KVM: x86: allow TSC deadline timer on all hosts
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
448353ca 33#include <linux/swap.h>
05da4558 34#include <linux/hugetlb.h>
2f333bcb 35#include <linux/compiler.h>
bc6678a3 36#include <linux/srcu.h>
5a0e3ad6 37#include <linux/slab.h>
bf998156 38#include <linux/uaccess.h>
6aa8b732 39
e495606d
AK
40#include <asm/page.h>
41#include <asm/cmpxchg.h>
4e542370 42#include <asm/io.h>
13673a90 43#include <asm/vmx.h>
6aa8b732 44
18552672
JR
45/*
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
51 */
2f333bcb 52bool tdp_enabled = false;
18552672 53
8b1fe17c
XG
54enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
6903074c
XG
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
8b1fe17c 61};
37a7d8b0 62
8b1fe17c 63#undef MMU_DEBUG
37a7d8b0
AK
64
65#ifdef MMU_DEBUG
fa4a2c08
PB
66static bool dbg = 0;
67module_param(dbg, bool, 0644);
37a7d8b0
AK
68
69#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
70#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 71#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 72#else
37a7d8b0
AK
73#define pgprintk(x...) do { } while (0)
74#define rmap_printk(x...) do { } while (0)
fa4a2c08 75#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 76#endif
6aa8b732 77
957ed9ef
XG
78#define PTE_PREFETCH_NUM 8
79
00763e41 80#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
81#define PT64_SECOND_AVAIL_BITS_SHIFT 52
82
6aa8b732
AK
83#define PT64_LEVEL_BITS 9
84
85#define PT64_LEVEL_SHIFT(level) \
d77c26fc 86 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 87
6aa8b732
AK
88#define PT64_INDEX(address, level)\
89 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
90
91
92#define PT32_LEVEL_BITS 10
93
94#define PT32_LEVEL_SHIFT(level) \
d77c26fc 95 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 96
e04da980
JR
97#define PT32_LVL_OFFSET_MASK(level) \
98 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
99 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
100
101#define PT32_INDEX(address, level)\
102 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
103
104
27aba766 105#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
106#define PT64_DIR_BASE_ADDR_MASK \
107 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
108#define PT64_LVL_ADDR_MASK(level) \
109 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
110 * PT64_LEVEL_BITS))) - 1))
111#define PT64_LVL_OFFSET_MASK(level) \
112 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
114
115#define PT32_BASE_ADDR_MASK PAGE_MASK
116#define PT32_DIR_BASE_ADDR_MASK \
117 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
118#define PT32_LVL_ADDR_MASK(level) \
119 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 * PT32_LEVEL_BITS))) - 1))
6aa8b732 121
53166229
GN
122#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
123 | shadow_x_mask | shadow_nx_mask)
6aa8b732 124
fe135d2c
AK
125#define ACC_EXEC_MASK 1
126#define ACC_WRITE_MASK PT_WRITABLE_MASK
127#define ACC_USER_MASK PT_USER_MASK
128#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
129
90bb6fc5
AK
130#include <trace/events/kvm.h>
131
07420171
AK
132#define CREATE_TRACE_POINTS
133#include "mmutrace.h"
134
49fde340
XG
135#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
136#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 137
135f8c2b
AK
138#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
139
220f773a
TY
140/* make pte_list_desc fit well in cache line */
141#define PTE_LIST_EXT 3
142
53c07b18
XG
143struct pte_list_desc {
144 u64 *sptes[PTE_LIST_EXT];
145 struct pte_list_desc *more;
cd4a4e53
AK
146};
147
2d11123a
AK
148struct kvm_shadow_walk_iterator {
149 u64 addr;
150 hpa_t shadow_addr;
2d11123a 151 u64 *sptep;
dd3bfd59 152 int level;
2d11123a
AK
153 unsigned index;
154};
155
156#define for_each_shadow_entry(_vcpu, _addr, _walker) \
157 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
158 shadow_walk_okay(&(_walker)); \
159 shadow_walk_next(&(_walker)))
160
c2a2ac2b
XG
161#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
162 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
163 shadow_walk_okay(&(_walker)) && \
164 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
165 __shadow_walk_next(&(_walker), spte))
166
53c07b18 167static struct kmem_cache *pte_list_desc_cache;
d3d25b04 168static struct kmem_cache *mmu_page_header_cache;
45221ab6 169static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 170
7b52345e
SY
171static u64 __read_mostly shadow_nx_mask;
172static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
173static u64 __read_mostly shadow_user_mask;
174static u64 __read_mostly shadow_accessed_mask;
175static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
176static u64 __read_mostly shadow_mmio_mask;
177
178static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 179static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
180
181void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
182{
183 shadow_mmio_mask = mmio_mask;
184}
185EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
186
f2fd125d 187/*
ee3d1570
DM
188 * the low bit of the generation number is always presumed to be zero.
189 * This disables mmio caching during memslot updates. The concept is
190 * similar to a seqcount but instead of retrying the access we just punt
191 * and ignore the cache.
192 *
193 * spte bits 3-11 are used as bits 1-9 of the generation number,
194 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 195 */
ee3d1570 196#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
197#define MMIO_SPTE_GEN_HIGH_SHIFT 52
198
ee3d1570
DM
199#define MMIO_GEN_SHIFT 20
200#define MMIO_GEN_LOW_SHIFT 10
201#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942 202#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
203
204static u64 generation_mmio_spte_mask(unsigned int gen)
205{
206 u64 mask;
207
842bb26a 208 WARN_ON(gen & ~MMIO_GEN_MASK);
f2fd125d
XG
209
210 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
211 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
212 return mask;
213}
214
215static unsigned int get_mmio_spte_generation(u64 spte)
216{
217 unsigned int gen;
218
219 spte &= ~shadow_mmio_mask;
220
221 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
222 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
223 return gen;
224}
225
f8f55942
XG
226static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
227{
00f034a1 228 return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
f8f55942
XG
229}
230
f2fd125d
XG
231static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
232 unsigned access)
ce88decf 233{
f8f55942
XG
234 unsigned int gen = kvm_current_mmio_generation(kvm);
235 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 236
ce88decf 237 access &= ACC_WRITE_MASK | ACC_USER_MASK;
f2fd125d 238 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
f2fd125d 239
f8f55942 240 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 241 mmu_spte_set(sptep, mask);
ce88decf
XG
242}
243
244static bool is_mmio_spte(u64 spte)
245{
246 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
247}
248
249static gfn_t get_mmio_spte_gfn(u64 spte)
250{
842bb26a 251 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 252 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
253}
254
255static unsigned get_mmio_spte_access(u64 spte)
256{
842bb26a 257 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 258 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
259}
260
f2fd125d
XG
261static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
262 pfn_t pfn, unsigned access)
ce88decf
XG
263{
264 if (unlikely(is_noslot_pfn(pfn))) {
f2fd125d 265 mark_mmio_spte(kvm, sptep, gfn, access);
ce88decf
XG
266 return true;
267 }
268
269 return false;
270}
c7addb90 271
f8f55942
XG
272static bool check_mmio_spte(struct kvm *kvm, u64 spte)
273{
089504c0
XG
274 unsigned int kvm_gen, spte_gen;
275
276 kvm_gen = kvm_current_mmio_generation(kvm);
277 spte_gen = get_mmio_spte_generation(spte);
278
279 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
280 return likely(kvm_gen == spte_gen);
f8f55942
XG
281}
282
7b52345e 283void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 284 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
285{
286 shadow_user_mask = user_mask;
287 shadow_accessed_mask = accessed_mask;
288 shadow_dirty_mask = dirty_mask;
289 shadow_nx_mask = nx_mask;
290 shadow_x_mask = x_mask;
291}
292EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
293
6aa8b732
AK
294static int is_cpuid_PSE36(void)
295{
296 return 1;
297}
298
73b1087e
AK
299static int is_nx(struct kvm_vcpu *vcpu)
300{
f6801dff 301 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
302}
303
c7addb90
AK
304static int is_shadow_present_pte(u64 pte)
305{
ce88decf 306 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
307}
308
05da4558
MT
309static int is_large_pte(u64 pte)
310{
311 return pte & PT_PAGE_SIZE_MASK;
312}
313
43a3795a 314static int is_rmap_spte(u64 pte)
cd4a4e53 315{
4b1a80fa 316 return is_shadow_present_pte(pte);
cd4a4e53
AK
317}
318
776e6633
MT
319static int is_last_spte(u64 pte, int level)
320{
321 if (level == PT_PAGE_TABLE_LEVEL)
322 return 1;
852e3c19 323 if (is_large_pte(pte))
776e6633
MT
324 return 1;
325 return 0;
326}
327
35149e21 328static pfn_t spte_to_pfn(u64 pte)
0b49ea86 329{
35149e21 330 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
331}
332
da928521
AK
333static gfn_t pse36_gfn_delta(u32 gpte)
334{
335 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
336
337 return (gpte & PT32_DIR_PSE36_MASK) << shift;
338}
339
603e0651 340#ifdef CONFIG_X86_64
d555c333 341static void __set_spte(u64 *sptep, u64 spte)
e663ee64 342{
603e0651 343 *sptep = spte;
e663ee64
AK
344}
345
603e0651 346static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 347{
603e0651
XG
348 *sptep = spte;
349}
350
351static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
352{
353 return xchg(sptep, spte);
354}
c2a2ac2b
XG
355
356static u64 __get_spte_lockless(u64 *sptep)
357{
358 return ACCESS_ONCE(*sptep);
359}
ce88decf
XG
360
361static bool __check_direct_spte_mmio_pf(u64 spte)
362{
363 /* It is valid if the spte is zapped. */
364 return spte == 0ull;
365}
a9221dd5 366#else
603e0651
XG
367union split_spte {
368 struct {
369 u32 spte_low;
370 u32 spte_high;
371 };
372 u64 spte;
373};
a9221dd5 374
c2a2ac2b
XG
375static void count_spte_clear(u64 *sptep, u64 spte)
376{
377 struct kvm_mmu_page *sp = page_header(__pa(sptep));
378
379 if (is_shadow_present_pte(spte))
380 return;
381
382 /* Ensure the spte is completely set before we increase the count */
383 smp_wmb();
384 sp->clear_spte_count++;
385}
386
603e0651
XG
387static void __set_spte(u64 *sptep, u64 spte)
388{
389 union split_spte *ssptep, sspte;
a9221dd5 390
603e0651
XG
391 ssptep = (union split_spte *)sptep;
392 sspte = (union split_spte)spte;
393
394 ssptep->spte_high = sspte.spte_high;
395
396 /*
397 * If we map the spte from nonpresent to present, We should store
398 * the high bits firstly, then set present bit, so cpu can not
399 * fetch this spte while we are setting the spte.
400 */
401 smp_wmb();
402
403 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
404}
405
603e0651
XG
406static void __update_clear_spte_fast(u64 *sptep, u64 spte)
407{
408 union split_spte *ssptep, sspte;
409
410 ssptep = (union split_spte *)sptep;
411 sspte = (union split_spte)spte;
412
413 ssptep->spte_low = sspte.spte_low;
414
415 /*
416 * If we map the spte from present to nonpresent, we should clear
417 * present bit firstly to avoid vcpu fetch the old high bits.
418 */
419 smp_wmb();
420
421 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 422 count_spte_clear(sptep, spte);
603e0651
XG
423}
424
425static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
426{
427 union split_spte *ssptep, sspte, orig;
428
429 ssptep = (union split_spte *)sptep;
430 sspte = (union split_spte)spte;
431
432 /* xchg acts as a barrier before the setting of the high bits */
433 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
434 orig.spte_high = ssptep->spte_high;
435 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 436 count_spte_clear(sptep, spte);
603e0651
XG
437
438 return orig.spte;
439}
c2a2ac2b
XG
440
441/*
442 * The idea using the light way get the spte on x86_32 guest is from
443 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
444 *
445 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
446 * coalesces them and we are running out of the MMU lock. Therefore
447 * we need to protect against in-progress updates of the spte.
448 *
449 * Reading the spte while an update is in progress may get the old value
450 * for the high part of the spte. The race is fine for a present->non-present
451 * change (because the high part of the spte is ignored for non-present spte),
452 * but for a present->present change we must reread the spte.
453 *
454 * All such changes are done in two steps (present->non-present and
455 * non-present->present), hence it is enough to count the number of
456 * present->non-present updates: if it changed while reading the spte,
457 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
458 */
459static u64 __get_spte_lockless(u64 *sptep)
460{
461 struct kvm_mmu_page *sp = page_header(__pa(sptep));
462 union split_spte spte, *orig = (union split_spte *)sptep;
463 int count;
464
465retry:
466 count = sp->clear_spte_count;
467 smp_rmb();
468
469 spte.spte_low = orig->spte_low;
470 smp_rmb();
471
472 spte.spte_high = orig->spte_high;
473 smp_rmb();
474
475 if (unlikely(spte.spte_low != orig->spte_low ||
476 count != sp->clear_spte_count))
477 goto retry;
478
479 return spte.spte;
480}
ce88decf
XG
481
482static bool __check_direct_spte_mmio_pf(u64 spte)
483{
484 union split_spte sspte = (union split_spte)spte;
485 u32 high_mmio_mask = shadow_mmio_mask >> 32;
486
487 /* It is valid if the spte is zapped. */
488 if (spte == 0ull)
489 return true;
490
491 /* It is valid if the spte is being zapped. */
492 if (sspte.spte_low == 0ull &&
493 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
494 return true;
495
496 return false;
497}
603e0651
XG
498#endif
499
c7ba5b48
XG
500static bool spte_is_locklessly_modifiable(u64 spte)
501{
feb3eb70
GN
502 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
503 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
504}
505
8672b721
XG
506static bool spte_has_volatile_bits(u64 spte)
507{
c7ba5b48
XG
508 /*
509 * Always atomicly update spte if it can be updated
510 * out of mmu-lock, it can ensure dirty bit is not lost,
511 * also, it can help us to get a stable is_writable_pte()
512 * to ensure tlb flush is not missed.
513 */
514 if (spte_is_locklessly_modifiable(spte))
515 return true;
516
8672b721
XG
517 if (!shadow_accessed_mask)
518 return false;
519
520 if (!is_shadow_present_pte(spte))
521 return false;
522
4132779b
XG
523 if ((spte & shadow_accessed_mask) &&
524 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
525 return false;
526
527 return true;
528}
529
4132779b
XG
530static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
531{
532 return (old_spte & bit_mask) && !(new_spte & bit_mask);
533}
534
1df9f2dc
XG
535/* Rules for using mmu_spte_set:
536 * Set the sptep from nonpresent to present.
537 * Note: the sptep being assigned *must* be either not present
538 * or in a state where the hardware will not attempt to update
539 * the spte.
540 */
541static void mmu_spte_set(u64 *sptep, u64 new_spte)
542{
543 WARN_ON(is_shadow_present_pte(*sptep));
544 __set_spte(sptep, new_spte);
545}
546
547/* Rules for using mmu_spte_update:
548 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
549 *
550 * Whenever we overwrite a writable spte with a read-only one we
551 * should flush remote TLBs. Otherwise rmap_write_protect
552 * will find a read-only spte, even though the writable spte
553 * might be cached on a CPU's TLB, the return value indicates this
554 * case.
1df9f2dc 555 */
6e7d0354 556static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 557{
c7ba5b48 558 u64 old_spte = *sptep;
6e7d0354 559 bool ret = false;
4132779b
XG
560
561 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 562
6e7d0354
XG
563 if (!is_shadow_present_pte(old_spte)) {
564 mmu_spte_set(sptep, new_spte);
565 return ret;
566 }
4132779b 567
c7ba5b48 568 if (!spte_has_volatile_bits(old_spte))
603e0651 569 __update_clear_spte_fast(sptep, new_spte);
4132779b 570 else
603e0651 571 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 572
c7ba5b48
XG
573 /*
574 * For the spte updated out of mmu-lock is safe, since
575 * we always atomicly update it, see the comments in
576 * spte_has_volatile_bits().
577 */
7f31c959
XG
578 if (spte_is_locklessly_modifiable(old_spte) &&
579 !is_writable_pte(new_spte))
6e7d0354
XG
580 ret = true;
581
4132779b 582 if (!shadow_accessed_mask)
6e7d0354 583 return ret;
4132779b
XG
584
585 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
586 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
587 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
588 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
589
590 return ret;
b79b93f9
AK
591}
592
1df9f2dc
XG
593/*
594 * Rules for using mmu_spte_clear_track_bits:
595 * It sets the sptep from present to nonpresent, and track the
596 * state bits, it is used to clear the last level sptep.
597 */
598static int mmu_spte_clear_track_bits(u64 *sptep)
599{
600 pfn_t pfn;
601 u64 old_spte = *sptep;
602
603 if (!spte_has_volatile_bits(old_spte))
603e0651 604 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 605 else
603e0651 606 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
607
608 if (!is_rmap_spte(old_spte))
609 return 0;
610
611 pfn = spte_to_pfn(old_spte);
86fde74c
XG
612
613 /*
614 * KVM does not hold the refcount of the page used by
615 * kvm mmu, before reclaiming the page, we should
616 * unmap it from mmu first.
617 */
bf4bea8e 618 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 619
1df9f2dc
XG
620 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
621 kvm_set_pfn_accessed(pfn);
622 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
623 kvm_set_pfn_dirty(pfn);
624 return 1;
625}
626
627/*
628 * Rules for using mmu_spte_clear_no_track:
629 * Directly clear spte without caring the state bits of sptep,
630 * it is used to set the upper level spte.
631 */
632static void mmu_spte_clear_no_track(u64 *sptep)
633{
603e0651 634 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
635}
636
c2a2ac2b
XG
637static u64 mmu_spte_get_lockless(u64 *sptep)
638{
639 return __get_spte_lockless(sptep);
640}
641
642static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
643{
c142786c
AK
644 /*
645 * Prevent page table teardown by making any free-er wait during
646 * kvm_flush_remote_tlbs() IPI to all active vcpus.
647 */
648 local_irq_disable();
649 vcpu->mode = READING_SHADOW_PAGE_TABLES;
650 /*
651 * Make sure a following spte read is not reordered ahead of the write
652 * to vcpu->mode.
653 */
654 smp_mb();
c2a2ac2b
XG
655}
656
657static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
658{
c142786c
AK
659 /*
660 * Make sure the write to vcpu->mode is not reordered in front of
661 * reads to sptes. If it does, kvm_commit_zap_page() can see us
662 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
663 */
664 smp_mb();
665 vcpu->mode = OUTSIDE_GUEST_MODE;
666 local_irq_enable();
c2a2ac2b
XG
667}
668
e2dec939 669static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 670 struct kmem_cache *base_cache, int min)
714b93da
AK
671{
672 void *obj;
673
674 if (cache->nobjs >= min)
e2dec939 675 return 0;
714b93da 676 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 677 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 678 if (!obj)
e2dec939 679 return -ENOMEM;
714b93da
AK
680 cache->objects[cache->nobjs++] = obj;
681 }
e2dec939 682 return 0;
714b93da
AK
683}
684
f759e2b4
XG
685static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
686{
687 return cache->nobjs;
688}
689
e8ad9a70
XG
690static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
691 struct kmem_cache *cache)
714b93da
AK
692{
693 while (mc->nobjs)
e8ad9a70 694 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
695}
696
c1158e63 697static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 698 int min)
c1158e63 699{
842f22ed 700 void *page;
c1158e63
AK
701
702 if (cache->nobjs >= min)
703 return 0;
704 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 705 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
706 if (!page)
707 return -ENOMEM;
842f22ed 708 cache->objects[cache->nobjs++] = page;
c1158e63
AK
709 }
710 return 0;
711}
712
713static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
714{
715 while (mc->nobjs)
c4d198d5 716 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
717}
718
2e3e5882 719static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 720{
e2dec939
AK
721 int r;
722
53c07b18 723 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 724 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
725 if (r)
726 goto out;
ad312c7c 727 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
728 if (r)
729 goto out;
ad312c7c 730 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 731 mmu_page_header_cache, 4);
e2dec939
AK
732out:
733 return r;
714b93da
AK
734}
735
736static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
737{
53c07b18
XG
738 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
739 pte_list_desc_cache);
ad312c7c 740 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
741 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
742 mmu_page_header_cache);
714b93da
AK
743}
744
80feb89a 745static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
746{
747 void *p;
748
749 BUG_ON(!mc->nobjs);
750 p = mc->objects[--mc->nobjs];
714b93da
AK
751 return p;
752}
753
53c07b18 754static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 755{
80feb89a 756 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
757}
758
53c07b18 759static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 760{
53c07b18 761 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
762}
763
2032a93d
LJ
764static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
765{
766 if (!sp->role.direct)
767 return sp->gfns[index];
768
769 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
770}
771
772static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
773{
774 if (sp->role.direct)
775 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
776 else
777 sp->gfns[index] = gfn;
778}
779
05da4558 780/*
d4dbf470
TY
781 * Return the pointer to the large page information for a given gfn,
782 * handling slots that are not large page aligned.
05da4558 783 */
d4dbf470
TY
784static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
785 struct kvm_memory_slot *slot,
786 int level)
05da4558
MT
787{
788 unsigned long idx;
789
fb03cb6f 790 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 791 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
792}
793
794static void account_shadowed(struct kvm *kvm, gfn_t gfn)
795{
d25797b2 796 struct kvm_memory_slot *slot;
d4dbf470 797 struct kvm_lpage_info *linfo;
d25797b2 798 int i;
05da4558 799
a1f4d395 800 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
801 for (i = PT_DIRECTORY_LEVEL;
802 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
803 linfo = lpage_info_slot(gfn, slot, i);
804 linfo->write_count += 1;
d25797b2 805 }
332b207d 806 kvm->arch.indirect_shadow_pages++;
05da4558
MT
807}
808
809static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
810{
d25797b2 811 struct kvm_memory_slot *slot;
d4dbf470 812 struct kvm_lpage_info *linfo;
d25797b2 813 int i;
05da4558 814
a1f4d395 815 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
816 for (i = PT_DIRECTORY_LEVEL;
817 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
818 linfo = lpage_info_slot(gfn, slot, i);
819 linfo->write_count -= 1;
820 WARN_ON(linfo->write_count < 0);
d25797b2 821 }
332b207d 822 kvm->arch.indirect_shadow_pages--;
05da4558
MT
823}
824
d25797b2
JR
825static int has_wrprotected_page(struct kvm *kvm,
826 gfn_t gfn,
827 int level)
05da4558 828{
2843099f 829 struct kvm_memory_slot *slot;
d4dbf470 830 struct kvm_lpage_info *linfo;
05da4558 831
a1f4d395 832 slot = gfn_to_memslot(kvm, gfn);
05da4558 833 if (slot) {
d4dbf470
TY
834 linfo = lpage_info_slot(gfn, slot, level);
835 return linfo->write_count;
05da4558
MT
836 }
837
838 return 1;
839}
840
d25797b2 841static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 842{
8f0b1ab6 843 unsigned long page_size;
d25797b2 844 int i, ret = 0;
05da4558 845
8f0b1ab6 846 page_size = kvm_host_page_size(kvm, gfn);
05da4558 847
d25797b2
JR
848 for (i = PT_PAGE_TABLE_LEVEL;
849 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
850 if (page_size >= KVM_HPAGE_SIZE(i))
851 ret = i;
852 else
853 break;
854 }
855
4c2155ce 856 return ret;
05da4558
MT
857}
858
5d163b1c
XG
859static struct kvm_memory_slot *
860gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
861 bool no_dirty_log)
05da4558
MT
862{
863 struct kvm_memory_slot *slot;
5d163b1c
XG
864
865 slot = gfn_to_memslot(vcpu->kvm, gfn);
866 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
867 (no_dirty_log && slot->dirty_bitmap))
868 slot = NULL;
869
870 return slot;
871}
872
873static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
874{
a0a8eaba 875 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
876}
877
878static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
879{
880 int host_level, level, max_level;
05da4558 881
d25797b2
JR
882 host_level = host_mapping_level(vcpu->kvm, large_gfn);
883
884 if (host_level == PT_PAGE_TABLE_LEVEL)
885 return host_level;
886
55dd98c3 887 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
888
889 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
890 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
891 break;
d25797b2
JR
892
893 return level - 1;
05da4558
MT
894}
895
290fc38d 896/*
53c07b18 897 * Pte mapping structures:
cd4a4e53 898 *
53c07b18 899 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 900 *
53c07b18
XG
901 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
902 * pte_list_desc containing more mappings.
53a27b39 903 *
53c07b18 904 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
905 * the spte was not added.
906 *
cd4a4e53 907 */
53c07b18
XG
908static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
909 unsigned long *pte_list)
cd4a4e53 910{
53c07b18 911 struct pte_list_desc *desc;
53a27b39 912 int i, count = 0;
cd4a4e53 913
53c07b18
XG
914 if (!*pte_list) {
915 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
916 *pte_list = (unsigned long)spte;
917 } else if (!(*pte_list & 1)) {
918 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
919 desc = mmu_alloc_pte_list_desc(vcpu);
920 desc->sptes[0] = (u64 *)*pte_list;
d555c333 921 desc->sptes[1] = spte;
53c07b18 922 *pte_list = (unsigned long)desc | 1;
cb16a7b3 923 ++count;
cd4a4e53 924 } else {
53c07b18
XG
925 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
926 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
927 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 928 desc = desc->more;
53c07b18 929 count += PTE_LIST_EXT;
53a27b39 930 }
53c07b18
XG
931 if (desc->sptes[PTE_LIST_EXT-1]) {
932 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
933 desc = desc->more;
934 }
d555c333 935 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 936 ++count;
d555c333 937 desc->sptes[i] = spte;
cd4a4e53 938 }
53a27b39 939 return count;
cd4a4e53
AK
940}
941
53c07b18
XG
942static void
943pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
944 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
945{
946 int j;
947
53c07b18 948 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 949 ;
d555c333
AK
950 desc->sptes[i] = desc->sptes[j];
951 desc->sptes[j] = NULL;
cd4a4e53
AK
952 if (j != 0)
953 return;
954 if (!prev_desc && !desc->more)
53c07b18 955 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
956 else
957 if (prev_desc)
958 prev_desc->more = desc->more;
959 else
53c07b18
XG
960 *pte_list = (unsigned long)desc->more | 1;
961 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
962}
963
53c07b18 964static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 965{
53c07b18
XG
966 struct pte_list_desc *desc;
967 struct pte_list_desc *prev_desc;
cd4a4e53
AK
968 int i;
969
53c07b18
XG
970 if (!*pte_list) {
971 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 972 BUG();
53c07b18
XG
973 } else if (!(*pte_list & 1)) {
974 rmap_printk("pte_list_remove: %p 1->0\n", spte);
975 if ((u64 *)*pte_list != spte) {
976 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
977 BUG();
978 }
53c07b18 979 *pte_list = 0;
cd4a4e53 980 } else {
53c07b18
XG
981 rmap_printk("pte_list_remove: %p many->many\n", spte);
982 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
983 prev_desc = NULL;
984 while (desc) {
53c07b18 985 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 986 if (desc->sptes[i] == spte) {
53c07b18 987 pte_list_desc_remove_entry(pte_list,
714b93da 988 desc, i,
cd4a4e53
AK
989 prev_desc);
990 return;
991 }
992 prev_desc = desc;
993 desc = desc->more;
994 }
53c07b18 995 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
996 BUG();
997 }
998}
999
67052b35
XG
1000typedef void (*pte_list_walk_fn) (u64 *spte);
1001static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1002{
1003 struct pte_list_desc *desc;
1004 int i;
1005
1006 if (!*pte_list)
1007 return;
1008
1009 if (!(*pte_list & 1))
1010 return fn((u64 *)*pte_list);
1011
1012 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1013 while (desc) {
1014 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1015 fn(desc->sptes[i]);
1016 desc = desc->more;
1017 }
1018}
1019
9373e2c0 1020static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 1021 struct kvm_memory_slot *slot)
53c07b18 1022{
77d11309 1023 unsigned long idx;
53c07b18 1024
77d11309 1025 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1026 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1027}
1028
9b9b1492
TY
1029/*
1030 * Take gfn and return the reverse mapping to it.
1031 */
1032static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1033{
1034 struct kvm_memory_slot *slot;
1035
1036 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 1037 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
1038}
1039
f759e2b4
XG
1040static bool rmap_can_add(struct kvm_vcpu *vcpu)
1041{
1042 struct kvm_mmu_memory_cache *cache;
1043
1044 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1045 return mmu_memory_cache_free_objects(cache);
1046}
1047
53c07b18
XG
1048static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1049{
1050 struct kvm_mmu_page *sp;
1051 unsigned long *rmapp;
1052
53c07b18
XG
1053 sp = page_header(__pa(spte));
1054 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1055 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1056 return pte_list_add(vcpu, spte, rmapp);
1057}
1058
53c07b18
XG
1059static void rmap_remove(struct kvm *kvm, u64 *spte)
1060{
1061 struct kvm_mmu_page *sp;
1062 gfn_t gfn;
1063 unsigned long *rmapp;
1064
1065 sp = page_header(__pa(spte));
1066 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1067 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1068 pte_list_remove(spte, rmapp);
1069}
1070
1e3f42f0
TY
1071/*
1072 * Used by the following functions to iterate through the sptes linked by a
1073 * rmap. All fields are private and not assumed to be used outside.
1074 */
1075struct rmap_iterator {
1076 /* private fields */
1077 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1078 int pos; /* index of the sptep */
1079};
1080
1081/*
1082 * Iteration must be started by this function. This should also be used after
1083 * removing/dropping sptes from the rmap link because in such cases the
1084 * information in the itererator may not be valid.
1085 *
1086 * Returns sptep if found, NULL otherwise.
1087 */
1088static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1089{
1090 if (!rmap)
1091 return NULL;
1092
1093 if (!(rmap & 1)) {
1094 iter->desc = NULL;
1095 return (u64 *)rmap;
1096 }
1097
1098 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1099 iter->pos = 0;
1100 return iter->desc->sptes[iter->pos];
1101}
1102
1103/*
1104 * Must be used with a valid iterator: e.g. after rmap_get_first().
1105 *
1106 * Returns sptep if found, NULL otherwise.
1107 */
1108static u64 *rmap_get_next(struct rmap_iterator *iter)
1109{
1110 if (iter->desc) {
1111 if (iter->pos < PTE_LIST_EXT - 1) {
1112 u64 *sptep;
1113
1114 ++iter->pos;
1115 sptep = iter->desc->sptes[iter->pos];
1116 if (sptep)
1117 return sptep;
1118 }
1119
1120 iter->desc = iter->desc->more;
1121
1122 if (iter->desc) {
1123 iter->pos = 0;
1124 /* desc->sptes[0] cannot be NULL */
1125 return iter->desc->sptes[iter->pos];
1126 }
1127 }
1128
1129 return NULL;
1130}
1131
c3707958 1132static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1133{
1df9f2dc 1134 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1135 rmap_remove(kvm, sptep);
be38d276
AK
1136}
1137
8e22f955
XG
1138
1139static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1140{
1141 if (is_large_pte(*sptep)) {
1142 WARN_ON(page_header(__pa(sptep))->role.level ==
1143 PT_PAGE_TABLE_LEVEL);
1144 drop_spte(kvm, sptep);
1145 --kvm->stat.lpages;
1146 return true;
1147 }
1148
1149 return false;
1150}
1151
1152static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1153{
1154 if (__drop_large_spte(vcpu->kvm, sptep))
1155 kvm_flush_remote_tlbs(vcpu->kvm);
1156}
1157
1158/*
49fde340 1159 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1160 * spte write-protection is caused by protecting shadow page table.
49fde340 1161 *
b4619660 1162 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1163 * protection:
1164 * - for dirty logging, the spte can be set to writable at anytime if
1165 * its dirty bitmap is properly set.
1166 * - for spte protection, the spte can be writable only after unsync-ing
1167 * shadow page.
8e22f955 1168 *
c126d94f 1169 * Return true if tlb need be flushed.
8e22f955 1170 */
c126d94f 1171static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
d13bc5b5
XG
1172{
1173 u64 spte = *sptep;
1174
49fde340
XG
1175 if (!is_writable_pte(spte) &&
1176 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1177 return false;
1178
1179 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1180
49fde340
XG
1181 if (pt_protect)
1182 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1183 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1184
c126d94f 1185 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1186}
1187
49fde340 1188static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
245c3912 1189 bool pt_protect)
98348e95 1190{
1e3f42f0
TY
1191 u64 *sptep;
1192 struct rmap_iterator iter;
d13bc5b5 1193 bool flush = false;
374cbac0 1194
1e3f42f0
TY
1195 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1196 BUG_ON(!(*sptep & PT_PRESENT_MASK));
a0ed4607 1197
c126d94f 1198 flush |= spte_write_protect(kvm, sptep, pt_protect);
d13bc5b5 1199 sptep = rmap_get_next(&iter);
374cbac0 1200 }
855149aa 1201
d13bc5b5 1202 return flush;
a0ed4607
TY
1203}
1204
5dc99b23
TY
1205/**
1206 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1207 * @kvm: kvm instance
1208 * @slot: slot to protect
1209 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1210 * @mask: indicates which pages we should protect
1211 *
1212 * Used when we do not need to care about huge page mappings: e.g. during dirty
1213 * logging we do not have any such mappings.
1214 */
1215void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1216 struct kvm_memory_slot *slot,
1217 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1218{
1219 unsigned long *rmapp;
a0ed4607 1220
5dc99b23 1221 while (mask) {
65fbe37c
TY
1222 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1223 PT_PAGE_TABLE_LEVEL, slot);
245c3912 1224 __rmap_write_protect(kvm, rmapp, false);
05da4558 1225
5dc99b23
TY
1226 /* clear the first set bit */
1227 mask &= mask - 1;
1228 }
374cbac0
AK
1229}
1230
2f84569f 1231static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1232{
1233 struct kvm_memory_slot *slot;
5dc99b23
TY
1234 unsigned long *rmapp;
1235 int i;
2f84569f 1236 bool write_protected = false;
95d4c16c
TY
1237
1238 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1239
1240 for (i = PT_PAGE_TABLE_LEVEL;
1241 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1242 rmapp = __gfn_to_rmap(gfn, i, slot);
245c3912 1243 write_protected |= __rmap_write_protect(kvm, rmapp, true);
5dc99b23
TY
1244 }
1245
1246 return write_protected;
95d4c16c
TY
1247}
1248
8a8365c5 1249static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1250 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1251 unsigned long data)
e930bffe 1252{
1e3f42f0
TY
1253 u64 *sptep;
1254 struct rmap_iterator iter;
e930bffe
AA
1255 int need_tlb_flush = 0;
1256
1e3f42f0
TY
1257 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1258 BUG_ON(!(*sptep & PT_PRESENT_MASK));
8a9522d2
ALC
1259 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx gfn %llx (%d)\n",
1260 sptep, *sptep, gfn, level);
1e3f42f0
TY
1261
1262 drop_spte(kvm, sptep);
e930bffe
AA
1263 need_tlb_flush = 1;
1264 }
1e3f42f0 1265
e930bffe
AA
1266 return need_tlb_flush;
1267}
1268
8a8365c5 1269static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1270 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1271 unsigned long data)
3da0dd43 1272{
1e3f42f0
TY
1273 u64 *sptep;
1274 struct rmap_iterator iter;
3da0dd43 1275 int need_flush = 0;
1e3f42f0 1276 u64 new_spte;
3da0dd43
IE
1277 pte_t *ptep = (pte_t *)data;
1278 pfn_t new_pfn;
1279
1280 WARN_ON(pte_huge(*ptep));
1281 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1282
1283 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1284 BUG_ON(!is_shadow_present_pte(*sptep));
8a9522d2
ALC
1285 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1286 sptep, *sptep, gfn, level);
1e3f42f0 1287
3da0dd43 1288 need_flush = 1;
1e3f42f0 1289
3da0dd43 1290 if (pte_write(*ptep)) {
1e3f42f0
TY
1291 drop_spte(kvm, sptep);
1292 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1293 } else {
1e3f42f0 1294 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1295 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1296
1297 new_spte &= ~PT_WRITABLE_MASK;
1298 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1299 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1300
1301 mmu_spte_clear_track_bits(sptep);
1302 mmu_spte_set(sptep, new_spte);
1303 sptep = rmap_get_next(&iter);
3da0dd43
IE
1304 }
1305 }
1e3f42f0 1306
3da0dd43
IE
1307 if (need_flush)
1308 kvm_flush_remote_tlbs(kvm);
1309
1310 return 0;
1311}
1312
84504ef3
TY
1313static int kvm_handle_hva_range(struct kvm *kvm,
1314 unsigned long start,
1315 unsigned long end,
1316 unsigned long data,
1317 int (*handler)(struct kvm *kvm,
1318 unsigned long *rmapp,
048212d0 1319 struct kvm_memory_slot *slot,
8a9522d2
ALC
1320 gfn_t gfn,
1321 int level,
84504ef3 1322 unsigned long data))
e930bffe 1323{
be6ba0f0 1324 int j;
f395302e 1325 int ret = 0;
bc6678a3 1326 struct kvm_memslots *slots;
be6ba0f0 1327 struct kvm_memory_slot *memslot;
bc6678a3 1328
90d83dc3 1329 slots = kvm_memslots(kvm);
e930bffe 1330
be6ba0f0 1331 kvm_for_each_memslot(memslot, slots) {
84504ef3 1332 unsigned long hva_start, hva_end;
bcd3ef58 1333 gfn_t gfn_start, gfn_end;
e930bffe 1334
84504ef3
TY
1335 hva_start = max(start, memslot->userspace_addr);
1336 hva_end = min(end, memslot->userspace_addr +
1337 (memslot->npages << PAGE_SHIFT));
1338 if (hva_start >= hva_end)
1339 continue;
1340 /*
1341 * {gfn(page) | page intersects with [hva_start, hva_end)} =
bcd3ef58 1342 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
84504ef3 1343 */
bcd3ef58 1344 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
84504ef3 1345 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
852e3c19 1346
bcd3ef58
TY
1347 for (j = PT_PAGE_TABLE_LEVEL;
1348 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1349 unsigned long idx, idx_end;
1350 unsigned long *rmapp;
8a9522d2 1351 gfn_t gfn = gfn_start;
d4dbf470 1352
bcd3ef58
TY
1353 /*
1354 * {idx(page_j) | page_j intersects with
1355 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1356 */
1357 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1358 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
852e3c19 1359
bcd3ef58 1360 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
d4dbf470 1361
8a9522d2
ALC
1362 for (; idx <= idx_end;
1363 ++idx, gfn += (1UL << KVM_HPAGE_GFN_SHIFT(j)))
1364 ret |= handler(kvm, rmapp++, memslot,
1365 gfn, j, data);
e930bffe
AA
1366 }
1367 }
1368
f395302e 1369 return ret;
e930bffe
AA
1370}
1371
84504ef3
TY
1372static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1373 unsigned long data,
1374 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1375 struct kvm_memory_slot *slot,
8a9522d2 1376 gfn_t gfn, int level,
84504ef3
TY
1377 unsigned long data))
1378{
1379 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1380}
1381
1382int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1383{
3da0dd43
IE
1384 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1385}
1386
b3ae2096
TY
1387int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1388{
1389 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1390}
1391
3da0dd43
IE
1392void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1393{
8a8365c5 1394 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1395}
1396
8a8365c5 1397static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1398 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1399 unsigned long data)
e930bffe 1400{
1e3f42f0 1401 u64 *sptep;
79f702a6 1402 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1403 int young = 0;
1404
57128468 1405 BUG_ON(!shadow_accessed_mask);
534e38b4 1406
1e3f42f0
TY
1407 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1408 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1409 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1410
3f6d8c8a 1411 if (*sptep & shadow_accessed_mask) {
e930bffe 1412 young = 1;
3f6d8c8a
XH
1413 clear_bit((ffs(shadow_accessed_mask) - 1),
1414 (unsigned long *)sptep);
e930bffe 1415 }
e930bffe 1416 }
8a9522d2 1417 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1418 return young;
1419}
1420
8ee53820 1421static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1422 struct kvm_memory_slot *slot, gfn_t gfn,
1423 int level, unsigned long data)
8ee53820 1424{
1e3f42f0
TY
1425 u64 *sptep;
1426 struct rmap_iterator iter;
8ee53820
AA
1427 int young = 0;
1428
1429 /*
1430 * If there's no access bit in the secondary pte set by the
1431 * hardware it's up to gup-fast/gup to set the access bit in
1432 * the primary pte or in the page structure.
1433 */
1434 if (!shadow_accessed_mask)
1435 goto out;
1436
1e3f42f0
TY
1437 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1438 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1439 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1440
3f6d8c8a 1441 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1442 young = 1;
1443 break;
1444 }
8ee53820
AA
1445 }
1446out:
1447 return young;
1448}
1449
53a27b39
MT
1450#define RMAP_RECYCLE_THRESHOLD 1000
1451
852e3c19 1452static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1453{
1454 unsigned long *rmapp;
852e3c19
JR
1455 struct kvm_mmu_page *sp;
1456
1457 sp = page_header(__pa(spte));
53a27b39 1458
852e3c19 1459 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1460
8a9522d2 1461 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
53a27b39
MT
1462 kvm_flush_remote_tlbs(vcpu->kvm);
1463}
1464
57128468 1465int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1466{
57128468
ALC
1467 /*
1468 * In case of absence of EPT Access and Dirty Bits supports,
1469 * emulate the accessed bit for EPT, by checking if this page has
1470 * an EPT mapping, and clearing it if it does. On the next access,
1471 * a new EPT mapping will be established.
1472 * This has some overhead, but not as much as the cost of swapping
1473 * out actively used pages or breaking up actively used hugepages.
1474 */
1475 if (!shadow_accessed_mask) {
1476 /*
1477 * We are holding the kvm->mmu_lock, and we are blowing up
1478 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1479 * This is correct as long as we don't decouple the mmu_lock
1480 * protected regions (like invalidate_range_start|end does).
1481 */
1482 kvm->mmu_notifier_seq++;
1483 return kvm_handle_hva_range(kvm, start, end, 0,
1484 kvm_unmap_rmapp);
1485 }
1486
1487 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1488}
1489
8ee53820
AA
1490int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1491{
1492 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1493}
1494
d6c69ee9 1495#ifdef MMU_DEBUG
47ad8e68 1496static int is_empty_shadow_page(u64 *spt)
6aa8b732 1497{
139bdb2d
AK
1498 u64 *pos;
1499 u64 *end;
1500
47ad8e68 1501 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1502 if (is_shadow_present_pte(*pos)) {
b8688d51 1503 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1504 pos, *pos);
6aa8b732 1505 return 0;
139bdb2d 1506 }
6aa8b732
AK
1507 return 1;
1508}
d6c69ee9 1509#endif
6aa8b732 1510
45221ab6
DH
1511/*
1512 * This value is the sum of all of the kvm instances's
1513 * kvm->arch.n_used_mmu_pages values. We need a global,
1514 * aggregate version in order to make the slab shrinker
1515 * faster
1516 */
1517static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1518{
1519 kvm->arch.n_used_mmu_pages += nr;
1520 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1521}
1522
834be0d8 1523static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1524{
fa4a2c08 1525 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1526 hlist_del(&sp->hash_link);
bd4c86ea
XG
1527 list_del(&sp->link);
1528 free_page((unsigned long)sp->spt);
834be0d8
GN
1529 if (!sp->role.direct)
1530 free_page((unsigned long)sp->gfns);
e8ad9a70 1531 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1532}
1533
cea0f0e7
AK
1534static unsigned kvm_page_table_hashfn(gfn_t gfn)
1535{
1ae0a13d 1536 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1537}
1538
714b93da 1539static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1540 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1541{
cea0f0e7
AK
1542 if (!parent_pte)
1543 return;
cea0f0e7 1544
67052b35 1545 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1546}
1547
4db35314 1548static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1549 u64 *parent_pte)
1550{
67052b35 1551 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1552}
1553
bcdd9a93
XG
1554static void drop_parent_pte(struct kvm_mmu_page *sp,
1555 u64 *parent_pte)
1556{
1557 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1558 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1559}
1560
67052b35
XG
1561static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1562 u64 *parent_pte, int direct)
ad8cfbe3 1563{
67052b35 1564 struct kvm_mmu_page *sp;
7ddca7e4 1565
80feb89a
TY
1566 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1567 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1568 if (!direct)
80feb89a 1569 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1570 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1571
1572 /*
1573 * The active_mmu_pages list is the FIFO list, do not move the
1574 * page until it is zapped. kvm_zap_obsolete_pages depends on
1575 * this feature. See the comments in kvm_zap_obsolete_pages().
1576 */
67052b35 1577 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1578 sp->parent_ptes = 0;
1579 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1580 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1581 return sp;
ad8cfbe3
MT
1582}
1583
67052b35 1584static void mark_unsync(u64 *spte);
1047df1f 1585static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1586{
67052b35 1587 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1588}
1589
67052b35 1590static void mark_unsync(u64 *spte)
0074ff63 1591{
67052b35 1592 struct kvm_mmu_page *sp;
1047df1f 1593 unsigned int index;
0074ff63 1594
67052b35 1595 sp = page_header(__pa(spte));
1047df1f
XG
1596 index = spte - sp->spt;
1597 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1598 return;
1047df1f 1599 if (sp->unsync_children++)
0074ff63 1600 return;
1047df1f 1601 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1602}
1603
e8bc217a 1604static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1605 struct kvm_mmu_page *sp)
e8bc217a
MT
1606{
1607 return 1;
1608}
1609
a7052897
MT
1610static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1611{
1612}
1613
0f53b5b1
XG
1614static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1615 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1616 const void *pte)
0f53b5b1
XG
1617{
1618 WARN_ON(1);
1619}
1620
60c8aec6
MT
1621#define KVM_PAGE_ARRAY_NR 16
1622
1623struct kvm_mmu_pages {
1624 struct mmu_page_and_offset {
1625 struct kvm_mmu_page *sp;
1626 unsigned int idx;
1627 } page[KVM_PAGE_ARRAY_NR];
1628 unsigned int nr;
1629};
1630
cded19f3
HE
1631static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1632 int idx)
4731d4c7 1633{
60c8aec6 1634 int i;
4731d4c7 1635
60c8aec6
MT
1636 if (sp->unsync)
1637 for (i=0; i < pvec->nr; i++)
1638 if (pvec->page[i].sp == sp)
1639 return 0;
1640
1641 pvec->page[pvec->nr].sp = sp;
1642 pvec->page[pvec->nr].idx = idx;
1643 pvec->nr++;
1644 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1645}
1646
1647static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1648 struct kvm_mmu_pages *pvec)
1649{
1650 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1651
37178b8b 1652 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1653 struct kvm_mmu_page *child;
4731d4c7
MT
1654 u64 ent = sp->spt[i];
1655
7a8f1a74
XG
1656 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1657 goto clear_child_bitmap;
1658
1659 child = page_header(ent & PT64_BASE_ADDR_MASK);
1660
1661 if (child->unsync_children) {
1662 if (mmu_pages_add(pvec, child, i))
1663 return -ENOSPC;
1664
1665 ret = __mmu_unsync_walk(child, pvec);
1666 if (!ret)
1667 goto clear_child_bitmap;
1668 else if (ret > 0)
1669 nr_unsync_leaf += ret;
1670 else
1671 return ret;
1672 } else if (child->unsync) {
1673 nr_unsync_leaf++;
1674 if (mmu_pages_add(pvec, child, i))
1675 return -ENOSPC;
1676 } else
1677 goto clear_child_bitmap;
1678
1679 continue;
1680
1681clear_child_bitmap:
1682 __clear_bit(i, sp->unsync_child_bitmap);
1683 sp->unsync_children--;
1684 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1685 }
1686
4731d4c7 1687
60c8aec6
MT
1688 return nr_unsync_leaf;
1689}
1690
1691static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1692 struct kvm_mmu_pages *pvec)
1693{
1694 if (!sp->unsync_children)
1695 return 0;
1696
1697 mmu_pages_add(pvec, sp, 0);
1698 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1699}
1700
4731d4c7
MT
1701static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1702{
1703 WARN_ON(!sp->unsync);
5e1b3ddb 1704 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1705 sp->unsync = 0;
1706 --kvm->stat.mmu_unsync;
1707}
1708
7775834a
XG
1709static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1710 struct list_head *invalid_list);
1711static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1712 struct list_head *invalid_list);
4731d4c7 1713
f34d251d
XG
1714/*
1715 * NOTE: we should pay more attention on the zapped-obsolete page
1716 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1717 * since it has been deleted from active_mmu_pages but still can be found
1718 * at hast list.
1719 *
1720 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1721 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1722 * all the obsolete pages.
1723 */
1044b030
TY
1724#define for_each_gfn_sp(_kvm, _sp, _gfn) \
1725 hlist_for_each_entry(_sp, \
1726 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1727 if ((_sp)->gfn != (_gfn)) {} else
1728
1729#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1730 for_each_gfn_sp(_kvm, _sp, _gfn) \
1731 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
7ae680eb 1732
f918b443 1733/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1734static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1735 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1736{
5b7e0102 1737 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1738 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1739 return 1;
1740 }
1741
f918b443 1742 if (clear_unsync)
1d9dc7e0 1743 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1744
a4a8e6f7 1745 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1746 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1747 return 1;
1748 }
1749
77c3913b 1750 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4731d4c7
MT
1751 return 0;
1752}
1753
1d9dc7e0
XG
1754static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1755 struct kvm_mmu_page *sp)
1756{
d98ba053 1757 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1758 int ret;
1759
d98ba053 1760 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1761 if (ret)
d98ba053
XG
1762 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1763
1d9dc7e0
XG
1764 return ret;
1765}
1766
e37fa785
XG
1767#ifdef CONFIG_KVM_MMU_AUDIT
1768#include "mmu_audit.c"
1769#else
1770static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1771static void mmu_audit_disable(void) { }
1772#endif
1773
d98ba053
XG
1774static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1775 struct list_head *invalid_list)
1d9dc7e0 1776{
d98ba053 1777 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1778}
1779
9f1a122f
XG
1780/* @gfn should be write-protected at the call site */
1781static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1782{
9f1a122f 1783 struct kvm_mmu_page *s;
d98ba053 1784 LIST_HEAD(invalid_list);
9f1a122f
XG
1785 bool flush = false;
1786
b67bfe0d 1787 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1788 if (!s->unsync)
9f1a122f
XG
1789 continue;
1790
1791 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1792 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1793 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1794 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1795 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1796 continue;
1797 }
9f1a122f
XG
1798 flush = true;
1799 }
1800
d98ba053 1801 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f 1802 if (flush)
77c3913b 1803 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
9f1a122f
XG
1804}
1805
60c8aec6
MT
1806struct mmu_page_path {
1807 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1808 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1809};
1810
60c8aec6
MT
1811#define for_each_sp(pvec, sp, parents, i) \
1812 for (i = mmu_pages_next(&pvec, &parents, -1), \
1813 sp = pvec.page[i].sp; \
1814 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1815 i = mmu_pages_next(&pvec, &parents, i))
1816
cded19f3
HE
1817static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1818 struct mmu_page_path *parents,
1819 int i)
60c8aec6
MT
1820{
1821 int n;
1822
1823 for (n = i+1; n < pvec->nr; n++) {
1824 struct kvm_mmu_page *sp = pvec->page[n].sp;
1825
1826 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1827 parents->idx[0] = pvec->page[n].idx;
1828 return n;
1829 }
1830
1831 parents->parent[sp->role.level-2] = sp;
1832 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1833 }
1834
1835 return n;
1836}
1837
cded19f3 1838static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1839{
60c8aec6
MT
1840 struct kvm_mmu_page *sp;
1841 unsigned int level = 0;
1842
1843 do {
1844 unsigned int idx = parents->idx[level];
4731d4c7 1845
60c8aec6
MT
1846 sp = parents->parent[level];
1847 if (!sp)
1848 return;
1849
1850 --sp->unsync_children;
1851 WARN_ON((int)sp->unsync_children < 0);
1852 __clear_bit(idx, sp->unsync_child_bitmap);
1853 level++;
1854 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1855}
1856
60c8aec6
MT
1857static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1858 struct mmu_page_path *parents,
1859 struct kvm_mmu_pages *pvec)
4731d4c7 1860{
60c8aec6
MT
1861 parents->parent[parent->role.level-1] = NULL;
1862 pvec->nr = 0;
1863}
4731d4c7 1864
60c8aec6
MT
1865static void mmu_sync_children(struct kvm_vcpu *vcpu,
1866 struct kvm_mmu_page *parent)
1867{
1868 int i;
1869 struct kvm_mmu_page *sp;
1870 struct mmu_page_path parents;
1871 struct kvm_mmu_pages pages;
d98ba053 1872 LIST_HEAD(invalid_list);
60c8aec6
MT
1873
1874 kvm_mmu_pages_init(parent, &parents, &pages);
1875 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1876 bool protected = false;
b1a36821
MT
1877
1878 for_each_sp(pages, sp, parents, i)
1879 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1880
1881 if (protected)
1882 kvm_flush_remote_tlbs(vcpu->kvm);
1883
60c8aec6 1884 for_each_sp(pages, sp, parents, i) {
d98ba053 1885 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1886 mmu_pages_clear_parents(&parents);
1887 }
d98ba053 1888 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1889 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1890 kvm_mmu_pages_init(parent, &parents, &pages);
1891 }
4731d4c7
MT
1892}
1893
c3707958
XG
1894static void init_shadow_page_table(struct kvm_mmu_page *sp)
1895{
1896 int i;
1897
1898 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1899 sp->spt[i] = 0ull;
1900}
1901
a30f47cb
XG
1902static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1903{
1904 sp->write_flooding_count = 0;
1905}
1906
1907static void clear_sp_write_flooding_count(u64 *spte)
1908{
1909 struct kvm_mmu_page *sp = page_header(__pa(spte));
1910
1911 __clear_sp_write_flooding_count(sp);
1912}
1913
5304b8d3
XG
1914static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1915{
1916 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1917}
1918
cea0f0e7
AK
1919static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1920 gfn_t gfn,
1921 gva_t gaddr,
1922 unsigned level,
f6e2c02b 1923 int direct,
41074d07 1924 unsigned access,
f7d9c7b7 1925 u64 *parent_pte)
cea0f0e7
AK
1926{
1927 union kvm_mmu_page_role role;
cea0f0e7 1928 unsigned quadrant;
9f1a122f 1929 struct kvm_mmu_page *sp;
9f1a122f 1930 bool need_sync = false;
cea0f0e7 1931
a770f6f2 1932 role = vcpu->arch.mmu.base_role;
cea0f0e7 1933 role.level = level;
f6e2c02b 1934 role.direct = direct;
84b0c8c6 1935 if (role.direct)
5b7e0102 1936 role.cr4_pae = 0;
41074d07 1937 role.access = access;
c5a78f2b
JR
1938 if (!vcpu->arch.mmu.direct_map
1939 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1940 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1941 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1942 role.quadrant = quadrant;
1943 }
b67bfe0d 1944 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
7f52af74
XG
1945 if (is_obsolete_sp(vcpu->kvm, sp))
1946 continue;
1947
7ae680eb
XG
1948 if (!need_sync && sp->unsync)
1949 need_sync = true;
4731d4c7 1950
7ae680eb
XG
1951 if (sp->role.word != role.word)
1952 continue;
4731d4c7 1953
7ae680eb
XG
1954 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1955 break;
e02aa901 1956
7ae680eb
XG
1957 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1958 if (sp->unsync_children) {
a8eeb04a 1959 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1960 kvm_mmu_mark_parents_unsync(sp);
1961 } else if (sp->unsync)
1962 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1963
a30f47cb 1964 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1965 trace_kvm_mmu_get_page(sp, false);
1966 return sp;
1967 }
dfc5aa00 1968 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1969 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1970 if (!sp)
1971 return sp;
4db35314
AK
1972 sp->gfn = gfn;
1973 sp->role = role;
7ae680eb
XG
1974 hlist_add_head(&sp->hash_link,
1975 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1976 if (!direct) {
b1a36821
MT
1977 if (rmap_write_protect(vcpu->kvm, gfn))
1978 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1979 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1980 kvm_sync_pages(vcpu, gfn);
1981
4731d4c7
MT
1982 account_shadowed(vcpu->kvm, gfn);
1983 }
5304b8d3 1984 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
c3707958 1985 init_shadow_page_table(sp);
f691fe1d 1986 trace_kvm_mmu_get_page(sp, true);
4db35314 1987 return sp;
cea0f0e7
AK
1988}
1989
2d11123a
AK
1990static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1991 struct kvm_vcpu *vcpu, u64 addr)
1992{
1993 iterator->addr = addr;
1994 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1995 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1996
1997 if (iterator->level == PT64_ROOT_LEVEL &&
1998 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1999 !vcpu->arch.mmu.direct_map)
2000 --iterator->level;
2001
2d11123a
AK
2002 if (iterator->level == PT32E_ROOT_LEVEL) {
2003 iterator->shadow_addr
2004 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2005 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2006 --iterator->level;
2007 if (!iterator->shadow_addr)
2008 iterator->level = 0;
2009 }
2010}
2011
2012static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2013{
2014 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2015 return false;
4d88954d 2016
2d11123a
AK
2017 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2018 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2019 return true;
2020}
2021
c2a2ac2b
XG
2022static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2023 u64 spte)
2d11123a 2024{
c2a2ac2b 2025 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2026 iterator->level = 0;
2027 return;
2028 }
2029
c2a2ac2b 2030 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2031 --iterator->level;
2032}
2033
c2a2ac2b
XG
2034static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2035{
2036 return __shadow_walk_next(iterator, *iterator->sptep);
2037}
2038
7a1638ce 2039static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
32ef26a3
AK
2040{
2041 u64 spte;
2042
7a1638ce
YZ
2043 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2044 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2045
24db2734 2046 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
7a1638ce
YZ
2047 shadow_user_mask | shadow_x_mask;
2048
2049 if (accessed)
2050 spte |= shadow_accessed_mask;
24db2734 2051
1df9f2dc 2052 mmu_spte_set(sptep, spte);
32ef26a3
AK
2053}
2054
a357bd22
AK
2055static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2056 unsigned direct_access)
2057{
2058 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2059 struct kvm_mmu_page *child;
2060
2061 /*
2062 * For the direct sp, if the guest pte's dirty bit
2063 * changed form clean to dirty, it will corrupt the
2064 * sp's access: allow writable in the read-only sp,
2065 * so we should update the spte at this point to get
2066 * a new sp with the correct access.
2067 */
2068 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2069 if (child->role.access == direct_access)
2070 return;
2071
bcdd9a93 2072 drop_parent_pte(child, sptep);
a357bd22
AK
2073 kvm_flush_remote_tlbs(vcpu->kvm);
2074 }
2075}
2076
505aef8f 2077static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2078 u64 *spte)
2079{
2080 u64 pte;
2081 struct kvm_mmu_page *child;
2082
2083 pte = *spte;
2084 if (is_shadow_present_pte(pte)) {
505aef8f 2085 if (is_last_spte(pte, sp->role.level)) {
c3707958 2086 drop_spte(kvm, spte);
505aef8f
XG
2087 if (is_large_pte(pte))
2088 --kvm->stat.lpages;
2089 } else {
38e3b2b2 2090 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2091 drop_parent_pte(child, spte);
38e3b2b2 2092 }
505aef8f
XG
2093 return true;
2094 }
2095
2096 if (is_mmio_spte(pte))
ce88decf 2097 mmu_spte_clear_no_track(spte);
c3707958 2098
505aef8f 2099 return false;
38e3b2b2
XG
2100}
2101
90cb0529 2102static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2103 struct kvm_mmu_page *sp)
a436036b 2104{
697fe2e2 2105 unsigned i;
697fe2e2 2106
38e3b2b2
XG
2107 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2108 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2109}
2110
4db35314 2111static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2112{
4db35314 2113 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2114}
2115
31aa2b44 2116static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2117{
1e3f42f0
TY
2118 u64 *sptep;
2119 struct rmap_iterator iter;
a436036b 2120
1e3f42f0
TY
2121 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2122 drop_parent_pte(sp, sptep);
31aa2b44
AK
2123}
2124
60c8aec6 2125static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2126 struct kvm_mmu_page *parent,
2127 struct list_head *invalid_list)
4731d4c7 2128{
60c8aec6
MT
2129 int i, zapped = 0;
2130 struct mmu_page_path parents;
2131 struct kvm_mmu_pages pages;
4731d4c7 2132
60c8aec6 2133 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2134 return 0;
60c8aec6
MT
2135
2136 kvm_mmu_pages_init(parent, &parents, &pages);
2137 while (mmu_unsync_walk(parent, &pages)) {
2138 struct kvm_mmu_page *sp;
2139
2140 for_each_sp(pages, sp, parents, i) {
7775834a 2141 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2142 mmu_pages_clear_parents(&parents);
77662e00 2143 zapped++;
60c8aec6 2144 }
60c8aec6
MT
2145 kvm_mmu_pages_init(parent, &parents, &pages);
2146 }
2147
2148 return zapped;
4731d4c7
MT
2149}
2150
7775834a
XG
2151static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2152 struct list_head *invalid_list)
31aa2b44 2153{
4731d4c7 2154 int ret;
f691fe1d 2155
7775834a 2156 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2157 ++kvm->stat.mmu_shadow_zapped;
7775834a 2158 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2159 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2160 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2161
f6e2c02b 2162 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 2163 unaccount_shadowed(kvm, sp->gfn);
5304b8d3 2164
4731d4c7
MT
2165 if (sp->unsync)
2166 kvm_unlink_unsync_page(kvm, sp);
4db35314 2167 if (!sp->root_count) {
54a4f023
GJ
2168 /* Count self */
2169 ret++;
7775834a 2170 list_move(&sp->link, invalid_list);
aa6bd187 2171 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2172 } else {
5b5c6a5a 2173 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2174
2175 /*
2176 * The obsolete pages can not be used on any vcpus.
2177 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2178 */
2179 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2180 kvm_reload_remote_mmus(kvm);
2e53d63a 2181 }
7775834a
XG
2182
2183 sp->role.invalid = 1;
4731d4c7 2184 return ret;
a436036b
AK
2185}
2186
7775834a
XG
2187static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2188 struct list_head *invalid_list)
2189{
945315b9 2190 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2191
2192 if (list_empty(invalid_list))
2193 return;
2194
c142786c
AK
2195 /*
2196 * wmb: make sure everyone sees our modifications to the page tables
2197 * rmb: make sure we see changes to vcpu->mode
2198 */
2199 smp_mb();
4f022648 2200
c142786c
AK
2201 /*
2202 * Wait for all vcpus to exit guest mode and/or lockless shadow
2203 * page table walks.
2204 */
2205 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2206
945315b9 2207 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2208 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2209 kvm_mmu_free_page(sp);
945315b9 2210 }
7775834a
XG
2211}
2212
5da59607
TY
2213static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2214 struct list_head *invalid_list)
2215{
2216 struct kvm_mmu_page *sp;
2217
2218 if (list_empty(&kvm->arch.active_mmu_pages))
2219 return false;
2220
2221 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2222 struct kvm_mmu_page, link);
2223 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2224
2225 return true;
2226}
2227
82ce2c96
IE
2228/*
2229 * Changing the number of mmu pages allocated to the vm
49d5ca26 2230 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2231 */
49d5ca26 2232void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2233{
d98ba053 2234 LIST_HEAD(invalid_list);
82ce2c96 2235
b34cb590
TY
2236 spin_lock(&kvm->mmu_lock);
2237
49d5ca26 2238 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2239 /* Need to free some mmu pages to achieve the goal. */
2240 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2241 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2242 break;
82ce2c96 2243
aa6bd187 2244 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2245 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2246 }
82ce2c96 2247
49d5ca26 2248 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2249
2250 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2251}
2252
1cb3f3ae 2253int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2254{
4db35314 2255 struct kvm_mmu_page *sp;
d98ba053 2256 LIST_HEAD(invalid_list);
a436036b
AK
2257 int r;
2258
9ad17b10 2259 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2260 r = 0;
1cb3f3ae 2261 spin_lock(&kvm->mmu_lock);
b67bfe0d 2262 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2263 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2264 sp->role.word);
2265 r = 1;
f41d335a 2266 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2267 }
d98ba053 2268 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2269 spin_unlock(&kvm->mmu_lock);
2270
a436036b 2271 return r;
cea0f0e7 2272}
1cb3f3ae 2273EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2274
74be52e3
SY
2275/*
2276 * The function is based on mtrr_type_lookup() in
2277 * arch/x86/kernel/cpu/mtrr/generic.c
2278 */
2279static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2280 u64 start, u64 end)
2281{
2282 int i;
2283 u64 base, mask;
2284 u8 prev_match, curr_match;
2285 int num_var_ranges = KVM_NR_VAR_MTRR;
2286
2287 if (!mtrr_state->enabled)
2288 return 0xFF;
2289
2290 /* Make end inclusive end, instead of exclusive */
2291 end--;
2292
2293 /* Look in fixed ranges. Just return the type as per start */
2294 if (mtrr_state->have_fixed && (start < 0x100000)) {
2295 int idx;
2296
2297 if (start < 0x80000) {
2298 idx = 0;
2299 idx += (start >> 16);
2300 return mtrr_state->fixed_ranges[idx];
2301 } else if (start < 0xC0000) {
2302 idx = 1 * 8;
2303 idx += ((start - 0x80000) >> 14);
2304 return mtrr_state->fixed_ranges[idx];
2305 } else if (start < 0x1000000) {
2306 idx = 3 * 8;
2307 idx += ((start - 0xC0000) >> 12);
2308 return mtrr_state->fixed_ranges[idx];
2309 }
2310 }
2311
2312 /*
2313 * Look in variable ranges
2314 * Look of multiple ranges matching this address and pick type
2315 * as per MTRR precedence
2316 */
2317 if (!(mtrr_state->enabled & 2))
2318 return mtrr_state->def_type;
2319
2320 prev_match = 0xFF;
2321 for (i = 0; i < num_var_ranges; ++i) {
2322 unsigned short start_state, end_state;
2323
2324 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2325 continue;
2326
2327 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2328 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2329 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2330 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2331
2332 start_state = ((start & mask) == (base & mask));
2333 end_state = ((end & mask) == (base & mask));
2334 if (start_state != end_state)
2335 return 0xFE;
2336
2337 if ((start & mask) != (base & mask))
2338 continue;
2339
2340 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2341 if (prev_match == 0xFF) {
2342 prev_match = curr_match;
2343 continue;
2344 }
2345
2346 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2347 curr_match == MTRR_TYPE_UNCACHABLE)
2348 return MTRR_TYPE_UNCACHABLE;
2349
2350 if ((prev_match == MTRR_TYPE_WRBACK &&
2351 curr_match == MTRR_TYPE_WRTHROUGH) ||
2352 (prev_match == MTRR_TYPE_WRTHROUGH &&
2353 curr_match == MTRR_TYPE_WRBACK)) {
2354 prev_match = MTRR_TYPE_WRTHROUGH;
2355 curr_match = MTRR_TYPE_WRTHROUGH;
2356 }
2357
2358 if (prev_match != curr_match)
2359 return MTRR_TYPE_UNCACHABLE;
2360 }
2361
2362 if (prev_match != 0xFF)
2363 return prev_match;
2364
2365 return mtrr_state->def_type;
2366}
2367
4b12f0de 2368u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2369{
2370 u8 mtrr;
2371
2372 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2373 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2374 if (mtrr == 0xfe || mtrr == 0xff)
2375 mtrr = MTRR_TYPE_WRBACK;
2376 return mtrr;
2377}
4b12f0de 2378EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2379
9cf5cf5a
XG
2380static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2381{
2382 trace_kvm_mmu_unsync_page(sp);
2383 ++vcpu->kvm->stat.mmu_unsync;
2384 sp->unsync = 1;
2385
2386 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2387}
2388
2389static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2390{
4731d4c7 2391 struct kvm_mmu_page *s;
9cf5cf5a 2392
b67bfe0d 2393 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2394 if (s->unsync)
4731d4c7 2395 continue;
9cf5cf5a
XG
2396 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2397 __kvm_unsync_page(vcpu, s);
4731d4c7 2398 }
4731d4c7
MT
2399}
2400
2401static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2402 bool can_unsync)
2403{
9cf5cf5a 2404 struct kvm_mmu_page *s;
9cf5cf5a
XG
2405 bool need_unsync = false;
2406
b67bfe0d 2407 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
36a2e677
XG
2408 if (!can_unsync)
2409 return 1;
2410
9cf5cf5a 2411 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2412 return 1;
9cf5cf5a 2413
9bb4f6b1 2414 if (!s->unsync)
9cf5cf5a 2415 need_unsync = true;
4731d4c7 2416 }
9cf5cf5a
XG
2417 if (need_unsync)
2418 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2419 return 0;
2420}
2421
d555c333 2422static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2423 unsigned pte_access, int level,
c2d0ee46 2424 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2425 bool can_unsync, bool host_writable)
1c4f1fd6 2426{
6e7d0354 2427 u64 spte;
1e73f9dd 2428 int ret = 0;
64d4d521 2429
f2fd125d 2430 if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
ce88decf
XG
2431 return 0;
2432
982c2565 2433 spte = PT_PRESENT_MASK;
947da538 2434 if (!speculative)
3201b5d9 2435 spte |= shadow_accessed_mask;
640d9b0d 2436
7b52345e
SY
2437 if (pte_access & ACC_EXEC_MASK)
2438 spte |= shadow_x_mask;
2439 else
2440 spte |= shadow_nx_mask;
49fde340 2441
1c4f1fd6 2442 if (pte_access & ACC_USER_MASK)
7b52345e 2443 spte |= shadow_user_mask;
49fde340 2444
852e3c19 2445 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2446 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2447 if (tdp_enabled)
4b12f0de 2448 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
bf4bea8e 2449 kvm_is_reserved_pfn(pfn));
1c4f1fd6 2450
9bdbba13 2451 if (host_writable)
1403283a 2452 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2453 else
2454 pte_access &= ~ACC_WRITE_MASK;
1403283a 2455
35149e21 2456 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2457
c2288505 2458 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2459
c2193463 2460 /*
7751babd
XG
2461 * Other vcpu creates new sp in the window between
2462 * mapping_level() and acquiring mmu-lock. We can
2463 * allow guest to retry the access, the mapping can
2464 * be fixed if guest refault.
c2193463 2465 */
852e3c19 2466 if (level > PT_PAGE_TABLE_LEVEL &&
c2193463 2467 has_wrprotected_page(vcpu->kvm, gfn, level))
be38d276 2468 goto done;
38187c83 2469
49fde340 2470 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2471
ecc5589f
MT
2472 /*
2473 * Optimization: for pte sync, if spte was writable the hash
2474 * lookup is unnecessary (and expensive). Write protection
2475 * is responsibility of mmu_get_page / kvm_sync_page.
2476 * Same reasoning can be applied to dirty page accounting.
2477 */
8dae4445 2478 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2479 goto set_pte;
2480
4731d4c7 2481 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2482 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2483 __func__, gfn);
1e73f9dd 2484 ret = 1;
1c4f1fd6 2485 pte_access &= ~ACC_WRITE_MASK;
49fde340 2486 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2487 }
2488 }
2489
1c4f1fd6
AK
2490 if (pte_access & ACC_WRITE_MASK)
2491 mark_page_dirty(vcpu->kvm, gfn);
2492
38187c83 2493set_pte:
6e7d0354 2494 if (mmu_spte_update(sptep, spte))
b330aa0c 2495 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2496done:
1e73f9dd
MT
2497 return ret;
2498}
2499
d555c333 2500static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
f7616203
XG
2501 unsigned pte_access, int write_fault, int *emulate,
2502 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2503 bool host_writable)
1e73f9dd
MT
2504{
2505 int was_rmapped = 0;
53a27b39 2506 int rmap_count;
1e73f9dd 2507
f7616203
XG
2508 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2509 *sptep, write_fault, gfn);
1e73f9dd 2510
d555c333 2511 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2512 /*
2513 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2514 * the parent of the now unreachable PTE.
2515 */
852e3c19
JR
2516 if (level > PT_PAGE_TABLE_LEVEL &&
2517 !is_large_pte(*sptep)) {
1e73f9dd 2518 struct kvm_mmu_page *child;
d555c333 2519 u64 pte = *sptep;
1e73f9dd
MT
2520
2521 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2522 drop_parent_pte(child, sptep);
3be2264b 2523 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2524 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2525 pgprintk("hfn old %llx new %llx\n",
d555c333 2526 spte_to_pfn(*sptep), pfn);
c3707958 2527 drop_spte(vcpu->kvm, sptep);
91546356 2528 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2529 } else
2530 was_rmapped = 1;
1e73f9dd 2531 }
852e3c19 2532
c2288505
XG
2533 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2534 true, host_writable)) {
1e73f9dd 2535 if (write_fault)
b90a0e6c 2536 *emulate = 1;
77c3913b 2537 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 2538 }
1e73f9dd 2539
ce88decf
XG
2540 if (unlikely(is_mmio_spte(*sptep) && emulate))
2541 *emulate = 1;
2542
d555c333 2543 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2544 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2545 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2546 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2547 *sptep, sptep);
d555c333 2548 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2549 ++vcpu->kvm->stat.lpages;
2550
ffb61bb3 2551 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2552 if (!was_rmapped) {
2553 rmap_count = rmap_add(vcpu, sptep, gfn);
2554 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2555 rmap_recycle(vcpu, sptep, gfn);
2556 }
1c4f1fd6 2557 }
cb9aaa30 2558
f3ac1a4b 2559 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2560}
2561
957ed9ef
XG
2562static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2563 bool no_dirty_log)
2564{
2565 struct kvm_memory_slot *slot;
957ed9ef 2566
5d163b1c 2567 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2568 if (!slot)
6c8ee57b 2569 return KVM_PFN_ERR_FAULT;
957ed9ef 2570
037d92dc 2571 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2572}
2573
2574static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2575 struct kvm_mmu_page *sp,
2576 u64 *start, u64 *end)
2577{
2578 struct page *pages[PTE_PREFETCH_NUM];
2579 unsigned access = sp->role.access;
2580 int i, ret;
2581 gfn_t gfn;
2582
2583 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2584 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2585 return -1;
2586
2587 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2588 if (ret <= 0)
2589 return -1;
2590
2591 for (i = 0; i < ret; i++, gfn++, start++)
f7616203 2592 mmu_set_spte(vcpu, start, access, 0, NULL,
c2288505
XG
2593 sp->role.level, gfn, page_to_pfn(pages[i]),
2594 true, true);
957ed9ef
XG
2595
2596 return 0;
2597}
2598
2599static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2600 struct kvm_mmu_page *sp, u64 *sptep)
2601{
2602 u64 *spte, *start = NULL;
2603 int i;
2604
2605 WARN_ON(!sp->role.direct);
2606
2607 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2608 spte = sp->spt + i;
2609
2610 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2611 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2612 if (!start)
2613 continue;
2614 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2615 break;
2616 start = NULL;
2617 } else if (!start)
2618 start = spte;
2619 }
2620}
2621
2622static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2623{
2624 struct kvm_mmu_page *sp;
2625
2626 /*
2627 * Since it's no accessed bit on EPT, it's no way to
2628 * distinguish between actually accessed translations
2629 * and prefetched, so disable pte prefetch if EPT is
2630 * enabled.
2631 */
2632 if (!shadow_accessed_mask)
2633 return;
2634
2635 sp = page_header(__pa(sptep));
2636 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2637 return;
2638
2639 __direct_pte_prefetch(vcpu, sp, sptep);
2640}
2641
9f652d21 2642static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2643 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2644 bool prefault)
140754bc 2645{
9f652d21 2646 struct kvm_shadow_walk_iterator iterator;
140754bc 2647 struct kvm_mmu_page *sp;
b90a0e6c 2648 int emulate = 0;
140754bc 2649 gfn_t pseudo_gfn;
6aa8b732 2650
989c6b34
MT
2651 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2652 return 0;
2653
9f652d21 2654 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2655 if (iterator.level == level) {
f7616203 2656 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
c2288505
XG
2657 write, &emulate, level, gfn, pfn,
2658 prefault, map_writable);
957ed9ef 2659 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2660 ++vcpu->stat.pf_fixed;
2661 break;
6aa8b732
AK
2662 }
2663
404381c5 2664 drop_large_spte(vcpu, iterator.sptep);
c3707958 2665 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2666 u64 base_addr = iterator.addr;
2667
2668 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2669 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2670 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2671 iterator.level - 1,
2672 1, ACC_ALL, iterator.sptep);
140754bc 2673
7a1638ce 2674 link_shadow_page(iterator.sptep, sp, true);
9f652d21
AK
2675 }
2676 }
b90a0e6c 2677 return emulate;
6aa8b732
AK
2678}
2679
77db5cbd 2680static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2681{
77db5cbd
HY
2682 siginfo_t info;
2683
2684 info.si_signo = SIGBUS;
2685 info.si_errno = 0;
2686 info.si_code = BUS_MCEERR_AR;
2687 info.si_addr = (void __user *)address;
2688 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2689
77db5cbd 2690 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2691}
2692
d7c55201 2693static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156 2694{
4d8b81ab
XG
2695 /*
2696 * Do not cache the mmio info caused by writing the readonly gfn
2697 * into the spte otherwise read access on readonly gfn also can
2698 * caused mmio page fault and treat it as mmio access.
2699 * Return 1 to tell kvm to emulate it.
2700 */
2701 if (pfn == KVM_PFN_ERR_RO_FAULT)
2702 return 1;
2703
e6c1502b 2704 if (pfn == KVM_PFN_ERR_HWPOISON) {
bebb106a 2705 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2706 return 0;
d7c55201 2707 }
edba23e5 2708
d7c55201 2709 return -EFAULT;
bf998156
HY
2710}
2711
936a5fe6
AA
2712static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2713 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2714{
2715 pfn_t pfn = *pfnp;
2716 gfn_t gfn = *gfnp;
2717 int level = *levelp;
2718
2719 /*
2720 * Check if it's a transparent hugepage. If this would be an
2721 * hugetlbfs page, level wouldn't be set to
2722 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2723 * here.
2724 */
bf4bea8e 2725 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6
AA
2726 level == PT_PAGE_TABLE_LEVEL &&
2727 PageTransCompound(pfn_to_page(pfn)) &&
2728 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2729 unsigned long mask;
2730 /*
2731 * mmu_notifier_retry was successful and we hold the
2732 * mmu_lock here, so the pmd can't become splitting
2733 * from under us, and in turn
2734 * __split_huge_page_refcount() can't run from under
2735 * us and we can safely transfer the refcount from
2736 * PG_tail to PG_head as we switch the pfn to tail to
2737 * head.
2738 */
2739 *levelp = level = PT_DIRECTORY_LEVEL;
2740 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2741 VM_BUG_ON((gfn & mask) != (pfn & mask));
2742 if (pfn & mask) {
2743 gfn &= ~mask;
2744 *gfnp = gfn;
2745 kvm_release_pfn_clean(pfn);
2746 pfn &= ~mask;
c3586667 2747 kvm_get_pfn(pfn);
936a5fe6
AA
2748 *pfnp = pfn;
2749 }
2750 }
2751}
2752
d7c55201
XG
2753static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2754 pfn_t pfn, unsigned access, int *ret_val)
2755{
2756 bool ret = true;
2757
2758 /* The pfn is invalid, report the error! */
81c52c56 2759 if (unlikely(is_error_pfn(pfn))) {
d7c55201
XG
2760 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2761 goto exit;
2762 }
2763
ce88decf 2764 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2765 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2766
2767 ret = false;
2768exit:
2769 return ret;
2770}
2771
e5552fd2 2772static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2773{
1c118b82
XG
2774 /*
2775 * Do not fix the mmio spte with invalid generation number which
2776 * need to be updated by slow page fault path.
2777 */
2778 if (unlikely(error_code & PFERR_RSVD_MASK))
2779 return false;
2780
c7ba5b48
XG
2781 /*
2782 * #PF can be fast only if the shadow page table is present and it
2783 * is caused by write-protect, that means we just need change the
2784 * W bit of the spte which can be done out of mmu-lock.
2785 */
2786 if (!(error_code & PFERR_PRESENT_MASK) ||
2787 !(error_code & PFERR_WRITE_MASK))
2788 return false;
2789
2790 return true;
2791}
2792
2793static bool
92a476cb
XG
2794fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2795 u64 *sptep, u64 spte)
c7ba5b48 2796{
c7ba5b48
XG
2797 gfn_t gfn;
2798
2799 WARN_ON(!sp->role.direct);
2800
2801 /*
2802 * The gfn of direct spte is stable since it is calculated
2803 * by sp->gfn.
2804 */
2805 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2806
2807 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2808 mark_page_dirty(vcpu->kvm, gfn);
2809
2810 return true;
2811}
2812
2813/*
2814 * Return value:
2815 * - true: let the vcpu to access on the same address again.
2816 * - false: let the real page fault path to fix it.
2817 */
2818static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2819 u32 error_code)
2820{
2821 struct kvm_shadow_walk_iterator iterator;
92a476cb 2822 struct kvm_mmu_page *sp;
c7ba5b48
XG
2823 bool ret = false;
2824 u64 spte = 0ull;
2825
37f6a4e2
MT
2826 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2827 return false;
2828
e5552fd2 2829 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
2830 return false;
2831
2832 walk_shadow_page_lockless_begin(vcpu);
2833 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2834 if (!is_shadow_present_pte(spte) || iterator.level < level)
2835 break;
2836
2837 /*
2838 * If the mapping has been changed, let the vcpu fault on the
2839 * same address again.
2840 */
2841 if (!is_rmap_spte(spte)) {
2842 ret = true;
2843 goto exit;
2844 }
2845
92a476cb
XG
2846 sp = page_header(__pa(iterator.sptep));
2847 if (!is_last_spte(spte, sp->role.level))
c7ba5b48
XG
2848 goto exit;
2849
2850 /*
2851 * Check if it is a spurious fault caused by TLB lazily flushed.
2852 *
2853 * Need not check the access of upper level table entries since
2854 * they are always ACC_ALL.
2855 */
2856 if (is_writable_pte(spte)) {
2857 ret = true;
2858 goto exit;
2859 }
2860
2861 /*
2862 * Currently, to simplify the code, only the spte write-protected
2863 * by dirty-log can be fast fixed.
2864 */
2865 if (!spte_is_locklessly_modifiable(spte))
2866 goto exit;
2867
c126d94f
XG
2868 /*
2869 * Do not fix write-permission on the large spte since we only dirty
2870 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2871 * that means other pages are missed if its slot is dirty-logged.
2872 *
2873 * Instead, we let the slow page fault path create a normal spte to
2874 * fix the access.
2875 *
2876 * See the comments in kvm_arch_commit_memory_region().
2877 */
2878 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2879 goto exit;
2880
c7ba5b48
XG
2881 /*
2882 * Currently, fast page fault only works for direct mapping since
2883 * the gfn is not stable for indirect shadow page.
2884 * See Documentation/virtual/kvm/locking.txt to get more detail.
2885 */
92a476cb 2886 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
c7ba5b48 2887exit:
a72faf25
XG
2888 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2889 spte, ret);
c7ba5b48
XG
2890 walk_shadow_page_lockless_end(vcpu);
2891
2892 return ret;
2893}
2894
78b2c54a 2895static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe 2896 gva_t gva, pfn_t *pfn, bool write, bool *writable);
450e0b41 2897static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 2898
c7ba5b48
XG
2899static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2900 gfn_t gfn, bool prefault)
10589a46
MT
2901{
2902 int r;
852e3c19 2903 int level;
936a5fe6 2904 int force_pt_level;
35149e21 2905 pfn_t pfn;
e930bffe 2906 unsigned long mmu_seq;
c7ba5b48 2907 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2908
936a5fe6
AA
2909 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2910 if (likely(!force_pt_level)) {
2911 level = mapping_level(vcpu, gfn);
2912 /*
2913 * This path builds a PAE pagetable - so we can map
2914 * 2mb pages at maximum. Therefore check if the level
2915 * is larger than that.
2916 */
2917 if (level > PT_DIRECTORY_LEVEL)
2918 level = PT_DIRECTORY_LEVEL;
852e3c19 2919
936a5fe6
AA
2920 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2921 } else
2922 level = PT_PAGE_TABLE_LEVEL;
05da4558 2923
c7ba5b48
XG
2924 if (fast_page_fault(vcpu, v, level, error_code))
2925 return 0;
2926
e930bffe 2927 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2928 smp_rmb();
060c2abe 2929
78b2c54a 2930 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2931 return 0;
aaee2c94 2932
d7c55201
XG
2933 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2934 return r;
d196e343 2935
aaee2c94 2936 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 2937 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 2938 goto out_unlock;
450e0b41 2939 make_mmu_pages_available(vcpu);
936a5fe6
AA
2940 if (likely(!force_pt_level))
2941 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2942 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2943 prefault);
aaee2c94
MT
2944 spin_unlock(&vcpu->kvm->mmu_lock);
2945
aaee2c94 2946
10589a46 2947 return r;
e930bffe
AA
2948
2949out_unlock:
2950 spin_unlock(&vcpu->kvm->mmu_lock);
2951 kvm_release_pfn_clean(pfn);
2952 return 0;
10589a46
MT
2953}
2954
2955
17ac10ad
AK
2956static void mmu_free_roots(struct kvm_vcpu *vcpu)
2957{
2958 int i;
4db35314 2959 struct kvm_mmu_page *sp;
d98ba053 2960 LIST_HEAD(invalid_list);
17ac10ad 2961
ad312c7c 2962 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2963 return;
35af577a 2964
81407ca5
JR
2965 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2966 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2967 vcpu->arch.mmu.direct_map)) {
ad312c7c 2968 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2969
35af577a 2970 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
2971 sp = page_header(root);
2972 --sp->root_count;
d98ba053
XG
2973 if (!sp->root_count && sp->role.invalid) {
2974 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2975 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2976 }
aaee2c94 2977 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 2978 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2979 return;
2980 }
35af577a
GN
2981
2982 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 2983 for (i = 0; i < 4; ++i) {
ad312c7c 2984 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2985
417726a3 2986 if (root) {
417726a3 2987 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2988 sp = page_header(root);
2989 --sp->root_count;
2e53d63a 2990 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2991 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2992 &invalid_list);
417726a3 2993 }
ad312c7c 2994 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2995 }
d98ba053 2996 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2997 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2998 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2999}
3000
8986ecc0
MT
3001static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3002{
3003 int ret = 0;
3004
3005 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3006 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3007 ret = 1;
3008 }
3009
3010 return ret;
3011}
3012
651dd37a
JR
3013static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3014{
3015 struct kvm_mmu_page *sp;
7ebaf15e 3016 unsigned i;
651dd37a
JR
3017
3018 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3019 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3020 make_mmu_pages_available(vcpu);
651dd37a
JR
3021 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3022 1, ACC_ALL, NULL);
3023 ++sp->root_count;
3024 spin_unlock(&vcpu->kvm->mmu_lock);
3025 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3026 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3027 for (i = 0; i < 4; ++i) {
3028 hpa_t root = vcpu->arch.mmu.pae_root[i];
3029
fa4a2c08 3030 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3031 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3032 make_mmu_pages_available(vcpu);
649497d1
AK
3033 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3034 i << 30,
651dd37a
JR
3035 PT32_ROOT_LEVEL, 1, ACC_ALL,
3036 NULL);
3037 root = __pa(sp->spt);
3038 ++sp->root_count;
3039 spin_unlock(&vcpu->kvm->mmu_lock);
3040 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3041 }
6292757f 3042 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3043 } else
3044 BUG();
3045
3046 return 0;
3047}
3048
3049static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3050{
4db35314 3051 struct kvm_mmu_page *sp;
81407ca5
JR
3052 u64 pdptr, pm_mask;
3053 gfn_t root_gfn;
3054 int i;
3bb65a22 3055
5777ed34 3056 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3057
651dd37a
JR
3058 if (mmu_check_root(vcpu, root_gfn))
3059 return 1;
3060
3061 /*
3062 * Do we shadow a long mode page table? If so we need to
3063 * write-protect the guests page table root.
3064 */
3065 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 3066 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3067
fa4a2c08 3068 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3069
8facbbff 3070 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3071 make_mmu_pages_available(vcpu);
651dd37a
JR
3072 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3073 0, ACC_ALL, NULL);
4db35314
AK
3074 root = __pa(sp->spt);
3075 ++sp->root_count;
8facbbff 3076 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3077 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3078 return 0;
17ac10ad 3079 }
f87f9288 3080
651dd37a
JR
3081 /*
3082 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3083 * or a PAE 3-level page table. In either case we need to be aware that
3084 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3085 */
81407ca5
JR
3086 pm_mask = PT_PRESENT_MASK;
3087 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3088 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3089
17ac10ad 3090 for (i = 0; i < 4; ++i) {
ad312c7c 3091 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3092
fa4a2c08 3093 MMU_WARN_ON(VALID_PAGE(root));
ad312c7c 3094 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3095 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3096 if (!is_present_gpte(pdptr)) {
ad312c7c 3097 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3098 continue;
3099 }
6de4f3ad 3100 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3101 if (mmu_check_root(vcpu, root_gfn))
3102 return 1;
5a7388c2 3103 }
8facbbff 3104 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3105 make_mmu_pages_available(vcpu);
4db35314 3106 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3107 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3108 ACC_ALL, NULL);
4db35314
AK
3109 root = __pa(sp->spt);
3110 ++sp->root_count;
8facbbff
AK
3111 spin_unlock(&vcpu->kvm->mmu_lock);
3112
81407ca5 3113 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3114 }
6292757f 3115 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3116
3117 /*
3118 * If we shadow a 32 bit page table with a long mode page
3119 * table we enter this path.
3120 */
3121 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3122 if (vcpu->arch.mmu.lm_root == NULL) {
3123 /*
3124 * The additional page necessary for this is only
3125 * allocated on demand.
3126 */
3127
3128 u64 *lm_root;
3129
3130 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3131 if (lm_root == NULL)
3132 return 1;
3133
3134 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3135
3136 vcpu->arch.mmu.lm_root = lm_root;
3137 }
3138
3139 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3140 }
3141
8986ecc0 3142 return 0;
17ac10ad
AK
3143}
3144
651dd37a
JR
3145static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3146{
3147 if (vcpu->arch.mmu.direct_map)
3148 return mmu_alloc_direct_roots(vcpu);
3149 else
3150 return mmu_alloc_shadow_roots(vcpu);
3151}
3152
0ba73cda
MT
3153static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3154{
3155 int i;
3156 struct kvm_mmu_page *sp;
3157
81407ca5
JR
3158 if (vcpu->arch.mmu.direct_map)
3159 return;
3160
0ba73cda
MT
3161 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3162 return;
6903074c 3163
56f17dd3 3164 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
0375f7fa 3165 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3166 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3167 hpa_t root = vcpu->arch.mmu.root_hpa;
3168 sp = page_header(root);
3169 mmu_sync_children(vcpu, sp);
0375f7fa 3170 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3171 return;
3172 }
3173 for (i = 0; i < 4; ++i) {
3174 hpa_t root = vcpu->arch.mmu.pae_root[i];
3175
8986ecc0 3176 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3177 root &= PT64_BASE_ADDR_MASK;
3178 sp = page_header(root);
3179 mmu_sync_children(vcpu, sp);
3180 }
3181 }
0375f7fa 3182 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3183}
3184
3185void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3186{
3187 spin_lock(&vcpu->kvm->mmu_lock);
3188 mmu_sync_roots(vcpu);
6cffe8ca 3189 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3190}
bfd0a56b 3191EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3192
1871c602 3193static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3194 u32 access, struct x86_exception *exception)
6aa8b732 3195{
ab9ae313
AK
3196 if (exception)
3197 exception->error_code = 0;
6aa8b732
AK
3198 return vaddr;
3199}
3200
6539e738 3201static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3202 u32 access,
3203 struct x86_exception *exception)
6539e738 3204{
ab9ae313
AK
3205 if (exception)
3206 exception->error_code = 0;
54987b7a 3207 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3208}
3209
ce88decf
XG
3210static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3211{
3212 if (direct)
3213 return vcpu_match_mmio_gpa(vcpu, addr);
3214
3215 return vcpu_match_mmio_gva(vcpu, addr);
3216}
3217
3218
3219/*
3220 * On direct hosts, the last spte is only allows two states
3221 * for mmio page fault:
3222 * - It is the mmio spte
3223 * - It is zapped or it is being zapped.
3224 *
3225 * This function completely checks the spte when the last spte
3226 * is not the mmio spte.
3227 */
3228static bool check_direct_spte_mmio_pf(u64 spte)
3229{
3230 return __check_direct_spte_mmio_pf(spte);
3231}
3232
3233static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3234{
3235 struct kvm_shadow_walk_iterator iterator;
3236 u64 spte = 0ull;
3237
37f6a4e2
MT
3238 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3239 return spte;
3240
ce88decf
XG
3241 walk_shadow_page_lockless_begin(vcpu);
3242 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3243 if (!is_shadow_present_pte(spte))
3244 break;
3245 walk_shadow_page_lockless_end(vcpu);
3246
3247 return spte;
3248}
3249
ce88decf
XG
3250int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3251{
3252 u64 spte;
3253
3254 if (quickly_check_mmio_pf(vcpu, addr, direct))
b37fbea6 3255 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3256
3257 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3258
3259 if (is_mmio_spte(spte)) {
3260 gfn_t gfn = get_mmio_spte_gfn(spte);
3261 unsigned access = get_mmio_spte_access(spte);
3262
f8f55942
XG
3263 if (!check_mmio_spte(vcpu->kvm, spte))
3264 return RET_MMIO_PF_INVALID;
3265
ce88decf
XG
3266 if (direct)
3267 addr = 0;
4f022648
XG
3268
3269 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3270 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
b37fbea6 3271 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3272 }
3273
3274 /*
3275 * It's ok if the gva is remapped by other cpus on shadow guest,
3276 * it's a BUG if the gfn is not a mmio page.
3277 */
3278 if (direct && !check_direct_spte_mmio_pf(spte))
b37fbea6 3279 return RET_MMIO_PF_BUG;
ce88decf
XG
3280
3281 /*
3282 * If the page table is zapped by other cpus, let CPU fault again on
3283 * the address.
3284 */
b37fbea6 3285 return RET_MMIO_PF_RETRY;
ce88decf
XG
3286}
3287EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3288
3289static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3290 u32 error_code, bool direct)
3291{
3292 int ret;
3293
3294 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
b37fbea6 3295 WARN_ON(ret == RET_MMIO_PF_BUG);
ce88decf
XG
3296 return ret;
3297}
3298
6aa8b732 3299static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3300 u32 error_code, bool prefault)
6aa8b732 3301{
e833240f 3302 gfn_t gfn;
e2dec939 3303 int r;
6aa8b732 3304
b8688d51 3305 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3306
f8f55942
XG
3307 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3308 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3309
3310 if (likely(r != RET_MMIO_PF_INVALID))
3311 return r;
3312 }
ce88decf 3313
e2dec939
AK
3314 r = mmu_topup_memory_caches(vcpu);
3315 if (r)
3316 return r;
714b93da 3317
fa4a2c08 3318 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3319
e833240f 3320 gfn = gva >> PAGE_SHIFT;
6aa8b732 3321
e833240f 3322 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3323 error_code, gfn, prefault);
6aa8b732
AK
3324}
3325
7e1fbeac 3326static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3327{
3328 struct kvm_arch_async_pf arch;
fb67e14f 3329
7c90705b 3330 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3331 arch.gfn = gfn;
c4806acd 3332 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3333 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92 3334
e0ead41a 3335 return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
af585b92
GN
3336}
3337
3338static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3339{
3340 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3341 kvm_event_needs_reinjection(vcpu)))
3342 return false;
3343
3344 return kvm_x86_ops->interrupt_allowed(vcpu);
3345}
3346
78b2c54a 3347static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3348 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3349{
3350 bool async;
3351
612819c3 3352 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3353
3354 if (!async)
3355 return false; /* *pfn has correct page already */
3356
78b2c54a 3357 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3358 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3359 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3360 trace_kvm_async_pf_doublefault(gva, gfn);
3361 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3362 return true;
3363 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3364 return true;
3365 }
3366
612819c3 3367 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3368
3369 return false;
3370}
3371
56028d08 3372static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3373 bool prefault)
fb72d167 3374{
35149e21 3375 pfn_t pfn;
fb72d167 3376 int r;
852e3c19 3377 int level;
936a5fe6 3378 int force_pt_level;
05da4558 3379 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3380 unsigned long mmu_seq;
612819c3
MT
3381 int write = error_code & PFERR_WRITE_MASK;
3382 bool map_writable;
fb72d167 3383
fa4a2c08 3384 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
fb72d167 3385
f8f55942
XG
3386 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3387 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3388
3389 if (likely(r != RET_MMIO_PF_INVALID))
3390 return r;
3391 }
ce88decf 3392
fb72d167
JR
3393 r = mmu_topup_memory_caches(vcpu);
3394 if (r)
3395 return r;
3396
936a5fe6
AA
3397 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3398 if (likely(!force_pt_level)) {
3399 level = mapping_level(vcpu, gfn);
3400 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3401 } else
3402 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3403
c7ba5b48
XG
3404 if (fast_page_fault(vcpu, gpa, level, error_code))
3405 return 0;
3406
e930bffe 3407 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3408 smp_rmb();
af585b92 3409
78b2c54a 3410 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3411 return 0;
3412
d7c55201
XG
3413 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3414 return r;
3415
fb72d167 3416 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3417 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3418 goto out_unlock;
450e0b41 3419 make_mmu_pages_available(vcpu);
936a5fe6
AA
3420 if (likely(!force_pt_level))
3421 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3422 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3423 level, gfn, pfn, prefault);
fb72d167 3424 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3425
3426 return r;
e930bffe
AA
3427
3428out_unlock:
3429 spin_unlock(&vcpu->kvm->mmu_lock);
3430 kvm_release_pfn_clean(pfn);
3431 return 0;
fb72d167
JR
3432}
3433
8a3c1a33
PB
3434static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3435 struct kvm_mmu *context)
6aa8b732 3436{
6aa8b732 3437 context->page_fault = nonpaging_page_fault;
6aa8b732 3438 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3439 context->sync_page = nonpaging_sync_page;
a7052897 3440 context->invlpg = nonpaging_invlpg;
0f53b5b1 3441 context->update_pte = nonpaging_update_pte;
cea0f0e7 3442 context->root_level = 0;
6aa8b732 3443 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3444 context->root_hpa = INVALID_PAGE;
c5a78f2b 3445 context->direct_map = true;
2d48a985 3446 context->nx = false;
6aa8b732
AK
3447}
3448
d8d173da 3449void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
6aa8b732 3450{
cea0f0e7 3451 mmu_free_roots(vcpu);
6aa8b732
AK
3452}
3453
5777ed34
JR
3454static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3455{
9f8fe504 3456 return kvm_read_cr3(vcpu);
5777ed34
JR
3457}
3458
6389ee94
AK
3459static void inject_page_fault(struct kvm_vcpu *vcpu,
3460 struct x86_exception *fault)
6aa8b732 3461{
6389ee94 3462 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3463}
3464
f2fd125d
XG
3465static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3466 unsigned access, int *nr_present)
ce88decf
XG
3467{
3468 if (unlikely(is_mmio_spte(*sptep))) {
3469 if (gfn != get_mmio_spte_gfn(*sptep)) {
3470 mmu_spte_clear_no_track(sptep);
3471 return true;
3472 }
3473
3474 (*nr_present)++;
f2fd125d 3475 mark_mmio_spte(kvm, sptep, gfn, access);
ce88decf
XG
3476 return true;
3477 }
3478
3479 return false;
3480}
3481
6fd01b71
AK
3482static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3483{
3484 unsigned index;
3485
3486 index = level - 1;
3487 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3488 return mmu->last_pte_bitmap & (1 << index);
3489}
3490
37406aaa
NHE
3491#define PTTYPE_EPT 18 /* arbitrary */
3492#define PTTYPE PTTYPE_EPT
3493#include "paging_tmpl.h"
3494#undef PTTYPE
3495
6aa8b732
AK
3496#define PTTYPE 64
3497#include "paging_tmpl.h"
3498#undef PTTYPE
3499
3500#define PTTYPE 32
3501#include "paging_tmpl.h"
3502#undef PTTYPE
3503
52fde8df 3504static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3505 struct kvm_mmu *context)
82725b20 3506{
82725b20
DE
3507 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3508 u64 exb_bit_rsvd = 0;
5f7dde7b 3509 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3510 u64 nonleaf_bit8_rsvd = 0;
82725b20 3511
25d92081
YZ
3512 context->bad_mt_xwr = 0;
3513
2d48a985 3514 if (!context->nx)
82725b20 3515 exb_bit_rsvd = rsvd_bits(63, 63);
5f7dde7b
NA
3516 if (!guest_cpuid_has_gbpages(vcpu))
3517 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
3518
3519 /*
3520 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3521 * leaf entries) on AMD CPUs only.
3522 */
3523 if (guest_cpuid_is_amd(vcpu))
3524 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3525
4d6931c3 3526 switch (context->root_level) {
82725b20
DE
3527 case PT32_ROOT_LEVEL:
3528 /* no rsvd bits for 2 level 4K page table entries */
3529 context->rsvd_bits_mask[0][1] = 0;
3530 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3531 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3532
3533 if (!is_pse(vcpu)) {
3534 context->rsvd_bits_mask[1][1] = 0;
3535 break;
3536 }
3537
82725b20
DE
3538 if (is_cpuid_PSE36())
3539 /* 36bits PSE 4MB page */
3540 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3541 else
3542 /* 32 bits PSE 4MB page */
3543 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3544 break;
3545 case PT32E_ROOT_LEVEL:
20c466b5
DE
3546 context->rsvd_bits_mask[0][2] =
3547 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 3548 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3549 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3550 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3551 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3552 rsvd_bits(maxphyaddr, 62); /* PTE */
3553 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3554 rsvd_bits(maxphyaddr, 62) |
3555 rsvd_bits(13, 20); /* large page */
f815bce8 3556 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3557 break;
3558 case PT64_ROOT_LEVEL:
3559 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
a0c0feb5 3560 nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
82725b20 3561 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
a0c0feb5 3562 nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
82725b20 3563 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3564 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3565 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3566 rsvd_bits(maxphyaddr, 51);
3567 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980 3568 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 3569 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 3570 rsvd_bits(13, 29);
82725b20 3571 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3572 rsvd_bits(maxphyaddr, 51) |
3573 rsvd_bits(13, 20); /* large page */
f815bce8 3574 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3575 break;
3576 }
3577}
3578
25d92081
YZ
3579static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3580 struct kvm_mmu *context, bool execonly)
3581{
3582 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3583 int pte;
3584
3585 context->rsvd_bits_mask[0][3] =
3586 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3587 context->rsvd_bits_mask[0][2] =
3588 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3589 context->rsvd_bits_mask[0][1] =
3590 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3591 context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3592
3593 /* large page */
3594 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3595 context->rsvd_bits_mask[1][2] =
3596 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3597 context->rsvd_bits_mask[1][1] =
3598 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3599 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3600
3601 for (pte = 0; pte < 64; pte++) {
3602 int rwx_bits = pte & 7;
3603 int mt = pte >> 3;
3604 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3605 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3606 (rwx_bits == 0x4 && !execonly))
3607 context->bad_mt_xwr |= (1ull << pte);
3608 }
3609}
3610
97ec8c06 3611void update_permission_bitmask(struct kvm_vcpu *vcpu,
25d92081 3612 struct kvm_mmu *mmu, bool ept)
97d64b78
AK
3613{
3614 unsigned bit, byte, pfec;
3615 u8 map;
66386ade 3616 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
97d64b78 3617
66386ade 3618 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
97ec8c06 3619 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
97d64b78
AK
3620 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3621 pfec = byte << 1;
3622 map = 0;
3623 wf = pfec & PFERR_WRITE_MASK;
3624 uf = pfec & PFERR_USER_MASK;
3625 ff = pfec & PFERR_FETCH_MASK;
97ec8c06
FW
3626 /*
3627 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3628 * subject to SMAP restrictions, and cleared otherwise. The
3629 * bit is only meaningful if the SMAP bit is set in CR4.
3630 */
3631 smapf = !(pfec & PFERR_RSVD_MASK);
97d64b78
AK
3632 for (bit = 0; bit < 8; ++bit) {
3633 x = bit & ACC_EXEC_MASK;
3634 w = bit & ACC_WRITE_MASK;
3635 u = bit & ACC_USER_MASK;
3636
25d92081
YZ
3637 if (!ept) {
3638 /* Not really needed: !nx will cause pte.nx to fault */
3639 x |= !mmu->nx;
3640 /* Allow supervisor writes if !cr0.wp */
3641 w |= !is_write_protection(vcpu) && !uf;
3642 /* Disallow supervisor fetches of user code if cr4.smep */
66386ade 3643 x &= !(cr4_smep && u && !uf);
97ec8c06
FW
3644
3645 /*
3646 * SMAP:kernel-mode data accesses from user-mode
3647 * mappings should fault. A fault is considered
3648 * as a SMAP violation if all of the following
3649 * conditions are ture:
3650 * - X86_CR4_SMAP is set in CR4
3651 * - An user page is accessed
3652 * - Page fault in kernel mode
3653 * - if CPL = 3 or X86_EFLAGS_AC is clear
3654 *
3655 * Here, we cover the first three conditions.
3656 * The fourth is computed dynamically in
3657 * permission_fault() and is in smapf.
3658 *
3659 * Also, SMAP does not affect instruction
3660 * fetches, add the !ff check here to make it
3661 * clearer.
3662 */
3663 smap = cr4_smap && u && !uf && !ff;
25d92081
YZ
3664 } else
3665 /* Not really needed: no U/S accesses on ept */
3666 u = 1;
97d64b78 3667
97ec8c06
FW
3668 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3669 (smapf && smap);
97d64b78
AK
3670 map |= fault << bit;
3671 }
3672 mmu->permissions[byte] = map;
3673 }
3674}
3675
6fd01b71
AK
3676static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3677{
3678 u8 map;
3679 unsigned level, root_level = mmu->root_level;
3680 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3681
3682 if (root_level == PT32E_ROOT_LEVEL)
3683 --root_level;
3684 /* PT_PAGE_TABLE_LEVEL always terminates */
3685 map = 1 | (1 << ps_set_index);
3686 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3687 if (level <= PT_PDPE_LEVEL
3688 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3689 map |= 1 << (ps_set_index | (level - 1));
3690 }
3691 mmu->last_pte_bitmap = map;
3692}
3693
8a3c1a33
PB
3694static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3695 struct kvm_mmu *context,
3696 int level)
6aa8b732 3697{
2d48a985 3698 context->nx = is_nx(vcpu);
4d6931c3 3699 context->root_level = level;
2d48a985 3700
4d6931c3 3701 reset_rsvds_bits_mask(vcpu, context);
25d92081 3702 update_permission_bitmask(vcpu, context, false);
6fd01b71 3703 update_last_pte_bitmap(vcpu, context);
6aa8b732 3704
fa4a2c08 3705 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 3706 context->page_fault = paging64_page_fault;
6aa8b732 3707 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3708 context->sync_page = paging64_sync_page;
a7052897 3709 context->invlpg = paging64_invlpg;
0f53b5b1 3710 context->update_pte = paging64_update_pte;
17ac10ad 3711 context->shadow_root_level = level;
17c3ba9d 3712 context->root_hpa = INVALID_PAGE;
c5a78f2b 3713 context->direct_map = false;
6aa8b732
AK
3714}
3715
8a3c1a33
PB
3716static void paging64_init_context(struct kvm_vcpu *vcpu,
3717 struct kvm_mmu *context)
17ac10ad 3718{
8a3c1a33 3719 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3720}
3721
8a3c1a33
PB
3722static void paging32_init_context(struct kvm_vcpu *vcpu,
3723 struct kvm_mmu *context)
6aa8b732 3724{
2d48a985 3725 context->nx = false;
4d6931c3 3726 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3727
4d6931c3 3728 reset_rsvds_bits_mask(vcpu, context);
25d92081 3729 update_permission_bitmask(vcpu, context, false);
6fd01b71 3730 update_last_pte_bitmap(vcpu, context);
6aa8b732 3731
6aa8b732 3732 context->page_fault = paging32_page_fault;
6aa8b732 3733 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 3734 context->sync_page = paging32_sync_page;
a7052897 3735 context->invlpg = paging32_invlpg;
0f53b5b1 3736 context->update_pte = paging32_update_pte;
6aa8b732 3737 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3738 context->root_hpa = INVALID_PAGE;
c5a78f2b 3739 context->direct_map = false;
6aa8b732
AK
3740}
3741
8a3c1a33
PB
3742static void paging32E_init_context(struct kvm_vcpu *vcpu,
3743 struct kvm_mmu *context)
6aa8b732 3744{
8a3c1a33 3745 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3746}
3747
8a3c1a33 3748static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 3749{
ad896af0 3750 struct kvm_mmu *context = &vcpu->arch.mmu;
fb72d167 3751
c445f8ef 3752 context->base_role.word = 0;
fb72d167 3753 context->page_fault = tdp_page_fault;
e8bc217a 3754 context->sync_page = nonpaging_sync_page;
a7052897 3755 context->invlpg = nonpaging_invlpg;
0f53b5b1 3756 context->update_pte = nonpaging_update_pte;
67253af5 3757 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3758 context->root_hpa = INVALID_PAGE;
c5a78f2b 3759 context->direct_map = true;
1c97f0a0 3760 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3761 context->get_cr3 = get_cr3;
e4e517b4 3762 context->get_pdptr = kvm_pdptr_read;
cb659db8 3763 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3764
3765 if (!is_paging(vcpu)) {
2d48a985 3766 context->nx = false;
fb72d167
JR
3767 context->gva_to_gpa = nonpaging_gva_to_gpa;
3768 context->root_level = 0;
3769 } else if (is_long_mode(vcpu)) {
2d48a985 3770 context->nx = is_nx(vcpu);
fb72d167 3771 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3772 reset_rsvds_bits_mask(vcpu, context);
3773 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3774 } else if (is_pae(vcpu)) {
2d48a985 3775 context->nx = is_nx(vcpu);
fb72d167 3776 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3777 reset_rsvds_bits_mask(vcpu, context);
3778 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3779 } else {
2d48a985 3780 context->nx = false;
fb72d167 3781 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3782 reset_rsvds_bits_mask(vcpu, context);
3783 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3784 }
3785
25d92081 3786 update_permission_bitmask(vcpu, context, false);
6fd01b71 3787 update_last_pte_bitmap(vcpu, context);
fb72d167
JR
3788}
3789
ad896af0 3790void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
6aa8b732 3791{
411c588d 3792 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
ad896af0
PB
3793 struct kvm_mmu *context = &vcpu->arch.mmu;
3794
fa4a2c08 3795 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
6aa8b732
AK
3796
3797 if (!is_paging(vcpu))
8a3c1a33 3798 nonpaging_init_context(vcpu, context);
a9058ecd 3799 else if (is_long_mode(vcpu))
8a3c1a33 3800 paging64_init_context(vcpu, context);
6aa8b732 3801 else if (is_pae(vcpu))
8a3c1a33 3802 paging32E_init_context(vcpu, context);
6aa8b732 3803 else
8a3c1a33 3804 paging32_init_context(vcpu, context);
a770f6f2 3805
ad896af0
PB
3806 context->base_role.nxe = is_nx(vcpu);
3807 context->base_role.cr4_pae = !!is_pae(vcpu);
3808 context->base_role.cr0_wp = is_write_protection(vcpu);
3809 context->base_role.smep_andnot_wp
411c588d 3810 = smep && !is_write_protection(vcpu);
52fde8df
JR
3811}
3812EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3813
ad896af0 3814void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
155a97a3 3815{
ad896af0
PB
3816 struct kvm_mmu *context = &vcpu->arch.mmu;
3817
fa4a2c08 3818 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
155a97a3
NHE
3819
3820 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3821
3822 context->nx = true;
155a97a3
NHE
3823 context->page_fault = ept_page_fault;
3824 context->gva_to_gpa = ept_gva_to_gpa;
3825 context->sync_page = ept_sync_page;
3826 context->invlpg = ept_invlpg;
3827 context->update_pte = ept_update_pte;
155a97a3
NHE
3828 context->root_level = context->shadow_root_level;
3829 context->root_hpa = INVALID_PAGE;
3830 context->direct_map = false;
3831
3832 update_permission_bitmask(vcpu, context, true);
3833 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
155a97a3
NHE
3834}
3835EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
3836
8a3c1a33 3837static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 3838{
ad896af0
PB
3839 struct kvm_mmu *context = &vcpu->arch.mmu;
3840
3841 kvm_init_shadow_mmu(vcpu);
3842 context->set_cr3 = kvm_x86_ops->set_cr3;
3843 context->get_cr3 = get_cr3;
3844 context->get_pdptr = kvm_pdptr_read;
3845 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
3846}
3847
8a3c1a33 3848static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
3849{
3850 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3851
3852 g_context->get_cr3 = get_cr3;
e4e517b4 3853 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3854 g_context->inject_page_fault = kvm_inject_page_fault;
3855
3856 /*
3857 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3858 * translation of l2_gpa to l1_gpa addresses is done using the
3859 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3860 * functions between mmu and nested_mmu are swapped.
3861 */
3862 if (!is_paging(vcpu)) {
2d48a985 3863 g_context->nx = false;
02f59dc9
JR
3864 g_context->root_level = 0;
3865 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3866 } else if (is_long_mode(vcpu)) {
2d48a985 3867 g_context->nx = is_nx(vcpu);
02f59dc9 3868 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3869 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3870 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3871 } else if (is_pae(vcpu)) {
2d48a985 3872 g_context->nx = is_nx(vcpu);
02f59dc9 3873 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3874 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3875 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3876 } else {
2d48a985 3877 g_context->nx = false;
02f59dc9 3878 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3879 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3880 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3881 }
3882
25d92081 3883 update_permission_bitmask(vcpu, g_context, false);
6fd01b71 3884 update_last_pte_bitmap(vcpu, g_context);
02f59dc9
JR
3885}
3886
8a3c1a33 3887static void init_kvm_mmu(struct kvm_vcpu *vcpu)
fb72d167 3888{
02f59dc9 3889 if (mmu_is_nested(vcpu))
e0c6db3e 3890 init_kvm_nested_mmu(vcpu);
02f59dc9 3891 else if (tdp_enabled)
e0c6db3e 3892 init_kvm_tdp_mmu(vcpu);
fb72d167 3893 else
e0c6db3e 3894 init_kvm_softmmu(vcpu);
fb72d167
JR
3895}
3896
8a3c1a33 3897void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 3898{
95f93af4 3899 kvm_mmu_unload(vcpu);
8a3c1a33 3900 init_kvm_mmu(vcpu);
17c3ba9d 3901}
8668a3c4 3902EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3903
3904int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3905{
714b93da
AK
3906 int r;
3907
e2dec939 3908 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3909 if (r)
3910 goto out;
8986ecc0 3911 r = mmu_alloc_roots(vcpu);
e2858b4a 3912 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
3913 if (r)
3914 goto out;
3662cb1c 3915 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3916 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3917out:
3918 return r;
6aa8b732 3919}
17c3ba9d
AK
3920EXPORT_SYMBOL_GPL(kvm_mmu_load);
3921
3922void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3923{
3924 mmu_free_roots(vcpu);
95f93af4 3925 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
17c3ba9d 3926}
4b16184c 3927EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3928
0028425f 3929static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3930 struct kvm_mmu_page *sp, u64 *spte,
3931 const void *new)
0028425f 3932{
30945387 3933 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3934 ++vcpu->kvm->stat.mmu_pde_zapped;
3935 return;
30945387 3936 }
0028425f 3937
4cee5764 3938 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3939 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3940}
3941
79539cec
AK
3942static bool need_remote_flush(u64 old, u64 new)
3943{
3944 if (!is_shadow_present_pte(old))
3945 return false;
3946 if (!is_shadow_present_pte(new))
3947 return true;
3948 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3949 return true;
53166229
GN
3950 old ^= shadow_nx_mask;
3951 new ^= shadow_nx_mask;
79539cec
AK
3952 return (old & ~new & PT64_PERM_MASK) != 0;
3953}
3954
0671a8e7
XG
3955static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3956 bool remote_flush, bool local_flush)
79539cec 3957{
0671a8e7
XG
3958 if (zap_page)
3959 return;
3960
3961 if (remote_flush)
79539cec 3962 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3963 else if (local_flush)
77c3913b 3964 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
79539cec
AK
3965}
3966
889e5cbc
XG
3967static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3968 const u8 *new, int *bytes)
da4a00f0 3969{
889e5cbc
XG
3970 u64 gentry;
3971 int r;
72016f3a 3972
72016f3a
AK
3973 /*
3974 * Assume that the pte write on a page table of the same type
49b26e26
XG
3975 * as the current vcpu paging mode since we update the sptes only
3976 * when they have the same mode.
72016f3a 3977 */
889e5cbc 3978 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3979 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3980 *gpa &= ~(gpa_t)7;
3981 *bytes = 8;
116eb3d3 3982 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
72016f3a
AK
3983 if (r)
3984 gentry = 0;
08e850c6
AK
3985 new = (const u8 *)&gentry;
3986 }
3987
889e5cbc 3988 switch (*bytes) {
08e850c6
AK
3989 case 4:
3990 gentry = *(const u32 *)new;
3991 break;
3992 case 8:
3993 gentry = *(const u64 *)new;
3994 break;
3995 default:
3996 gentry = 0;
3997 break;
72016f3a
AK
3998 }
3999
889e5cbc
XG
4000 return gentry;
4001}
4002
4003/*
4004 * If we're seeing too many writes to a page, it may no longer be a page table,
4005 * or we may be forking, in which case it is better to unmap the page.
4006 */
a138fe75 4007static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4008{
a30f47cb
XG
4009 /*
4010 * Skip write-flooding detected for the sp whose level is 1, because
4011 * it can become unsync, then the guest page is not write-protected.
4012 */
f71fa31f 4013 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 4014 return false;
3246af0e 4015
a30f47cb 4016 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
4017}
4018
4019/*
4020 * Misaligned accesses are too much trouble to fix up; also, they usually
4021 * indicate a page is not used as a page table.
4022 */
4023static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4024 int bytes)
4025{
4026 unsigned offset, pte_size, misaligned;
4027
4028 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4029 gpa, bytes, sp->role.word);
4030
4031 offset = offset_in_page(gpa);
4032 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
4033
4034 /*
4035 * Sometimes, the OS only writes the last one bytes to update status
4036 * bits, for example, in linux, andb instruction is used in clear_bit().
4037 */
4038 if (!(offset & (pte_size - 1)) && bytes == 1)
4039 return false;
4040
889e5cbc
XG
4041 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4042 misaligned |= bytes < 4;
4043
4044 return misaligned;
4045}
4046
4047static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4048{
4049 unsigned page_offset, quadrant;
4050 u64 *spte;
4051 int level;
4052
4053 page_offset = offset_in_page(gpa);
4054 level = sp->role.level;
4055 *nspte = 1;
4056 if (!sp->role.cr4_pae) {
4057 page_offset <<= 1; /* 32->64 */
4058 /*
4059 * A 32-bit pde maps 4MB while the shadow pdes map
4060 * only 2MB. So we need to double the offset again
4061 * and zap two pdes instead of one.
4062 */
4063 if (level == PT32_ROOT_LEVEL) {
4064 page_offset &= ~7; /* kill rounding error */
4065 page_offset <<= 1;
4066 *nspte = 2;
4067 }
4068 quadrant = page_offset >> PAGE_SHIFT;
4069 page_offset &= ~PAGE_MASK;
4070 if (quadrant != sp->role.quadrant)
4071 return NULL;
4072 }
4073
4074 spte = &sp->spt[page_offset / sizeof(*spte)];
4075 return spte;
4076}
4077
4078void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4079 const u8 *new, int bytes)
4080{
4081 gfn_t gfn = gpa >> PAGE_SHIFT;
4082 union kvm_mmu_page_role mask = { .word = 0 };
4083 struct kvm_mmu_page *sp;
889e5cbc
XG
4084 LIST_HEAD(invalid_list);
4085 u64 entry, gentry, *spte;
4086 int npte;
a30f47cb 4087 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
4088
4089 /*
4090 * If we don't have indirect shadow pages, it means no page is
4091 * write-protected, so we can exit simply.
4092 */
4093 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4094 return;
4095
4096 zap_page = remote_flush = local_flush = false;
4097
4098 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4099
4100 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4101
4102 /*
4103 * No need to care whether allocation memory is successful
4104 * or not since pte prefetch is skiped if it does not have
4105 * enough objects in the cache.
4106 */
4107 mmu_topup_memory_caches(vcpu);
4108
4109 spin_lock(&vcpu->kvm->mmu_lock);
4110 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4111 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4112
fa1de2bf 4113 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
b67bfe0d 4114 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4115 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4116 detect_write_flooding(sp)) {
0671a8e7 4117 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 4118 &invalid_list);
4cee5764 4119 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4120 continue;
4121 }
889e5cbc
XG
4122
4123 spte = get_written_sptes(sp, gpa, &npte);
4124 if (!spte)
4125 continue;
4126
0671a8e7 4127 local_flush = true;
ac1b714e 4128 while (npte--) {
79539cec 4129 entry = *spte;
38e3b2b2 4130 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4131 if (gentry &&
4132 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4133 & mask.word) && rmap_can_add(vcpu))
7c562522 4134 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4135 if (need_remote_flush(entry, *spte))
0671a8e7 4136 remote_flush = true;
ac1b714e 4137 ++spte;
9b7a0325 4138 }
9b7a0325 4139 }
0671a8e7 4140 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 4141 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 4142 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4143 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4144}
4145
a436036b
AK
4146int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4147{
10589a46
MT
4148 gpa_t gpa;
4149 int r;
a436036b 4150
c5a78f2b 4151 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4152 return 0;
4153
1871c602 4154 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4155
10589a46 4156 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4157
10589a46 4158 return r;
a436036b 4159}
577bdc49 4160EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4161
81f4f76b 4162static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4163{
d98ba053 4164 LIST_HEAD(invalid_list);
103ad25a 4165
81f4f76b
TY
4166 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4167 return;
4168
5da59607
TY
4169 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4170 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4171 break;
ebeace86 4172
4cee5764 4173 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4174 }
aa6bd187 4175 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4176}
ebeace86 4177
1cb3f3ae
XG
4178static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4179{
4180 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4181 return vcpu_match_mmio_gpa(vcpu, addr);
4182
4183 return vcpu_match_mmio_gva(vcpu, addr);
4184}
4185
dc25e89e
AP
4186int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4187 void *insn, int insn_len)
3067714c 4188{
1cb3f3ae 4189 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
4190 enum emulation_result er;
4191
56028d08 4192 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
4193 if (r < 0)
4194 goto out;
4195
4196 if (!r) {
4197 r = 1;
4198 goto out;
4199 }
4200
1cb3f3ae
XG
4201 if (is_mmio_page_fault(vcpu, cr2))
4202 emulation_type = 0;
4203
4204 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4205
4206 switch (er) {
4207 case EMULATE_DONE:
4208 return 1;
ac0a48c3 4209 case EMULATE_USER_EXIT:
3067714c 4210 ++vcpu->stat.mmio_exits;
6d77dbfc 4211 /* fall through */
3067714c 4212 case EMULATE_FAIL:
3f5d18a9 4213 return 0;
3067714c
AK
4214 default:
4215 BUG();
4216 }
4217out:
3067714c
AK
4218 return r;
4219}
4220EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4221
a7052897
MT
4222void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4223{
a7052897 4224 vcpu->arch.mmu.invlpg(vcpu, gva);
77c3913b 4225 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a7052897
MT
4226 ++vcpu->stat.invlpg;
4227}
4228EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4229
18552672
JR
4230void kvm_enable_tdp(void)
4231{
4232 tdp_enabled = true;
4233}
4234EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4235
5f4cb662
JR
4236void kvm_disable_tdp(void)
4237{
4238 tdp_enabled = false;
4239}
4240EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4241
6aa8b732
AK
4242static void free_mmu_pages(struct kvm_vcpu *vcpu)
4243{
ad312c7c 4244 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4245 if (vcpu->arch.mmu.lm_root != NULL)
4246 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4247}
4248
4249static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4250{
17ac10ad 4251 struct page *page;
6aa8b732
AK
4252 int i;
4253
17ac10ad
AK
4254 /*
4255 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4256 * Therefore we need to allocate shadow page tables in the first
4257 * 4GB of memory, which happens to fit the DMA32 zone.
4258 */
4259 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4260 if (!page)
d7fa6ab2
WY
4261 return -ENOMEM;
4262
ad312c7c 4263 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4264 for (i = 0; i < 4; ++i)
ad312c7c 4265 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4266
6aa8b732 4267 return 0;
6aa8b732
AK
4268}
4269
8018c27b 4270int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4271{
e459e322
XG
4272 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4273 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4274 vcpu->arch.mmu.translate_gpa = translate_gpa;
4275 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4276
8018c27b
IM
4277 return alloc_mmu_pages(vcpu);
4278}
6aa8b732 4279
8a3c1a33 4280void kvm_mmu_setup(struct kvm_vcpu *vcpu)
8018c27b 4281{
fa4a2c08 4282 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4283
8a3c1a33 4284 init_kvm_mmu(vcpu);
6aa8b732
AK
4285}
4286
90cb0529 4287void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 4288{
b99db1d3
TY
4289 struct kvm_memory_slot *memslot;
4290 gfn_t last_gfn;
4291 int i;
6aa8b732 4292
b99db1d3
TY
4293 memslot = id_to_memslot(kvm->memslots, slot);
4294 last_gfn = memslot->base_gfn + memslot->npages - 1;
6aa8b732 4295
9d1beefb
TY
4296 spin_lock(&kvm->mmu_lock);
4297
b99db1d3
TY
4298 for (i = PT_PAGE_TABLE_LEVEL;
4299 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4300 unsigned long *rmapp;
4301 unsigned long last_index, index;
6aa8b732 4302
b99db1d3
TY
4303 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4304 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
da8dc75f 4305
b99db1d3
TY
4306 for (index = 0; index <= last_index; ++index, ++rmapp) {
4307 if (*rmapp)
4308 __rmap_write_protect(kvm, rmapp, false);
6b81b05e 4309
198c74f4 4310 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
6b81b05e 4311 cond_resched_lock(&kvm->mmu_lock);
8234b22e 4312 }
6aa8b732 4313 }
b99db1d3 4314
9d1beefb 4315 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
4316
4317 /*
4318 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4319 * which do tlb flush out of mmu-lock should be serialized by
4320 * kvm->slots_lock otherwise tlb flush would be missed.
4321 */
4322 lockdep_assert_held(&kvm->slots_lock);
4323
4324 /*
4325 * We can flush all the TLBs out of the mmu lock without TLB
4326 * corruption since we just change the spte from writable to
4327 * readonly so that we only need to care the case of changing
4328 * spte from present to present (changing the spte from present
4329 * to nonpresent will flush all the TLBs immediately), in other
4330 * words, the only case we care is mmu_spte_update() where we
4331 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4332 * instead of PT_WRITABLE_MASK, that means it does not depend
4333 * on PT_WRITABLE_MASK anymore.
4334 */
4335 kvm_flush_remote_tlbs(kvm);
6aa8b732 4336}
37a7d8b0 4337
e7d11c7a 4338#define BATCH_ZAP_PAGES 10
5304b8d3
XG
4339static void kvm_zap_obsolete_pages(struct kvm *kvm)
4340{
4341 struct kvm_mmu_page *sp, *node;
e7d11c7a 4342 int batch = 0;
5304b8d3
XG
4343
4344restart:
4345 list_for_each_entry_safe_reverse(sp, node,
4346 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
4347 int ret;
4348
5304b8d3
XG
4349 /*
4350 * No obsolete page exists before new created page since
4351 * active_mmu_pages is the FIFO list.
4352 */
4353 if (!is_obsolete_sp(kvm, sp))
4354 break;
4355
4356 /*
5304b8d3
XG
4357 * Since we are reversely walking the list and the invalid
4358 * list will be moved to the head, skip the invalid page
4359 * can help us to avoid the infinity list walking.
4360 */
4361 if (sp->role.invalid)
4362 continue;
4363
f34d251d
XG
4364 /*
4365 * Need not flush tlb since we only zap the sp with invalid
4366 * generation number.
4367 */
e7d11c7a 4368 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 4369 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 4370 batch = 0;
5304b8d3
XG
4371 goto restart;
4372 }
4373
365c8868
XG
4374 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4375 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
4376 batch += ret;
4377
4378 if (ret)
5304b8d3
XG
4379 goto restart;
4380 }
4381
f34d251d
XG
4382 /*
4383 * Should flush tlb before free page tables since lockless-walking
4384 * may use the pages.
4385 */
365c8868 4386 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
4387}
4388
4389/*
4390 * Fast invalidate all shadow pages and use lock-break technique
4391 * to zap obsolete pages.
4392 *
4393 * It's required when memslot is being deleted or VM is being
4394 * destroyed, in these cases, we should ensure that KVM MMU does
4395 * not use any resource of the being-deleted slot or all slots
4396 * after calling the function.
4397 */
4398void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4399{
4400 spin_lock(&kvm->mmu_lock);
35006126 4401 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
4402 kvm->arch.mmu_valid_gen++;
4403
f34d251d
XG
4404 /*
4405 * Notify all vcpus to reload its shadow page table
4406 * and flush TLB. Then all vcpus will switch to new
4407 * shadow page table with the new mmu_valid_gen.
4408 *
4409 * Note: we should do this under the protection of
4410 * mmu-lock, otherwise, vcpu would purge shadow page
4411 * but miss tlb flush.
4412 */
4413 kvm_reload_remote_mmus(kvm);
4414
5304b8d3
XG
4415 kvm_zap_obsolete_pages(kvm);
4416 spin_unlock(&kvm->mmu_lock);
4417}
4418
365c8868
XG
4419static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4420{
4421 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4422}
4423
f8f55942
XG
4424void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4425{
4426 /*
4427 * The very rare case: if the generation-number is round,
4428 * zap all shadow pages.
f8f55942 4429 */
ee3d1570 4430 if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
a629df7e 4431 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 4432 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 4433 }
f8f55942
XG
4434}
4435
70534a73
DC
4436static unsigned long
4437mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4438{
4439 struct kvm *kvm;
1495f230 4440 int nr_to_scan = sc->nr_to_scan;
70534a73 4441 unsigned long freed = 0;
3ee16c81 4442
2f303b74 4443 spin_lock(&kvm_lock);
3ee16c81
IE
4444
4445 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4446 int idx;
d98ba053 4447 LIST_HEAD(invalid_list);
3ee16c81 4448
35f2d16b
TY
4449 /*
4450 * Never scan more than sc->nr_to_scan VM instances.
4451 * Will not hit this condition practically since we do not try
4452 * to shrink more than one VM and it is very unlikely to see
4453 * !n_used_mmu_pages so many times.
4454 */
4455 if (!nr_to_scan--)
4456 break;
19526396
GN
4457 /*
4458 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4459 * here. We may skip a VM instance errorneosly, but we do not
4460 * want to shrink a VM that only started to populate its MMU
4461 * anyway.
4462 */
365c8868
XG
4463 if (!kvm->arch.n_used_mmu_pages &&
4464 !kvm_has_zapped_obsolete_pages(kvm))
19526396 4465 continue;
19526396 4466
f656ce01 4467 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4468 spin_lock(&kvm->mmu_lock);
3ee16c81 4469
365c8868
XG
4470 if (kvm_has_zapped_obsolete_pages(kvm)) {
4471 kvm_mmu_commit_zap_page(kvm,
4472 &kvm->arch.zapped_obsolete_pages);
4473 goto unlock;
4474 }
4475
70534a73
DC
4476 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4477 freed++;
d98ba053 4478 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4479
365c8868 4480unlock:
3ee16c81 4481 spin_unlock(&kvm->mmu_lock);
f656ce01 4482 srcu_read_unlock(&kvm->srcu, idx);
19526396 4483
70534a73
DC
4484 /*
4485 * unfair on small ones
4486 * per-vm shrinkers cry out
4487 * sadness comes quickly
4488 */
19526396
GN
4489 list_move_tail(&kvm->vm_list, &vm_list);
4490 break;
3ee16c81 4491 }
3ee16c81 4492
2f303b74 4493 spin_unlock(&kvm_lock);
70534a73 4494 return freed;
70534a73
DC
4495}
4496
4497static unsigned long
4498mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4499{
45221ab6 4500 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4501}
4502
4503static struct shrinker mmu_shrinker = {
70534a73
DC
4504 .count_objects = mmu_shrink_count,
4505 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
4506 .seeks = DEFAULT_SEEKS * 10,
4507};
4508
2ddfd20e 4509static void mmu_destroy_caches(void)
b5a33a75 4510{
53c07b18
XG
4511 if (pte_list_desc_cache)
4512 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4513 if (mmu_page_header_cache)
4514 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4515}
4516
4517int kvm_mmu_module_init(void)
4518{
53c07b18
XG
4519 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4520 sizeof(struct pte_list_desc),
20c2df83 4521 0, 0, NULL);
53c07b18 4522 if (!pte_list_desc_cache)
b5a33a75
AK
4523 goto nomem;
4524
d3d25b04
AK
4525 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4526 sizeof(struct kvm_mmu_page),
20c2df83 4527 0, 0, NULL);
d3d25b04
AK
4528 if (!mmu_page_header_cache)
4529 goto nomem;
4530
908c7f19 4531 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
45bf21a8
WY
4532 goto nomem;
4533
3ee16c81
IE
4534 register_shrinker(&mmu_shrinker);
4535
b5a33a75
AK
4536 return 0;
4537
4538nomem:
3ee16c81 4539 mmu_destroy_caches();
b5a33a75
AK
4540 return -ENOMEM;
4541}
4542
3ad82a7e
ZX
4543/*
4544 * Caculate mmu pages needed for kvm.
4545 */
4546unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4547{
3ad82a7e
ZX
4548 unsigned int nr_mmu_pages;
4549 unsigned int nr_pages = 0;
bc6678a3 4550 struct kvm_memslots *slots;
be6ba0f0 4551 struct kvm_memory_slot *memslot;
3ad82a7e 4552
90d83dc3
LJ
4553 slots = kvm_memslots(kvm);
4554
be6ba0f0
XG
4555 kvm_for_each_memslot(memslot, slots)
4556 nr_pages += memslot->npages;
3ad82a7e
ZX
4557
4558 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4559 nr_mmu_pages = max(nr_mmu_pages,
4560 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4561
4562 return nr_mmu_pages;
4563}
4564
94d8b056
MT
4565int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4566{
4567 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4568 u64 spte;
94d8b056
MT
4569 int nr_sptes = 0;
4570
37f6a4e2
MT
4571 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4572 return nr_sptes;
4573
c2a2ac2b
XG
4574 walk_shadow_page_lockless_begin(vcpu);
4575 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4576 sptes[iterator.level-1] = spte;
94d8b056 4577 nr_sptes++;
c2a2ac2b 4578 if (!is_shadow_present_pte(spte))
94d8b056
MT
4579 break;
4580 }
c2a2ac2b 4581 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4582
4583 return nr_sptes;
4584}
4585EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4586
c42fffe3
XG
4587void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4588{
95f93af4 4589 kvm_mmu_unload(vcpu);
c42fffe3
XG
4590 free_mmu_pages(vcpu);
4591 mmu_free_memory_caches(vcpu);
b034cf01
XG
4592}
4593
b034cf01
XG
4594void kvm_mmu_module_exit(void)
4595{
4596 mmu_destroy_caches();
4597 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4598 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4599 mmu_audit_disable();
4600}
This page took 1.637079 seconds and 5 git commands to generate.