KVM: Remove unused slot_bitmap from kvm_mmu_page
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c 62#undef MMU_DEBUG
37a7d8b0
AK
63
64#ifdef MMU_DEBUG
65
66#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69#else
70
71#define pgprintk(x...) do { } while (0)
72#define rmap_printk(x...) do { } while (0)
73
74#endif
75
8b1fe17c 76#ifdef MMU_DEBUG
476bc001 77static bool dbg = 0;
6ada8cca 78module_param(dbg, bool, 0644);
37a7d8b0 79#endif
6aa8b732 80
d6c69ee9
YD
81#ifndef MMU_DEBUG
82#define ASSERT(x) do { } while (0)
83#else
6aa8b732
AK
84#define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
d6c69ee9 89#endif
6aa8b732 90
957ed9ef
XG
91#define PTE_PREFETCH_NUM 8
92
00763e41 93#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
94#define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
6aa8b732
AK
96#define PT64_LEVEL_BITS 9
97
98#define PT64_LEVEL_SHIFT(level) \
d77c26fc 99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 100
6aa8b732
AK
101#define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105#define PT32_LEVEL_BITS 10
106
107#define PT32_LEVEL_SHIFT(level) \
d77c26fc 108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 109
e04da980
JR
110#define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
113
114#define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
27aba766 118#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
119#define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
121#define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124#define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
127
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
79539cec
AK
135#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
6aa8b732 137
fe135d2c
AK
138#define ACC_EXEC_MASK 1
139#define ACC_WRITE_MASK PT_WRITABLE_MASK
140#define ACC_USER_MASK PT_USER_MASK
141#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
90bb6fc5
AK
143#include <trace/events/kvm.h>
144
07420171
AK
145#define CREATE_TRACE_POINTS
146#include "mmutrace.h"
147
49fde340
XG
148#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 150
135f8c2b
AK
151#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
220f773a
TY
153/* make pte_list_desc fit well in cache line */
154#define PTE_LIST_EXT 3
155
53c07b18
XG
156struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
cd4a4e53
AK
159};
160
2d11123a
AK
161struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
2d11123a 164 u64 *sptep;
dd3bfd59 165 int level;
2d11123a
AK
166 unsigned index;
167};
168
169#define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
c2a2ac2b
XG
174#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
53c07b18 180static struct kmem_cache *pte_list_desc_cache;
d3d25b04 181static struct kmem_cache *mmu_page_header_cache;
45221ab6 182static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 183
7b52345e
SY
184static u64 __read_mostly shadow_nx_mask;
185static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186static u64 __read_mostly shadow_user_mask;
187static u64 __read_mostly shadow_accessed_mask;
188static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
189static u64 __read_mostly shadow_mmio_mask;
190
191static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 192static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
193
194void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195{
196 shadow_mmio_mask = mmio_mask;
197}
198EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201{
202 access &= ACC_WRITE_MASK | ACC_USER_MASK;
203
4f022648 204 trace_mark_mmio_spte(sptep, gfn, access);
ce88decf
XG
205 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
206}
207
208static bool is_mmio_spte(u64 spte)
209{
210 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
211}
212
213static gfn_t get_mmio_spte_gfn(u64 spte)
214{
215 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
216}
217
218static unsigned get_mmio_spte_access(u64 spte)
219{
220 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
221}
222
223static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
224{
225 if (unlikely(is_noslot_pfn(pfn))) {
226 mark_mmio_spte(sptep, gfn, access);
227 return true;
228 }
229
230 return false;
231}
c7addb90 232
82725b20
DE
233static inline u64 rsvd_bits(int s, int e)
234{
235 return ((1ULL << (e - s + 1)) - 1) << s;
236}
237
7b52345e 238void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 239 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
240{
241 shadow_user_mask = user_mask;
242 shadow_accessed_mask = accessed_mask;
243 shadow_dirty_mask = dirty_mask;
244 shadow_nx_mask = nx_mask;
245 shadow_x_mask = x_mask;
246}
247EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
248
6aa8b732
AK
249static int is_cpuid_PSE36(void)
250{
251 return 1;
252}
253
73b1087e
AK
254static int is_nx(struct kvm_vcpu *vcpu)
255{
f6801dff 256 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
257}
258
c7addb90
AK
259static int is_shadow_present_pte(u64 pte)
260{
ce88decf 261 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
262}
263
05da4558
MT
264static int is_large_pte(u64 pte)
265{
266 return pte & PT_PAGE_SIZE_MASK;
267}
268
43a3795a 269static int is_dirty_gpte(unsigned long pte)
e3c5e7ec 270{
439e218a 271 return pte & PT_DIRTY_MASK;
e3c5e7ec
AK
272}
273
43a3795a 274static int is_rmap_spte(u64 pte)
cd4a4e53 275{
4b1a80fa 276 return is_shadow_present_pte(pte);
cd4a4e53
AK
277}
278
776e6633
MT
279static int is_last_spte(u64 pte, int level)
280{
281 if (level == PT_PAGE_TABLE_LEVEL)
282 return 1;
852e3c19 283 if (is_large_pte(pte))
776e6633
MT
284 return 1;
285 return 0;
286}
287
35149e21 288static pfn_t spte_to_pfn(u64 pte)
0b49ea86 289{
35149e21 290 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
291}
292
da928521
AK
293static gfn_t pse36_gfn_delta(u32 gpte)
294{
295 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
296
297 return (gpte & PT32_DIR_PSE36_MASK) << shift;
298}
299
603e0651 300#ifdef CONFIG_X86_64
d555c333 301static void __set_spte(u64 *sptep, u64 spte)
e663ee64 302{
603e0651 303 *sptep = spte;
e663ee64
AK
304}
305
603e0651 306static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 307{
603e0651
XG
308 *sptep = spte;
309}
310
311static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
312{
313 return xchg(sptep, spte);
314}
c2a2ac2b
XG
315
316static u64 __get_spte_lockless(u64 *sptep)
317{
318 return ACCESS_ONCE(*sptep);
319}
ce88decf
XG
320
321static bool __check_direct_spte_mmio_pf(u64 spte)
322{
323 /* It is valid if the spte is zapped. */
324 return spte == 0ull;
325}
a9221dd5 326#else
603e0651
XG
327union split_spte {
328 struct {
329 u32 spte_low;
330 u32 spte_high;
331 };
332 u64 spte;
333};
a9221dd5 334
c2a2ac2b
XG
335static void count_spte_clear(u64 *sptep, u64 spte)
336{
337 struct kvm_mmu_page *sp = page_header(__pa(sptep));
338
339 if (is_shadow_present_pte(spte))
340 return;
341
342 /* Ensure the spte is completely set before we increase the count */
343 smp_wmb();
344 sp->clear_spte_count++;
345}
346
603e0651
XG
347static void __set_spte(u64 *sptep, u64 spte)
348{
349 union split_spte *ssptep, sspte;
a9221dd5 350
603e0651
XG
351 ssptep = (union split_spte *)sptep;
352 sspte = (union split_spte)spte;
353
354 ssptep->spte_high = sspte.spte_high;
355
356 /*
357 * If we map the spte from nonpresent to present, We should store
358 * the high bits firstly, then set present bit, so cpu can not
359 * fetch this spte while we are setting the spte.
360 */
361 smp_wmb();
362
363 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
364}
365
603e0651
XG
366static void __update_clear_spte_fast(u64 *sptep, u64 spte)
367{
368 union split_spte *ssptep, sspte;
369
370 ssptep = (union split_spte *)sptep;
371 sspte = (union split_spte)spte;
372
373 ssptep->spte_low = sspte.spte_low;
374
375 /*
376 * If we map the spte from present to nonpresent, we should clear
377 * present bit firstly to avoid vcpu fetch the old high bits.
378 */
379 smp_wmb();
380
381 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 382 count_spte_clear(sptep, spte);
603e0651
XG
383}
384
385static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
386{
387 union split_spte *ssptep, sspte, orig;
388
389 ssptep = (union split_spte *)sptep;
390 sspte = (union split_spte)spte;
391
392 /* xchg acts as a barrier before the setting of the high bits */
393 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
394 orig.spte_high = ssptep->spte_high;
395 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 396 count_spte_clear(sptep, spte);
603e0651
XG
397
398 return orig.spte;
399}
c2a2ac2b
XG
400
401/*
402 * The idea using the light way get the spte on x86_32 guest is from
403 * gup_get_pte(arch/x86/mm/gup.c).
404 * The difference is we can not catch the spte tlb flush if we leave
405 * guest mode, so we emulate it by increase clear_spte_count when spte
406 * is cleared.
407 */
408static u64 __get_spte_lockless(u64 *sptep)
409{
410 struct kvm_mmu_page *sp = page_header(__pa(sptep));
411 union split_spte spte, *orig = (union split_spte *)sptep;
412 int count;
413
414retry:
415 count = sp->clear_spte_count;
416 smp_rmb();
417
418 spte.spte_low = orig->spte_low;
419 smp_rmb();
420
421 spte.spte_high = orig->spte_high;
422 smp_rmb();
423
424 if (unlikely(spte.spte_low != orig->spte_low ||
425 count != sp->clear_spte_count))
426 goto retry;
427
428 return spte.spte;
429}
ce88decf
XG
430
431static bool __check_direct_spte_mmio_pf(u64 spte)
432{
433 union split_spte sspte = (union split_spte)spte;
434 u32 high_mmio_mask = shadow_mmio_mask >> 32;
435
436 /* It is valid if the spte is zapped. */
437 if (spte == 0ull)
438 return true;
439
440 /* It is valid if the spte is being zapped. */
441 if (sspte.spte_low == 0ull &&
442 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
443 return true;
444
445 return false;
446}
603e0651
XG
447#endif
448
c7ba5b48
XG
449static bool spte_is_locklessly_modifiable(u64 spte)
450{
451 return !(~spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE));
452}
453
8672b721
XG
454static bool spte_has_volatile_bits(u64 spte)
455{
c7ba5b48
XG
456 /*
457 * Always atomicly update spte if it can be updated
458 * out of mmu-lock, it can ensure dirty bit is not lost,
459 * also, it can help us to get a stable is_writable_pte()
460 * to ensure tlb flush is not missed.
461 */
462 if (spte_is_locklessly_modifiable(spte))
463 return true;
464
8672b721
XG
465 if (!shadow_accessed_mask)
466 return false;
467
468 if (!is_shadow_present_pte(spte))
469 return false;
470
4132779b
XG
471 if ((spte & shadow_accessed_mask) &&
472 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
473 return false;
474
475 return true;
476}
477
4132779b
XG
478static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
479{
480 return (old_spte & bit_mask) && !(new_spte & bit_mask);
481}
482
1df9f2dc
XG
483/* Rules for using mmu_spte_set:
484 * Set the sptep from nonpresent to present.
485 * Note: the sptep being assigned *must* be either not present
486 * or in a state where the hardware will not attempt to update
487 * the spte.
488 */
489static void mmu_spte_set(u64 *sptep, u64 new_spte)
490{
491 WARN_ON(is_shadow_present_pte(*sptep));
492 __set_spte(sptep, new_spte);
493}
494
495/* Rules for using mmu_spte_update:
496 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
497 *
498 * Whenever we overwrite a writable spte with a read-only one we
499 * should flush remote TLBs. Otherwise rmap_write_protect
500 * will find a read-only spte, even though the writable spte
501 * might be cached on a CPU's TLB, the return value indicates this
502 * case.
1df9f2dc 503 */
6e7d0354 504static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 505{
c7ba5b48 506 u64 old_spte = *sptep;
6e7d0354 507 bool ret = false;
4132779b
XG
508
509 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 510
6e7d0354
XG
511 if (!is_shadow_present_pte(old_spte)) {
512 mmu_spte_set(sptep, new_spte);
513 return ret;
514 }
4132779b 515
c7ba5b48 516 if (!spte_has_volatile_bits(old_spte))
603e0651 517 __update_clear_spte_fast(sptep, new_spte);
4132779b 518 else
603e0651 519 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 520
c7ba5b48
XG
521 /*
522 * For the spte updated out of mmu-lock is safe, since
523 * we always atomicly update it, see the comments in
524 * spte_has_volatile_bits().
525 */
6e7d0354
XG
526 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
527 ret = true;
528
4132779b 529 if (!shadow_accessed_mask)
6e7d0354 530 return ret;
4132779b
XG
531
532 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
533 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
534 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
535 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
536
537 return ret;
b79b93f9
AK
538}
539
1df9f2dc
XG
540/*
541 * Rules for using mmu_spte_clear_track_bits:
542 * It sets the sptep from present to nonpresent, and track the
543 * state bits, it is used to clear the last level sptep.
544 */
545static int mmu_spte_clear_track_bits(u64 *sptep)
546{
547 pfn_t pfn;
548 u64 old_spte = *sptep;
549
550 if (!spte_has_volatile_bits(old_spte))
603e0651 551 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 552 else
603e0651 553 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
554
555 if (!is_rmap_spte(old_spte))
556 return 0;
557
558 pfn = spte_to_pfn(old_spte);
86fde74c
XG
559
560 /*
561 * KVM does not hold the refcount of the page used by
562 * kvm mmu, before reclaiming the page, we should
563 * unmap it from mmu first.
564 */
565 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
566
1df9f2dc
XG
567 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
568 kvm_set_pfn_accessed(pfn);
569 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
570 kvm_set_pfn_dirty(pfn);
571 return 1;
572}
573
574/*
575 * Rules for using mmu_spte_clear_no_track:
576 * Directly clear spte without caring the state bits of sptep,
577 * it is used to set the upper level spte.
578 */
579static void mmu_spte_clear_no_track(u64 *sptep)
580{
603e0651 581 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
582}
583
c2a2ac2b
XG
584static u64 mmu_spte_get_lockless(u64 *sptep)
585{
586 return __get_spte_lockless(sptep);
587}
588
589static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
590{
c142786c
AK
591 /*
592 * Prevent page table teardown by making any free-er wait during
593 * kvm_flush_remote_tlbs() IPI to all active vcpus.
594 */
595 local_irq_disable();
596 vcpu->mode = READING_SHADOW_PAGE_TABLES;
597 /*
598 * Make sure a following spte read is not reordered ahead of the write
599 * to vcpu->mode.
600 */
601 smp_mb();
c2a2ac2b
XG
602}
603
604static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
605{
c142786c
AK
606 /*
607 * Make sure the write to vcpu->mode is not reordered in front of
608 * reads to sptes. If it does, kvm_commit_zap_page() can see us
609 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
610 */
611 smp_mb();
612 vcpu->mode = OUTSIDE_GUEST_MODE;
613 local_irq_enable();
c2a2ac2b
XG
614}
615
e2dec939 616static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 617 struct kmem_cache *base_cache, int min)
714b93da
AK
618{
619 void *obj;
620
621 if (cache->nobjs >= min)
e2dec939 622 return 0;
714b93da 623 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 624 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 625 if (!obj)
e2dec939 626 return -ENOMEM;
714b93da
AK
627 cache->objects[cache->nobjs++] = obj;
628 }
e2dec939 629 return 0;
714b93da
AK
630}
631
f759e2b4
XG
632static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
633{
634 return cache->nobjs;
635}
636
e8ad9a70
XG
637static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
638 struct kmem_cache *cache)
714b93da
AK
639{
640 while (mc->nobjs)
e8ad9a70 641 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
642}
643
c1158e63 644static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 645 int min)
c1158e63 646{
842f22ed 647 void *page;
c1158e63
AK
648
649 if (cache->nobjs >= min)
650 return 0;
651 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 652 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
653 if (!page)
654 return -ENOMEM;
842f22ed 655 cache->objects[cache->nobjs++] = page;
c1158e63
AK
656 }
657 return 0;
658}
659
660static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
661{
662 while (mc->nobjs)
c4d198d5 663 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
664}
665
2e3e5882 666static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 667{
e2dec939
AK
668 int r;
669
53c07b18 670 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 671 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
672 if (r)
673 goto out;
ad312c7c 674 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
675 if (r)
676 goto out;
ad312c7c 677 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 678 mmu_page_header_cache, 4);
e2dec939
AK
679out:
680 return r;
714b93da
AK
681}
682
683static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
684{
53c07b18
XG
685 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
686 pte_list_desc_cache);
ad312c7c 687 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
688 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
689 mmu_page_header_cache);
714b93da
AK
690}
691
80feb89a 692static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
693{
694 void *p;
695
696 BUG_ON(!mc->nobjs);
697 p = mc->objects[--mc->nobjs];
714b93da
AK
698 return p;
699}
700
53c07b18 701static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 702{
80feb89a 703 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
704}
705
53c07b18 706static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 707{
53c07b18 708 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
709}
710
2032a93d
LJ
711static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
712{
713 if (!sp->role.direct)
714 return sp->gfns[index];
715
716 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
717}
718
719static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
720{
721 if (sp->role.direct)
722 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
723 else
724 sp->gfns[index] = gfn;
725}
726
05da4558 727/*
d4dbf470
TY
728 * Return the pointer to the large page information for a given gfn,
729 * handling slots that are not large page aligned.
05da4558 730 */
d4dbf470
TY
731static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
732 struct kvm_memory_slot *slot,
733 int level)
05da4558
MT
734{
735 unsigned long idx;
736
fb03cb6f 737 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 738 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
739}
740
741static void account_shadowed(struct kvm *kvm, gfn_t gfn)
742{
d25797b2 743 struct kvm_memory_slot *slot;
d4dbf470 744 struct kvm_lpage_info *linfo;
d25797b2 745 int i;
05da4558 746
a1f4d395 747 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
748 for (i = PT_DIRECTORY_LEVEL;
749 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
750 linfo = lpage_info_slot(gfn, slot, i);
751 linfo->write_count += 1;
d25797b2 752 }
332b207d 753 kvm->arch.indirect_shadow_pages++;
05da4558
MT
754}
755
756static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
757{
d25797b2 758 struct kvm_memory_slot *slot;
d4dbf470 759 struct kvm_lpage_info *linfo;
d25797b2 760 int i;
05da4558 761
a1f4d395 762 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
763 for (i = PT_DIRECTORY_LEVEL;
764 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
765 linfo = lpage_info_slot(gfn, slot, i);
766 linfo->write_count -= 1;
767 WARN_ON(linfo->write_count < 0);
d25797b2 768 }
332b207d 769 kvm->arch.indirect_shadow_pages--;
05da4558
MT
770}
771
d25797b2
JR
772static int has_wrprotected_page(struct kvm *kvm,
773 gfn_t gfn,
774 int level)
05da4558 775{
2843099f 776 struct kvm_memory_slot *slot;
d4dbf470 777 struct kvm_lpage_info *linfo;
05da4558 778
a1f4d395 779 slot = gfn_to_memslot(kvm, gfn);
05da4558 780 if (slot) {
d4dbf470
TY
781 linfo = lpage_info_slot(gfn, slot, level);
782 return linfo->write_count;
05da4558
MT
783 }
784
785 return 1;
786}
787
d25797b2 788static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 789{
8f0b1ab6 790 unsigned long page_size;
d25797b2 791 int i, ret = 0;
05da4558 792
8f0b1ab6 793 page_size = kvm_host_page_size(kvm, gfn);
05da4558 794
d25797b2
JR
795 for (i = PT_PAGE_TABLE_LEVEL;
796 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
797 if (page_size >= KVM_HPAGE_SIZE(i))
798 ret = i;
799 else
800 break;
801 }
802
4c2155ce 803 return ret;
05da4558
MT
804}
805
5d163b1c
XG
806static struct kvm_memory_slot *
807gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
808 bool no_dirty_log)
05da4558
MT
809{
810 struct kvm_memory_slot *slot;
5d163b1c
XG
811
812 slot = gfn_to_memslot(vcpu->kvm, gfn);
813 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
814 (no_dirty_log && slot->dirty_bitmap))
815 slot = NULL;
816
817 return slot;
818}
819
820static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
821{
a0a8eaba 822 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
823}
824
825static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
826{
827 int host_level, level, max_level;
05da4558 828
d25797b2
JR
829 host_level = host_mapping_level(vcpu->kvm, large_gfn);
830
831 if (host_level == PT_PAGE_TABLE_LEVEL)
832 return host_level;
833
878403b7
SY
834 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
835 kvm_x86_ops->get_lpage_level() : host_level;
836
837 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
838 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
839 break;
d25797b2
JR
840
841 return level - 1;
05da4558
MT
842}
843
290fc38d 844/*
53c07b18 845 * Pte mapping structures:
cd4a4e53 846 *
53c07b18 847 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 848 *
53c07b18
XG
849 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
850 * pte_list_desc containing more mappings.
53a27b39 851 *
53c07b18 852 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
853 * the spte was not added.
854 *
cd4a4e53 855 */
53c07b18
XG
856static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
857 unsigned long *pte_list)
cd4a4e53 858{
53c07b18 859 struct pte_list_desc *desc;
53a27b39 860 int i, count = 0;
cd4a4e53 861
53c07b18
XG
862 if (!*pte_list) {
863 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
864 *pte_list = (unsigned long)spte;
865 } else if (!(*pte_list & 1)) {
866 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
867 desc = mmu_alloc_pte_list_desc(vcpu);
868 desc->sptes[0] = (u64 *)*pte_list;
d555c333 869 desc->sptes[1] = spte;
53c07b18 870 *pte_list = (unsigned long)desc | 1;
cb16a7b3 871 ++count;
cd4a4e53 872 } else {
53c07b18
XG
873 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
874 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
875 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 876 desc = desc->more;
53c07b18 877 count += PTE_LIST_EXT;
53a27b39 878 }
53c07b18
XG
879 if (desc->sptes[PTE_LIST_EXT-1]) {
880 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
881 desc = desc->more;
882 }
d555c333 883 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 884 ++count;
d555c333 885 desc->sptes[i] = spte;
cd4a4e53 886 }
53a27b39 887 return count;
cd4a4e53
AK
888}
889
53c07b18
XG
890static void
891pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
892 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
893{
894 int j;
895
53c07b18 896 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 897 ;
d555c333
AK
898 desc->sptes[i] = desc->sptes[j];
899 desc->sptes[j] = NULL;
cd4a4e53
AK
900 if (j != 0)
901 return;
902 if (!prev_desc && !desc->more)
53c07b18 903 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
904 else
905 if (prev_desc)
906 prev_desc->more = desc->more;
907 else
53c07b18
XG
908 *pte_list = (unsigned long)desc->more | 1;
909 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
910}
911
53c07b18 912static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 913{
53c07b18
XG
914 struct pte_list_desc *desc;
915 struct pte_list_desc *prev_desc;
cd4a4e53
AK
916 int i;
917
53c07b18
XG
918 if (!*pte_list) {
919 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 920 BUG();
53c07b18
XG
921 } else if (!(*pte_list & 1)) {
922 rmap_printk("pte_list_remove: %p 1->0\n", spte);
923 if ((u64 *)*pte_list != spte) {
924 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
925 BUG();
926 }
53c07b18 927 *pte_list = 0;
cd4a4e53 928 } else {
53c07b18
XG
929 rmap_printk("pte_list_remove: %p many->many\n", spte);
930 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
931 prev_desc = NULL;
932 while (desc) {
53c07b18 933 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 934 if (desc->sptes[i] == spte) {
53c07b18 935 pte_list_desc_remove_entry(pte_list,
714b93da 936 desc, i,
cd4a4e53
AK
937 prev_desc);
938 return;
939 }
940 prev_desc = desc;
941 desc = desc->more;
942 }
53c07b18 943 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
944 BUG();
945 }
946}
947
67052b35
XG
948typedef void (*pte_list_walk_fn) (u64 *spte);
949static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
950{
951 struct pte_list_desc *desc;
952 int i;
953
954 if (!*pte_list)
955 return;
956
957 if (!(*pte_list & 1))
958 return fn((u64 *)*pte_list);
959
960 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
961 while (desc) {
962 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
963 fn(desc->sptes[i]);
964 desc = desc->more;
965 }
966}
967
9373e2c0 968static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 969 struct kvm_memory_slot *slot)
53c07b18 970{
77d11309 971 unsigned long idx;
53c07b18 972
77d11309 973 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 974 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
975}
976
9b9b1492
TY
977/*
978 * Take gfn and return the reverse mapping to it.
979 */
980static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
981{
982 struct kvm_memory_slot *slot;
983
984 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 985 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
986}
987
f759e2b4
XG
988static bool rmap_can_add(struct kvm_vcpu *vcpu)
989{
990 struct kvm_mmu_memory_cache *cache;
991
992 cache = &vcpu->arch.mmu_pte_list_desc_cache;
993 return mmu_memory_cache_free_objects(cache);
994}
995
53c07b18
XG
996static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
997{
998 struct kvm_mmu_page *sp;
999 unsigned long *rmapp;
1000
53c07b18
XG
1001 sp = page_header(__pa(spte));
1002 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1003 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1004 return pte_list_add(vcpu, spte, rmapp);
1005}
1006
53c07b18
XG
1007static void rmap_remove(struct kvm *kvm, u64 *spte)
1008{
1009 struct kvm_mmu_page *sp;
1010 gfn_t gfn;
1011 unsigned long *rmapp;
1012
1013 sp = page_header(__pa(spte));
1014 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1015 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1016 pte_list_remove(spte, rmapp);
1017}
1018
1e3f42f0
TY
1019/*
1020 * Used by the following functions to iterate through the sptes linked by a
1021 * rmap. All fields are private and not assumed to be used outside.
1022 */
1023struct rmap_iterator {
1024 /* private fields */
1025 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1026 int pos; /* index of the sptep */
1027};
1028
1029/*
1030 * Iteration must be started by this function. This should also be used after
1031 * removing/dropping sptes from the rmap link because in such cases the
1032 * information in the itererator may not be valid.
1033 *
1034 * Returns sptep if found, NULL otherwise.
1035 */
1036static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1037{
1038 if (!rmap)
1039 return NULL;
1040
1041 if (!(rmap & 1)) {
1042 iter->desc = NULL;
1043 return (u64 *)rmap;
1044 }
1045
1046 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1047 iter->pos = 0;
1048 return iter->desc->sptes[iter->pos];
1049}
1050
1051/*
1052 * Must be used with a valid iterator: e.g. after rmap_get_first().
1053 *
1054 * Returns sptep if found, NULL otherwise.
1055 */
1056static u64 *rmap_get_next(struct rmap_iterator *iter)
1057{
1058 if (iter->desc) {
1059 if (iter->pos < PTE_LIST_EXT - 1) {
1060 u64 *sptep;
1061
1062 ++iter->pos;
1063 sptep = iter->desc->sptes[iter->pos];
1064 if (sptep)
1065 return sptep;
1066 }
1067
1068 iter->desc = iter->desc->more;
1069
1070 if (iter->desc) {
1071 iter->pos = 0;
1072 /* desc->sptes[0] cannot be NULL */
1073 return iter->desc->sptes[iter->pos];
1074 }
1075 }
1076
1077 return NULL;
1078}
1079
c3707958 1080static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1081{
1df9f2dc 1082 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1083 rmap_remove(kvm, sptep);
be38d276
AK
1084}
1085
8e22f955
XG
1086
1087static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1088{
1089 if (is_large_pte(*sptep)) {
1090 WARN_ON(page_header(__pa(sptep))->role.level ==
1091 PT_PAGE_TABLE_LEVEL);
1092 drop_spte(kvm, sptep);
1093 --kvm->stat.lpages;
1094 return true;
1095 }
1096
1097 return false;
1098}
1099
1100static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1101{
1102 if (__drop_large_spte(vcpu->kvm, sptep))
1103 kvm_flush_remote_tlbs(vcpu->kvm);
1104}
1105
1106/*
49fde340
XG
1107 * Write-protect on the specified @sptep, @pt_protect indicates whether
1108 * spte writ-protection is caused by protecting shadow page table.
1109 * @flush indicates whether tlb need be flushed.
1110 *
1111 * Note: write protection is difference between drity logging and spte
1112 * protection:
1113 * - for dirty logging, the spte can be set to writable at anytime if
1114 * its dirty bitmap is properly set.
1115 * - for spte protection, the spte can be writable only after unsync-ing
1116 * shadow page.
8e22f955
XG
1117 *
1118 * Return true if the spte is dropped.
1119 */
49fde340
XG
1120static bool
1121spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
d13bc5b5
XG
1122{
1123 u64 spte = *sptep;
1124
49fde340
XG
1125 if (!is_writable_pte(spte) &&
1126 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1127 return false;
1128
1129 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1130
49fde340
XG
1131 if (__drop_large_spte(kvm, sptep)) {
1132 *flush |= true;
d13bc5b5 1133 return true;
49fde340 1134 }
d13bc5b5 1135
49fde340
XG
1136 if (pt_protect)
1137 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1138 spte = spte & ~PT_WRITABLE_MASK;
49fde340
XG
1139
1140 *flush |= mmu_spte_update(sptep, spte);
d13bc5b5
XG
1141 return false;
1142}
1143
49fde340 1144static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
245c3912 1145 bool pt_protect)
98348e95 1146{
1e3f42f0
TY
1147 u64 *sptep;
1148 struct rmap_iterator iter;
d13bc5b5 1149 bool flush = false;
374cbac0 1150
1e3f42f0
TY
1151 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1152 BUG_ON(!(*sptep & PT_PRESENT_MASK));
49fde340 1153 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1e3f42f0 1154 sptep = rmap_get_first(*rmapp, &iter);
d13bc5b5 1155 continue;
caa5b8a5 1156 }
a0ed4607 1157
d13bc5b5 1158 sptep = rmap_get_next(&iter);
374cbac0 1159 }
855149aa 1160
d13bc5b5 1161 return flush;
a0ed4607
TY
1162}
1163
5dc99b23
TY
1164/**
1165 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1166 * @kvm: kvm instance
1167 * @slot: slot to protect
1168 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1169 * @mask: indicates which pages we should protect
1170 *
1171 * Used when we do not need to care about huge page mappings: e.g. during dirty
1172 * logging we do not have any such mappings.
1173 */
1174void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1175 struct kvm_memory_slot *slot,
1176 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1177{
1178 unsigned long *rmapp;
a0ed4607 1179
5dc99b23 1180 while (mask) {
65fbe37c
TY
1181 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1182 PT_PAGE_TABLE_LEVEL, slot);
245c3912 1183 __rmap_write_protect(kvm, rmapp, false);
05da4558 1184
5dc99b23
TY
1185 /* clear the first set bit */
1186 mask &= mask - 1;
1187 }
374cbac0
AK
1188}
1189
2f84569f 1190static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1191{
1192 struct kvm_memory_slot *slot;
5dc99b23
TY
1193 unsigned long *rmapp;
1194 int i;
2f84569f 1195 bool write_protected = false;
95d4c16c
TY
1196
1197 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1198
1199 for (i = PT_PAGE_TABLE_LEVEL;
1200 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1201 rmapp = __gfn_to_rmap(gfn, i, slot);
245c3912 1202 write_protected |= __rmap_write_protect(kvm, rmapp, true);
5dc99b23
TY
1203 }
1204
1205 return write_protected;
95d4c16c
TY
1206}
1207
8a8365c5 1208static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1209 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1210{
1e3f42f0
TY
1211 u64 *sptep;
1212 struct rmap_iterator iter;
e930bffe
AA
1213 int need_tlb_flush = 0;
1214
1e3f42f0
TY
1215 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1216 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1217 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1218
1219 drop_spte(kvm, sptep);
e930bffe
AA
1220 need_tlb_flush = 1;
1221 }
1e3f42f0 1222
e930bffe
AA
1223 return need_tlb_flush;
1224}
1225
8a8365c5 1226static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1227 struct kvm_memory_slot *slot, unsigned long data)
3da0dd43 1228{
1e3f42f0
TY
1229 u64 *sptep;
1230 struct rmap_iterator iter;
3da0dd43 1231 int need_flush = 0;
1e3f42f0 1232 u64 new_spte;
3da0dd43
IE
1233 pte_t *ptep = (pte_t *)data;
1234 pfn_t new_pfn;
1235
1236 WARN_ON(pte_huge(*ptep));
1237 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1238
1239 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1240 BUG_ON(!is_shadow_present_pte(*sptep));
1241 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1242
3da0dd43 1243 need_flush = 1;
1e3f42f0 1244
3da0dd43 1245 if (pte_write(*ptep)) {
1e3f42f0
TY
1246 drop_spte(kvm, sptep);
1247 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1248 } else {
1e3f42f0 1249 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1250 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1251
1252 new_spte &= ~PT_WRITABLE_MASK;
1253 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1254 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1255
1256 mmu_spte_clear_track_bits(sptep);
1257 mmu_spte_set(sptep, new_spte);
1258 sptep = rmap_get_next(&iter);
3da0dd43
IE
1259 }
1260 }
1e3f42f0 1261
3da0dd43
IE
1262 if (need_flush)
1263 kvm_flush_remote_tlbs(kvm);
1264
1265 return 0;
1266}
1267
84504ef3
TY
1268static int kvm_handle_hva_range(struct kvm *kvm,
1269 unsigned long start,
1270 unsigned long end,
1271 unsigned long data,
1272 int (*handler)(struct kvm *kvm,
1273 unsigned long *rmapp,
048212d0 1274 struct kvm_memory_slot *slot,
84504ef3 1275 unsigned long data))
e930bffe 1276{
be6ba0f0 1277 int j;
f395302e 1278 int ret = 0;
bc6678a3 1279 struct kvm_memslots *slots;
be6ba0f0 1280 struct kvm_memory_slot *memslot;
bc6678a3 1281
90d83dc3 1282 slots = kvm_memslots(kvm);
e930bffe 1283
be6ba0f0 1284 kvm_for_each_memslot(memslot, slots) {
84504ef3 1285 unsigned long hva_start, hva_end;
bcd3ef58 1286 gfn_t gfn_start, gfn_end;
e930bffe 1287
84504ef3
TY
1288 hva_start = max(start, memslot->userspace_addr);
1289 hva_end = min(end, memslot->userspace_addr +
1290 (memslot->npages << PAGE_SHIFT));
1291 if (hva_start >= hva_end)
1292 continue;
1293 /*
1294 * {gfn(page) | page intersects with [hva_start, hva_end)} =
bcd3ef58 1295 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
84504ef3 1296 */
bcd3ef58 1297 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
84504ef3 1298 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
852e3c19 1299
bcd3ef58
TY
1300 for (j = PT_PAGE_TABLE_LEVEL;
1301 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1302 unsigned long idx, idx_end;
1303 unsigned long *rmapp;
d4dbf470 1304
bcd3ef58
TY
1305 /*
1306 * {idx(page_j) | page_j intersects with
1307 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1308 */
1309 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1310 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
852e3c19 1311
bcd3ef58 1312 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
d4dbf470 1313
bcd3ef58
TY
1314 for (; idx <= idx_end; ++idx)
1315 ret |= handler(kvm, rmapp++, memslot, data);
e930bffe
AA
1316 }
1317 }
1318
f395302e 1319 return ret;
e930bffe
AA
1320}
1321
84504ef3
TY
1322static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1323 unsigned long data,
1324 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1325 struct kvm_memory_slot *slot,
84504ef3
TY
1326 unsigned long data))
1327{
1328 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1329}
1330
1331int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1332{
3da0dd43
IE
1333 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1334}
1335
b3ae2096
TY
1336int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1337{
1338 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1339}
1340
3da0dd43
IE
1341void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1342{
8a8365c5 1343 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1344}
1345
8a8365c5 1346static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1347 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1348{
1e3f42f0 1349 u64 *sptep;
79f702a6 1350 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1351 int young = 0;
1352
6316e1c8 1353 /*
3f6d8c8a
XH
1354 * In case of absence of EPT Access and Dirty Bits supports,
1355 * emulate the accessed bit for EPT, by checking if this page has
6316e1c8
RR
1356 * an EPT mapping, and clearing it if it does. On the next access,
1357 * a new EPT mapping will be established.
1358 * This has some overhead, but not as much as the cost of swapping
1359 * out actively used pages or breaking up actively used hugepages.
1360 */
f395302e
TY
1361 if (!shadow_accessed_mask) {
1362 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1363 goto out;
1364 }
534e38b4 1365
1e3f42f0
TY
1366 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1367 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1368 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1369
3f6d8c8a 1370 if (*sptep & shadow_accessed_mask) {
e930bffe 1371 young = 1;
3f6d8c8a
XH
1372 clear_bit((ffs(shadow_accessed_mask) - 1),
1373 (unsigned long *)sptep);
e930bffe 1374 }
e930bffe 1375 }
f395302e
TY
1376out:
1377 /* @data has hva passed to kvm_age_hva(). */
1378 trace_kvm_age_page(data, slot, young);
e930bffe
AA
1379 return young;
1380}
1381
8ee53820 1382static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1383 struct kvm_memory_slot *slot, unsigned long data)
8ee53820 1384{
1e3f42f0
TY
1385 u64 *sptep;
1386 struct rmap_iterator iter;
8ee53820
AA
1387 int young = 0;
1388
1389 /*
1390 * If there's no access bit in the secondary pte set by the
1391 * hardware it's up to gup-fast/gup to set the access bit in
1392 * the primary pte or in the page structure.
1393 */
1394 if (!shadow_accessed_mask)
1395 goto out;
1396
1e3f42f0
TY
1397 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1398 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1399 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1400
3f6d8c8a 1401 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1402 young = 1;
1403 break;
1404 }
8ee53820
AA
1405 }
1406out:
1407 return young;
1408}
1409
53a27b39
MT
1410#define RMAP_RECYCLE_THRESHOLD 1000
1411
852e3c19 1412static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1413{
1414 unsigned long *rmapp;
852e3c19
JR
1415 struct kvm_mmu_page *sp;
1416
1417 sp = page_header(__pa(spte));
53a27b39 1418
852e3c19 1419 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1420
048212d0 1421 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
53a27b39
MT
1422 kvm_flush_remote_tlbs(vcpu->kvm);
1423}
1424
e930bffe
AA
1425int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1426{
f395302e 1427 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
e930bffe
AA
1428}
1429
8ee53820
AA
1430int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1431{
1432 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1433}
1434
d6c69ee9 1435#ifdef MMU_DEBUG
47ad8e68 1436static int is_empty_shadow_page(u64 *spt)
6aa8b732 1437{
139bdb2d
AK
1438 u64 *pos;
1439 u64 *end;
1440
47ad8e68 1441 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1442 if (is_shadow_present_pte(*pos)) {
b8688d51 1443 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1444 pos, *pos);
6aa8b732 1445 return 0;
139bdb2d 1446 }
6aa8b732
AK
1447 return 1;
1448}
d6c69ee9 1449#endif
6aa8b732 1450
45221ab6
DH
1451/*
1452 * This value is the sum of all of the kvm instances's
1453 * kvm->arch.n_used_mmu_pages values. We need a global,
1454 * aggregate version in order to make the slab shrinker
1455 * faster
1456 */
1457static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1458{
1459 kvm->arch.n_used_mmu_pages += nr;
1460 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1461}
1462
bd4c86ea
XG
1463/*
1464 * Remove the sp from shadow page cache, after call it,
1465 * we can not find this sp from the cache, and the shadow
1466 * page table is still valid.
1467 * It should be under the protection of mmu lock.
1468 */
1469static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
260746c0 1470{
4db35314 1471 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1472 hlist_del(&sp->hash_link);
2032a93d 1473 if (!sp->role.direct)
842f22ed 1474 free_page((unsigned long)sp->gfns);
bd4c86ea
XG
1475}
1476
1477/*
1478 * Free the shadow page table and the sp, we can do it
1479 * out of the protection of mmu lock.
1480 */
1481static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1482{
1483 list_del(&sp->link);
1484 free_page((unsigned long)sp->spt);
e8ad9a70 1485 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1486}
1487
cea0f0e7
AK
1488static unsigned kvm_page_table_hashfn(gfn_t gfn)
1489{
1ae0a13d 1490 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1491}
1492
714b93da 1493static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1494 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1495{
cea0f0e7
AK
1496 if (!parent_pte)
1497 return;
cea0f0e7 1498
67052b35 1499 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1500}
1501
4db35314 1502static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1503 u64 *parent_pte)
1504{
67052b35 1505 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1506}
1507
bcdd9a93
XG
1508static void drop_parent_pte(struct kvm_mmu_page *sp,
1509 u64 *parent_pte)
1510{
1511 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1512 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1513}
1514
67052b35
XG
1515static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1516 u64 *parent_pte, int direct)
ad8cfbe3 1517{
67052b35 1518 struct kvm_mmu_page *sp;
80feb89a
TY
1519 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1520 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1521 if (!direct)
80feb89a 1522 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35
XG
1523 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1524 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1525 sp->parent_ptes = 0;
1526 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1527 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1528 return sp;
ad8cfbe3
MT
1529}
1530
67052b35 1531static void mark_unsync(u64 *spte);
1047df1f 1532static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1533{
67052b35 1534 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1535}
1536
67052b35 1537static void mark_unsync(u64 *spte)
0074ff63 1538{
67052b35 1539 struct kvm_mmu_page *sp;
1047df1f 1540 unsigned int index;
0074ff63 1541
67052b35 1542 sp = page_header(__pa(spte));
1047df1f
XG
1543 index = spte - sp->spt;
1544 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1545 return;
1047df1f 1546 if (sp->unsync_children++)
0074ff63 1547 return;
1047df1f 1548 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1549}
1550
e8bc217a 1551static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1552 struct kvm_mmu_page *sp)
e8bc217a
MT
1553{
1554 return 1;
1555}
1556
a7052897
MT
1557static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1558{
1559}
1560
0f53b5b1
XG
1561static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1562 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1563 const void *pte)
0f53b5b1
XG
1564{
1565 WARN_ON(1);
1566}
1567
60c8aec6
MT
1568#define KVM_PAGE_ARRAY_NR 16
1569
1570struct kvm_mmu_pages {
1571 struct mmu_page_and_offset {
1572 struct kvm_mmu_page *sp;
1573 unsigned int idx;
1574 } page[KVM_PAGE_ARRAY_NR];
1575 unsigned int nr;
1576};
1577
cded19f3
HE
1578static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1579 int idx)
4731d4c7 1580{
60c8aec6 1581 int i;
4731d4c7 1582
60c8aec6
MT
1583 if (sp->unsync)
1584 for (i=0; i < pvec->nr; i++)
1585 if (pvec->page[i].sp == sp)
1586 return 0;
1587
1588 pvec->page[pvec->nr].sp = sp;
1589 pvec->page[pvec->nr].idx = idx;
1590 pvec->nr++;
1591 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1592}
1593
1594static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1595 struct kvm_mmu_pages *pvec)
1596{
1597 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1598
37178b8b 1599 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1600 struct kvm_mmu_page *child;
4731d4c7
MT
1601 u64 ent = sp->spt[i];
1602
7a8f1a74
XG
1603 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1604 goto clear_child_bitmap;
1605
1606 child = page_header(ent & PT64_BASE_ADDR_MASK);
1607
1608 if (child->unsync_children) {
1609 if (mmu_pages_add(pvec, child, i))
1610 return -ENOSPC;
1611
1612 ret = __mmu_unsync_walk(child, pvec);
1613 if (!ret)
1614 goto clear_child_bitmap;
1615 else if (ret > 0)
1616 nr_unsync_leaf += ret;
1617 else
1618 return ret;
1619 } else if (child->unsync) {
1620 nr_unsync_leaf++;
1621 if (mmu_pages_add(pvec, child, i))
1622 return -ENOSPC;
1623 } else
1624 goto clear_child_bitmap;
1625
1626 continue;
1627
1628clear_child_bitmap:
1629 __clear_bit(i, sp->unsync_child_bitmap);
1630 sp->unsync_children--;
1631 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1632 }
1633
4731d4c7 1634
60c8aec6
MT
1635 return nr_unsync_leaf;
1636}
1637
1638static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1639 struct kvm_mmu_pages *pvec)
1640{
1641 if (!sp->unsync_children)
1642 return 0;
1643
1644 mmu_pages_add(pvec, sp, 0);
1645 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1646}
1647
4731d4c7
MT
1648static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1649{
1650 WARN_ON(!sp->unsync);
5e1b3ddb 1651 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1652 sp->unsync = 0;
1653 --kvm->stat.mmu_unsync;
1654}
1655
7775834a
XG
1656static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1657 struct list_head *invalid_list);
1658static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1659 struct list_head *invalid_list);
4731d4c7 1660
f41d335a
XG
1661#define for_each_gfn_sp(kvm, sp, gfn, pos) \
1662 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1663 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1664 if ((sp)->gfn != (gfn)) {} else
1665
f41d335a
XG
1666#define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1667 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1668 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1669 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1670 (sp)->role.invalid) {} else
1671
f918b443 1672/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1673static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1674 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1675{
5b7e0102 1676 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1677 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1678 return 1;
1679 }
1680
f918b443 1681 if (clear_unsync)
1d9dc7e0 1682 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1683
a4a8e6f7 1684 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1685 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1686 return 1;
1687 }
1688
1689 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1690 return 0;
1691}
1692
1d9dc7e0
XG
1693static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1694 struct kvm_mmu_page *sp)
1695{
d98ba053 1696 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1697 int ret;
1698
d98ba053 1699 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1700 if (ret)
d98ba053
XG
1701 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1702
1d9dc7e0
XG
1703 return ret;
1704}
1705
e37fa785
XG
1706#ifdef CONFIG_KVM_MMU_AUDIT
1707#include "mmu_audit.c"
1708#else
1709static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1710static void mmu_audit_disable(void) { }
1711#endif
1712
d98ba053
XG
1713static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1714 struct list_head *invalid_list)
1d9dc7e0 1715{
d98ba053 1716 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1717}
1718
9f1a122f
XG
1719/* @gfn should be write-protected at the call site */
1720static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1721{
9f1a122f 1722 struct kvm_mmu_page *s;
f41d335a 1723 struct hlist_node *node;
d98ba053 1724 LIST_HEAD(invalid_list);
9f1a122f
XG
1725 bool flush = false;
1726
f41d335a 1727 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 1728 if (!s->unsync)
9f1a122f
XG
1729 continue;
1730
1731 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1732 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1733 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1734 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1735 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1736 continue;
1737 }
9f1a122f
XG
1738 flush = true;
1739 }
1740
d98ba053 1741 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1742 if (flush)
1743 kvm_mmu_flush_tlb(vcpu);
1744}
1745
60c8aec6
MT
1746struct mmu_page_path {
1747 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1748 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1749};
1750
60c8aec6
MT
1751#define for_each_sp(pvec, sp, parents, i) \
1752 for (i = mmu_pages_next(&pvec, &parents, -1), \
1753 sp = pvec.page[i].sp; \
1754 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1755 i = mmu_pages_next(&pvec, &parents, i))
1756
cded19f3
HE
1757static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1758 struct mmu_page_path *parents,
1759 int i)
60c8aec6
MT
1760{
1761 int n;
1762
1763 for (n = i+1; n < pvec->nr; n++) {
1764 struct kvm_mmu_page *sp = pvec->page[n].sp;
1765
1766 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1767 parents->idx[0] = pvec->page[n].idx;
1768 return n;
1769 }
1770
1771 parents->parent[sp->role.level-2] = sp;
1772 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1773 }
1774
1775 return n;
1776}
1777
cded19f3 1778static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1779{
60c8aec6
MT
1780 struct kvm_mmu_page *sp;
1781 unsigned int level = 0;
1782
1783 do {
1784 unsigned int idx = parents->idx[level];
4731d4c7 1785
60c8aec6
MT
1786 sp = parents->parent[level];
1787 if (!sp)
1788 return;
1789
1790 --sp->unsync_children;
1791 WARN_ON((int)sp->unsync_children < 0);
1792 __clear_bit(idx, sp->unsync_child_bitmap);
1793 level++;
1794 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1795}
1796
60c8aec6
MT
1797static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1798 struct mmu_page_path *parents,
1799 struct kvm_mmu_pages *pvec)
4731d4c7 1800{
60c8aec6
MT
1801 parents->parent[parent->role.level-1] = NULL;
1802 pvec->nr = 0;
1803}
4731d4c7 1804
60c8aec6
MT
1805static void mmu_sync_children(struct kvm_vcpu *vcpu,
1806 struct kvm_mmu_page *parent)
1807{
1808 int i;
1809 struct kvm_mmu_page *sp;
1810 struct mmu_page_path parents;
1811 struct kvm_mmu_pages pages;
d98ba053 1812 LIST_HEAD(invalid_list);
60c8aec6
MT
1813
1814 kvm_mmu_pages_init(parent, &parents, &pages);
1815 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1816 bool protected = false;
b1a36821
MT
1817
1818 for_each_sp(pages, sp, parents, i)
1819 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1820
1821 if (protected)
1822 kvm_flush_remote_tlbs(vcpu->kvm);
1823
60c8aec6 1824 for_each_sp(pages, sp, parents, i) {
d98ba053 1825 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1826 mmu_pages_clear_parents(&parents);
1827 }
d98ba053 1828 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1829 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1830 kvm_mmu_pages_init(parent, &parents, &pages);
1831 }
4731d4c7
MT
1832}
1833
c3707958
XG
1834static void init_shadow_page_table(struct kvm_mmu_page *sp)
1835{
1836 int i;
1837
1838 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1839 sp->spt[i] = 0ull;
1840}
1841
a30f47cb
XG
1842static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1843{
1844 sp->write_flooding_count = 0;
1845}
1846
1847static void clear_sp_write_flooding_count(u64 *spte)
1848{
1849 struct kvm_mmu_page *sp = page_header(__pa(spte));
1850
1851 __clear_sp_write_flooding_count(sp);
1852}
1853
cea0f0e7
AK
1854static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1855 gfn_t gfn,
1856 gva_t gaddr,
1857 unsigned level,
f6e2c02b 1858 int direct,
41074d07 1859 unsigned access,
f7d9c7b7 1860 u64 *parent_pte)
cea0f0e7
AK
1861{
1862 union kvm_mmu_page_role role;
cea0f0e7 1863 unsigned quadrant;
9f1a122f 1864 struct kvm_mmu_page *sp;
f41d335a 1865 struct hlist_node *node;
9f1a122f 1866 bool need_sync = false;
cea0f0e7 1867
a770f6f2 1868 role = vcpu->arch.mmu.base_role;
cea0f0e7 1869 role.level = level;
f6e2c02b 1870 role.direct = direct;
84b0c8c6 1871 if (role.direct)
5b7e0102 1872 role.cr4_pae = 0;
41074d07 1873 role.access = access;
c5a78f2b
JR
1874 if (!vcpu->arch.mmu.direct_map
1875 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1876 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1877 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1878 role.quadrant = quadrant;
1879 }
f41d335a 1880 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
7ae680eb
XG
1881 if (!need_sync && sp->unsync)
1882 need_sync = true;
4731d4c7 1883
7ae680eb
XG
1884 if (sp->role.word != role.word)
1885 continue;
4731d4c7 1886
7ae680eb
XG
1887 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1888 break;
e02aa901 1889
7ae680eb
XG
1890 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1891 if (sp->unsync_children) {
a8eeb04a 1892 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1893 kvm_mmu_mark_parents_unsync(sp);
1894 } else if (sp->unsync)
1895 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1896
a30f47cb 1897 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1898 trace_kvm_mmu_get_page(sp, false);
1899 return sp;
1900 }
dfc5aa00 1901 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1902 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1903 if (!sp)
1904 return sp;
4db35314
AK
1905 sp->gfn = gfn;
1906 sp->role = role;
7ae680eb
XG
1907 hlist_add_head(&sp->hash_link,
1908 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1909 if (!direct) {
b1a36821
MT
1910 if (rmap_write_protect(vcpu->kvm, gfn))
1911 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1912 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1913 kvm_sync_pages(vcpu, gfn);
1914
4731d4c7
MT
1915 account_shadowed(vcpu->kvm, gfn);
1916 }
c3707958 1917 init_shadow_page_table(sp);
f691fe1d 1918 trace_kvm_mmu_get_page(sp, true);
4db35314 1919 return sp;
cea0f0e7
AK
1920}
1921
2d11123a
AK
1922static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1923 struct kvm_vcpu *vcpu, u64 addr)
1924{
1925 iterator->addr = addr;
1926 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1927 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1928
1929 if (iterator->level == PT64_ROOT_LEVEL &&
1930 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1931 !vcpu->arch.mmu.direct_map)
1932 --iterator->level;
1933
2d11123a
AK
1934 if (iterator->level == PT32E_ROOT_LEVEL) {
1935 iterator->shadow_addr
1936 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1937 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1938 --iterator->level;
1939 if (!iterator->shadow_addr)
1940 iterator->level = 0;
1941 }
1942}
1943
1944static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1945{
1946 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1947 return false;
4d88954d 1948
2d11123a
AK
1949 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1950 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1951 return true;
1952}
1953
c2a2ac2b
XG
1954static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1955 u64 spte)
2d11123a 1956{
c2a2ac2b 1957 if (is_last_spte(spte, iterator->level)) {
052331be
XG
1958 iterator->level = 0;
1959 return;
1960 }
1961
c2a2ac2b 1962 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
1963 --iterator->level;
1964}
1965
c2a2ac2b
XG
1966static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1967{
1968 return __shadow_walk_next(iterator, *iterator->sptep);
1969}
1970
32ef26a3
AK
1971static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1972{
1973 u64 spte;
1974
1975 spte = __pa(sp->spt)
1976 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1977 | PT_WRITABLE_MASK | PT_USER_MASK;
1df9f2dc 1978 mmu_spte_set(sptep, spte);
32ef26a3
AK
1979}
1980
a357bd22
AK
1981static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1982 unsigned direct_access)
1983{
1984 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1985 struct kvm_mmu_page *child;
1986
1987 /*
1988 * For the direct sp, if the guest pte's dirty bit
1989 * changed form clean to dirty, it will corrupt the
1990 * sp's access: allow writable in the read-only sp,
1991 * so we should update the spte at this point to get
1992 * a new sp with the correct access.
1993 */
1994 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1995 if (child->role.access == direct_access)
1996 return;
1997
bcdd9a93 1998 drop_parent_pte(child, sptep);
a357bd22
AK
1999 kvm_flush_remote_tlbs(vcpu->kvm);
2000 }
2001}
2002
505aef8f 2003static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2004 u64 *spte)
2005{
2006 u64 pte;
2007 struct kvm_mmu_page *child;
2008
2009 pte = *spte;
2010 if (is_shadow_present_pte(pte)) {
505aef8f 2011 if (is_last_spte(pte, sp->role.level)) {
c3707958 2012 drop_spte(kvm, spte);
505aef8f
XG
2013 if (is_large_pte(pte))
2014 --kvm->stat.lpages;
2015 } else {
38e3b2b2 2016 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2017 drop_parent_pte(child, spte);
38e3b2b2 2018 }
505aef8f
XG
2019 return true;
2020 }
2021
2022 if (is_mmio_spte(pte))
ce88decf 2023 mmu_spte_clear_no_track(spte);
c3707958 2024
505aef8f 2025 return false;
38e3b2b2
XG
2026}
2027
90cb0529 2028static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2029 struct kvm_mmu_page *sp)
a436036b 2030{
697fe2e2 2031 unsigned i;
697fe2e2 2032
38e3b2b2
XG
2033 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2034 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2035}
2036
4db35314 2037static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2038{
4db35314 2039 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2040}
2041
31aa2b44 2042static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2043{
1e3f42f0
TY
2044 u64 *sptep;
2045 struct rmap_iterator iter;
a436036b 2046
1e3f42f0
TY
2047 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2048 drop_parent_pte(sp, sptep);
31aa2b44
AK
2049}
2050
60c8aec6 2051static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2052 struct kvm_mmu_page *parent,
2053 struct list_head *invalid_list)
4731d4c7 2054{
60c8aec6
MT
2055 int i, zapped = 0;
2056 struct mmu_page_path parents;
2057 struct kvm_mmu_pages pages;
4731d4c7 2058
60c8aec6 2059 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2060 return 0;
60c8aec6
MT
2061
2062 kvm_mmu_pages_init(parent, &parents, &pages);
2063 while (mmu_unsync_walk(parent, &pages)) {
2064 struct kvm_mmu_page *sp;
2065
2066 for_each_sp(pages, sp, parents, i) {
7775834a 2067 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2068 mmu_pages_clear_parents(&parents);
77662e00 2069 zapped++;
60c8aec6 2070 }
60c8aec6
MT
2071 kvm_mmu_pages_init(parent, &parents, &pages);
2072 }
2073
2074 return zapped;
4731d4c7
MT
2075}
2076
7775834a
XG
2077static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2078 struct list_head *invalid_list)
31aa2b44 2079{
4731d4c7 2080 int ret;
f691fe1d 2081
7775834a 2082 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2083 ++kvm->stat.mmu_shadow_zapped;
7775834a 2084 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2085 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2086 kvm_mmu_unlink_parents(kvm, sp);
f6e2c02b 2087 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 2088 unaccount_shadowed(kvm, sp->gfn);
4731d4c7
MT
2089 if (sp->unsync)
2090 kvm_unlink_unsync_page(kvm, sp);
4db35314 2091 if (!sp->root_count) {
54a4f023
GJ
2092 /* Count self */
2093 ret++;
7775834a 2094 list_move(&sp->link, invalid_list);
aa6bd187 2095 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2096 } else {
5b5c6a5a 2097 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2e53d63a
MT
2098 kvm_reload_remote_mmus(kvm);
2099 }
7775834a
XG
2100
2101 sp->role.invalid = 1;
4731d4c7 2102 return ret;
a436036b
AK
2103}
2104
7775834a
XG
2105static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2106 struct list_head *invalid_list)
2107{
2108 struct kvm_mmu_page *sp;
2109
2110 if (list_empty(invalid_list))
2111 return;
2112
c142786c
AK
2113 /*
2114 * wmb: make sure everyone sees our modifications to the page tables
2115 * rmb: make sure we see changes to vcpu->mode
2116 */
2117 smp_mb();
4f022648 2118
c142786c
AK
2119 /*
2120 * Wait for all vcpus to exit guest mode and/or lockless shadow
2121 * page table walks.
2122 */
2123 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2124
7775834a
XG
2125 do {
2126 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2127 WARN_ON(!sp->role.invalid || sp->root_count);
bd4c86ea 2128 kvm_mmu_isolate_page(sp);
aa6bd187 2129 kvm_mmu_free_page(sp);
7775834a 2130 } while (!list_empty(invalid_list));
7775834a
XG
2131}
2132
82ce2c96
IE
2133/*
2134 * Changing the number of mmu pages allocated to the vm
49d5ca26 2135 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2136 */
49d5ca26 2137void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2138{
d98ba053 2139 LIST_HEAD(invalid_list);
82ce2c96
IE
2140 /*
2141 * If we set the number of mmu pages to be smaller be than the
2142 * number of actived pages , we must to free some mmu pages before we
2143 * change the value
2144 */
2145
49d5ca26
DH
2146 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2147 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
77662e00 2148 !list_empty(&kvm->arch.active_mmu_pages)) {
82ce2c96
IE
2149 struct kvm_mmu_page *page;
2150
f05e70ac 2151 page = container_of(kvm->arch.active_mmu_pages.prev,
82ce2c96 2152 struct kvm_mmu_page, link);
80b63faf 2153 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
82ce2c96 2154 }
aa6bd187 2155 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2156 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2157 }
82ce2c96 2158
49d5ca26 2159 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
82ce2c96
IE
2160}
2161
1cb3f3ae 2162int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2163{
4db35314 2164 struct kvm_mmu_page *sp;
f41d335a 2165 struct hlist_node *node;
d98ba053 2166 LIST_HEAD(invalid_list);
a436036b
AK
2167 int r;
2168
9ad17b10 2169 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2170 r = 0;
1cb3f3ae 2171 spin_lock(&kvm->mmu_lock);
f41d335a 2172 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
9ad17b10 2173 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2174 sp->role.word);
2175 r = 1;
f41d335a 2176 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2177 }
d98ba053 2178 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2179 spin_unlock(&kvm->mmu_lock);
2180
a436036b 2181 return r;
cea0f0e7 2182}
1cb3f3ae 2183EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2184
74be52e3
SY
2185/*
2186 * The function is based on mtrr_type_lookup() in
2187 * arch/x86/kernel/cpu/mtrr/generic.c
2188 */
2189static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2190 u64 start, u64 end)
2191{
2192 int i;
2193 u64 base, mask;
2194 u8 prev_match, curr_match;
2195 int num_var_ranges = KVM_NR_VAR_MTRR;
2196
2197 if (!mtrr_state->enabled)
2198 return 0xFF;
2199
2200 /* Make end inclusive end, instead of exclusive */
2201 end--;
2202
2203 /* Look in fixed ranges. Just return the type as per start */
2204 if (mtrr_state->have_fixed && (start < 0x100000)) {
2205 int idx;
2206
2207 if (start < 0x80000) {
2208 idx = 0;
2209 idx += (start >> 16);
2210 return mtrr_state->fixed_ranges[idx];
2211 } else if (start < 0xC0000) {
2212 idx = 1 * 8;
2213 idx += ((start - 0x80000) >> 14);
2214 return mtrr_state->fixed_ranges[idx];
2215 } else if (start < 0x1000000) {
2216 idx = 3 * 8;
2217 idx += ((start - 0xC0000) >> 12);
2218 return mtrr_state->fixed_ranges[idx];
2219 }
2220 }
2221
2222 /*
2223 * Look in variable ranges
2224 * Look of multiple ranges matching this address and pick type
2225 * as per MTRR precedence
2226 */
2227 if (!(mtrr_state->enabled & 2))
2228 return mtrr_state->def_type;
2229
2230 prev_match = 0xFF;
2231 for (i = 0; i < num_var_ranges; ++i) {
2232 unsigned short start_state, end_state;
2233
2234 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2235 continue;
2236
2237 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2238 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2239 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2240 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2241
2242 start_state = ((start & mask) == (base & mask));
2243 end_state = ((end & mask) == (base & mask));
2244 if (start_state != end_state)
2245 return 0xFE;
2246
2247 if ((start & mask) != (base & mask))
2248 continue;
2249
2250 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2251 if (prev_match == 0xFF) {
2252 prev_match = curr_match;
2253 continue;
2254 }
2255
2256 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2257 curr_match == MTRR_TYPE_UNCACHABLE)
2258 return MTRR_TYPE_UNCACHABLE;
2259
2260 if ((prev_match == MTRR_TYPE_WRBACK &&
2261 curr_match == MTRR_TYPE_WRTHROUGH) ||
2262 (prev_match == MTRR_TYPE_WRTHROUGH &&
2263 curr_match == MTRR_TYPE_WRBACK)) {
2264 prev_match = MTRR_TYPE_WRTHROUGH;
2265 curr_match = MTRR_TYPE_WRTHROUGH;
2266 }
2267
2268 if (prev_match != curr_match)
2269 return MTRR_TYPE_UNCACHABLE;
2270 }
2271
2272 if (prev_match != 0xFF)
2273 return prev_match;
2274
2275 return mtrr_state->def_type;
2276}
2277
4b12f0de 2278u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2279{
2280 u8 mtrr;
2281
2282 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2283 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2284 if (mtrr == 0xfe || mtrr == 0xff)
2285 mtrr = MTRR_TYPE_WRBACK;
2286 return mtrr;
2287}
4b12f0de 2288EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2289
9cf5cf5a
XG
2290static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2291{
2292 trace_kvm_mmu_unsync_page(sp);
2293 ++vcpu->kvm->stat.mmu_unsync;
2294 sp->unsync = 1;
2295
2296 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2297}
2298
2299static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2300{
4731d4c7 2301 struct kvm_mmu_page *s;
f41d335a 2302 struct hlist_node *node;
9cf5cf5a 2303
f41d335a 2304 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 2305 if (s->unsync)
4731d4c7 2306 continue;
9cf5cf5a
XG
2307 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2308 __kvm_unsync_page(vcpu, s);
4731d4c7 2309 }
4731d4c7
MT
2310}
2311
2312static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2313 bool can_unsync)
2314{
9cf5cf5a 2315 struct kvm_mmu_page *s;
f41d335a 2316 struct hlist_node *node;
9cf5cf5a
XG
2317 bool need_unsync = false;
2318
f41d335a 2319 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
36a2e677
XG
2320 if (!can_unsync)
2321 return 1;
2322
9cf5cf5a 2323 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2324 return 1;
9cf5cf5a
XG
2325
2326 if (!need_unsync && !s->unsync) {
9cf5cf5a
XG
2327 need_unsync = true;
2328 }
4731d4c7 2329 }
9cf5cf5a
XG
2330 if (need_unsync)
2331 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2332 return 0;
2333}
2334
d555c333 2335static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2336 unsigned pte_access, int level,
c2d0ee46 2337 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2338 bool can_unsync, bool host_writable)
1c4f1fd6 2339{
6e7d0354 2340 u64 spte;
1e73f9dd 2341 int ret = 0;
64d4d521 2342
ce88decf
XG
2343 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2344 return 0;
2345
982c2565 2346 spte = PT_PRESENT_MASK;
947da538 2347 if (!speculative)
3201b5d9 2348 spte |= shadow_accessed_mask;
640d9b0d 2349
7b52345e
SY
2350 if (pte_access & ACC_EXEC_MASK)
2351 spte |= shadow_x_mask;
2352 else
2353 spte |= shadow_nx_mask;
49fde340 2354
1c4f1fd6 2355 if (pte_access & ACC_USER_MASK)
7b52345e 2356 spte |= shadow_user_mask;
49fde340 2357
852e3c19 2358 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2359 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2360 if (tdp_enabled)
4b12f0de
SY
2361 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2362 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2363
9bdbba13 2364 if (host_writable)
1403283a 2365 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2366 else
2367 pte_access &= ~ACC_WRITE_MASK;
1403283a 2368
35149e21 2369 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2370
c2288505 2371 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2372
c2193463 2373 /*
7751babd
XG
2374 * Other vcpu creates new sp in the window between
2375 * mapping_level() and acquiring mmu-lock. We can
2376 * allow guest to retry the access, the mapping can
2377 * be fixed if guest refault.
c2193463 2378 */
852e3c19 2379 if (level > PT_PAGE_TABLE_LEVEL &&
c2193463 2380 has_wrprotected_page(vcpu->kvm, gfn, level))
be38d276 2381 goto done;
38187c83 2382
49fde340 2383 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2384
ecc5589f
MT
2385 /*
2386 * Optimization: for pte sync, if spte was writable the hash
2387 * lookup is unnecessary (and expensive). Write protection
2388 * is responsibility of mmu_get_page / kvm_sync_page.
2389 * Same reasoning can be applied to dirty page accounting.
2390 */
8dae4445 2391 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2392 goto set_pte;
2393
4731d4c7 2394 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2395 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2396 __func__, gfn);
1e73f9dd 2397 ret = 1;
1c4f1fd6 2398 pte_access &= ~ACC_WRITE_MASK;
49fde340 2399 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2400 }
2401 }
2402
1c4f1fd6
AK
2403 if (pte_access & ACC_WRITE_MASK)
2404 mark_page_dirty(vcpu->kvm, gfn);
2405
38187c83 2406set_pte:
6e7d0354 2407 if (mmu_spte_update(sptep, spte))
b330aa0c 2408 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2409done:
1e73f9dd
MT
2410 return ret;
2411}
2412
d555c333 2413static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2414 unsigned pt_access, unsigned pte_access,
c2288505
XG
2415 int write_fault, int *emulate, int level, gfn_t gfn,
2416 pfn_t pfn, bool speculative, bool host_writable)
1e73f9dd
MT
2417{
2418 int was_rmapped = 0;
53a27b39 2419 int rmap_count;
1e73f9dd 2420
c2288505 2421 pgprintk("%s: spte %llx access %x write_fault %d gfn %llx\n",
d555c333 2422 __func__, *sptep, pt_access,
c2288505 2423 write_fault, gfn);
1e73f9dd 2424
d555c333 2425 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2426 /*
2427 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2428 * the parent of the now unreachable PTE.
2429 */
852e3c19
JR
2430 if (level > PT_PAGE_TABLE_LEVEL &&
2431 !is_large_pte(*sptep)) {
1e73f9dd 2432 struct kvm_mmu_page *child;
d555c333 2433 u64 pte = *sptep;
1e73f9dd
MT
2434
2435 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2436 drop_parent_pte(child, sptep);
3be2264b 2437 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2438 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2439 pgprintk("hfn old %llx new %llx\n",
d555c333 2440 spte_to_pfn(*sptep), pfn);
c3707958 2441 drop_spte(vcpu->kvm, sptep);
91546356 2442 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2443 } else
2444 was_rmapped = 1;
1e73f9dd 2445 }
852e3c19 2446
c2288505
XG
2447 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2448 true, host_writable)) {
1e73f9dd 2449 if (write_fault)
b90a0e6c 2450 *emulate = 1;
5304efde 2451 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2452 }
1e73f9dd 2453
ce88decf
XG
2454 if (unlikely(is_mmio_spte(*sptep) && emulate))
2455 *emulate = 1;
2456
d555c333 2457 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2458 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2459 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2460 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2461 *sptep, sptep);
d555c333 2462 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2463 ++vcpu->kvm->stat.lpages;
2464
ffb61bb3 2465 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2466 if (!was_rmapped) {
2467 rmap_count = rmap_add(vcpu, sptep, gfn);
2468 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2469 rmap_recycle(vcpu, sptep, gfn);
2470 }
1c4f1fd6 2471 }
cb9aaa30 2472
f3ac1a4b 2473 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2474}
2475
6aa8b732
AK
2476static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2477{
e676505a 2478 mmu_free_roots(vcpu);
6aa8b732
AK
2479}
2480
a052b42b
XG
2481static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2482{
2483 int bit7;
2484
2485 bit7 = (gpte >> 7) & 1;
2486 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2487}
2488
957ed9ef
XG
2489static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2490 bool no_dirty_log)
2491{
2492 struct kvm_memory_slot *slot;
957ed9ef 2493
5d163b1c 2494 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2495 if (!slot)
6c8ee57b 2496 return KVM_PFN_ERR_FAULT;
957ed9ef 2497
037d92dc 2498 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2499}
2500
a052b42b
XG
2501static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2502 struct kvm_mmu_page *sp, u64 *spte,
2503 u64 gpte)
2504{
2505 if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2506 goto no_present;
2507
2508 if (!is_present_gpte(gpte))
2509 goto no_present;
2510
2511 if (!(gpte & PT_ACCESSED_MASK))
2512 goto no_present;
2513
2514 return false;
2515
2516no_present:
2517 drop_spte(vcpu->kvm, spte);
2518 return true;
2519}
2520
957ed9ef
XG
2521static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2522 struct kvm_mmu_page *sp,
2523 u64 *start, u64 *end)
2524{
2525 struct page *pages[PTE_PREFETCH_NUM];
2526 unsigned access = sp->role.access;
2527 int i, ret;
2528 gfn_t gfn;
2529
2530 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2531 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2532 return -1;
2533
2534 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2535 if (ret <= 0)
2536 return -1;
2537
2538 for (i = 0; i < ret; i++, gfn++, start++)
c2288505
XG
2539 mmu_set_spte(vcpu, start, ACC_ALL, access, 0, NULL,
2540 sp->role.level, gfn, page_to_pfn(pages[i]),
2541 true, true);
957ed9ef
XG
2542
2543 return 0;
2544}
2545
2546static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2547 struct kvm_mmu_page *sp, u64 *sptep)
2548{
2549 u64 *spte, *start = NULL;
2550 int i;
2551
2552 WARN_ON(!sp->role.direct);
2553
2554 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2555 spte = sp->spt + i;
2556
2557 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2558 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2559 if (!start)
2560 continue;
2561 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2562 break;
2563 start = NULL;
2564 } else if (!start)
2565 start = spte;
2566 }
2567}
2568
2569static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2570{
2571 struct kvm_mmu_page *sp;
2572
2573 /*
2574 * Since it's no accessed bit on EPT, it's no way to
2575 * distinguish between actually accessed translations
2576 * and prefetched, so disable pte prefetch if EPT is
2577 * enabled.
2578 */
2579 if (!shadow_accessed_mask)
2580 return;
2581
2582 sp = page_header(__pa(sptep));
2583 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2584 return;
2585
2586 __direct_pte_prefetch(vcpu, sp, sptep);
2587}
2588
9f652d21 2589static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2590 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2591 bool prefault)
140754bc 2592{
9f652d21 2593 struct kvm_shadow_walk_iterator iterator;
140754bc 2594 struct kvm_mmu_page *sp;
b90a0e6c 2595 int emulate = 0;
140754bc 2596 gfn_t pseudo_gfn;
6aa8b732 2597
9f652d21 2598 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2599 if (iterator.level == level) {
612819c3
MT
2600 unsigned pte_access = ACC_ALL;
2601
612819c3 2602 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
c2288505
XG
2603 write, &emulate, level, gfn, pfn,
2604 prefault, map_writable);
957ed9ef 2605 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2606 ++vcpu->stat.pf_fixed;
2607 break;
6aa8b732
AK
2608 }
2609
c3707958 2610 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2611 u64 base_addr = iterator.addr;
2612
2613 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2614 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2615 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2616 iterator.level - 1,
2617 1, ACC_ALL, iterator.sptep);
140754bc 2618
1df9f2dc
XG
2619 mmu_spte_set(iterator.sptep,
2620 __pa(sp->spt)
2621 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2622 | shadow_user_mask | shadow_x_mask
2623 | shadow_accessed_mask);
9f652d21
AK
2624 }
2625 }
b90a0e6c 2626 return emulate;
6aa8b732
AK
2627}
2628
77db5cbd 2629static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2630{
77db5cbd
HY
2631 siginfo_t info;
2632
2633 info.si_signo = SIGBUS;
2634 info.si_errno = 0;
2635 info.si_code = BUS_MCEERR_AR;
2636 info.si_addr = (void __user *)address;
2637 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2638
77db5cbd 2639 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2640}
2641
d7c55201 2642static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156 2643{
4d8b81ab
XG
2644 /*
2645 * Do not cache the mmio info caused by writing the readonly gfn
2646 * into the spte otherwise read access on readonly gfn also can
2647 * caused mmio page fault and treat it as mmio access.
2648 * Return 1 to tell kvm to emulate it.
2649 */
2650 if (pfn == KVM_PFN_ERR_RO_FAULT)
2651 return 1;
2652
e6c1502b 2653 if (pfn == KVM_PFN_ERR_HWPOISON) {
bebb106a 2654 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2655 return 0;
d7c55201 2656 }
edba23e5 2657
d7c55201 2658 return -EFAULT;
bf998156
HY
2659}
2660
936a5fe6
AA
2661static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2662 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2663{
2664 pfn_t pfn = *pfnp;
2665 gfn_t gfn = *gfnp;
2666 int level = *levelp;
2667
2668 /*
2669 * Check if it's a transparent hugepage. If this would be an
2670 * hugetlbfs page, level wouldn't be set to
2671 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2672 * here.
2673 */
81c52c56 2674 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
936a5fe6
AA
2675 level == PT_PAGE_TABLE_LEVEL &&
2676 PageTransCompound(pfn_to_page(pfn)) &&
2677 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2678 unsigned long mask;
2679 /*
2680 * mmu_notifier_retry was successful and we hold the
2681 * mmu_lock here, so the pmd can't become splitting
2682 * from under us, and in turn
2683 * __split_huge_page_refcount() can't run from under
2684 * us and we can safely transfer the refcount from
2685 * PG_tail to PG_head as we switch the pfn to tail to
2686 * head.
2687 */
2688 *levelp = level = PT_DIRECTORY_LEVEL;
2689 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2690 VM_BUG_ON((gfn & mask) != (pfn & mask));
2691 if (pfn & mask) {
2692 gfn &= ~mask;
2693 *gfnp = gfn;
2694 kvm_release_pfn_clean(pfn);
2695 pfn &= ~mask;
c3586667 2696 kvm_get_pfn(pfn);
936a5fe6
AA
2697 *pfnp = pfn;
2698 }
2699 }
2700}
2701
d7c55201
XG
2702static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2703 pfn_t pfn, unsigned access, int *ret_val)
2704{
2705 bool ret = true;
2706
2707 /* The pfn is invalid, report the error! */
81c52c56 2708 if (unlikely(is_error_pfn(pfn))) {
d7c55201
XG
2709 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2710 goto exit;
2711 }
2712
ce88decf 2713 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2714 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2715
2716 ret = false;
2717exit:
2718 return ret;
2719}
2720
c7ba5b48
XG
2721static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2722{
2723 /*
2724 * #PF can be fast only if the shadow page table is present and it
2725 * is caused by write-protect, that means we just need change the
2726 * W bit of the spte which can be done out of mmu-lock.
2727 */
2728 if (!(error_code & PFERR_PRESENT_MASK) ||
2729 !(error_code & PFERR_WRITE_MASK))
2730 return false;
2731
2732 return true;
2733}
2734
2735static bool
2736fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2737{
2738 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2739 gfn_t gfn;
2740
2741 WARN_ON(!sp->role.direct);
2742
2743 /*
2744 * The gfn of direct spte is stable since it is calculated
2745 * by sp->gfn.
2746 */
2747 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2748
2749 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2750 mark_page_dirty(vcpu->kvm, gfn);
2751
2752 return true;
2753}
2754
2755/*
2756 * Return value:
2757 * - true: let the vcpu to access on the same address again.
2758 * - false: let the real page fault path to fix it.
2759 */
2760static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2761 u32 error_code)
2762{
2763 struct kvm_shadow_walk_iterator iterator;
2764 bool ret = false;
2765 u64 spte = 0ull;
2766
2767 if (!page_fault_can_be_fast(vcpu, error_code))
2768 return false;
2769
2770 walk_shadow_page_lockless_begin(vcpu);
2771 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2772 if (!is_shadow_present_pte(spte) || iterator.level < level)
2773 break;
2774
2775 /*
2776 * If the mapping has been changed, let the vcpu fault on the
2777 * same address again.
2778 */
2779 if (!is_rmap_spte(spte)) {
2780 ret = true;
2781 goto exit;
2782 }
2783
2784 if (!is_last_spte(spte, level))
2785 goto exit;
2786
2787 /*
2788 * Check if it is a spurious fault caused by TLB lazily flushed.
2789 *
2790 * Need not check the access of upper level table entries since
2791 * they are always ACC_ALL.
2792 */
2793 if (is_writable_pte(spte)) {
2794 ret = true;
2795 goto exit;
2796 }
2797
2798 /*
2799 * Currently, to simplify the code, only the spte write-protected
2800 * by dirty-log can be fast fixed.
2801 */
2802 if (!spte_is_locklessly_modifiable(spte))
2803 goto exit;
2804
2805 /*
2806 * Currently, fast page fault only works for direct mapping since
2807 * the gfn is not stable for indirect shadow page.
2808 * See Documentation/virtual/kvm/locking.txt to get more detail.
2809 */
2810 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2811exit:
a72faf25
XG
2812 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2813 spte, ret);
c7ba5b48
XG
2814 walk_shadow_page_lockless_end(vcpu);
2815
2816 return ret;
2817}
2818
78b2c54a 2819static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe
XG
2820 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2821
c7ba5b48
XG
2822static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2823 gfn_t gfn, bool prefault)
10589a46
MT
2824{
2825 int r;
852e3c19 2826 int level;
936a5fe6 2827 int force_pt_level;
35149e21 2828 pfn_t pfn;
e930bffe 2829 unsigned long mmu_seq;
c7ba5b48 2830 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2831
936a5fe6
AA
2832 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2833 if (likely(!force_pt_level)) {
2834 level = mapping_level(vcpu, gfn);
2835 /*
2836 * This path builds a PAE pagetable - so we can map
2837 * 2mb pages at maximum. Therefore check if the level
2838 * is larger than that.
2839 */
2840 if (level > PT_DIRECTORY_LEVEL)
2841 level = PT_DIRECTORY_LEVEL;
852e3c19 2842
936a5fe6
AA
2843 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2844 } else
2845 level = PT_PAGE_TABLE_LEVEL;
05da4558 2846
c7ba5b48
XG
2847 if (fast_page_fault(vcpu, v, level, error_code))
2848 return 0;
2849
e930bffe 2850 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2851 smp_rmb();
060c2abe 2852
78b2c54a 2853 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2854 return 0;
aaee2c94 2855
d7c55201
XG
2856 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2857 return r;
d196e343 2858
aaee2c94 2859 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 2860 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 2861 goto out_unlock;
eb787d10 2862 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
2863 if (likely(!force_pt_level))
2864 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2865 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2866 prefault);
aaee2c94
MT
2867 spin_unlock(&vcpu->kvm->mmu_lock);
2868
aaee2c94 2869
10589a46 2870 return r;
e930bffe
AA
2871
2872out_unlock:
2873 spin_unlock(&vcpu->kvm->mmu_lock);
2874 kvm_release_pfn_clean(pfn);
2875 return 0;
10589a46
MT
2876}
2877
2878
17ac10ad
AK
2879static void mmu_free_roots(struct kvm_vcpu *vcpu)
2880{
2881 int i;
4db35314 2882 struct kvm_mmu_page *sp;
d98ba053 2883 LIST_HEAD(invalid_list);
17ac10ad 2884
ad312c7c 2885 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2886 return;
aaee2c94 2887 spin_lock(&vcpu->kvm->mmu_lock);
81407ca5
JR
2888 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2889 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2890 vcpu->arch.mmu.direct_map)) {
ad312c7c 2891 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2892
4db35314
AK
2893 sp = page_header(root);
2894 --sp->root_count;
d98ba053
XG
2895 if (!sp->root_count && sp->role.invalid) {
2896 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2897 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2898 }
ad312c7c 2899 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
aaee2c94 2900 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad
AK
2901 return;
2902 }
17ac10ad 2903 for (i = 0; i < 4; ++i) {
ad312c7c 2904 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2905
417726a3 2906 if (root) {
417726a3 2907 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2908 sp = page_header(root);
2909 --sp->root_count;
2e53d63a 2910 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2911 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2912 &invalid_list);
417726a3 2913 }
ad312c7c 2914 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2915 }
d98ba053 2916 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2917 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2918 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2919}
2920
8986ecc0
MT
2921static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2922{
2923 int ret = 0;
2924
2925 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 2926 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
2927 ret = 1;
2928 }
2929
2930 return ret;
2931}
2932
651dd37a
JR
2933static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2934{
2935 struct kvm_mmu_page *sp;
7ebaf15e 2936 unsigned i;
651dd37a
JR
2937
2938 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2939 spin_lock(&vcpu->kvm->mmu_lock);
2940 kvm_mmu_free_some_pages(vcpu);
2941 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2942 1, ACC_ALL, NULL);
2943 ++sp->root_count;
2944 spin_unlock(&vcpu->kvm->mmu_lock);
2945 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2946 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2947 for (i = 0; i < 4; ++i) {
2948 hpa_t root = vcpu->arch.mmu.pae_root[i];
2949
2950 ASSERT(!VALID_PAGE(root));
2951 spin_lock(&vcpu->kvm->mmu_lock);
2952 kvm_mmu_free_some_pages(vcpu);
649497d1
AK
2953 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2954 i << 30,
651dd37a
JR
2955 PT32_ROOT_LEVEL, 1, ACC_ALL,
2956 NULL);
2957 root = __pa(sp->spt);
2958 ++sp->root_count;
2959 spin_unlock(&vcpu->kvm->mmu_lock);
2960 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 2961 }
6292757f 2962 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
2963 } else
2964 BUG();
2965
2966 return 0;
2967}
2968
2969static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 2970{
4db35314 2971 struct kvm_mmu_page *sp;
81407ca5
JR
2972 u64 pdptr, pm_mask;
2973 gfn_t root_gfn;
2974 int i;
3bb65a22 2975
5777ed34 2976 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 2977
651dd37a
JR
2978 if (mmu_check_root(vcpu, root_gfn))
2979 return 1;
2980
2981 /*
2982 * Do we shadow a long mode page table? If so we need to
2983 * write-protect the guests page table root.
2984 */
2985 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 2986 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
2987
2988 ASSERT(!VALID_PAGE(root));
651dd37a 2989
8facbbff 2990 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2991 kvm_mmu_free_some_pages(vcpu);
651dd37a
JR
2992 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2993 0, ACC_ALL, NULL);
4db35314
AK
2994 root = __pa(sp->spt);
2995 ++sp->root_count;
8facbbff 2996 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2997 vcpu->arch.mmu.root_hpa = root;
8986ecc0 2998 return 0;
17ac10ad 2999 }
f87f9288 3000
651dd37a
JR
3001 /*
3002 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3003 * or a PAE 3-level page table. In either case we need to be aware that
3004 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3005 */
81407ca5
JR
3006 pm_mask = PT_PRESENT_MASK;
3007 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3008 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3009
17ac10ad 3010 for (i = 0; i < 4; ++i) {
ad312c7c 3011 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
3012
3013 ASSERT(!VALID_PAGE(root));
ad312c7c 3014 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3015 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3016 if (!is_present_gpte(pdptr)) {
ad312c7c 3017 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3018 continue;
3019 }
6de4f3ad 3020 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3021 if (mmu_check_root(vcpu, root_gfn))
3022 return 1;
5a7388c2 3023 }
8facbbff 3024 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 3025 kvm_mmu_free_some_pages(vcpu);
4db35314 3026 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3027 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3028 ACC_ALL, NULL);
4db35314
AK
3029 root = __pa(sp->spt);
3030 ++sp->root_count;
8facbbff
AK
3031 spin_unlock(&vcpu->kvm->mmu_lock);
3032
81407ca5 3033 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3034 }
6292757f 3035 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3036
3037 /*
3038 * If we shadow a 32 bit page table with a long mode page
3039 * table we enter this path.
3040 */
3041 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3042 if (vcpu->arch.mmu.lm_root == NULL) {
3043 /*
3044 * The additional page necessary for this is only
3045 * allocated on demand.
3046 */
3047
3048 u64 *lm_root;
3049
3050 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3051 if (lm_root == NULL)
3052 return 1;
3053
3054 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3055
3056 vcpu->arch.mmu.lm_root = lm_root;
3057 }
3058
3059 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3060 }
3061
8986ecc0 3062 return 0;
17ac10ad
AK
3063}
3064
651dd37a
JR
3065static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3066{
3067 if (vcpu->arch.mmu.direct_map)
3068 return mmu_alloc_direct_roots(vcpu);
3069 else
3070 return mmu_alloc_shadow_roots(vcpu);
3071}
3072
0ba73cda
MT
3073static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3074{
3075 int i;
3076 struct kvm_mmu_page *sp;
3077
81407ca5
JR
3078 if (vcpu->arch.mmu.direct_map)
3079 return;
3080
0ba73cda
MT
3081 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3082 return;
6903074c 3083
bebb106a 3084 vcpu_clear_mmio_info(vcpu, ~0ul);
0375f7fa 3085 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3086 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3087 hpa_t root = vcpu->arch.mmu.root_hpa;
3088 sp = page_header(root);
3089 mmu_sync_children(vcpu, sp);
0375f7fa 3090 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3091 return;
3092 }
3093 for (i = 0; i < 4; ++i) {
3094 hpa_t root = vcpu->arch.mmu.pae_root[i];
3095
8986ecc0 3096 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3097 root &= PT64_BASE_ADDR_MASK;
3098 sp = page_header(root);
3099 mmu_sync_children(vcpu, sp);
3100 }
3101 }
0375f7fa 3102 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3103}
3104
3105void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3106{
3107 spin_lock(&vcpu->kvm->mmu_lock);
3108 mmu_sync_roots(vcpu);
6cffe8ca 3109 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3110}
3111
1871c602 3112static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3113 u32 access, struct x86_exception *exception)
6aa8b732 3114{
ab9ae313
AK
3115 if (exception)
3116 exception->error_code = 0;
6aa8b732
AK
3117 return vaddr;
3118}
3119
6539e738 3120static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3121 u32 access,
3122 struct x86_exception *exception)
6539e738 3123{
ab9ae313
AK
3124 if (exception)
3125 exception->error_code = 0;
6539e738
JR
3126 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3127}
3128
ce88decf
XG
3129static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3130{
3131 if (direct)
3132 return vcpu_match_mmio_gpa(vcpu, addr);
3133
3134 return vcpu_match_mmio_gva(vcpu, addr);
3135}
3136
3137
3138/*
3139 * On direct hosts, the last spte is only allows two states
3140 * for mmio page fault:
3141 * - It is the mmio spte
3142 * - It is zapped or it is being zapped.
3143 *
3144 * This function completely checks the spte when the last spte
3145 * is not the mmio spte.
3146 */
3147static bool check_direct_spte_mmio_pf(u64 spte)
3148{
3149 return __check_direct_spte_mmio_pf(spte);
3150}
3151
3152static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3153{
3154 struct kvm_shadow_walk_iterator iterator;
3155 u64 spte = 0ull;
3156
3157 walk_shadow_page_lockless_begin(vcpu);
3158 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3159 if (!is_shadow_present_pte(spte))
3160 break;
3161 walk_shadow_page_lockless_end(vcpu);
3162
3163 return spte;
3164}
3165
3166/*
3167 * If it is a real mmio page fault, return 1 and emulat the instruction
3168 * directly, return 0 to let CPU fault again on the address, -1 is
3169 * returned if bug is detected.
3170 */
3171int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3172{
3173 u64 spte;
3174
3175 if (quickly_check_mmio_pf(vcpu, addr, direct))
3176 return 1;
3177
3178 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3179
3180 if (is_mmio_spte(spte)) {
3181 gfn_t gfn = get_mmio_spte_gfn(spte);
3182 unsigned access = get_mmio_spte_access(spte);
3183
3184 if (direct)
3185 addr = 0;
4f022648
XG
3186
3187 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf
XG
3188 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3189 return 1;
3190 }
3191
3192 /*
3193 * It's ok if the gva is remapped by other cpus on shadow guest,
3194 * it's a BUG if the gfn is not a mmio page.
3195 */
3196 if (direct && !check_direct_spte_mmio_pf(spte))
3197 return -1;
3198
3199 /*
3200 * If the page table is zapped by other cpus, let CPU fault again on
3201 * the address.
3202 */
3203 return 0;
3204}
3205EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3206
3207static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3208 u32 error_code, bool direct)
3209{
3210 int ret;
3211
3212 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3213 WARN_ON(ret < 0);
3214 return ret;
3215}
3216
6aa8b732 3217static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3218 u32 error_code, bool prefault)
6aa8b732 3219{
e833240f 3220 gfn_t gfn;
e2dec939 3221 int r;
6aa8b732 3222
b8688d51 3223 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf
XG
3224
3225 if (unlikely(error_code & PFERR_RSVD_MASK))
3226 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3227
e2dec939
AK
3228 r = mmu_topup_memory_caches(vcpu);
3229 if (r)
3230 return r;
714b93da 3231
6aa8b732 3232 ASSERT(vcpu);
ad312c7c 3233 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3234
e833240f 3235 gfn = gva >> PAGE_SHIFT;
6aa8b732 3236
e833240f 3237 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3238 error_code, gfn, prefault);
6aa8b732
AK
3239}
3240
7e1fbeac 3241static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3242{
3243 struct kvm_arch_async_pf arch;
fb67e14f 3244
7c90705b 3245 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3246 arch.gfn = gfn;
c4806acd 3247 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3248 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3249
3250 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3251}
3252
3253static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3254{
3255 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3256 kvm_event_needs_reinjection(vcpu)))
3257 return false;
3258
3259 return kvm_x86_ops->interrupt_allowed(vcpu);
3260}
3261
78b2c54a 3262static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3263 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3264{
3265 bool async;
3266
612819c3 3267 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3268
3269 if (!async)
3270 return false; /* *pfn has correct page already */
3271
78b2c54a 3272 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3273 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3274 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3275 trace_kvm_async_pf_doublefault(gva, gfn);
3276 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3277 return true;
3278 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3279 return true;
3280 }
3281
612819c3 3282 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3283
3284 return false;
3285}
3286
56028d08 3287static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3288 bool prefault)
fb72d167 3289{
35149e21 3290 pfn_t pfn;
fb72d167 3291 int r;
852e3c19 3292 int level;
936a5fe6 3293 int force_pt_level;
05da4558 3294 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3295 unsigned long mmu_seq;
612819c3
MT
3296 int write = error_code & PFERR_WRITE_MASK;
3297 bool map_writable;
fb72d167
JR
3298
3299 ASSERT(vcpu);
3300 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3301
ce88decf
XG
3302 if (unlikely(error_code & PFERR_RSVD_MASK))
3303 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3304
fb72d167
JR
3305 r = mmu_topup_memory_caches(vcpu);
3306 if (r)
3307 return r;
3308
936a5fe6
AA
3309 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3310 if (likely(!force_pt_level)) {
3311 level = mapping_level(vcpu, gfn);
3312 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3313 } else
3314 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3315
c7ba5b48
XG
3316 if (fast_page_fault(vcpu, gpa, level, error_code))
3317 return 0;
3318
e930bffe 3319 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3320 smp_rmb();
af585b92 3321
78b2c54a 3322 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3323 return 0;
3324
d7c55201
XG
3325 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3326 return r;
3327
fb72d167 3328 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3329 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3330 goto out_unlock;
fb72d167 3331 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
3332 if (likely(!force_pt_level))
3333 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3334 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3335 level, gfn, pfn, prefault);
fb72d167 3336 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3337
3338 return r;
e930bffe
AA
3339
3340out_unlock:
3341 spin_unlock(&vcpu->kvm->mmu_lock);
3342 kvm_release_pfn_clean(pfn);
3343 return 0;
fb72d167
JR
3344}
3345
6aa8b732
AK
3346static void nonpaging_free(struct kvm_vcpu *vcpu)
3347{
17ac10ad 3348 mmu_free_roots(vcpu);
6aa8b732
AK
3349}
3350
52fde8df
JR
3351static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3352 struct kvm_mmu *context)
6aa8b732 3353{
6aa8b732
AK
3354 context->new_cr3 = nonpaging_new_cr3;
3355 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
3356 context->gva_to_gpa = nonpaging_gva_to_gpa;
3357 context->free = nonpaging_free;
e8bc217a 3358 context->sync_page = nonpaging_sync_page;
a7052897 3359 context->invlpg = nonpaging_invlpg;
0f53b5b1 3360 context->update_pte = nonpaging_update_pte;
cea0f0e7 3361 context->root_level = 0;
6aa8b732 3362 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3363 context->root_hpa = INVALID_PAGE;
c5a78f2b 3364 context->direct_map = true;
2d48a985 3365 context->nx = false;
6aa8b732
AK
3366 return 0;
3367}
3368
d835dfec 3369void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3370{
1165f5fe 3371 ++vcpu->stat.tlb_flush;
a8eeb04a 3372 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732
AK
3373}
3374
3375static void paging_new_cr3(struct kvm_vcpu *vcpu)
3376{
9f8fe504 3377 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
cea0f0e7 3378 mmu_free_roots(vcpu);
6aa8b732
AK
3379}
3380
5777ed34
JR
3381static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3382{
9f8fe504 3383 return kvm_read_cr3(vcpu);
5777ed34
JR
3384}
3385
6389ee94
AK
3386static void inject_page_fault(struct kvm_vcpu *vcpu,
3387 struct x86_exception *fault)
6aa8b732 3388{
6389ee94 3389 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3390}
3391
6aa8b732
AK
3392static void paging_free(struct kvm_vcpu *vcpu)
3393{
3394 nonpaging_free(vcpu);
3395}
3396
8ea667f2
AK
3397static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3398{
3399 unsigned mask;
3400
3401 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3402
3403 mask = (unsigned)~ACC_WRITE_MASK;
3404 /* Allow write access to dirty gptes */
3405 mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3406 *access &= mask;
3407}
3408
ce88decf
XG
3409static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3410 int *nr_present)
3411{
3412 if (unlikely(is_mmio_spte(*sptep))) {
3413 if (gfn != get_mmio_spte_gfn(*sptep)) {
3414 mmu_spte_clear_no_track(sptep);
3415 return true;
3416 }
3417
3418 (*nr_present)++;
3419 mark_mmio_spte(sptep, gfn, access);
3420 return true;
3421 }
3422
3423 return false;
3424}
3425
3d34adec
AK
3426static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3427{
3428 unsigned access;
3429
3430 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3431 access &= ~(gpte >> PT64_NX_SHIFT);
3432
3433 return access;
3434}
3435
6fd01b71
AK
3436static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3437{
3438 unsigned index;
3439
3440 index = level - 1;
3441 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3442 return mmu->last_pte_bitmap & (1 << index);
3443}
3444
6aa8b732
AK
3445#define PTTYPE 64
3446#include "paging_tmpl.h"
3447#undef PTTYPE
3448
3449#define PTTYPE 32
3450#include "paging_tmpl.h"
3451#undef PTTYPE
3452
52fde8df 3453static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3454 struct kvm_mmu *context)
82725b20 3455{
82725b20
DE
3456 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3457 u64 exb_bit_rsvd = 0;
3458
2d48a985 3459 if (!context->nx)
82725b20 3460 exb_bit_rsvd = rsvd_bits(63, 63);
4d6931c3 3461 switch (context->root_level) {
82725b20
DE
3462 case PT32_ROOT_LEVEL:
3463 /* no rsvd bits for 2 level 4K page table entries */
3464 context->rsvd_bits_mask[0][1] = 0;
3465 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3466 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3467
3468 if (!is_pse(vcpu)) {
3469 context->rsvd_bits_mask[1][1] = 0;
3470 break;
3471 }
3472
82725b20
DE
3473 if (is_cpuid_PSE36())
3474 /* 36bits PSE 4MB page */
3475 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3476 else
3477 /* 32 bits PSE 4MB page */
3478 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3479 break;
3480 case PT32E_ROOT_LEVEL:
20c466b5
DE
3481 context->rsvd_bits_mask[0][2] =
3482 rsvd_bits(maxphyaddr, 63) |
3483 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3484 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3485 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3486 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3487 rsvd_bits(maxphyaddr, 62); /* PTE */
3488 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3489 rsvd_bits(maxphyaddr, 62) |
3490 rsvd_bits(13, 20); /* large page */
f815bce8 3491 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3492 break;
3493 case PT64_ROOT_LEVEL:
3494 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3495 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3496 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3497 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3498 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3499 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3500 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3501 rsvd_bits(maxphyaddr, 51);
3502 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3503 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3504 rsvd_bits(maxphyaddr, 51) |
3505 rsvd_bits(13, 29);
82725b20 3506 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3507 rsvd_bits(maxphyaddr, 51) |
3508 rsvd_bits(13, 20); /* large page */
f815bce8 3509 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3510 break;
3511 }
3512}
3513
97d64b78
AK
3514static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3515{
3516 unsigned bit, byte, pfec;
3517 u8 map;
3518 bool fault, x, w, u, wf, uf, ff, smep;
3519
3520 smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3521 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3522 pfec = byte << 1;
3523 map = 0;
3524 wf = pfec & PFERR_WRITE_MASK;
3525 uf = pfec & PFERR_USER_MASK;
3526 ff = pfec & PFERR_FETCH_MASK;
3527 for (bit = 0; bit < 8; ++bit) {
3528 x = bit & ACC_EXEC_MASK;
3529 w = bit & ACC_WRITE_MASK;
3530 u = bit & ACC_USER_MASK;
3531
3532 /* Not really needed: !nx will cause pte.nx to fault */
3533 x |= !mmu->nx;
3534 /* Allow supervisor writes if !cr0.wp */
3535 w |= !is_write_protection(vcpu) && !uf;
3536 /* Disallow supervisor fetches of user code if cr4.smep */
3537 x &= !(smep && u && !uf);
3538
3539 fault = (ff && !x) || (uf && !u) || (wf && !w);
3540 map |= fault << bit;
3541 }
3542 mmu->permissions[byte] = map;
3543 }
3544}
3545
6fd01b71
AK
3546static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3547{
3548 u8 map;
3549 unsigned level, root_level = mmu->root_level;
3550 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3551
3552 if (root_level == PT32E_ROOT_LEVEL)
3553 --root_level;
3554 /* PT_PAGE_TABLE_LEVEL always terminates */
3555 map = 1 | (1 << ps_set_index);
3556 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3557 if (level <= PT_PDPE_LEVEL
3558 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3559 map |= 1 << (ps_set_index | (level - 1));
3560 }
3561 mmu->last_pte_bitmap = map;
3562}
3563
52fde8df
JR
3564static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3565 struct kvm_mmu *context,
3566 int level)
6aa8b732 3567{
2d48a985 3568 context->nx = is_nx(vcpu);
4d6931c3 3569 context->root_level = level;
2d48a985 3570
4d6931c3 3571 reset_rsvds_bits_mask(vcpu, context);
97d64b78 3572 update_permission_bitmask(vcpu, context);
6fd01b71 3573 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3574
3575 ASSERT(is_pae(vcpu));
3576 context->new_cr3 = paging_new_cr3;
3577 context->page_fault = paging64_page_fault;
6aa8b732 3578 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3579 context->sync_page = paging64_sync_page;
a7052897 3580 context->invlpg = paging64_invlpg;
0f53b5b1 3581 context->update_pte = paging64_update_pte;
6aa8b732 3582 context->free = paging_free;
17ac10ad 3583 context->shadow_root_level = level;
17c3ba9d 3584 context->root_hpa = INVALID_PAGE;
c5a78f2b 3585 context->direct_map = false;
6aa8b732
AK
3586 return 0;
3587}
3588
52fde8df
JR
3589static int paging64_init_context(struct kvm_vcpu *vcpu,
3590 struct kvm_mmu *context)
17ac10ad 3591{
52fde8df 3592 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3593}
3594
52fde8df
JR
3595static int paging32_init_context(struct kvm_vcpu *vcpu,
3596 struct kvm_mmu *context)
6aa8b732 3597{
2d48a985 3598 context->nx = false;
4d6931c3 3599 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3600
4d6931c3 3601 reset_rsvds_bits_mask(vcpu, context);
97d64b78 3602 update_permission_bitmask(vcpu, context);
6fd01b71 3603 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3604
3605 context->new_cr3 = paging_new_cr3;
3606 context->page_fault = paging32_page_fault;
6aa8b732
AK
3607 context->gva_to_gpa = paging32_gva_to_gpa;
3608 context->free = paging_free;
e8bc217a 3609 context->sync_page = paging32_sync_page;
a7052897 3610 context->invlpg = paging32_invlpg;
0f53b5b1 3611 context->update_pte = paging32_update_pte;
6aa8b732 3612 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3613 context->root_hpa = INVALID_PAGE;
c5a78f2b 3614 context->direct_map = false;
6aa8b732
AK
3615 return 0;
3616}
3617
52fde8df
JR
3618static int paging32E_init_context(struct kvm_vcpu *vcpu,
3619 struct kvm_mmu *context)
6aa8b732 3620{
52fde8df 3621 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3622}
3623
fb72d167
JR
3624static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3625{
14dfe855 3626 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3627
c445f8ef 3628 context->base_role.word = 0;
fb72d167
JR
3629 context->new_cr3 = nonpaging_new_cr3;
3630 context->page_fault = tdp_page_fault;
3631 context->free = nonpaging_free;
e8bc217a 3632 context->sync_page = nonpaging_sync_page;
a7052897 3633 context->invlpg = nonpaging_invlpg;
0f53b5b1 3634 context->update_pte = nonpaging_update_pte;
67253af5 3635 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3636 context->root_hpa = INVALID_PAGE;
c5a78f2b 3637 context->direct_map = true;
1c97f0a0 3638 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3639 context->get_cr3 = get_cr3;
e4e517b4 3640 context->get_pdptr = kvm_pdptr_read;
cb659db8 3641 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3642
3643 if (!is_paging(vcpu)) {
2d48a985 3644 context->nx = false;
fb72d167
JR
3645 context->gva_to_gpa = nonpaging_gva_to_gpa;
3646 context->root_level = 0;
3647 } else if (is_long_mode(vcpu)) {
2d48a985 3648 context->nx = is_nx(vcpu);
fb72d167 3649 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3650 reset_rsvds_bits_mask(vcpu, context);
3651 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3652 } else if (is_pae(vcpu)) {
2d48a985 3653 context->nx = is_nx(vcpu);
fb72d167 3654 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3655 reset_rsvds_bits_mask(vcpu, context);
3656 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3657 } else {
2d48a985 3658 context->nx = false;
fb72d167 3659 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3660 reset_rsvds_bits_mask(vcpu, context);
3661 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3662 }
3663
97d64b78 3664 update_permission_bitmask(vcpu, context);
6fd01b71 3665 update_last_pte_bitmap(vcpu, context);
97d64b78 3666
fb72d167
JR
3667 return 0;
3668}
3669
52fde8df 3670int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3671{
a770f6f2 3672 int r;
411c588d 3673 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3674 ASSERT(vcpu);
ad312c7c 3675 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3676
3677 if (!is_paging(vcpu))
52fde8df 3678 r = nonpaging_init_context(vcpu, context);
a9058ecd 3679 else if (is_long_mode(vcpu))
52fde8df 3680 r = paging64_init_context(vcpu, context);
6aa8b732 3681 else if (is_pae(vcpu))
52fde8df 3682 r = paging32E_init_context(vcpu, context);
6aa8b732 3683 else
52fde8df 3684 r = paging32_init_context(vcpu, context);
a770f6f2 3685
5b7e0102 3686 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3687 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3688 vcpu->arch.mmu.base_role.smep_andnot_wp
3689 = smep && !is_write_protection(vcpu);
52fde8df
JR
3690
3691 return r;
3692}
3693EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3694
3695static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3696{
14dfe855 3697 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
52fde8df 3698
14dfe855
JR
3699 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3700 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3701 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3702 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
a770f6f2
AK
3703
3704 return r;
6aa8b732
AK
3705}
3706
02f59dc9
JR
3707static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3708{
3709 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3710
3711 g_context->get_cr3 = get_cr3;
e4e517b4 3712 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3713 g_context->inject_page_fault = kvm_inject_page_fault;
3714
3715 /*
3716 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3717 * translation of l2_gpa to l1_gpa addresses is done using the
3718 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3719 * functions between mmu and nested_mmu are swapped.
3720 */
3721 if (!is_paging(vcpu)) {
2d48a985 3722 g_context->nx = false;
02f59dc9
JR
3723 g_context->root_level = 0;
3724 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3725 } else if (is_long_mode(vcpu)) {
2d48a985 3726 g_context->nx = is_nx(vcpu);
02f59dc9 3727 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3728 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3729 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3730 } else if (is_pae(vcpu)) {
2d48a985 3731 g_context->nx = is_nx(vcpu);
02f59dc9 3732 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3733 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3734 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3735 } else {
2d48a985 3736 g_context->nx = false;
02f59dc9 3737 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3738 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3739 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3740 }
3741
97d64b78 3742 update_permission_bitmask(vcpu, g_context);
6fd01b71 3743 update_last_pte_bitmap(vcpu, g_context);
97d64b78 3744
02f59dc9
JR
3745 return 0;
3746}
3747
fb72d167
JR
3748static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3749{
02f59dc9
JR
3750 if (mmu_is_nested(vcpu))
3751 return init_kvm_nested_mmu(vcpu);
3752 else if (tdp_enabled)
fb72d167
JR
3753 return init_kvm_tdp_mmu(vcpu);
3754 else
3755 return init_kvm_softmmu(vcpu);
3756}
3757
6aa8b732
AK
3758static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3759{
3760 ASSERT(vcpu);
62ad0755
SY
3761 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3762 /* mmu.free() should set root_hpa = INVALID_PAGE */
ad312c7c 3763 vcpu->arch.mmu.free(vcpu);
6aa8b732
AK
3764}
3765
3766int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
17c3ba9d
AK
3767{
3768 destroy_kvm_mmu(vcpu);
f8f7e5ee 3769 return init_kvm_mmu(vcpu);
17c3ba9d 3770}
8668a3c4 3771EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3772
3773int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3774{
714b93da
AK
3775 int r;
3776
e2dec939 3777 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3778 if (r)
3779 goto out;
8986ecc0 3780 r = mmu_alloc_roots(vcpu);
8facbbff 3781 spin_lock(&vcpu->kvm->mmu_lock);
0ba73cda 3782 mmu_sync_roots(vcpu);
aaee2c94 3783 spin_unlock(&vcpu->kvm->mmu_lock);
8986ecc0
MT
3784 if (r)
3785 goto out;
3662cb1c 3786 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3787 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3788out:
3789 return r;
6aa8b732 3790}
17c3ba9d
AK
3791EXPORT_SYMBOL_GPL(kvm_mmu_load);
3792
3793void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3794{
3795 mmu_free_roots(vcpu);
3796}
4b16184c 3797EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3798
0028425f 3799static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3800 struct kvm_mmu_page *sp, u64 *spte,
3801 const void *new)
0028425f 3802{
30945387 3803 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3804 ++vcpu->kvm->stat.mmu_pde_zapped;
3805 return;
30945387 3806 }
0028425f 3807
4cee5764 3808 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3809 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3810}
3811
79539cec
AK
3812static bool need_remote_flush(u64 old, u64 new)
3813{
3814 if (!is_shadow_present_pte(old))
3815 return false;
3816 if (!is_shadow_present_pte(new))
3817 return true;
3818 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3819 return true;
3820 old ^= PT64_NX_MASK;
3821 new ^= PT64_NX_MASK;
3822 return (old & ~new & PT64_PERM_MASK) != 0;
3823}
3824
0671a8e7
XG
3825static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3826 bool remote_flush, bool local_flush)
79539cec 3827{
0671a8e7
XG
3828 if (zap_page)
3829 return;
3830
3831 if (remote_flush)
79539cec 3832 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3833 else if (local_flush)
79539cec
AK
3834 kvm_mmu_flush_tlb(vcpu);
3835}
3836
889e5cbc
XG
3837static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3838 const u8 *new, int *bytes)
da4a00f0 3839{
889e5cbc
XG
3840 u64 gentry;
3841 int r;
72016f3a 3842
72016f3a
AK
3843 /*
3844 * Assume that the pte write on a page table of the same type
49b26e26
XG
3845 * as the current vcpu paging mode since we update the sptes only
3846 * when they have the same mode.
72016f3a 3847 */
889e5cbc 3848 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3849 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3850 *gpa &= ~(gpa_t)7;
3851 *bytes = 8;
3852 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
72016f3a
AK
3853 if (r)
3854 gentry = 0;
08e850c6
AK
3855 new = (const u8 *)&gentry;
3856 }
3857
889e5cbc 3858 switch (*bytes) {
08e850c6
AK
3859 case 4:
3860 gentry = *(const u32 *)new;
3861 break;
3862 case 8:
3863 gentry = *(const u64 *)new;
3864 break;
3865 default:
3866 gentry = 0;
3867 break;
72016f3a
AK
3868 }
3869
889e5cbc
XG
3870 return gentry;
3871}
3872
3873/*
3874 * If we're seeing too many writes to a page, it may no longer be a page table,
3875 * or we may be forking, in which case it is better to unmap the page.
3876 */
a138fe75 3877static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 3878{
a30f47cb
XG
3879 /*
3880 * Skip write-flooding detected for the sp whose level is 1, because
3881 * it can become unsync, then the guest page is not write-protected.
3882 */
f71fa31f 3883 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 3884 return false;
3246af0e 3885
a30f47cb 3886 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
3887}
3888
3889/*
3890 * Misaligned accesses are too much trouble to fix up; also, they usually
3891 * indicate a page is not used as a page table.
3892 */
3893static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3894 int bytes)
3895{
3896 unsigned offset, pte_size, misaligned;
3897
3898 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3899 gpa, bytes, sp->role.word);
3900
3901 offset = offset_in_page(gpa);
3902 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
3903
3904 /*
3905 * Sometimes, the OS only writes the last one bytes to update status
3906 * bits, for example, in linux, andb instruction is used in clear_bit().
3907 */
3908 if (!(offset & (pte_size - 1)) && bytes == 1)
3909 return false;
3910
889e5cbc
XG
3911 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3912 misaligned |= bytes < 4;
3913
3914 return misaligned;
3915}
3916
3917static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3918{
3919 unsigned page_offset, quadrant;
3920 u64 *spte;
3921 int level;
3922
3923 page_offset = offset_in_page(gpa);
3924 level = sp->role.level;
3925 *nspte = 1;
3926 if (!sp->role.cr4_pae) {
3927 page_offset <<= 1; /* 32->64 */
3928 /*
3929 * A 32-bit pde maps 4MB while the shadow pdes map
3930 * only 2MB. So we need to double the offset again
3931 * and zap two pdes instead of one.
3932 */
3933 if (level == PT32_ROOT_LEVEL) {
3934 page_offset &= ~7; /* kill rounding error */
3935 page_offset <<= 1;
3936 *nspte = 2;
3937 }
3938 quadrant = page_offset >> PAGE_SHIFT;
3939 page_offset &= ~PAGE_MASK;
3940 if (quadrant != sp->role.quadrant)
3941 return NULL;
3942 }
3943
3944 spte = &sp->spt[page_offset / sizeof(*spte)];
3945 return spte;
3946}
3947
3948void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3949 const u8 *new, int bytes)
3950{
3951 gfn_t gfn = gpa >> PAGE_SHIFT;
3952 union kvm_mmu_page_role mask = { .word = 0 };
3953 struct kvm_mmu_page *sp;
3954 struct hlist_node *node;
3955 LIST_HEAD(invalid_list);
3956 u64 entry, gentry, *spte;
3957 int npte;
a30f47cb 3958 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
3959
3960 /*
3961 * If we don't have indirect shadow pages, it means no page is
3962 * write-protected, so we can exit simply.
3963 */
3964 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3965 return;
3966
3967 zap_page = remote_flush = local_flush = false;
3968
3969 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3970
3971 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3972
3973 /*
3974 * No need to care whether allocation memory is successful
3975 * or not since pte prefetch is skiped if it does not have
3976 * enough objects in the cache.
3977 */
3978 mmu_topup_memory_caches(vcpu);
3979
3980 spin_lock(&vcpu->kvm->mmu_lock);
3981 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 3982 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 3983
fa1de2bf 3984 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
f41d335a 3985 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
a30f47cb 3986 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 3987 detect_write_flooding(sp)) {
0671a8e7 3988 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 3989 &invalid_list);
4cee5764 3990 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
3991 continue;
3992 }
889e5cbc
XG
3993
3994 spte = get_written_sptes(sp, gpa, &npte);
3995 if (!spte)
3996 continue;
3997
0671a8e7 3998 local_flush = true;
ac1b714e 3999 while (npte--) {
79539cec 4000 entry = *spte;
38e3b2b2 4001 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4002 if (gentry &&
4003 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4004 & mask.word) && rmap_can_add(vcpu))
7c562522 4005 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
0671a8e7
XG
4006 if (!remote_flush && need_remote_flush(entry, *spte))
4007 remote_flush = true;
ac1b714e 4008 ++spte;
9b7a0325 4009 }
9b7a0325 4010 }
0671a8e7 4011 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 4012 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 4013 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4014 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4015}
4016
a436036b
AK
4017int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4018{
10589a46
MT
4019 gpa_t gpa;
4020 int r;
a436036b 4021
c5a78f2b 4022 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4023 return 0;
4024
1871c602 4025 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4026
10589a46 4027 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4028
10589a46 4029 return r;
a436036b 4030}
577bdc49 4031EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4032
22d95b12 4033void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
ebeace86 4034{
d98ba053 4035 LIST_HEAD(invalid_list);
103ad25a 4036
e0df7b9f 4037 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3b80fffe 4038 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4db35314 4039 struct kvm_mmu_page *sp;
ebeace86 4040
f05e70ac 4041 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4db35314 4042 struct kvm_mmu_page, link);
e0df7b9f 4043 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 4044 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4045 }
aa6bd187 4046 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4047}
ebeace86 4048
1cb3f3ae
XG
4049static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4050{
4051 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4052 return vcpu_match_mmio_gpa(vcpu, addr);
4053
4054 return vcpu_match_mmio_gva(vcpu, addr);
4055}
4056
dc25e89e
AP
4057int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4058 void *insn, int insn_len)
3067714c 4059{
1cb3f3ae 4060 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
4061 enum emulation_result er;
4062
56028d08 4063 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
4064 if (r < 0)
4065 goto out;
4066
4067 if (!r) {
4068 r = 1;
4069 goto out;
4070 }
4071
1cb3f3ae
XG
4072 if (is_mmio_page_fault(vcpu, cr2))
4073 emulation_type = 0;
4074
4075 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4076
4077 switch (er) {
4078 case EMULATE_DONE:
4079 return 1;
4080 case EMULATE_DO_MMIO:
4081 ++vcpu->stat.mmio_exits;
6d77dbfc 4082 /* fall through */
3067714c 4083 case EMULATE_FAIL:
3f5d18a9 4084 return 0;
3067714c
AK
4085 default:
4086 BUG();
4087 }
4088out:
3067714c
AK
4089 return r;
4090}
4091EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4092
a7052897
MT
4093void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4094{
a7052897 4095 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
4096 kvm_mmu_flush_tlb(vcpu);
4097 ++vcpu->stat.invlpg;
4098}
4099EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4100
18552672
JR
4101void kvm_enable_tdp(void)
4102{
4103 tdp_enabled = true;
4104}
4105EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4106
5f4cb662
JR
4107void kvm_disable_tdp(void)
4108{
4109 tdp_enabled = false;
4110}
4111EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4112
6aa8b732
AK
4113static void free_mmu_pages(struct kvm_vcpu *vcpu)
4114{
ad312c7c 4115 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4116 if (vcpu->arch.mmu.lm_root != NULL)
4117 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4118}
4119
4120static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4121{
17ac10ad 4122 struct page *page;
6aa8b732
AK
4123 int i;
4124
4125 ASSERT(vcpu);
4126
17ac10ad
AK
4127 /*
4128 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4129 * Therefore we need to allocate shadow page tables in the first
4130 * 4GB of memory, which happens to fit the DMA32 zone.
4131 */
4132 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4133 if (!page)
d7fa6ab2
WY
4134 return -ENOMEM;
4135
ad312c7c 4136 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4137 for (i = 0; i < 4; ++i)
ad312c7c 4138 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4139
6aa8b732 4140 return 0;
6aa8b732
AK
4141}
4142
8018c27b 4143int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4144{
6aa8b732 4145 ASSERT(vcpu);
e459e322
XG
4146
4147 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4148 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4149 vcpu->arch.mmu.translate_gpa = translate_gpa;
4150 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4151
8018c27b
IM
4152 return alloc_mmu_pages(vcpu);
4153}
6aa8b732 4154
8018c27b
IM
4155int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4156{
4157 ASSERT(vcpu);
ad312c7c 4158 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4159
8018c27b 4160 return init_kvm_mmu(vcpu);
6aa8b732
AK
4161}
4162
90cb0529 4163void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 4164{
b99db1d3
TY
4165 struct kvm_memory_slot *memslot;
4166 gfn_t last_gfn;
4167 int i;
6aa8b732 4168
b99db1d3
TY
4169 memslot = id_to_memslot(kvm->memslots, slot);
4170 last_gfn = memslot->base_gfn + memslot->npages - 1;
6aa8b732 4171
b99db1d3
TY
4172 for (i = PT_PAGE_TABLE_LEVEL;
4173 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4174 unsigned long *rmapp;
4175 unsigned long last_index, index;
6aa8b732 4176
b99db1d3
TY
4177 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4178 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
da8dc75f 4179
b99db1d3
TY
4180 for (index = 0; index <= last_index; ++index, ++rmapp) {
4181 if (*rmapp)
4182 __rmap_write_protect(kvm, rmapp, false);
8234b22e 4183 }
6aa8b732 4184 }
b99db1d3 4185
171d595d 4186 kvm_flush_remote_tlbs(kvm);
6aa8b732 4187}
37a7d8b0 4188
90cb0529 4189void kvm_mmu_zap_all(struct kvm *kvm)
e0fa826f 4190{
4db35314 4191 struct kvm_mmu_page *sp, *node;
d98ba053 4192 LIST_HEAD(invalid_list);
e0fa826f 4193
aaee2c94 4194 spin_lock(&kvm->mmu_lock);
3246af0e 4195restart:
f05e70ac 4196 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
d98ba053 4197 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3246af0e
XG
4198 goto restart;
4199
d98ba053 4200 kvm_mmu_commit_zap_page(kvm, &invalid_list);
aaee2c94 4201 spin_unlock(&kvm->mmu_lock);
e0fa826f
DL
4202}
4203
3d56cbdf
JK
4204static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
4205 struct list_head *invalid_list)
3ee16c81
IE
4206{
4207 struct kvm_mmu_page *page;
4208
85b70591
XG
4209 if (list_empty(&kvm->arch.active_mmu_pages))
4210 return;
4211
3ee16c81
IE
4212 page = container_of(kvm->arch.active_mmu_pages.prev,
4213 struct kvm_mmu_page, link);
3d56cbdf 4214 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3ee16c81
IE
4215}
4216
1495f230 4217static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4218{
4219 struct kvm *kvm;
1495f230 4220 int nr_to_scan = sc->nr_to_scan;
45221ab6
DH
4221
4222 if (nr_to_scan == 0)
4223 goto out;
3ee16c81 4224
e935b837 4225 raw_spin_lock(&kvm_lock);
3ee16c81
IE
4226
4227 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4228 int idx;
d98ba053 4229 LIST_HEAD(invalid_list);
3ee16c81 4230
35f2d16b
TY
4231 /*
4232 * Never scan more than sc->nr_to_scan VM instances.
4233 * Will not hit this condition practically since we do not try
4234 * to shrink more than one VM and it is very unlikely to see
4235 * !n_used_mmu_pages so many times.
4236 */
4237 if (!nr_to_scan--)
4238 break;
19526396
GN
4239 /*
4240 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4241 * here. We may skip a VM instance errorneosly, but we do not
4242 * want to shrink a VM that only started to populate its MMU
4243 * anyway.
4244 */
35f2d16b 4245 if (!kvm->arch.n_used_mmu_pages)
19526396 4246 continue;
19526396 4247
f656ce01 4248 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4249 spin_lock(&kvm->mmu_lock);
3ee16c81 4250
19526396 4251 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
d98ba053 4252 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4253
3ee16c81 4254 spin_unlock(&kvm->mmu_lock);
f656ce01 4255 srcu_read_unlock(&kvm->srcu, idx);
19526396
GN
4256
4257 list_move_tail(&kvm->vm_list, &vm_list);
4258 break;
3ee16c81 4259 }
3ee16c81 4260
e935b837 4261 raw_spin_unlock(&kvm_lock);
3ee16c81 4262
45221ab6
DH
4263out:
4264 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4265}
4266
4267static struct shrinker mmu_shrinker = {
4268 .shrink = mmu_shrink,
4269 .seeks = DEFAULT_SEEKS * 10,
4270};
4271
2ddfd20e 4272static void mmu_destroy_caches(void)
b5a33a75 4273{
53c07b18
XG
4274 if (pte_list_desc_cache)
4275 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4276 if (mmu_page_header_cache)
4277 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4278}
4279
4280int kvm_mmu_module_init(void)
4281{
53c07b18
XG
4282 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4283 sizeof(struct pte_list_desc),
20c2df83 4284 0, 0, NULL);
53c07b18 4285 if (!pte_list_desc_cache)
b5a33a75
AK
4286 goto nomem;
4287
d3d25b04
AK
4288 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4289 sizeof(struct kvm_mmu_page),
20c2df83 4290 0, 0, NULL);
d3d25b04
AK
4291 if (!mmu_page_header_cache)
4292 goto nomem;
4293
45bf21a8
WY
4294 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4295 goto nomem;
4296
3ee16c81
IE
4297 register_shrinker(&mmu_shrinker);
4298
b5a33a75
AK
4299 return 0;
4300
4301nomem:
3ee16c81 4302 mmu_destroy_caches();
b5a33a75
AK
4303 return -ENOMEM;
4304}
4305
3ad82a7e
ZX
4306/*
4307 * Caculate mmu pages needed for kvm.
4308 */
4309unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4310{
3ad82a7e
ZX
4311 unsigned int nr_mmu_pages;
4312 unsigned int nr_pages = 0;
bc6678a3 4313 struct kvm_memslots *slots;
be6ba0f0 4314 struct kvm_memory_slot *memslot;
3ad82a7e 4315
90d83dc3
LJ
4316 slots = kvm_memslots(kvm);
4317
be6ba0f0
XG
4318 kvm_for_each_memslot(memslot, slots)
4319 nr_pages += memslot->npages;
3ad82a7e
ZX
4320
4321 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4322 nr_mmu_pages = max(nr_mmu_pages,
4323 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4324
4325 return nr_mmu_pages;
4326}
4327
94d8b056
MT
4328int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4329{
4330 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4331 u64 spte;
94d8b056
MT
4332 int nr_sptes = 0;
4333
c2a2ac2b
XG
4334 walk_shadow_page_lockless_begin(vcpu);
4335 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4336 sptes[iterator.level-1] = spte;
94d8b056 4337 nr_sptes++;
c2a2ac2b 4338 if (!is_shadow_present_pte(spte))
94d8b056
MT
4339 break;
4340 }
c2a2ac2b 4341 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4342
4343 return nr_sptes;
4344}
4345EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4346
c42fffe3
XG
4347void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4348{
4349 ASSERT(vcpu);
4350
4351 destroy_kvm_mmu(vcpu);
4352 free_mmu_pages(vcpu);
4353 mmu_free_memory_caches(vcpu);
b034cf01
XG
4354}
4355
b034cf01
XG
4356void kvm_mmu_module_exit(void)
4357{
4358 mmu_destroy_caches();
4359 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4360 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4361 mmu_audit_disable();
4362}
This page took 1.192734 seconds and 5 git commands to generate.