d6931c3 3610 reset_rsvds_bits_mask(vcpu, context);
97d64b78 3611 update_permission_bitmask(vcpu, context);
6fd01b71 3612 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3613
3614 context->new_cr3 = paging_new_cr3;
3615 context->page_fault = paging32_page_fault;
6aa8b732
AK
3616 context->gva_to_gpa = paging32_gva_to_gpa;
3617 context->free = paging_free;
e8bc217a 3618 context->sync_page = paging32_sync_page;
a7052897 3619 context->invlpg = paging32_invlpg;
0f53b5b1 3620 context->update_pte = paging32_update_pte;
6aa8b732 3621 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3622 context->root_hpa = INVALID_PAGE;
c5a78f2b 3623 context->direct_map = false;
6aa8b732
AK
3624 return 0;
3625}
3626
52fde8df
JR
3627static int paging32E_init_context(struct kvm_vcpu *vcpu,
3628 struct kvm_mmu *context)
6aa8b732 3629{
52fde8df 3630 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3631}
3632
fb72d167
JR
3633static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3634{
14dfe855 3635 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3636
c445f8ef 3637 context->base_role.word = 0;
fb72d167
JR
3638 context->new_cr3 = nonpaging_new_cr3;
3639 context->page_fault = tdp_page_fault;
3640 context->free = nonpaging_free;
e8bc217a 3641 context->sync_page = nonpaging_sync_page;
a7052897 3642 context->invlpg = nonpaging_invlpg;
0f53b5b1 3643 context->update_pte = nonpaging_update_pte;
67253af5 3644 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3645 context->root_hpa = INVALID_PAGE;
c5a78f2b 3646 context->direct_map = true;
1c97f0a0 3647 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3648 context->get_cr3 = get_cr3;
e4e517b4 3649 context->get_pdptr = kvm_pdptr_read;
cb659db8 3650 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3651
3652 if (!is_paging(vcpu)) {
2d48a985 3653 context->nx = false;
fb72d167
JR
3654 context->gva_to_gpa = nonpaging_gva_to_gpa;
3655 context->root_level = 0;
3656 } else if (is_long_mode(vcpu)) {
2d48a985 3657 context->nx = is_nx(vcpu);
fb72d167 3658 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3659 reset_rsvds_bits_mask(vcpu, context);
3660 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3661 } else if (is_pae(vcpu)) {
2d48a985 3662 context->nx = is_nx(vcpu);
fb72d167 3663 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3664 reset_rsvds_bits_mask(vcpu, context);
3665 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3666 } else {
2d48a985 3667 context->nx = false;
fb72d167 3668 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3669 reset_rsvds_bits_mask(vcpu, context);
3670 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3671 }
3672
97d64b78 3673 update_permission_bitmask(vcpu, context);
6fd01b71 3674 update_last_pte_bitmap(vcpu, context);
97d64b78 3675
fb72d167
JR
3676 return 0;
3677}
3678
52fde8df 3679int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3680{
a770f6f2 3681 int r;
411c588d 3682 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3683 ASSERT(vcpu);
ad312c7c 3684 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3685
3686 if (!is_paging(vcpu))
52fde8df 3687 r = nonpaging_init_context(vcpu, context);
a9058ecd 3688 else if (is_long_mode(vcpu))
52fde8df 3689 r = paging64_init_context(vcpu, context);
6aa8b732 3690 else if (is_pae(vcpu))
52fde8df 3691 r = paging32E_init_context(vcpu, context);
6aa8b732 3692 else
52fde8df 3693 r = paging32_init_context(vcpu, context);
a770f6f2 3694
5b7e0102 3695 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3696 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3697 vcpu->arch.mmu.base_role.smep_andnot_wp
3698 = smep && !is_write_protection(vcpu);
52fde8df
JR
3699
3700 return r;
3701}
3702EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3703
3704static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3705{
14dfe855 3706 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
52fde8df 3707
14dfe855
JR
3708 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3709 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3710 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3711 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
a770f6f2
AK
3712
3713 return r;
6aa8b732
AK
3714}
3715
02f59dc9
JR
3716static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3717{
3718 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3719
3720 g_context->get_cr3 = get_cr3;
e4e517b4 3721 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3722 g_context->inject_page_fault = kvm_inject_page_fault;
3723
3724 /*
3725 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3726 * translation of l2_gpa to l1_gpa addresses is done using the
3727 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3728 * functions between mmu and nested_mmu are swapped.
3729 */
3730 if (!is_paging(vcpu)) {
2d48a985 3731 g_context->nx = false;
02f59dc9
JR
3732 g_context->root_level = 0;
3733 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3734 } else if (is_long_mode(vcpu)) {
2d48a985 3735 g_context->nx = is_nx(vcpu);
02f59dc9 3736 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3737 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3738 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3739 } else if (is_pae(vcpu)) {
2d48a985 3740 g_context->nx = is_nx(vcpu);
02f59dc9 3741 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3742 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3743 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3744 } else {
2d48a985 3745 g_context->nx = false;
02f59dc9 3746 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3747 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3748 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3749 }
3750
97d64b78 3751 update_permission_bitmask(vcpu, g_context);
6fd01b71 3752 update_last_pte_bitmap(vcpu, g_context);
97d64b78 3753
02f59dc9
JR
3754 return 0;
3755}
3756
fb72d167
JR
3757static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3758{
02f59dc9
JR
3759 if (mmu_is_nested(vcpu))
3760 return init_kvm_nested_mmu(vcpu);
3761 else if (tdp_enabled)
fb72d167
JR
3762 return init_kvm_tdp_mmu(vcpu);
3763 else
3764 return init_kvm_softmmu(vcpu);
3765}
3766
6aa8b732
AK
3767static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3768{
3769 ASSERT(vcpu);
62ad0755
SY
3770 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3771 /* mmu.free() should set root_hpa = INVALID_PAGE */
ad312c7c 3772 vcpu->arch.mmu.free(vcpu);
6aa8b732
AK
3773}
3774
3775int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
17c3ba9d
AK
3776{
3777 destroy_kvm_mmu(vcpu);
f8f7e5ee 3778 return init_kvm_mmu(vcpu);
17c3ba9d 3779}
8668a3c4 3780EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3781
3782int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3783{
714b93da
AK
3784 int r;
3785
e2dec939 3786 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3787 if (r)
3788 goto out;
8986ecc0 3789 r = mmu_alloc_roots(vcpu);
8facbbff 3790 spin_lock(&vcpu->kvm->mmu_lock);
0ba73cda 3791 mmu_sync_roots(vcpu);
aaee2c94 3792 spin_unlock(&vcpu->kvm->mmu_lock);
8986ecc0
MT
3793 if (r)
3794 goto out;
3662cb1c 3795 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3796 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3797out:
3798 return r;
6aa8b732 3799}
17c3ba9d
AK
3800EXPORT_SYMBOL_GPL(kvm_mmu_load);
3801
3802void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3803{
3804 mmu_free_roots(vcpu);
3805}
4b16184c 3806EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3807
0028425f 3808static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3809 struct kvm_mmu_page *sp, u64 *spte,
3810 const void *new)
0028425f 3811{
30945387 3812 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3813 ++vcpu->kvm->stat.mmu_pde_zapped;
3814 return;
30945387 3815 }
0028425f 3816
4cee5764 3817 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3818 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3819}
3820
79539cec
AK
3821static bool need_remote_flush(u64 old, u64 new)
3822{
3823 if (!is_shadow_present_pte(old))
3824 return false;
3825 if (!is_shadow_present_pte(new))
3826 return true;
3827 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3828 return true;
3829 old ^= PT64_NX_MASK;
3830 new ^= PT64_NX_MASK;
3831 return (old & ~new & PT64_PERM_MASK) != 0;
3832}
3833
0671a8e7
XG
3834static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3835 bool remote_flush, bool local_flush)
79539cec 3836{
0671a8e7
XG
3837 if (zap_page)
3838 return;
3839
3840 if (remote_flush)
79539cec 3841 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3842 else if (local_flush)
79539cec
AK
3843 kvm_mmu_flush_tlb(vcpu);
3844}
3845
889e5cbc
XG
3846static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3847 const u8 *new, int *bytes)
da4a00f0 3848{
889e5cbc
XG
3849 u64 gentry;
3850 int r;
72016f3a 3851
72016f3a
AK
3852 /*
3853 * Assume that the pte write on a page table of the same type
49b26e26
XG
3854 * as the current vcpu paging mode since we update the sptes only
3855 * when they have the same mode.
72016f3a 3856 */
889e5cbc 3857 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3858 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3859 *gpa &= ~(gpa_t)7;
3860 *bytes = 8;
3861 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
72016f3a
AK
3862 if (r)
3863 gentry = 0;
08e850c6
AK
3864 new = (const u8 *)&gentry;
3865 }
3866
889e5cbc 3867 switch (*bytes) {
08e850c6
AK
3868 case 4:
3869 gentry = *(const u32 *)new;
3870 break;
3871 case 8:
3872 gentry = *(const u64 *)new;
3873 break;
3874 default:
3875 gentry = 0;
3876 break;
72016f3a
AK
3877 }
3878
889e5cbc
XG
3879 return gentry;
3880}
3881
3882/*
3883 * If we're seeing too many writes to a page, it may no longer be a page table,
3884 * or we may be forking, in which case it is better to unmap the page.
3885 */
a138fe75 3886static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 3887{
a30f47cb
XG
3888 /*
3889 * Skip write-flooding detected for the sp whose level is 1, because
3890 * it can become unsync, then the guest page is not write-protected.
3891 */
f71fa31f 3892 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 3893 return false;
3246af0e 3894
a30f47cb 3895 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
3896}
3897
3898/*
3899 * Misaligned accesses are too much trouble to fix up; also, they usually
3900 * indicate a page is not used as a page table.
3901 */
3902static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3903 int bytes)
3904{
3905 unsigned offset, pte_size, misaligned;
3906
3907 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3908 gpa, bytes, sp->role.word);
3909
3910 offset = offset_in_page(gpa);
3911 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
3912
3913 /*
3914 * Sometimes, the OS only writes the last one bytes to update status
3915 * bits, for example, in linux, andb instruction is used in clear_bit().
3916 */
3917 if (!(offset & (pte_size - 1)) && bytes == 1)
3918 return false;
3919
889e5cbc
XG
3920 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3921 misaligned |= bytes < 4;
3922
3923 return misaligned;
3924}
3925
3926static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3927{
3928 unsigned page_offset, quadrant;
3929 u64 *spte;
3930 int level;
3931
3932 page_offset = offset_in_page(gpa);
3933 level = sp->role.level;
3934 *nspte = 1;
3935 if (!sp->role.cr4_pae) {
3936 page_offset <<= 1; /* 32->64 */
3937 /*
3938 * A 32-bit pde maps 4MB while the shadow pdes map
3939 * only 2MB. So we need to double the offset again
3940 * and zap two pdes instead of one.
3941 */
3942 if (level == PT32_ROOT_LEVEL) {
3943 page_offset &= ~7; /* kill rounding error */
3944 page_offset <<= 1;
3945 *nspte = 2;
3946 }
3947 quadrant = page_offset >> PAGE_SHIFT;
3948 page_offset &= ~PAGE_MASK;
3949 if (quadrant != sp->role.quadrant)
3950 return NULL;
3951 }
3952
3953 spte = &sp->spt[page_offset / sizeof(*spte)];
3954 return spte;
3955}
3956
3957void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3958 const u8 *new, int bytes)
3959{
3960 gfn_t gfn = gpa >> PAGE_SHIFT;
3961 union kvm_mmu_page_role mask = { .word = 0 };
3962 struct kvm_mmu_page *sp;
3963 struct hlist_node *node;
3964 LIST_HEAD(invalid_list);
3965 u64 entry, gentry, *spte;
3966 int npte;
a30f47cb 3967 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
3968
3969 /*
3970 * If we don't have indirect shadow pages, it means no page is
3971 * write-protected, so we can exit simply.
3972 */
3973 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3974 return;
3975
3976 zap_page = remote_flush = local_flush = false;
3977
3978 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3979
3980 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3981
3982 /*
3983 * No need to care whether allocation memory is successful
3984 * or not since pte prefetch is skiped if it does not have
3985 * enough objects in the cache.
3986 */
3987 mmu_topup_memory_caches(vcpu);
3988
3989 spin_lock(&vcpu->kvm->mmu_lock);
3990 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 3991 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 3992
fa1de2bf 3993 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
f41d335a 3994 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
a30f47cb 3995 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 3996 detect_write_flooding(sp)) {
0671a8e7 3997 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 3998 &invalid_list);
4cee5764 3999 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4000 continue;
4001 }
889e5cbc
XG
4002
4003 spte = get_written_sptes(sp, gpa, &npte);
4004 if (!spte)
4005 continue;
4006
0671a8e7 4007 local_flush = true;
ac1b714e 4008 while (npte--) {
79539cec 4009 entry = *spte;
38e3b2b2 4010 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4011 if (gentry &&
4012 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4013 & mask.word) && rmap_can_add(vcpu))
7c562522 4014 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
0671a8e7
XG
4015 if (!remote_flush && need_remote_flush(entry, *spte))
4016 remote_flush = true;
ac1b714e 4017 ++spte;
9b7a0325 4018 }
9b7a0325 4019 }
0671a8e7 4020 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 4021 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 4022 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4023 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4024}
4025
a436036b
AK
4026int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4027{
10589a46
MT
4028 gpa_t gpa;
4029 int r;
a436036b 4030
c5a78f2b 4031 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4032 return 0;
4033
1871c602 4034 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4035
10589a46 4036 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4037
10589a46 4038 return r;
a436036b 4039}
577bdc49 4040EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4041
22d95b12 4042void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
ebeace86 4043{
d98ba053 4044 LIST_HEAD(invalid_list);
103ad25a 4045
e0df7b9f 4046 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3b80fffe 4047 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4db35314 4048 struct kvm_mmu_page *sp;
ebeace86 4049
f05e70ac 4050 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4db35314 4051 struct kvm_mmu_page, link);
e0df7b9f 4052 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 4053 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4054 }
aa6bd187 4055 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4056}
ebeace86 4057
1cb3f3ae
XG
4058static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4059{
4060 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4061 return vcpu_match_mmio_gpa(vcpu, addr);
4062
4063 return vcpu_match_mmio_gva(vcpu, addr);
4064}
4065
dc25e89e
AP
4066int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4067 void *insn, int insn_len)
3067714c 4068{
1cb3f3ae 4069 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
4070 enum emulation_result er;
4071
56028d08 4072 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
4073 if (r < 0)
4074 goto out;
4075
4076 if (!r) {
4077 r = 1;
4078 goto out;
4079 }
4080
1cb3f3ae
XG
4081 if (is_mmio_page_fault(vcpu, cr2))
4082 emulation_type = 0;
4083
4084 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4085
4086 switch (er) {
4087 case EMULATE_DONE:
4088 return 1;
4089 case EMULATE_DO_MMIO:
4090 ++vcpu->stat.mmio_exits;
6d77dbfc 4091 /* fall through */
3067714c 4092 case EMULATE_FAIL:
3f5d18a9 4093 return 0;
3067714c
AK
4094 default:
4095 BUG();
4096 }
4097out:
3067714c
AK
4098 return r;
4099}
4100EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4101
a7052897
MT
4102void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4103{
a7052897 4104 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
4105 kvm_mmu_flush_tlb(vcpu);
4106 ++vcpu->stat.invlpg;
4107}
4108EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4109
18552672
JR
4110void kvm_enable_tdp(void)
4111{
4112 tdp_enabled = true;
4113}
4114EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4115
5f4cb662
JR
4116void kvm_disable_tdp(void)
4117{
4118 tdp_enabled = false;
4119}
4120EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4121
6aa8b732
AK
4122static void free_mmu_pages(struct kvm_vcpu *vcpu)
4123{
ad312c7c 4124 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4125 if (vcpu->arch.mmu.lm_root != NULL)
4126 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4127}
4128
4129static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4130{
17ac10ad 4131 struct page *page;
6aa8b732
AK
4132 int i;
4133
4134 ASSERT(vcpu);
4135
17ac10ad
AK
4136 /*
4137 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4138 * Therefore we need to allocate shadow page tables in the first
4139 * 4GB of memory, which happens to fit the DMA32 zone.
4140 */
4141 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4142 if (!page)
d7fa6ab2
WY
4143 return -ENOMEM;
4144
ad312c7c 4145 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4146 for (i = 0; i < 4; ++i)
ad312c7c 4147 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4148
6aa8b732 4149 return 0;
6aa8b732
AK
4150}
4151
8018c27b 4152int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4153{
6aa8b732 4154 ASSERT(vcpu);
e459e322
XG
4155
4156 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4157 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4158 vcpu->arch.mmu.translate_gpa = translate_gpa;
4159 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4160
8018c27b
IM
4161 return alloc_mmu_pages(vcpu);
4162}
6aa8b732 4163
8018c27b
IM
4164int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4165{
4166 ASSERT(vcpu);
ad312c7c 4167 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4168
8018c27b 4169 return init_kvm_mmu(vcpu);
6aa8b732
AK
4170}
4171
90cb0529 4172void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 4173{
4db35314 4174 struct kvm_mmu_page *sp;
d13bc5b5 4175 bool flush = false;
6aa8b732 4176
f05e70ac 4177 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
6aa8b732
AK
4178 int i;
4179 u64 *pt;
4180
291f26bc 4181 if (!test_bit(slot, sp->slot_bitmap))
6aa8b732
AK
4182 continue;
4183
4db35314 4184 pt = sp->spt;
8234b22e 4185 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
da8dc75f
XG
4186 if (!is_shadow_present_pte(pt[i]) ||
4187 !is_last_spte(pt[i], sp->role.level))
4188 continue;
4189
49fde340 4190 spte_write_protect(kvm, &pt[i], &flush, false);
8234b22e 4191 }
6aa8b732 4192 }
171d595d 4193 kvm_flush_remote_tlbs(kvm);
6aa8b732 4194}
37a7d8b0 4195
90cb0529 4196void kvm_mmu_zap_all(struct kvm *kvm)
e0fa826f 4197{
4db35314 4198 struct kvm_mmu_page *sp, *node;
d98ba053 4199 LIST_HEAD(invalid_list);
e0fa826f 4200
aaee2c94 4201 spin_lock(&kvm->mmu_lock);
3246af0e 4202restart:
f05e70ac 4203 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
d98ba053 4204 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3246af0e
XG
4205 goto restart;
4206
d98ba053 4207 kvm_mmu_commit_zap_page(kvm, &invalid_list);
aaee2c94 4208 spin_unlock(&kvm->mmu_lock);
e0fa826f
DL
4209}
4210
3d56cbdf
JK
4211static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
4212 struct list_head *invalid_list)
3ee16c81
IE
4213{
4214 struct kvm_mmu_page *page;
4215
85b70591
XG
4216 if (list_empty(&kvm->arch.active_mmu_pages))
4217 return;
4218
3ee16c81
IE
4219 page = container_of(kvm->arch.active_mmu_pages.prev,
4220 struct kvm_mmu_page, link);
3d56cbdf 4221 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3ee16c81
IE
4222}
4223
1495f230 4224static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4225{
4226 struct kvm *kvm;
1495f230 4227 int nr_to_scan = sc->nr_to_scan;
45221ab6
DH
4228
4229 if (nr_to_scan == 0)
4230 goto out;
3ee16c81 4231
e935b837 4232 raw_spin_lock(&kvm_lock);
3ee16c81
IE
4233
4234 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4235 int idx;
d98ba053 4236 LIST_HEAD(invalid_list);
3ee16c81 4237
35f2d16b
TY
4238 /*
4239 * Never scan more than sc->nr_to_scan VM instances.
4240 * Will not hit this condition practically since we do not try
4241 * to shrink more than one VM and it is very unlikely to see
4242 * !n_used_mmu_pages so many times.
4243 */
4244 if (!nr_to_scan--)
4245 break;
19526396
GN
4246 /*
4247 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4248 * here. We may skip a VM instance errorneosly, but we do not
4249 * want to shrink a VM that only started to populate its MMU
4250 * anyway.
4251 */
35f2d16b 4252 if (!kvm->arch.n_used_mmu_pages)
19526396 4253 continue;
19526396 4254
f656ce01 4255 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4256 spin_lock(&kvm->mmu_lock);
3ee16c81 4257
19526396 4258 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
d98ba053 4259 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4260
3ee16c81 4261 spin_unlock(&kvm->mmu_lock);
f656ce01 4262 srcu_read_unlock(&kvm->srcu, idx);
19526396
GN
4263
4264 list_move_tail(&kvm->vm_list, &vm_list);
4265 break;
3ee16c81 4266 }
3ee16c81 4267
e935b837 4268 raw_spin_unlock(&kvm_lock);
3ee16c81 4269
45221ab6
DH
4270out:
4271 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4272}
4273
4274static struct shrinker mmu_shrinker = {
4275 .shrink = mmu_shrink,
4276 .seeks = DEFAULT_SEEKS * 10,
4277};
4278
2ddfd20e 4279static void mmu_destroy_caches(void)
b5a33a75 4280{
53c07b18
XG
4281 if (pte_list_desc_cache)
4282 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4283 if (mmu_page_header_cache)
4284 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4285}
4286
4287int kvm_mmu_module_init(void)
4288{
53c07b18
XG
4289 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4290 sizeof(struct pte_list_desc),
20c2df83 4291 0, 0, NULL);
53c07b18 4292 if (!pte_list_desc_cache)
b5a33a75
AK
4293 goto nomem;
4294
d3d25b04
AK
4295 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4296 sizeof(struct kvm_mmu_page),
20c2df83 4297 0, 0, NULL);
d3d25b04
AK
4298 if (!mmu_page_header_cache)
4299 goto nomem;
4300
45bf21a8
WY
4301 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4302 goto nomem;
4303
3ee16c81
IE
4304 register_shrinker(&mmu_shrinker);
4305
b5a33a75
AK
4306 return 0;
4307
4308nomem:
3ee16c81 4309 mmu_destroy_caches();
b5a33a75
AK
4310 return -ENOMEM;
4311}
4312
3ad82a7e
ZX
4313/*
4314 * Caculate mmu pages needed for kvm.
4315 */
4316unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4317{
3ad82a7e
ZX
4318 unsigned int nr_mmu_pages;
4319 unsigned int nr_pages = 0;
bc6678a3 4320 struct kvm_memslots *slots;
be6ba0f0 4321 struct kvm_memory_slot *memslot;
3ad82a7e 4322
90d83dc3
LJ
4323 slots = kvm_memslots(kvm);
4324
be6ba0f0
XG
4325 kvm_for_each_memslot(memslot, slots)
4326 nr_pages += memslot->npages;
3ad82a7e
ZX
4327
4328 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4329 nr_mmu_pages = max(nr_mmu_pages,
4330 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4331
4332 return nr_mmu_pages;
4333}
4334
94d8b056
MT
4335int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4336{
4337 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4338 u64 spte;
94d8b056
MT
4339 int nr_sptes = 0;
4340
c2a2ac2b
XG
4341 walk_shadow_page_lockless_begin(vcpu);
4342 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4343 sptes[iterator.level-1] = spte;
94d8b056 4344 nr_sptes++;
c2a2ac2b 4345 if (!is_shadow_present_pte(spte))
94d8b056
MT
4346 break;
4347 }
c2a2ac2b 4348 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4349
4350 return nr_sptes;
4351}
4352EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4353
c42fffe3
XG
4354void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4355{
4356 ASSERT(vcpu);
4357
4358 destroy_kvm_mmu(vcpu);
4359 free_mmu_pages(vcpu);
4360 mmu_free_memory_caches(vcpu);
b034cf01
XG
4361}
4362
b034cf01
XG
4363void kvm_mmu_module_exit(void)
4364{
4365 mmu_destroy_caches();
4366 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4367 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4368 mmu_audit_disable();
4369}
This page took 0.898955 seconds and 5 git commands to generate.