KVM: VMX: Enable and initialize VMX TSC scaling
[deliverable/linux.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
e495606d 22
edf88417 23#include <linux/kvm_host.h>
6aa8b732 24#include <linux/module.h>
9d8f549d 25#include <linux/kernel.h>
6aa8b732
AK
26#include <linux/mm.h>
27#include <linux/highmem.h>
e8edc6e0 28#include <linux/sched.h>
c7addb90 29#include <linux/moduleparam.h>
e9bda3b3 30#include <linux/mod_devicetable.h>
af658dca 31#include <linux/trace_events.h>
5a0e3ad6 32#include <linux/slab.h>
cafd6659 33#include <linux/tboot.h>
f4124500 34#include <linux/hrtimer.h>
5fdbf976 35#include "kvm_cache_regs.h"
35920a35 36#include "x86.h"
e495606d 37
28b835d6 38#include <asm/cpu.h>
6aa8b732 39#include <asm/io.h>
3b3be0d1 40#include <asm/desc.h>
13673a90 41#include <asm/vmx.h>
6210e37b 42#include <asm/virtext.h>
a0861c02 43#include <asm/mce.h>
952f07ec 44#include <asm/fpu/internal.h>
d7cd9796 45#include <asm/perf_event.h>
81908bf4 46#include <asm/debugreg.h>
8f536b76 47#include <asm/kexec.h>
dab2087d 48#include <asm/apic.h>
efc64404 49#include <asm/irq_remapping.h>
6aa8b732 50
229456fc 51#include "trace.h"
25462f7f 52#include "pmu.h"
229456fc 53
4ecac3fd 54#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
55#define __ex_clear(x, reg) \
56 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 57
6aa8b732
AK
58MODULE_AUTHOR("Qumranet");
59MODULE_LICENSE("GPL");
60
e9bda3b3
JT
61static const struct x86_cpu_id vmx_cpu_id[] = {
62 X86_FEATURE_MATCH(X86_FEATURE_VMX),
63 {}
64};
65MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
66
476bc001 67static bool __read_mostly enable_vpid = 1;
736caefe 68module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 69
476bc001 70static bool __read_mostly flexpriority_enabled = 1;
736caefe 71module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 72
476bc001 73static bool __read_mostly enable_ept = 1;
736caefe 74module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 75
476bc001 76static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
77module_param_named(unrestricted_guest,
78 enable_unrestricted_guest, bool, S_IRUGO);
79
83c3a331
XH
80static bool __read_mostly enable_ept_ad_bits = 1;
81module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
82
a27685c3 83static bool __read_mostly emulate_invalid_guest_state = true;
c1f8bc04 84module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 85
476bc001 86static bool __read_mostly vmm_exclusive = 1;
b923e62e
DX
87module_param(vmm_exclusive, bool, S_IRUGO);
88
476bc001 89static bool __read_mostly fasteoi = 1;
58fbbf26
KT
90module_param(fasteoi, bool, S_IRUGO);
91
5a71785d 92static bool __read_mostly enable_apicv = 1;
01e439be 93module_param(enable_apicv, bool, S_IRUGO);
83d4c286 94
abc4fc58
AG
95static bool __read_mostly enable_shadow_vmcs = 1;
96module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
801d3424
NHE
97/*
98 * If nested=1, nested virtualization is supported, i.e., guests may use
99 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
100 * use VMX instructions.
101 */
476bc001 102static bool __read_mostly nested = 0;
801d3424
NHE
103module_param(nested, bool, S_IRUGO);
104
20300099
WL
105static u64 __read_mostly host_xss;
106
843e4330
KH
107static bool __read_mostly enable_pml = 1;
108module_param_named(pml, enable_pml, bool, S_IRUGO);
109
64903d61
HZ
110#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
111
5037878e
GN
112#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
113#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
114#define KVM_VM_CR0_ALWAYS_ON \
115 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
116#define KVM_CR4_GUEST_OWNED_BITS \
117 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
52ce3c21 118 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
4c38609a 119
cdc0e244
AK
120#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
121#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
122
78ac8b47
AK
123#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
124
f4124500
JK
125#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
126
4b8d54f9
ZE
127/*
128 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
129 * ple_gap: upper bound on the amount of time between two successive
130 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 131 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
132 * ple_window: upper bound on the amount of time a guest is allowed to execute
133 * in a PAUSE loop. Tests indicate that most spinlocks are held for
134 * less than 2^12 cycles
135 * Time is measured based on a counter that runs at the same rate as the TSC,
136 * refer SDM volume 3b section 21.6.13 & 22.1.3.
137 */
b4a2d31d
RK
138#define KVM_VMX_DEFAULT_PLE_GAP 128
139#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
140#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
141#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
142#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
143 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
144
4b8d54f9
ZE
145static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
146module_param(ple_gap, int, S_IRUGO);
147
148static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
149module_param(ple_window, int, S_IRUGO);
150
b4a2d31d
RK
151/* Default doubles per-vcpu window every exit. */
152static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
153module_param(ple_window_grow, int, S_IRUGO);
154
155/* Default resets per-vcpu window every exit to ple_window. */
156static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
157module_param(ple_window_shrink, int, S_IRUGO);
158
159/* Default is to compute the maximum so we can never overflow. */
160static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
161static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
162module_param(ple_window_max, int, S_IRUGO);
163
83287ea4
AK
164extern const ulong vmx_return;
165
8bf00a52 166#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 167#define VMCS02_POOL_SIZE 1
61d2ef2c 168
a2fa3e9f
GH
169struct vmcs {
170 u32 revision_id;
171 u32 abort;
172 char data[0];
173};
174
d462b819
NHE
175/*
176 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
177 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
178 * loaded on this CPU (so we can clear them if the CPU goes down).
179 */
180struct loaded_vmcs {
181 struct vmcs *vmcs;
182 int cpu;
183 int launched;
184 struct list_head loaded_vmcss_on_cpu_link;
185};
186
26bb0981
AK
187struct shared_msr_entry {
188 unsigned index;
189 u64 data;
d5696725 190 u64 mask;
26bb0981
AK
191};
192
a9d30f33
NHE
193/*
194 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
195 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
196 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
197 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
198 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
199 * More than one of these structures may exist, if L1 runs multiple L2 guests.
200 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
201 * underlying hardware which will be used to run L2.
202 * This structure is packed to ensure that its layout is identical across
203 * machines (necessary for live migration).
204 * If there are changes in this struct, VMCS12_REVISION must be changed.
205 */
22bd0358 206typedef u64 natural_width;
a9d30f33
NHE
207struct __packed vmcs12 {
208 /* According to the Intel spec, a VMCS region must start with the
209 * following two fields. Then follow implementation-specific data.
210 */
211 u32 revision_id;
212 u32 abort;
22bd0358 213
27d6c865
NHE
214 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
215 u32 padding[7]; /* room for future expansion */
216
22bd0358
NHE
217 u64 io_bitmap_a;
218 u64 io_bitmap_b;
219 u64 msr_bitmap;
220 u64 vm_exit_msr_store_addr;
221 u64 vm_exit_msr_load_addr;
222 u64 vm_entry_msr_load_addr;
223 u64 tsc_offset;
224 u64 virtual_apic_page_addr;
225 u64 apic_access_addr;
705699a1 226 u64 posted_intr_desc_addr;
22bd0358 227 u64 ept_pointer;
608406e2
WV
228 u64 eoi_exit_bitmap0;
229 u64 eoi_exit_bitmap1;
230 u64 eoi_exit_bitmap2;
231 u64 eoi_exit_bitmap3;
81dc01f7 232 u64 xss_exit_bitmap;
22bd0358
NHE
233 u64 guest_physical_address;
234 u64 vmcs_link_pointer;
235 u64 guest_ia32_debugctl;
236 u64 guest_ia32_pat;
237 u64 guest_ia32_efer;
238 u64 guest_ia32_perf_global_ctrl;
239 u64 guest_pdptr0;
240 u64 guest_pdptr1;
241 u64 guest_pdptr2;
242 u64 guest_pdptr3;
36be0b9d 243 u64 guest_bndcfgs;
22bd0358
NHE
244 u64 host_ia32_pat;
245 u64 host_ia32_efer;
246 u64 host_ia32_perf_global_ctrl;
247 u64 padding64[8]; /* room for future expansion */
248 /*
249 * To allow migration of L1 (complete with its L2 guests) between
250 * machines of different natural widths (32 or 64 bit), we cannot have
251 * unsigned long fields with no explict size. We use u64 (aliased
252 * natural_width) instead. Luckily, x86 is little-endian.
253 */
254 natural_width cr0_guest_host_mask;
255 natural_width cr4_guest_host_mask;
256 natural_width cr0_read_shadow;
257 natural_width cr4_read_shadow;
258 natural_width cr3_target_value0;
259 natural_width cr3_target_value1;
260 natural_width cr3_target_value2;
261 natural_width cr3_target_value3;
262 natural_width exit_qualification;
263 natural_width guest_linear_address;
264 natural_width guest_cr0;
265 natural_width guest_cr3;
266 natural_width guest_cr4;
267 natural_width guest_es_base;
268 natural_width guest_cs_base;
269 natural_width guest_ss_base;
270 natural_width guest_ds_base;
271 natural_width guest_fs_base;
272 natural_width guest_gs_base;
273 natural_width guest_ldtr_base;
274 natural_width guest_tr_base;
275 natural_width guest_gdtr_base;
276 natural_width guest_idtr_base;
277 natural_width guest_dr7;
278 natural_width guest_rsp;
279 natural_width guest_rip;
280 natural_width guest_rflags;
281 natural_width guest_pending_dbg_exceptions;
282 natural_width guest_sysenter_esp;
283 natural_width guest_sysenter_eip;
284 natural_width host_cr0;
285 natural_width host_cr3;
286 natural_width host_cr4;
287 natural_width host_fs_base;
288 natural_width host_gs_base;
289 natural_width host_tr_base;
290 natural_width host_gdtr_base;
291 natural_width host_idtr_base;
292 natural_width host_ia32_sysenter_esp;
293 natural_width host_ia32_sysenter_eip;
294 natural_width host_rsp;
295 natural_width host_rip;
296 natural_width paddingl[8]; /* room for future expansion */
297 u32 pin_based_vm_exec_control;
298 u32 cpu_based_vm_exec_control;
299 u32 exception_bitmap;
300 u32 page_fault_error_code_mask;
301 u32 page_fault_error_code_match;
302 u32 cr3_target_count;
303 u32 vm_exit_controls;
304 u32 vm_exit_msr_store_count;
305 u32 vm_exit_msr_load_count;
306 u32 vm_entry_controls;
307 u32 vm_entry_msr_load_count;
308 u32 vm_entry_intr_info_field;
309 u32 vm_entry_exception_error_code;
310 u32 vm_entry_instruction_len;
311 u32 tpr_threshold;
312 u32 secondary_vm_exec_control;
313 u32 vm_instruction_error;
314 u32 vm_exit_reason;
315 u32 vm_exit_intr_info;
316 u32 vm_exit_intr_error_code;
317 u32 idt_vectoring_info_field;
318 u32 idt_vectoring_error_code;
319 u32 vm_exit_instruction_len;
320 u32 vmx_instruction_info;
321 u32 guest_es_limit;
322 u32 guest_cs_limit;
323 u32 guest_ss_limit;
324 u32 guest_ds_limit;
325 u32 guest_fs_limit;
326 u32 guest_gs_limit;
327 u32 guest_ldtr_limit;
328 u32 guest_tr_limit;
329 u32 guest_gdtr_limit;
330 u32 guest_idtr_limit;
331 u32 guest_es_ar_bytes;
332 u32 guest_cs_ar_bytes;
333 u32 guest_ss_ar_bytes;
334 u32 guest_ds_ar_bytes;
335 u32 guest_fs_ar_bytes;
336 u32 guest_gs_ar_bytes;
337 u32 guest_ldtr_ar_bytes;
338 u32 guest_tr_ar_bytes;
339 u32 guest_interruptibility_info;
340 u32 guest_activity_state;
341 u32 guest_sysenter_cs;
342 u32 host_ia32_sysenter_cs;
0238ea91
JK
343 u32 vmx_preemption_timer_value;
344 u32 padding32[7]; /* room for future expansion */
22bd0358 345 u16 virtual_processor_id;
705699a1 346 u16 posted_intr_nv;
22bd0358
NHE
347 u16 guest_es_selector;
348 u16 guest_cs_selector;
349 u16 guest_ss_selector;
350 u16 guest_ds_selector;
351 u16 guest_fs_selector;
352 u16 guest_gs_selector;
353 u16 guest_ldtr_selector;
354 u16 guest_tr_selector;
608406e2 355 u16 guest_intr_status;
22bd0358
NHE
356 u16 host_es_selector;
357 u16 host_cs_selector;
358 u16 host_ss_selector;
359 u16 host_ds_selector;
360 u16 host_fs_selector;
361 u16 host_gs_selector;
362 u16 host_tr_selector;
a9d30f33
NHE
363};
364
365/*
366 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
367 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
368 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
369 */
370#define VMCS12_REVISION 0x11e57ed0
371
372/*
373 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
374 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
375 * current implementation, 4K are reserved to avoid future complications.
376 */
377#define VMCS12_SIZE 0x1000
378
ff2f6fe9
NHE
379/* Used to remember the last vmcs02 used for some recently used vmcs12s */
380struct vmcs02_list {
381 struct list_head list;
382 gpa_t vmptr;
383 struct loaded_vmcs vmcs02;
384};
385
ec378aee
NHE
386/*
387 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
388 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
389 */
390struct nested_vmx {
391 /* Has the level1 guest done vmxon? */
392 bool vmxon;
3573e22c 393 gpa_t vmxon_ptr;
a9d30f33
NHE
394
395 /* The guest-physical address of the current VMCS L1 keeps for L2 */
396 gpa_t current_vmptr;
397 /* The host-usable pointer to the above */
398 struct page *current_vmcs12_page;
399 struct vmcs12 *current_vmcs12;
8de48833 400 struct vmcs *current_shadow_vmcs;
012f83cb
AG
401 /*
402 * Indicates if the shadow vmcs must be updated with the
403 * data hold by vmcs12
404 */
405 bool sync_shadow_vmcs;
ff2f6fe9
NHE
406
407 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
408 struct list_head vmcs02_pool;
409 int vmcs02_num;
fe3ef05c 410 u64 vmcs01_tsc_offset;
644d711a
NHE
411 /* L2 must run next, and mustn't decide to exit to L1. */
412 bool nested_run_pending;
fe3ef05c
NHE
413 /*
414 * Guest pages referred to in vmcs02 with host-physical pointers, so
415 * we must keep them pinned while L2 runs.
416 */
417 struct page *apic_access_page;
a7c0b07d 418 struct page *virtual_apic_page;
705699a1
WV
419 struct page *pi_desc_page;
420 struct pi_desc *pi_desc;
421 bool pi_pending;
422 u16 posted_intr_nv;
b3897a49 423 u64 msr_ia32_feature_control;
f4124500
JK
424
425 struct hrtimer preemption_timer;
426 bool preemption_timer_expired;
2996fca0
JK
427
428 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
429 u64 vmcs01_debugctl;
b9c237bb 430
5c614b35
WL
431 u16 vpid02;
432 u16 last_vpid;
433
b9c237bb
WV
434 u32 nested_vmx_procbased_ctls_low;
435 u32 nested_vmx_procbased_ctls_high;
436 u32 nested_vmx_true_procbased_ctls_low;
437 u32 nested_vmx_secondary_ctls_low;
438 u32 nested_vmx_secondary_ctls_high;
439 u32 nested_vmx_pinbased_ctls_low;
440 u32 nested_vmx_pinbased_ctls_high;
441 u32 nested_vmx_exit_ctls_low;
442 u32 nested_vmx_exit_ctls_high;
443 u32 nested_vmx_true_exit_ctls_low;
444 u32 nested_vmx_entry_ctls_low;
445 u32 nested_vmx_entry_ctls_high;
446 u32 nested_vmx_true_entry_ctls_low;
447 u32 nested_vmx_misc_low;
448 u32 nested_vmx_misc_high;
449 u32 nested_vmx_ept_caps;
99b83ac8 450 u32 nested_vmx_vpid_caps;
ec378aee
NHE
451};
452
01e439be 453#define POSTED_INTR_ON 0
ebbfc765
FW
454#define POSTED_INTR_SN 1
455
01e439be
YZ
456/* Posted-Interrupt Descriptor */
457struct pi_desc {
458 u32 pir[8]; /* Posted interrupt requested */
6ef1522f
FW
459 union {
460 struct {
461 /* bit 256 - Outstanding Notification */
462 u16 on : 1,
463 /* bit 257 - Suppress Notification */
464 sn : 1,
465 /* bit 271:258 - Reserved */
466 rsvd_1 : 14;
467 /* bit 279:272 - Notification Vector */
468 u8 nv;
469 /* bit 287:280 - Reserved */
470 u8 rsvd_2;
471 /* bit 319:288 - Notification Destination */
472 u32 ndst;
473 };
474 u64 control;
475 };
476 u32 rsvd[6];
01e439be
YZ
477} __aligned(64);
478
a20ed54d
YZ
479static bool pi_test_and_set_on(struct pi_desc *pi_desc)
480{
481 return test_and_set_bit(POSTED_INTR_ON,
482 (unsigned long *)&pi_desc->control);
483}
484
485static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
486{
487 return test_and_clear_bit(POSTED_INTR_ON,
488 (unsigned long *)&pi_desc->control);
489}
490
491static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
492{
493 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
494}
495
ebbfc765
FW
496static inline void pi_clear_sn(struct pi_desc *pi_desc)
497{
498 return clear_bit(POSTED_INTR_SN,
499 (unsigned long *)&pi_desc->control);
500}
501
502static inline void pi_set_sn(struct pi_desc *pi_desc)
503{
504 return set_bit(POSTED_INTR_SN,
505 (unsigned long *)&pi_desc->control);
506}
507
508static inline int pi_test_on(struct pi_desc *pi_desc)
509{
510 return test_bit(POSTED_INTR_ON,
511 (unsigned long *)&pi_desc->control);
512}
513
514static inline int pi_test_sn(struct pi_desc *pi_desc)
515{
516 return test_bit(POSTED_INTR_SN,
517 (unsigned long *)&pi_desc->control);
518}
519
a2fa3e9f 520struct vcpu_vmx {
fb3f0f51 521 struct kvm_vcpu vcpu;
313dbd49 522 unsigned long host_rsp;
29bd8a78 523 u8 fail;
9d58b931 524 bool nmi_known_unmasked;
51aa01d1 525 u32 exit_intr_info;
1155f76a 526 u32 idt_vectoring_info;
6de12732 527 ulong rflags;
26bb0981 528 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
529 int nmsrs;
530 int save_nmsrs;
a547c6db 531 unsigned long host_idt_base;
a2fa3e9f 532#ifdef CONFIG_X86_64
44ea2b17
AK
533 u64 msr_host_kernel_gs_base;
534 u64 msr_guest_kernel_gs_base;
a2fa3e9f 535#endif
2961e876
GN
536 u32 vm_entry_controls_shadow;
537 u32 vm_exit_controls_shadow;
d462b819
NHE
538 /*
539 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
540 * non-nested (L1) guest, it always points to vmcs01. For a nested
541 * guest (L2), it points to a different VMCS.
542 */
543 struct loaded_vmcs vmcs01;
544 struct loaded_vmcs *loaded_vmcs;
545 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
546 struct msr_autoload {
547 unsigned nr;
548 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
549 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
550 } msr_autoload;
a2fa3e9f
GH
551 struct {
552 int loaded;
553 u16 fs_sel, gs_sel, ldt_sel;
b2da15ac
AK
554#ifdef CONFIG_X86_64
555 u16 ds_sel, es_sel;
556#endif
152d3f2f
LV
557 int gs_ldt_reload_needed;
558 int fs_reload_needed;
da8999d3 559 u64 msr_host_bndcfgs;
d974baa3 560 unsigned long vmcs_host_cr4; /* May not match real cr4 */
d77c26fc 561 } host_state;
9c8cba37 562 struct {
7ffd92c5 563 int vm86_active;
78ac8b47 564 ulong save_rflags;
f5f7b2fe
AK
565 struct kvm_segment segs[8];
566 } rmode;
567 struct {
568 u32 bitmask; /* 4 bits per segment (1 bit per field) */
7ffd92c5
AK
569 struct kvm_save_segment {
570 u16 selector;
571 unsigned long base;
572 u32 limit;
573 u32 ar;
f5f7b2fe 574 } seg[8];
2fb92db1 575 } segment_cache;
2384d2b3 576 int vpid;
04fa4d32 577 bool emulation_required;
3b86cd99
JK
578
579 /* Support for vnmi-less CPUs */
580 int soft_vnmi_blocked;
581 ktime_t entry_time;
582 s64 vnmi_blocked_time;
a0861c02 583 u32 exit_reason;
4e47c7a6 584
01e439be
YZ
585 /* Posted interrupt descriptor */
586 struct pi_desc pi_desc;
587
ec378aee
NHE
588 /* Support for a guest hypervisor (nested VMX) */
589 struct nested_vmx nested;
a7653ecd
RK
590
591 /* Dynamic PLE window. */
592 int ple_window;
593 bool ple_window_dirty;
843e4330
KH
594
595 /* Support for PML */
596#define PML_ENTITY_NUM 512
597 struct page *pml_pg;
a2fa3e9f
GH
598};
599
2fb92db1
AK
600enum segment_cache_field {
601 SEG_FIELD_SEL = 0,
602 SEG_FIELD_BASE = 1,
603 SEG_FIELD_LIMIT = 2,
604 SEG_FIELD_AR = 3,
605
606 SEG_FIELD_NR = 4
607};
608
a2fa3e9f
GH
609static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
610{
fb3f0f51 611 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
612}
613
efc64404
FW
614static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
615{
616 return &(to_vmx(vcpu)->pi_desc);
617}
618
22bd0358
NHE
619#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
620#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
621#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
622 [number##_HIGH] = VMCS12_OFFSET(name)+4
623
4607c2d7 624
fe2b201b 625static unsigned long shadow_read_only_fields[] = {
4607c2d7
AG
626 /*
627 * We do NOT shadow fields that are modified when L0
628 * traps and emulates any vmx instruction (e.g. VMPTRLD,
629 * VMXON...) executed by L1.
630 * For example, VM_INSTRUCTION_ERROR is read
631 * by L1 if a vmx instruction fails (part of the error path).
632 * Note the code assumes this logic. If for some reason
633 * we start shadowing these fields then we need to
634 * force a shadow sync when L0 emulates vmx instructions
635 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
636 * by nested_vmx_failValid)
637 */
638 VM_EXIT_REASON,
639 VM_EXIT_INTR_INFO,
640 VM_EXIT_INSTRUCTION_LEN,
641 IDT_VECTORING_INFO_FIELD,
642 IDT_VECTORING_ERROR_CODE,
643 VM_EXIT_INTR_ERROR_CODE,
644 EXIT_QUALIFICATION,
645 GUEST_LINEAR_ADDRESS,
646 GUEST_PHYSICAL_ADDRESS
647};
fe2b201b 648static int max_shadow_read_only_fields =
4607c2d7
AG
649 ARRAY_SIZE(shadow_read_only_fields);
650
fe2b201b 651static unsigned long shadow_read_write_fields[] = {
a7c0b07d 652 TPR_THRESHOLD,
4607c2d7
AG
653 GUEST_RIP,
654 GUEST_RSP,
655 GUEST_CR0,
656 GUEST_CR3,
657 GUEST_CR4,
658 GUEST_INTERRUPTIBILITY_INFO,
659 GUEST_RFLAGS,
660 GUEST_CS_SELECTOR,
661 GUEST_CS_AR_BYTES,
662 GUEST_CS_LIMIT,
663 GUEST_CS_BASE,
664 GUEST_ES_BASE,
36be0b9d 665 GUEST_BNDCFGS,
4607c2d7
AG
666 CR0_GUEST_HOST_MASK,
667 CR0_READ_SHADOW,
668 CR4_READ_SHADOW,
669 TSC_OFFSET,
670 EXCEPTION_BITMAP,
671 CPU_BASED_VM_EXEC_CONTROL,
672 VM_ENTRY_EXCEPTION_ERROR_CODE,
673 VM_ENTRY_INTR_INFO_FIELD,
674 VM_ENTRY_INSTRUCTION_LEN,
675 VM_ENTRY_EXCEPTION_ERROR_CODE,
676 HOST_FS_BASE,
677 HOST_GS_BASE,
678 HOST_FS_SELECTOR,
679 HOST_GS_SELECTOR
680};
fe2b201b 681static int max_shadow_read_write_fields =
4607c2d7
AG
682 ARRAY_SIZE(shadow_read_write_fields);
683
772e0318 684static const unsigned short vmcs_field_to_offset_table[] = {
22bd0358 685 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
705699a1 686 FIELD(POSTED_INTR_NV, posted_intr_nv),
22bd0358
NHE
687 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
688 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
689 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
690 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
691 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
692 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
693 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
694 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
608406e2 695 FIELD(GUEST_INTR_STATUS, guest_intr_status),
22bd0358
NHE
696 FIELD(HOST_ES_SELECTOR, host_es_selector),
697 FIELD(HOST_CS_SELECTOR, host_cs_selector),
698 FIELD(HOST_SS_SELECTOR, host_ss_selector),
699 FIELD(HOST_DS_SELECTOR, host_ds_selector),
700 FIELD(HOST_FS_SELECTOR, host_fs_selector),
701 FIELD(HOST_GS_SELECTOR, host_gs_selector),
702 FIELD(HOST_TR_SELECTOR, host_tr_selector),
703 FIELD64(IO_BITMAP_A, io_bitmap_a),
704 FIELD64(IO_BITMAP_B, io_bitmap_b),
705 FIELD64(MSR_BITMAP, msr_bitmap),
706 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
707 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
708 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
709 FIELD64(TSC_OFFSET, tsc_offset),
710 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
711 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
705699a1 712 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
22bd0358 713 FIELD64(EPT_POINTER, ept_pointer),
608406e2
WV
714 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
715 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
716 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
717 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
81dc01f7 718 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
22bd0358
NHE
719 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
720 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
721 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
722 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
723 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
724 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
725 FIELD64(GUEST_PDPTR0, guest_pdptr0),
726 FIELD64(GUEST_PDPTR1, guest_pdptr1),
727 FIELD64(GUEST_PDPTR2, guest_pdptr2),
728 FIELD64(GUEST_PDPTR3, guest_pdptr3),
36be0b9d 729 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
22bd0358
NHE
730 FIELD64(HOST_IA32_PAT, host_ia32_pat),
731 FIELD64(HOST_IA32_EFER, host_ia32_efer),
732 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
733 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
734 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
735 FIELD(EXCEPTION_BITMAP, exception_bitmap),
736 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
737 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
738 FIELD(CR3_TARGET_COUNT, cr3_target_count),
739 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
740 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
741 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
742 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
743 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
744 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
745 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
746 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
747 FIELD(TPR_THRESHOLD, tpr_threshold),
748 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
749 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
750 FIELD(VM_EXIT_REASON, vm_exit_reason),
751 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
752 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
753 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
754 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
755 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
756 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
757 FIELD(GUEST_ES_LIMIT, guest_es_limit),
758 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
759 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
760 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
761 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
762 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
763 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
764 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
765 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
766 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
767 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
768 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
769 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
770 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
771 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
772 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
773 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
774 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
775 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
776 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
777 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
778 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
0238ea91 779 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
22bd0358
NHE
780 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
781 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
782 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
783 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
784 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
785 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
786 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
787 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
788 FIELD(EXIT_QUALIFICATION, exit_qualification),
789 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
790 FIELD(GUEST_CR0, guest_cr0),
791 FIELD(GUEST_CR3, guest_cr3),
792 FIELD(GUEST_CR4, guest_cr4),
793 FIELD(GUEST_ES_BASE, guest_es_base),
794 FIELD(GUEST_CS_BASE, guest_cs_base),
795 FIELD(GUEST_SS_BASE, guest_ss_base),
796 FIELD(GUEST_DS_BASE, guest_ds_base),
797 FIELD(GUEST_FS_BASE, guest_fs_base),
798 FIELD(GUEST_GS_BASE, guest_gs_base),
799 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
800 FIELD(GUEST_TR_BASE, guest_tr_base),
801 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
802 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
803 FIELD(GUEST_DR7, guest_dr7),
804 FIELD(GUEST_RSP, guest_rsp),
805 FIELD(GUEST_RIP, guest_rip),
806 FIELD(GUEST_RFLAGS, guest_rflags),
807 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
808 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
809 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
810 FIELD(HOST_CR0, host_cr0),
811 FIELD(HOST_CR3, host_cr3),
812 FIELD(HOST_CR4, host_cr4),
813 FIELD(HOST_FS_BASE, host_fs_base),
814 FIELD(HOST_GS_BASE, host_gs_base),
815 FIELD(HOST_TR_BASE, host_tr_base),
816 FIELD(HOST_GDTR_BASE, host_gdtr_base),
817 FIELD(HOST_IDTR_BASE, host_idtr_base),
818 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
819 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
820 FIELD(HOST_RSP, host_rsp),
821 FIELD(HOST_RIP, host_rip),
822};
22bd0358
NHE
823
824static inline short vmcs_field_to_offset(unsigned long field)
825{
a2ae9df7
PB
826 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
827
828 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
829 vmcs_field_to_offset_table[field] == 0)
830 return -ENOENT;
831
22bd0358
NHE
832 return vmcs_field_to_offset_table[field];
833}
834
a9d30f33
NHE
835static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
836{
837 return to_vmx(vcpu)->nested.current_vmcs12;
838}
839
840static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
841{
54bf36aa 842 struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
32cad84f 843 if (is_error_page(page))
a9d30f33 844 return NULL;
32cad84f 845
a9d30f33
NHE
846 return page;
847}
848
849static void nested_release_page(struct page *page)
850{
851 kvm_release_page_dirty(page);
852}
853
854static void nested_release_page_clean(struct page *page)
855{
856 kvm_release_page_clean(page);
857}
858
bfd0a56b 859static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
4e1096d2 860static u64 construct_eptp(unsigned long root_hpa);
4610c9cc
DX
861static void kvm_cpu_vmxon(u64 addr);
862static void kvm_cpu_vmxoff(void);
93c4adc7 863static bool vmx_mpx_supported(void);
f53cd63c 864static bool vmx_xsaves_supported(void);
d50ab6c1 865static int vmx_cpu_uses_apicv(struct kvm_vcpu *vcpu);
776e58ea 866static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
b246dd5d
OW
867static void vmx_set_segment(struct kvm_vcpu *vcpu,
868 struct kvm_segment *var, int seg);
869static void vmx_get_segment(struct kvm_vcpu *vcpu,
870 struct kvm_segment *var, int seg);
d99e4152
GN
871static bool guest_state_valid(struct kvm_vcpu *vcpu);
872static u32 vmx_segment_access_rights(struct kvm_segment *var);
a20ed54d 873static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
c3114420 874static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
16f5b903 875static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
a255d479 876static int alloc_identity_pagetable(struct kvm *kvm);
75880a01 877
6aa8b732
AK
878static DEFINE_PER_CPU(struct vmcs *, vmxarea);
879static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
880/*
881 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
882 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
883 */
884static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
3444d7da 885static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
6aa8b732 886
bf9f6ac8
FW
887/*
888 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
889 * can find which vCPU should be waken up.
890 */
891static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
892static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
893
3e7c73e9
AK
894static unsigned long *vmx_io_bitmap_a;
895static unsigned long *vmx_io_bitmap_b;
5897297b
AK
896static unsigned long *vmx_msr_bitmap_legacy;
897static unsigned long *vmx_msr_bitmap_longmode;
8d14695f
YZ
898static unsigned long *vmx_msr_bitmap_legacy_x2apic;
899static unsigned long *vmx_msr_bitmap_longmode_x2apic;
3af18d9c 900static unsigned long *vmx_msr_bitmap_nested;
4607c2d7
AG
901static unsigned long *vmx_vmread_bitmap;
902static unsigned long *vmx_vmwrite_bitmap;
fdef3ad1 903
110312c8 904static bool cpu_has_load_ia32_efer;
8bf00a52 905static bool cpu_has_load_perf_global_ctrl;
110312c8 906
2384d2b3
SY
907static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
908static DEFINE_SPINLOCK(vmx_vpid_lock);
909
1c3d14fe 910static struct vmcs_config {
6aa8b732
AK
911 int size;
912 int order;
913 u32 revision_id;
1c3d14fe
YS
914 u32 pin_based_exec_ctrl;
915 u32 cpu_based_exec_ctrl;
f78e0e2e 916 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
917 u32 vmexit_ctrl;
918 u32 vmentry_ctrl;
919} vmcs_config;
6aa8b732 920
efff9e53 921static struct vmx_capability {
d56f546d
SY
922 u32 ept;
923 u32 vpid;
924} vmx_capability;
925
6aa8b732
AK
926#define VMX_SEGMENT_FIELD(seg) \
927 [VCPU_SREG_##seg] = { \
928 .selector = GUEST_##seg##_SELECTOR, \
929 .base = GUEST_##seg##_BASE, \
930 .limit = GUEST_##seg##_LIMIT, \
931 .ar_bytes = GUEST_##seg##_AR_BYTES, \
932 }
933
772e0318 934static const struct kvm_vmx_segment_field {
6aa8b732
AK
935 unsigned selector;
936 unsigned base;
937 unsigned limit;
938 unsigned ar_bytes;
939} kvm_vmx_segment_fields[] = {
940 VMX_SEGMENT_FIELD(CS),
941 VMX_SEGMENT_FIELD(DS),
942 VMX_SEGMENT_FIELD(ES),
943 VMX_SEGMENT_FIELD(FS),
944 VMX_SEGMENT_FIELD(GS),
945 VMX_SEGMENT_FIELD(SS),
946 VMX_SEGMENT_FIELD(TR),
947 VMX_SEGMENT_FIELD(LDTR),
948};
949
26bb0981
AK
950static u64 host_efer;
951
6de4f3ad
AK
952static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
953
4d56c8a7 954/*
8c06585d 955 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
956 * away by decrementing the array size.
957 */
6aa8b732 958static const u32 vmx_msr_index[] = {
05b3e0c2 959#ifdef CONFIG_X86_64
44ea2b17 960 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 961#endif
8c06585d 962 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 963};
6aa8b732 964
31299944 965static inline bool is_page_fault(u32 intr_info)
6aa8b732
AK
966{
967 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
968 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 969 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
6aa8b732
AK
970}
971
31299944 972static inline bool is_no_device(u32 intr_info)
2ab455cc
AL
973{
974 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
975 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 976 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
2ab455cc
AL
977}
978
31299944 979static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0
AL
980{
981 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
982 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 983 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
7aa81cc0
AL
984}
985
31299944 986static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
987{
988 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
989 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
990}
991
31299944 992static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
993{
994 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
995 INTR_INFO_VALID_MASK)) ==
996 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
997}
998
31299944 999static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 1000{
04547156 1001 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
1002}
1003
31299944 1004static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 1005{
04547156 1006 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
1007}
1008
35754c98 1009static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
6e5d865c 1010{
35754c98 1011 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
6e5d865c
YS
1012}
1013
31299944 1014static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 1015{
04547156
SY
1016 return vmcs_config.cpu_based_exec_ctrl &
1017 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
1018}
1019
774ead3a 1020static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 1021{
04547156
SY
1022 return vmcs_config.cpu_based_2nd_exec_ctrl &
1023 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1024}
1025
8d14695f
YZ
1026static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1027{
1028 return vmcs_config.cpu_based_2nd_exec_ctrl &
1029 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1030}
1031
83d4c286
YZ
1032static inline bool cpu_has_vmx_apic_register_virt(void)
1033{
1034 return vmcs_config.cpu_based_2nd_exec_ctrl &
1035 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1036}
1037
c7c9c56c
YZ
1038static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1039{
1040 return vmcs_config.cpu_based_2nd_exec_ctrl &
1041 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1042}
1043
01e439be
YZ
1044static inline bool cpu_has_vmx_posted_intr(void)
1045{
d6a858d1
PB
1046 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1047 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
01e439be
YZ
1048}
1049
1050static inline bool cpu_has_vmx_apicv(void)
1051{
1052 return cpu_has_vmx_apic_register_virt() &&
1053 cpu_has_vmx_virtual_intr_delivery() &&
1054 cpu_has_vmx_posted_intr();
1055}
1056
04547156
SY
1057static inline bool cpu_has_vmx_flexpriority(void)
1058{
1059 return cpu_has_vmx_tpr_shadow() &&
1060 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
1061}
1062
e799794e
MT
1063static inline bool cpu_has_vmx_ept_execute_only(void)
1064{
31299944 1065 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
1066}
1067
e799794e
MT
1068static inline bool cpu_has_vmx_ept_2m_page(void)
1069{
31299944 1070 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
1071}
1072
878403b7
SY
1073static inline bool cpu_has_vmx_ept_1g_page(void)
1074{
31299944 1075 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
1076}
1077
4bc9b982
SY
1078static inline bool cpu_has_vmx_ept_4levels(void)
1079{
1080 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1081}
1082
83c3a331
XH
1083static inline bool cpu_has_vmx_ept_ad_bits(void)
1084{
1085 return vmx_capability.ept & VMX_EPT_AD_BIT;
1086}
1087
31299944 1088static inline bool cpu_has_vmx_invept_context(void)
d56f546d 1089{
31299944 1090 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
1091}
1092
31299944 1093static inline bool cpu_has_vmx_invept_global(void)
d56f546d 1094{
31299944 1095 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
1096}
1097
518c8aee
GJ
1098static inline bool cpu_has_vmx_invvpid_single(void)
1099{
1100 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1101}
1102
b9d762fa
GJ
1103static inline bool cpu_has_vmx_invvpid_global(void)
1104{
1105 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1106}
1107
31299944 1108static inline bool cpu_has_vmx_ept(void)
d56f546d 1109{
04547156
SY
1110 return vmcs_config.cpu_based_2nd_exec_ctrl &
1111 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
1112}
1113
31299944 1114static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
1115{
1116 return vmcs_config.cpu_based_2nd_exec_ctrl &
1117 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1118}
1119
31299944 1120static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
1121{
1122 return vmcs_config.cpu_based_2nd_exec_ctrl &
1123 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1124}
1125
35754c98 1126static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
f78e0e2e 1127{
35754c98 1128 return flexpriority_enabled && lapic_in_kernel(vcpu);
f78e0e2e
SY
1129}
1130
31299944 1131static inline bool cpu_has_vmx_vpid(void)
2384d2b3 1132{
04547156
SY
1133 return vmcs_config.cpu_based_2nd_exec_ctrl &
1134 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
1135}
1136
31299944 1137static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
1138{
1139 return vmcs_config.cpu_based_2nd_exec_ctrl &
1140 SECONDARY_EXEC_RDTSCP;
1141}
1142
ad756a16
MJ
1143static inline bool cpu_has_vmx_invpcid(void)
1144{
1145 return vmcs_config.cpu_based_2nd_exec_ctrl &
1146 SECONDARY_EXEC_ENABLE_INVPCID;
1147}
1148
31299944 1149static inline bool cpu_has_virtual_nmis(void)
f08864b4
SY
1150{
1151 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1152}
1153
f5f48ee1
SY
1154static inline bool cpu_has_vmx_wbinvd_exit(void)
1155{
1156 return vmcs_config.cpu_based_2nd_exec_ctrl &
1157 SECONDARY_EXEC_WBINVD_EXITING;
1158}
1159
abc4fc58
AG
1160static inline bool cpu_has_vmx_shadow_vmcs(void)
1161{
1162 u64 vmx_msr;
1163 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1164 /* check if the cpu supports writing r/o exit information fields */
1165 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1166 return false;
1167
1168 return vmcs_config.cpu_based_2nd_exec_ctrl &
1169 SECONDARY_EXEC_SHADOW_VMCS;
1170}
1171
843e4330
KH
1172static inline bool cpu_has_vmx_pml(void)
1173{
1174 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1175}
1176
64903d61
HZ
1177static inline bool cpu_has_vmx_tsc_scaling(void)
1178{
1179 return vmcs_config.cpu_based_2nd_exec_ctrl &
1180 SECONDARY_EXEC_TSC_SCALING;
1181}
1182
04547156
SY
1183static inline bool report_flexpriority(void)
1184{
1185 return flexpriority_enabled;
1186}
1187
fe3ef05c
NHE
1188static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1189{
1190 return vmcs12->cpu_based_vm_exec_control & bit;
1191}
1192
1193static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1194{
1195 return (vmcs12->cpu_based_vm_exec_control &
1196 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1197 (vmcs12->secondary_vm_exec_control & bit);
1198}
1199
f5c4368f 1200static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
644d711a
NHE
1201{
1202 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1203}
1204
f4124500
JK
1205static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1206{
1207 return vmcs12->pin_based_vm_exec_control &
1208 PIN_BASED_VMX_PREEMPTION_TIMER;
1209}
1210
155a97a3
NHE
1211static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1212{
1213 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1214}
1215
81dc01f7
WL
1216static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1217{
1218 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1219 vmx_xsaves_supported();
1220}
1221
f2b93280
WV
1222static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1223{
1224 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1225}
1226
5c614b35
WL
1227static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1228{
1229 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1230}
1231
82f0dd4b
WV
1232static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1233{
1234 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1235}
1236
608406e2
WV
1237static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1238{
1239 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1240}
1241
705699a1
WV
1242static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1243{
1244 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1245}
1246
644d711a
NHE
1247static inline bool is_exception(u32 intr_info)
1248{
1249 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1250 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1251}
1252
533558bc
JK
1253static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1254 u32 exit_intr_info,
1255 unsigned long exit_qualification);
7c177938
NHE
1256static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1257 struct vmcs12 *vmcs12,
1258 u32 reason, unsigned long qualification);
1259
8b9cf98c 1260static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
1261{
1262 int i;
1263
a2fa3e9f 1264 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 1265 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
1266 return i;
1267 return -1;
1268}
1269
2384d2b3
SY
1270static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1271{
1272 struct {
1273 u64 vpid : 16;
1274 u64 rsvd : 48;
1275 u64 gva;
1276 } operand = { vpid, 0, gva };
1277
4ecac3fd 1278 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
1279 /* CF==1 or ZF==1 --> rc = -1 */
1280 "; ja 1f ; ud2 ; 1:"
1281 : : "a"(&operand), "c"(ext) : "cc", "memory");
1282}
1283
1439442c
SY
1284static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1285{
1286 struct {
1287 u64 eptp, gpa;
1288 } operand = {eptp, gpa};
1289
4ecac3fd 1290 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
1291 /* CF==1 or ZF==1 --> rc = -1 */
1292 "; ja 1f ; ud2 ; 1:\n"
1293 : : "a" (&operand), "c" (ext) : "cc", "memory");
1294}
1295
26bb0981 1296static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
1297{
1298 int i;
1299
8b9cf98c 1300 i = __find_msr_index(vmx, msr);
a75beee6 1301 if (i >= 0)
a2fa3e9f 1302 return &vmx->guest_msrs[i];
8b6d44c7 1303 return NULL;
7725f0ba
AK
1304}
1305
6aa8b732
AK
1306static void vmcs_clear(struct vmcs *vmcs)
1307{
1308 u64 phys_addr = __pa(vmcs);
1309 u8 error;
1310
4ecac3fd 1311 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 1312 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
1313 : "cc", "memory");
1314 if (error)
1315 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1316 vmcs, phys_addr);
1317}
1318
d462b819
NHE
1319static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1320{
1321 vmcs_clear(loaded_vmcs->vmcs);
1322 loaded_vmcs->cpu = -1;
1323 loaded_vmcs->launched = 0;
1324}
1325
7725b894
DX
1326static void vmcs_load(struct vmcs *vmcs)
1327{
1328 u64 phys_addr = __pa(vmcs);
1329 u8 error;
1330
1331 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 1332 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
1333 : "cc", "memory");
1334 if (error)
2844d849 1335 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
1336 vmcs, phys_addr);
1337}
1338
2965faa5 1339#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
1340/*
1341 * This bitmap is used to indicate whether the vmclear
1342 * operation is enabled on all cpus. All disabled by
1343 * default.
1344 */
1345static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1346
1347static inline void crash_enable_local_vmclear(int cpu)
1348{
1349 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1350}
1351
1352static inline void crash_disable_local_vmclear(int cpu)
1353{
1354 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1355}
1356
1357static inline int crash_local_vmclear_enabled(int cpu)
1358{
1359 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1360}
1361
1362static void crash_vmclear_local_loaded_vmcss(void)
1363{
1364 int cpu = raw_smp_processor_id();
1365 struct loaded_vmcs *v;
1366
1367 if (!crash_local_vmclear_enabled(cpu))
1368 return;
1369
1370 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1371 loaded_vmcss_on_cpu_link)
1372 vmcs_clear(v->vmcs);
1373}
1374#else
1375static inline void crash_enable_local_vmclear(int cpu) { }
1376static inline void crash_disable_local_vmclear(int cpu) { }
2965faa5 1377#endif /* CONFIG_KEXEC_CORE */
8f536b76 1378
d462b819 1379static void __loaded_vmcs_clear(void *arg)
6aa8b732 1380{
d462b819 1381 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 1382 int cpu = raw_smp_processor_id();
6aa8b732 1383
d462b819
NHE
1384 if (loaded_vmcs->cpu != cpu)
1385 return; /* vcpu migration can race with cpu offline */
1386 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 1387 per_cpu(current_vmcs, cpu) = NULL;
8f536b76 1388 crash_disable_local_vmclear(cpu);
d462b819 1389 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
5a560f8b
XG
1390
1391 /*
1392 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1393 * is before setting loaded_vmcs->vcpu to -1 which is done in
1394 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1395 * then adds the vmcs into percpu list before it is deleted.
1396 */
1397 smp_wmb();
1398
d462b819 1399 loaded_vmcs_init(loaded_vmcs);
8f536b76 1400 crash_enable_local_vmclear(cpu);
6aa8b732
AK
1401}
1402
d462b819 1403static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 1404{
e6c7d321
XG
1405 int cpu = loaded_vmcs->cpu;
1406
1407 if (cpu != -1)
1408 smp_call_function_single(cpu,
1409 __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
1410}
1411
dd5f5341 1412static inline void vpid_sync_vcpu_single(int vpid)
2384d2b3 1413{
dd5f5341 1414 if (vpid == 0)
2384d2b3
SY
1415 return;
1416
518c8aee 1417 if (cpu_has_vmx_invvpid_single())
dd5f5341 1418 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
2384d2b3
SY
1419}
1420
b9d762fa
GJ
1421static inline void vpid_sync_vcpu_global(void)
1422{
1423 if (cpu_has_vmx_invvpid_global())
1424 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1425}
1426
dd5f5341 1427static inline void vpid_sync_context(int vpid)
b9d762fa
GJ
1428{
1429 if (cpu_has_vmx_invvpid_single())
dd5f5341 1430 vpid_sync_vcpu_single(vpid);
b9d762fa
GJ
1431 else
1432 vpid_sync_vcpu_global();
1433}
1434
1439442c
SY
1435static inline void ept_sync_global(void)
1436{
1437 if (cpu_has_vmx_invept_global())
1438 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1439}
1440
1441static inline void ept_sync_context(u64 eptp)
1442{
089d034e 1443 if (enable_ept) {
1439442c
SY
1444 if (cpu_has_vmx_invept_context())
1445 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1446 else
1447 ept_sync_global();
1448 }
1449}
1450
96304217 1451static __always_inline unsigned long vmcs_readl(unsigned long field)
6aa8b732 1452{
5e520e62 1453 unsigned long value;
6aa8b732 1454
5e520e62
AK
1455 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1456 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1457 return value;
1458}
1459
96304217 1460static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732
AK
1461{
1462 return vmcs_readl(field);
1463}
1464
96304217 1465static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732
AK
1466{
1467 return vmcs_readl(field);
1468}
1469
96304217 1470static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1471{
05b3e0c2 1472#ifdef CONFIG_X86_64
6aa8b732
AK
1473 return vmcs_readl(field);
1474#else
1475 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1476#endif
1477}
1478
e52de1b8
AK
1479static noinline void vmwrite_error(unsigned long field, unsigned long value)
1480{
1481 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1482 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1483 dump_stack();
1484}
1485
6aa8b732
AK
1486static void vmcs_writel(unsigned long field, unsigned long value)
1487{
1488 u8 error;
1489
4ecac3fd 1490 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1491 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1492 if (unlikely(error))
1493 vmwrite_error(field, value);
6aa8b732
AK
1494}
1495
1496static void vmcs_write16(unsigned long field, u16 value)
1497{
1498 vmcs_writel(field, value);
1499}
1500
1501static void vmcs_write32(unsigned long field, u32 value)
1502{
1503 vmcs_writel(field, value);
1504}
1505
1506static void vmcs_write64(unsigned long field, u64 value)
1507{
6aa8b732 1508 vmcs_writel(field, value);
7682f2d0 1509#ifndef CONFIG_X86_64
6aa8b732
AK
1510 asm volatile ("");
1511 vmcs_writel(field+1, value >> 32);
1512#endif
1513}
1514
2ab455cc
AL
1515static void vmcs_clear_bits(unsigned long field, u32 mask)
1516{
1517 vmcs_writel(field, vmcs_readl(field) & ~mask);
1518}
1519
1520static void vmcs_set_bits(unsigned long field, u32 mask)
1521{
1522 vmcs_writel(field, vmcs_readl(field) | mask);
1523}
1524
2961e876
GN
1525static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1526{
1527 vmcs_write32(VM_ENTRY_CONTROLS, val);
1528 vmx->vm_entry_controls_shadow = val;
1529}
1530
1531static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1532{
1533 if (vmx->vm_entry_controls_shadow != val)
1534 vm_entry_controls_init(vmx, val);
1535}
1536
1537static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1538{
1539 return vmx->vm_entry_controls_shadow;
1540}
1541
1542
1543static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1544{
1545 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1546}
1547
1548static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1549{
1550 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1551}
1552
1553static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1554{
1555 vmcs_write32(VM_EXIT_CONTROLS, val);
1556 vmx->vm_exit_controls_shadow = val;
1557}
1558
1559static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1560{
1561 if (vmx->vm_exit_controls_shadow != val)
1562 vm_exit_controls_init(vmx, val);
1563}
1564
1565static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1566{
1567 return vmx->vm_exit_controls_shadow;
1568}
1569
1570
1571static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1572{
1573 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1574}
1575
1576static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1577{
1578 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1579}
1580
2fb92db1
AK
1581static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1582{
1583 vmx->segment_cache.bitmask = 0;
1584}
1585
1586static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1587 unsigned field)
1588{
1589 bool ret;
1590 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1591
1592 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1593 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1594 vmx->segment_cache.bitmask = 0;
1595 }
1596 ret = vmx->segment_cache.bitmask & mask;
1597 vmx->segment_cache.bitmask |= mask;
1598 return ret;
1599}
1600
1601static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1602{
1603 u16 *p = &vmx->segment_cache.seg[seg].selector;
1604
1605 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1606 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1607 return *p;
1608}
1609
1610static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1611{
1612 ulong *p = &vmx->segment_cache.seg[seg].base;
1613
1614 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1615 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1616 return *p;
1617}
1618
1619static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1620{
1621 u32 *p = &vmx->segment_cache.seg[seg].limit;
1622
1623 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1624 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1625 return *p;
1626}
1627
1628static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1629{
1630 u32 *p = &vmx->segment_cache.seg[seg].ar;
1631
1632 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1633 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1634 return *p;
1635}
1636
abd3f2d6
AK
1637static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1638{
1639 u32 eb;
1640
fd7373cc
JK
1641 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1642 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1643 if ((vcpu->guest_debug &
1644 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1645 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1646 eb |= 1u << BP_VECTOR;
7ffd92c5 1647 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1648 eb = ~0;
089d034e 1649 if (enable_ept)
1439442c 1650 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
02daab21
AK
1651 if (vcpu->fpu_active)
1652 eb &= ~(1u << NM_VECTOR);
36cf24e0
NHE
1653
1654 /* When we are running a nested L2 guest and L1 specified for it a
1655 * certain exception bitmap, we must trap the same exceptions and pass
1656 * them to L1. When running L2, we will only handle the exceptions
1657 * specified above if L1 did not want them.
1658 */
1659 if (is_guest_mode(vcpu))
1660 eb |= get_vmcs12(vcpu)->exception_bitmap;
1661
abd3f2d6
AK
1662 vmcs_write32(EXCEPTION_BITMAP, eb);
1663}
1664
2961e876
GN
1665static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1666 unsigned long entry, unsigned long exit)
8bf00a52 1667{
2961e876
GN
1668 vm_entry_controls_clearbit(vmx, entry);
1669 vm_exit_controls_clearbit(vmx, exit);
8bf00a52
GN
1670}
1671
61d2ef2c
AK
1672static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1673{
1674 unsigned i;
1675 struct msr_autoload *m = &vmx->msr_autoload;
1676
8bf00a52
GN
1677 switch (msr) {
1678 case MSR_EFER:
1679 if (cpu_has_load_ia32_efer) {
2961e876
GN
1680 clear_atomic_switch_msr_special(vmx,
1681 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1682 VM_EXIT_LOAD_IA32_EFER);
1683 return;
1684 }
1685 break;
1686 case MSR_CORE_PERF_GLOBAL_CTRL:
1687 if (cpu_has_load_perf_global_ctrl) {
2961e876 1688 clear_atomic_switch_msr_special(vmx,
8bf00a52
GN
1689 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1690 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1691 return;
1692 }
1693 break;
110312c8
AK
1694 }
1695
61d2ef2c
AK
1696 for (i = 0; i < m->nr; ++i)
1697 if (m->guest[i].index == msr)
1698 break;
1699
1700 if (i == m->nr)
1701 return;
1702 --m->nr;
1703 m->guest[i] = m->guest[m->nr];
1704 m->host[i] = m->host[m->nr];
1705 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1706 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1707}
1708
2961e876
GN
1709static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1710 unsigned long entry, unsigned long exit,
1711 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1712 u64 guest_val, u64 host_val)
8bf00a52
GN
1713{
1714 vmcs_write64(guest_val_vmcs, guest_val);
1715 vmcs_write64(host_val_vmcs, host_val);
2961e876
GN
1716 vm_entry_controls_setbit(vmx, entry);
1717 vm_exit_controls_setbit(vmx, exit);
8bf00a52
GN
1718}
1719
61d2ef2c
AK
1720static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1721 u64 guest_val, u64 host_val)
1722{
1723 unsigned i;
1724 struct msr_autoload *m = &vmx->msr_autoload;
1725
8bf00a52
GN
1726 switch (msr) {
1727 case MSR_EFER:
1728 if (cpu_has_load_ia32_efer) {
2961e876
GN
1729 add_atomic_switch_msr_special(vmx,
1730 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1731 VM_EXIT_LOAD_IA32_EFER,
1732 GUEST_IA32_EFER,
1733 HOST_IA32_EFER,
1734 guest_val, host_val);
1735 return;
1736 }
1737 break;
1738 case MSR_CORE_PERF_GLOBAL_CTRL:
1739 if (cpu_has_load_perf_global_ctrl) {
2961e876 1740 add_atomic_switch_msr_special(vmx,
8bf00a52
GN
1741 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1742 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1743 GUEST_IA32_PERF_GLOBAL_CTRL,
1744 HOST_IA32_PERF_GLOBAL_CTRL,
1745 guest_val, host_val);
1746 return;
1747 }
1748 break;
110312c8
AK
1749 }
1750
61d2ef2c
AK
1751 for (i = 0; i < m->nr; ++i)
1752 if (m->guest[i].index == msr)
1753 break;
1754
e7fc6f93 1755 if (i == NR_AUTOLOAD_MSRS) {
60266204 1756 printk_once(KERN_WARNING "Not enough msr switch entries. "
e7fc6f93
GN
1757 "Can't add msr %x\n", msr);
1758 return;
1759 } else if (i == m->nr) {
61d2ef2c
AK
1760 ++m->nr;
1761 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1762 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1763 }
1764
1765 m->guest[i].index = msr;
1766 m->guest[i].value = guest_val;
1767 m->host[i].index = msr;
1768 m->host[i].value = host_val;
1769}
1770
33ed6329
AK
1771static void reload_tss(void)
1772{
33ed6329
AK
1773 /*
1774 * VT restores TR but not its size. Useless.
1775 */
89cbc767 1776 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
a5f61300 1777 struct desc_struct *descs;
33ed6329 1778
d359192f 1779 descs = (void *)gdt->address;
33ed6329
AK
1780 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1781 load_TR_desc();
33ed6329
AK
1782}
1783
92c0d900 1784static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 1785{
3a34a881 1786 u64 guest_efer;
51c6cf66
AK
1787 u64 ignore_bits;
1788
f6801dff 1789 guest_efer = vmx->vcpu.arch.efer;
3a34a881 1790
51c6cf66 1791 /*
0fa06071 1792 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
51c6cf66
AK
1793 * outside long mode
1794 */
1795 ignore_bits = EFER_NX | EFER_SCE;
1796#ifdef CONFIG_X86_64
1797 ignore_bits |= EFER_LMA | EFER_LME;
1798 /* SCE is meaningful only in long mode on Intel */
1799 if (guest_efer & EFER_LMA)
1800 ignore_bits &= ~(u64)EFER_SCE;
1801#endif
51c6cf66
AK
1802 guest_efer &= ~ignore_bits;
1803 guest_efer |= host_efer & ignore_bits;
26bb0981 1804 vmx->guest_msrs[efer_offset].data = guest_efer;
d5696725 1805 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef
AK
1806
1807 clear_atomic_switch_msr(vmx, MSR_EFER);
f6577a5f
AL
1808
1809 /*
1810 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1811 * On CPUs that support "load IA32_EFER", always switch EFER
1812 * atomically, since it's faster than switching it manually.
1813 */
1814 if (cpu_has_load_ia32_efer ||
1815 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
84ad33ef
AK
1816 guest_efer = vmx->vcpu.arch.efer;
1817 if (!(guest_efer & EFER_LMA))
1818 guest_efer &= ~EFER_LME;
54b98bff
AL
1819 if (guest_efer != host_efer)
1820 add_atomic_switch_msr(vmx, MSR_EFER,
1821 guest_efer, host_efer);
84ad33ef
AK
1822 return false;
1823 }
1824
26bb0981 1825 return true;
51c6cf66
AK
1826}
1827
2d49ec72
GN
1828static unsigned long segment_base(u16 selector)
1829{
89cbc767 1830 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2d49ec72
GN
1831 struct desc_struct *d;
1832 unsigned long table_base;
1833 unsigned long v;
1834
1835 if (!(selector & ~3))
1836 return 0;
1837
d359192f 1838 table_base = gdt->address;
2d49ec72
GN
1839
1840 if (selector & 4) { /* from ldt */
1841 u16 ldt_selector = kvm_read_ldt();
1842
1843 if (!(ldt_selector & ~3))
1844 return 0;
1845
1846 table_base = segment_base(ldt_selector);
1847 }
1848 d = (struct desc_struct *)(table_base + (selector & ~7));
1849 v = get_desc_base(d);
1850#ifdef CONFIG_X86_64
1851 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1852 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1853#endif
1854 return v;
1855}
1856
1857static inline unsigned long kvm_read_tr_base(void)
1858{
1859 u16 tr;
1860 asm("str %0" : "=g"(tr));
1861 return segment_base(tr);
1862}
1863
04d2cc77 1864static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 1865{
04d2cc77 1866 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 1867 int i;
04d2cc77 1868
a2fa3e9f 1869 if (vmx->host_state.loaded)
33ed6329
AK
1870 return;
1871
a2fa3e9f 1872 vmx->host_state.loaded = 1;
33ed6329
AK
1873 /*
1874 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1875 * allow segment selectors with cpl > 0 or ti == 1.
1876 */
d6e88aec 1877 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 1878 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 1879 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 1880 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 1881 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
1882 vmx->host_state.fs_reload_needed = 0;
1883 } else {
33ed6329 1884 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 1885 vmx->host_state.fs_reload_needed = 1;
33ed6329 1886 }
9581d442 1887 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
1888 if (!(vmx->host_state.gs_sel & 7))
1889 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
1890 else {
1891 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 1892 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
1893 }
1894
b2da15ac
AK
1895#ifdef CONFIG_X86_64
1896 savesegment(ds, vmx->host_state.ds_sel);
1897 savesegment(es, vmx->host_state.es_sel);
1898#endif
1899
33ed6329
AK
1900#ifdef CONFIG_X86_64
1901 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1902 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1903#else
a2fa3e9f
GH
1904 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1905 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 1906#endif
707c0874
AK
1907
1908#ifdef CONFIG_X86_64
c8770e7b
AK
1909 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1910 if (is_long_mode(&vmx->vcpu))
44ea2b17 1911 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 1912#endif
da8999d3
LJ
1913 if (boot_cpu_has(X86_FEATURE_MPX))
1914 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
26bb0981
AK
1915 for (i = 0; i < vmx->save_nmsrs; ++i)
1916 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
1917 vmx->guest_msrs[i].data,
1918 vmx->guest_msrs[i].mask);
33ed6329
AK
1919}
1920
a9b21b62 1921static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 1922{
a2fa3e9f 1923 if (!vmx->host_state.loaded)
33ed6329
AK
1924 return;
1925
e1beb1d3 1926 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 1927 vmx->host_state.loaded = 0;
c8770e7b
AK
1928#ifdef CONFIG_X86_64
1929 if (is_long_mode(&vmx->vcpu))
1930 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1931#endif
152d3f2f 1932 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 1933 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 1934#ifdef CONFIG_X86_64
9581d442 1935 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
1936#else
1937 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 1938#endif
33ed6329 1939 }
0a77fe4c
AK
1940 if (vmx->host_state.fs_reload_needed)
1941 loadsegment(fs, vmx->host_state.fs_sel);
b2da15ac
AK
1942#ifdef CONFIG_X86_64
1943 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1944 loadsegment(ds, vmx->host_state.ds_sel);
1945 loadsegment(es, vmx->host_state.es_sel);
1946 }
b2da15ac 1947#endif
152d3f2f 1948 reload_tss();
44ea2b17 1949#ifdef CONFIG_X86_64
c8770e7b 1950 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 1951#endif
da8999d3
LJ
1952 if (vmx->host_state.msr_host_bndcfgs)
1953 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
b1a74bf8
SS
1954 /*
1955 * If the FPU is not active (through the host task or
1956 * the guest vcpu), then restore the cr0.TS bit.
1957 */
3c6dffa9 1958 if (!fpregs_active() && !vmx->vcpu.guest_fpu_loaded)
b1a74bf8 1959 stts();
89cbc767 1960 load_gdt(this_cpu_ptr(&host_gdt));
33ed6329
AK
1961}
1962
a9b21b62
AK
1963static void vmx_load_host_state(struct vcpu_vmx *vmx)
1964{
1965 preempt_disable();
1966 __vmx_load_host_state(vmx);
1967 preempt_enable();
1968}
1969
28b835d6
FW
1970static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1971{
1972 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1973 struct pi_desc old, new;
1974 unsigned int dest;
1975
1976 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1977 !irq_remapping_cap(IRQ_POSTING_CAP))
1978 return;
1979
1980 do {
1981 old.control = new.control = pi_desc->control;
1982
1983 /*
1984 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
1985 * are two possible cases:
1986 * 1. After running 'pre_block', context switch
1987 * happened. For this case, 'sn' was set in
1988 * vmx_vcpu_put(), so we need to clear it here.
1989 * 2. After running 'pre_block', we were blocked,
1990 * and woken up by some other guy. For this case,
1991 * we don't need to do anything, 'pi_post_block'
1992 * will do everything for us. However, we cannot
1993 * check whether it is case #1 or case #2 here
1994 * (maybe, not needed), so we also clear sn here,
1995 * I think it is not a big deal.
1996 */
1997 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
1998 if (vcpu->cpu != cpu) {
1999 dest = cpu_physical_id(cpu);
2000
2001 if (x2apic_enabled())
2002 new.ndst = dest;
2003 else
2004 new.ndst = (dest << 8) & 0xFF00;
2005 }
2006
2007 /* set 'NV' to 'notification vector' */
2008 new.nv = POSTED_INTR_VECTOR;
2009 }
2010
2011 /* Allow posting non-urgent interrupts */
2012 new.sn = 0;
2013 } while (cmpxchg(&pi_desc->control, old.control,
2014 new.control) != old.control);
2015}
6aa8b732
AK
2016/*
2017 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2018 * vcpu mutex is already taken.
2019 */
15ad7146 2020static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 2021{
a2fa3e9f 2022 struct vcpu_vmx *vmx = to_vmx(vcpu);
4610c9cc 2023 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
6aa8b732 2024
4610c9cc
DX
2025 if (!vmm_exclusive)
2026 kvm_cpu_vmxon(phys_addr);
d462b819
NHE
2027 else if (vmx->loaded_vmcs->cpu != cpu)
2028 loaded_vmcs_clear(vmx->loaded_vmcs);
6aa8b732 2029
d462b819
NHE
2030 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2031 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2032 vmcs_load(vmx->loaded_vmcs->vmcs);
6aa8b732
AK
2033 }
2034
d462b819 2035 if (vmx->loaded_vmcs->cpu != cpu) {
89cbc767 2036 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
6aa8b732
AK
2037 unsigned long sysenter_esp;
2038
a8eeb04a 2039 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 2040 local_irq_disable();
8f536b76 2041 crash_disable_local_vmclear(cpu);
5a560f8b
XG
2042
2043 /*
2044 * Read loaded_vmcs->cpu should be before fetching
2045 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2046 * See the comments in __loaded_vmcs_clear().
2047 */
2048 smp_rmb();
2049
d462b819
NHE
2050 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2051 &per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76 2052 crash_enable_local_vmclear(cpu);
92fe13be
DX
2053 local_irq_enable();
2054
6aa8b732
AK
2055 /*
2056 * Linux uses per-cpu TSS and GDT, so set these when switching
2057 * processors.
2058 */
d6e88aec 2059 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
d359192f 2060 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
6aa8b732
AK
2061
2062 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2063 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
d462b819 2064 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 2065 }
28b835d6
FW
2066
2067 vmx_vcpu_pi_load(vcpu, cpu);
2068}
2069
2070static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2071{
2072 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2073
2074 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2075 !irq_remapping_cap(IRQ_POSTING_CAP))
2076 return;
2077
2078 /* Set SN when the vCPU is preempted */
2079 if (vcpu->preempted)
2080 pi_set_sn(pi_desc);
6aa8b732
AK
2081}
2082
2083static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2084{
28b835d6
FW
2085 vmx_vcpu_pi_put(vcpu);
2086
a9b21b62 2087 __vmx_load_host_state(to_vmx(vcpu));
4610c9cc 2088 if (!vmm_exclusive) {
d462b819
NHE
2089 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
2090 vcpu->cpu = -1;
4610c9cc
DX
2091 kvm_cpu_vmxoff();
2092 }
6aa8b732
AK
2093}
2094
5fd86fcf
AK
2095static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
2096{
81231c69
AK
2097 ulong cr0;
2098
5fd86fcf
AK
2099 if (vcpu->fpu_active)
2100 return;
2101 vcpu->fpu_active = 1;
81231c69
AK
2102 cr0 = vmcs_readl(GUEST_CR0);
2103 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
2104 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
2105 vmcs_writel(GUEST_CR0, cr0);
5fd86fcf 2106 update_exception_bitmap(vcpu);
edcafe3c 2107 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
36cf24e0
NHE
2108 if (is_guest_mode(vcpu))
2109 vcpu->arch.cr0_guest_owned_bits &=
2110 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
edcafe3c 2111 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
5fd86fcf
AK
2112}
2113
edcafe3c
AK
2114static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2115
fe3ef05c
NHE
2116/*
2117 * Return the cr0 value that a nested guest would read. This is a combination
2118 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2119 * its hypervisor (cr0_read_shadow).
2120 */
2121static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2122{
2123 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2124 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2125}
2126static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2127{
2128 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2129 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2130}
2131
5fd86fcf
AK
2132static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
2133{
36cf24e0
NHE
2134 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2135 * set this *before* calling this function.
2136 */
edcafe3c 2137 vmx_decache_cr0_guest_bits(vcpu);
81231c69 2138 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
5fd86fcf 2139 update_exception_bitmap(vcpu);
edcafe3c
AK
2140 vcpu->arch.cr0_guest_owned_bits = 0;
2141 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
36cf24e0
NHE
2142 if (is_guest_mode(vcpu)) {
2143 /*
2144 * L1's specified read shadow might not contain the TS bit,
2145 * so now that we turned on shadowing of this bit, we need to
2146 * set this bit of the shadow. Like in nested_vmx_run we need
2147 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2148 * up-to-date here because we just decached cr0.TS (and we'll
2149 * only update vmcs12->guest_cr0 on nested exit).
2150 */
2151 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2152 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2153 (vcpu->arch.cr0 & X86_CR0_TS);
2154 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2155 } else
2156 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
5fd86fcf
AK
2157}
2158
6aa8b732
AK
2159static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2160{
78ac8b47 2161 unsigned long rflags, save_rflags;
345dcaa8 2162
6de12732
AK
2163 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2164 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2165 rflags = vmcs_readl(GUEST_RFLAGS);
2166 if (to_vmx(vcpu)->rmode.vm86_active) {
2167 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2168 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2169 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2170 }
2171 to_vmx(vcpu)->rflags = rflags;
78ac8b47 2172 }
6de12732 2173 return to_vmx(vcpu)->rflags;
6aa8b732
AK
2174}
2175
2176static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2177{
6de12732
AK
2178 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2179 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
2180 if (to_vmx(vcpu)->rmode.vm86_active) {
2181 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 2182 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 2183 }
6aa8b732
AK
2184 vmcs_writel(GUEST_RFLAGS, rflags);
2185}
2186
37ccdcbe 2187static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2809f5d2
GC
2188{
2189 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2190 int ret = 0;
2191
2192 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 2193 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 2194 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 2195 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2 2196
37ccdcbe 2197 return ret;
2809f5d2
GC
2198}
2199
2200static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2201{
2202 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2203 u32 interruptibility = interruptibility_old;
2204
2205 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2206
48005f64 2207 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 2208 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 2209 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
2210 interruptibility |= GUEST_INTR_STATE_STI;
2211
2212 if ((interruptibility != interruptibility_old))
2213 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2214}
2215
6aa8b732
AK
2216static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2217{
2218 unsigned long rip;
6aa8b732 2219
5fdbf976 2220 rip = kvm_rip_read(vcpu);
6aa8b732 2221 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 2222 kvm_rip_write(vcpu, rip);
6aa8b732 2223
2809f5d2
GC
2224 /* skipping an emulated instruction also counts */
2225 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
2226}
2227
0b6ac343
NHE
2228/*
2229 * KVM wants to inject page-faults which it got to the guest. This function
2230 * checks whether in a nested guest, we need to inject them to L1 or L2.
0b6ac343 2231 */
e011c663 2232static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
0b6ac343
NHE
2233{
2234 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2235
e011c663 2236 if (!(vmcs12->exception_bitmap & (1u << nr)))
0b6ac343
NHE
2237 return 0;
2238
533558bc
JK
2239 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2240 vmcs_read32(VM_EXIT_INTR_INFO),
2241 vmcs_readl(EXIT_QUALIFICATION));
0b6ac343
NHE
2242 return 1;
2243}
2244
298101da 2245static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
ce7ddec4
JR
2246 bool has_error_code, u32 error_code,
2247 bool reinject)
298101da 2248{
77ab6db0 2249 struct vcpu_vmx *vmx = to_vmx(vcpu);
8ab2d2e2 2250 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 2251
e011c663
GN
2252 if (!reinject && is_guest_mode(vcpu) &&
2253 nested_vmx_check_exception(vcpu, nr))
0b6ac343
NHE
2254 return;
2255
8ab2d2e2 2256 if (has_error_code) {
77ab6db0 2257 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
2258 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2259 }
77ab6db0 2260
7ffd92c5 2261 if (vmx->rmode.vm86_active) {
71f9833b
SH
2262 int inc_eip = 0;
2263 if (kvm_exception_is_soft(nr))
2264 inc_eip = vcpu->arch.event_exit_inst_len;
2265 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 2266 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
2267 return;
2268 }
2269
66fd3f7f
GN
2270 if (kvm_exception_is_soft(nr)) {
2271 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2272 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
2273 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2274 } else
2275 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2276
2277 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
2278}
2279
4e47c7a6
SY
2280static bool vmx_rdtscp_supported(void)
2281{
2282 return cpu_has_vmx_rdtscp();
2283}
2284
ad756a16
MJ
2285static bool vmx_invpcid_supported(void)
2286{
2287 return cpu_has_vmx_invpcid() && enable_ept;
2288}
2289
a75beee6
ED
2290/*
2291 * Swap MSR entry in host/guest MSR entry array.
2292 */
8b9cf98c 2293static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 2294{
26bb0981 2295 struct shared_msr_entry tmp;
a2fa3e9f
GH
2296
2297 tmp = vmx->guest_msrs[to];
2298 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2299 vmx->guest_msrs[from] = tmp;
a75beee6
ED
2300}
2301
8d14695f
YZ
2302static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2303{
2304 unsigned long *msr_bitmap;
2305
670125bd
WV
2306 if (is_guest_mode(vcpu))
2307 msr_bitmap = vmx_msr_bitmap_nested;
8a9781f7 2308 else if (vcpu->arch.apic_base & X2APIC_ENABLE) {
8d14695f
YZ
2309 if (is_long_mode(vcpu))
2310 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2311 else
2312 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2313 } else {
2314 if (is_long_mode(vcpu))
2315 msr_bitmap = vmx_msr_bitmap_longmode;
2316 else
2317 msr_bitmap = vmx_msr_bitmap_legacy;
2318 }
2319
2320 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2321}
2322
e38aea3e
AK
2323/*
2324 * Set up the vmcs to automatically save and restore system
2325 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2326 * mode, as fiddling with msrs is very expensive.
2327 */
8b9cf98c 2328static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 2329{
26bb0981 2330 int save_nmsrs, index;
e38aea3e 2331
a75beee6
ED
2332 save_nmsrs = 0;
2333#ifdef CONFIG_X86_64
8b9cf98c 2334 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 2335 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 2336 if (index >= 0)
8b9cf98c
RR
2337 move_msr_up(vmx, index, save_nmsrs++);
2338 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 2339 if (index >= 0)
8b9cf98c
RR
2340 move_msr_up(vmx, index, save_nmsrs++);
2341 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 2342 if (index >= 0)
8b9cf98c 2343 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6 2344 index = __find_msr_index(vmx, MSR_TSC_AUX);
1cea0ce6 2345 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
4e47c7a6 2346 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 2347 /*
8c06585d 2348 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
2349 * if efer.sce is enabled.
2350 */
8c06585d 2351 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 2352 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 2353 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
2354 }
2355#endif
92c0d900
AK
2356 index = __find_msr_index(vmx, MSR_EFER);
2357 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 2358 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 2359
26bb0981 2360 vmx->save_nmsrs = save_nmsrs;
5897297b 2361
8d14695f
YZ
2362 if (cpu_has_vmx_msr_bitmap())
2363 vmx_set_msr_bitmap(&vmx->vcpu);
e38aea3e
AK
2364}
2365
6aa8b732
AK
2366/*
2367 * reads and returns guest's timestamp counter "register"
2368 * guest_tsc = host_tsc + tsc_offset -- 21.3
2369 */
2370static u64 guest_read_tsc(void)
2371{
2372 u64 host_tsc, tsc_offset;
2373
4ea1636b 2374 host_tsc = rdtsc();
6aa8b732
AK
2375 tsc_offset = vmcs_read64(TSC_OFFSET);
2376 return host_tsc + tsc_offset;
2377}
2378
d5c1785d
NHE
2379/*
2380 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2381 * counter, even if a nested guest (L2) is currently running.
2382 */
48d89b92 2383static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
d5c1785d 2384{
886b470c 2385 u64 tsc_offset;
d5c1785d 2386
d5c1785d
NHE
2387 tsc_offset = is_guest_mode(vcpu) ?
2388 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2389 vmcs_read64(TSC_OFFSET);
2390 return host_tsc + tsc_offset;
2391}
2392
ba904635
WA
2393static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2394{
2395 return vmcs_read64(TSC_OFFSET);
2396}
2397
6aa8b732 2398/*
99e3e30a 2399 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 2400 */
99e3e30a 2401static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 2402{
27fc51b2 2403 if (is_guest_mode(vcpu)) {
7991825b 2404 /*
27fc51b2
NHE
2405 * We're here if L1 chose not to trap WRMSR to TSC. According
2406 * to the spec, this should set L1's TSC; The offset that L1
2407 * set for L2 remains unchanged, and still needs to be added
2408 * to the newly set TSC to get L2's TSC.
7991825b 2409 */
27fc51b2
NHE
2410 struct vmcs12 *vmcs12;
2411 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2412 /* recalculate vmcs02.TSC_OFFSET: */
2413 vmcs12 = get_vmcs12(vcpu);
2414 vmcs_write64(TSC_OFFSET, offset +
2415 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2416 vmcs12->tsc_offset : 0));
2417 } else {
489223ed
YY
2418 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2419 vmcs_read64(TSC_OFFSET), offset);
27fc51b2
NHE
2420 vmcs_write64(TSC_OFFSET, offset);
2421 }
6aa8b732
AK
2422}
2423
58ea6767 2424static void vmx_adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment)
e48672fa
ZA
2425{
2426 u64 offset = vmcs_read64(TSC_OFFSET);
489223ed 2427
e48672fa 2428 vmcs_write64(TSC_OFFSET, offset + adjustment);
7991825b
NHE
2429 if (is_guest_mode(vcpu)) {
2430 /* Even when running L2, the adjustment needs to apply to L1 */
2431 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
489223ed
YY
2432 } else
2433 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2434 offset + adjustment);
e48672fa
ZA
2435}
2436
801d3424
NHE
2437static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2438{
2439 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2440 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2441}
2442
2443/*
2444 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2445 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2446 * all guests if the "nested" module option is off, and can also be disabled
2447 * for a single guest by disabling its VMX cpuid bit.
2448 */
2449static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2450{
2451 return nested && guest_cpuid_has_vmx(vcpu);
2452}
2453
b87a51ae
NHE
2454/*
2455 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2456 * returned for the various VMX controls MSRs when nested VMX is enabled.
2457 * The same values should also be used to verify that vmcs12 control fields are
2458 * valid during nested entry from L1 to L2.
2459 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2460 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2461 * bit in the high half is on if the corresponding bit in the control field
2462 * may be on. See also vmx_control_verify().
b87a51ae 2463 */
b9c237bb 2464static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
b87a51ae
NHE
2465{
2466 /*
2467 * Note that as a general rule, the high half of the MSRs (bits in
2468 * the control fields which may be 1) should be initialized by the
2469 * intersection of the underlying hardware's MSR (i.e., features which
2470 * can be supported) and the list of features we want to expose -
2471 * because they are known to be properly supported in our code.
2472 * Also, usually, the low half of the MSRs (bits which must be 1) can
2473 * be set to 0, meaning that L1 may turn off any of these bits. The
2474 * reason is that if one of these bits is necessary, it will appear
2475 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2476 * fields of vmcs01 and vmcs02, will turn these bits off - and
2477 * nested_vmx_exit_handled() will not pass related exits to L1.
2478 * These rules have exceptions below.
2479 */
2480
2481 /* pin-based controls */
eabeaacc 2482 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
b9c237bb
WV
2483 vmx->nested.nested_vmx_pinbased_ctls_low,
2484 vmx->nested.nested_vmx_pinbased_ctls_high);
2485 vmx->nested.nested_vmx_pinbased_ctls_low |=
2486 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2487 vmx->nested.nested_vmx_pinbased_ctls_high &=
2488 PIN_BASED_EXT_INTR_MASK |
2489 PIN_BASED_NMI_EXITING |
2490 PIN_BASED_VIRTUAL_NMIS;
2491 vmx->nested.nested_vmx_pinbased_ctls_high |=
2492 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
0238ea91 2493 PIN_BASED_VMX_PREEMPTION_TIMER;
35754c98 2494 if (vmx_cpu_uses_apicv(&vmx->vcpu))
705699a1
WV
2495 vmx->nested.nested_vmx_pinbased_ctls_high |=
2496 PIN_BASED_POSTED_INTR;
b87a51ae 2497
3dbcd8da 2498 /* exit controls */
c0dfee58 2499 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
b9c237bb
WV
2500 vmx->nested.nested_vmx_exit_ctls_low,
2501 vmx->nested.nested_vmx_exit_ctls_high);
2502 vmx->nested.nested_vmx_exit_ctls_low =
2503 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
e0ba1a6f 2504
b9c237bb 2505 vmx->nested.nested_vmx_exit_ctls_high &=
b87a51ae 2506#ifdef CONFIG_X86_64
c0dfee58 2507 VM_EXIT_HOST_ADDR_SPACE_SIZE |
b87a51ae 2508#endif
f4124500 2509 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
b9c237bb
WV
2510 vmx->nested.nested_vmx_exit_ctls_high |=
2511 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
f4124500 2512 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
e0ba1a6f
BD
2513 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2514
36be0b9d 2515 if (vmx_mpx_supported())
b9c237bb 2516 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
b87a51ae 2517
2996fca0 2518 /* We support free control of debug control saving. */
b9c237bb
WV
2519 vmx->nested.nested_vmx_true_exit_ctls_low =
2520 vmx->nested.nested_vmx_exit_ctls_low &
2996fca0
JK
2521 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2522
b87a51ae
NHE
2523 /* entry controls */
2524 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
b9c237bb
WV
2525 vmx->nested.nested_vmx_entry_ctls_low,
2526 vmx->nested.nested_vmx_entry_ctls_high);
2527 vmx->nested.nested_vmx_entry_ctls_low =
2528 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2529 vmx->nested.nested_vmx_entry_ctls_high &=
57435349
JK
2530#ifdef CONFIG_X86_64
2531 VM_ENTRY_IA32E_MODE |
2532#endif
2533 VM_ENTRY_LOAD_IA32_PAT;
b9c237bb
WV
2534 vmx->nested.nested_vmx_entry_ctls_high |=
2535 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
36be0b9d 2536 if (vmx_mpx_supported())
b9c237bb 2537 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
57435349 2538
2996fca0 2539 /* We support free control of debug control loading. */
b9c237bb
WV
2540 vmx->nested.nested_vmx_true_entry_ctls_low =
2541 vmx->nested.nested_vmx_entry_ctls_low &
2996fca0
JK
2542 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2543
b87a51ae
NHE
2544 /* cpu-based controls */
2545 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
b9c237bb
WV
2546 vmx->nested.nested_vmx_procbased_ctls_low,
2547 vmx->nested.nested_vmx_procbased_ctls_high);
2548 vmx->nested.nested_vmx_procbased_ctls_low =
2549 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2550 vmx->nested.nested_vmx_procbased_ctls_high &=
a294c9bb
JK
2551 CPU_BASED_VIRTUAL_INTR_PENDING |
2552 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
b87a51ae
NHE
2553 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2554 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2555 CPU_BASED_CR3_STORE_EXITING |
2556#ifdef CONFIG_X86_64
2557 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2558#endif
2559 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5f3d45e7
MD
2560 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2561 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2562 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2563 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
b87a51ae
NHE
2564 /*
2565 * We can allow some features even when not supported by the
2566 * hardware. For example, L1 can specify an MSR bitmap - and we
2567 * can use it to avoid exits to L1 - even when L0 runs L2
2568 * without MSR bitmaps.
2569 */
b9c237bb
WV
2570 vmx->nested.nested_vmx_procbased_ctls_high |=
2571 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
560b7ee1 2572 CPU_BASED_USE_MSR_BITMAPS;
b87a51ae 2573
3dcdf3ec 2574 /* We support free control of CR3 access interception. */
b9c237bb
WV
2575 vmx->nested.nested_vmx_true_procbased_ctls_low =
2576 vmx->nested.nested_vmx_procbased_ctls_low &
3dcdf3ec
JK
2577 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2578
b87a51ae
NHE
2579 /* secondary cpu-based controls */
2580 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
b9c237bb
WV
2581 vmx->nested.nested_vmx_secondary_ctls_low,
2582 vmx->nested.nested_vmx_secondary_ctls_high);
2583 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2584 vmx->nested.nested_vmx_secondary_ctls_high &=
d6851fbe 2585 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
b3a2a907 2586 SECONDARY_EXEC_RDTSCP |
f2b93280 2587 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
5c614b35 2588 SECONDARY_EXEC_ENABLE_VPID |
82f0dd4b 2589 SECONDARY_EXEC_APIC_REGISTER_VIRT |
608406e2 2590 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
81dc01f7 2591 SECONDARY_EXEC_WBINVD_EXITING |
8b3e34e4
XG
2592 SECONDARY_EXEC_XSAVES |
2593 SECONDARY_EXEC_PCOMMIT;
c18911a2 2594
afa61f75
NHE
2595 if (enable_ept) {
2596 /* nested EPT: emulate EPT also to L1 */
b9c237bb 2597 vmx->nested.nested_vmx_secondary_ctls_high |=
0790ec17 2598 SECONDARY_EXEC_ENABLE_EPT;
b9c237bb 2599 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
d3134dbf
JK
2600 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2601 VMX_EPT_INVEPT_BIT;
b9c237bb 2602 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
afa61f75 2603 /*
4b855078
BD
2604 * For nested guests, we don't do anything specific
2605 * for single context invalidation. Hence, only advertise
2606 * support for global context invalidation.
afa61f75 2607 */
b9c237bb 2608 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
afa61f75 2609 } else
b9c237bb 2610 vmx->nested.nested_vmx_ept_caps = 0;
afa61f75 2611
089d7b6e
WL
2612 if (enable_vpid)
2613 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2614 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
2615 else
2616 vmx->nested.nested_vmx_vpid_caps = 0;
99b83ac8 2617
0790ec17
RK
2618 if (enable_unrestricted_guest)
2619 vmx->nested.nested_vmx_secondary_ctls_high |=
2620 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2621
c18911a2 2622 /* miscellaneous data */
b9c237bb
WV
2623 rdmsr(MSR_IA32_VMX_MISC,
2624 vmx->nested.nested_vmx_misc_low,
2625 vmx->nested.nested_vmx_misc_high);
2626 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2627 vmx->nested.nested_vmx_misc_low |=
2628 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
f4124500 2629 VMX_MISC_ACTIVITY_HLT;
b9c237bb 2630 vmx->nested.nested_vmx_misc_high = 0;
b87a51ae
NHE
2631}
2632
2633static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2634{
2635 /*
2636 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2637 */
2638 return ((control & high) | low) == control;
2639}
2640
2641static inline u64 vmx_control_msr(u32 low, u32 high)
2642{
2643 return low | ((u64)high << 32);
2644}
2645
cae50139 2646/* Returns 0 on success, non-0 otherwise. */
b87a51ae
NHE
2647static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2648{
b9c237bb
WV
2649 struct vcpu_vmx *vmx = to_vmx(vcpu);
2650
b87a51ae 2651 switch (msr_index) {
b87a51ae
NHE
2652 case MSR_IA32_VMX_BASIC:
2653 /*
2654 * This MSR reports some information about VMX support. We
2655 * should return information about the VMX we emulate for the
2656 * guest, and the VMCS structure we give it - not about the
2657 * VMX support of the underlying hardware.
2658 */
3dbcd8da 2659 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
b87a51ae
NHE
2660 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2661 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2662 break;
2663 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2664 case MSR_IA32_VMX_PINBASED_CTLS:
b9c237bb
WV
2665 *pdata = vmx_control_msr(
2666 vmx->nested.nested_vmx_pinbased_ctls_low,
2667 vmx->nested.nested_vmx_pinbased_ctls_high);
b87a51ae
NHE
2668 break;
2669 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
b9c237bb
WV
2670 *pdata = vmx_control_msr(
2671 vmx->nested.nested_vmx_true_procbased_ctls_low,
2672 vmx->nested.nested_vmx_procbased_ctls_high);
3dcdf3ec 2673 break;
b87a51ae 2674 case MSR_IA32_VMX_PROCBASED_CTLS:
b9c237bb
WV
2675 *pdata = vmx_control_msr(
2676 vmx->nested.nested_vmx_procbased_ctls_low,
2677 vmx->nested.nested_vmx_procbased_ctls_high);
b87a51ae
NHE
2678 break;
2679 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
b9c237bb
WV
2680 *pdata = vmx_control_msr(
2681 vmx->nested.nested_vmx_true_exit_ctls_low,
2682 vmx->nested.nested_vmx_exit_ctls_high);
2996fca0 2683 break;
b87a51ae 2684 case MSR_IA32_VMX_EXIT_CTLS:
b9c237bb
WV
2685 *pdata = vmx_control_msr(
2686 vmx->nested.nested_vmx_exit_ctls_low,
2687 vmx->nested.nested_vmx_exit_ctls_high);
b87a51ae
NHE
2688 break;
2689 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
b9c237bb
WV
2690 *pdata = vmx_control_msr(
2691 vmx->nested.nested_vmx_true_entry_ctls_low,
2692 vmx->nested.nested_vmx_entry_ctls_high);
2996fca0 2693 break;
b87a51ae 2694 case MSR_IA32_VMX_ENTRY_CTLS:
b9c237bb
WV
2695 *pdata = vmx_control_msr(
2696 vmx->nested.nested_vmx_entry_ctls_low,
2697 vmx->nested.nested_vmx_entry_ctls_high);
b87a51ae
NHE
2698 break;
2699 case MSR_IA32_VMX_MISC:
b9c237bb
WV
2700 *pdata = vmx_control_msr(
2701 vmx->nested.nested_vmx_misc_low,
2702 vmx->nested.nested_vmx_misc_high);
b87a51ae
NHE
2703 break;
2704 /*
2705 * These MSRs specify bits which the guest must keep fixed (on or off)
2706 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2707 * We picked the standard core2 setting.
2708 */
2709#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2710#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2711 case MSR_IA32_VMX_CR0_FIXED0:
2712 *pdata = VMXON_CR0_ALWAYSON;
2713 break;
2714 case MSR_IA32_VMX_CR0_FIXED1:
2715 *pdata = -1ULL;
2716 break;
2717 case MSR_IA32_VMX_CR4_FIXED0:
2718 *pdata = VMXON_CR4_ALWAYSON;
2719 break;
2720 case MSR_IA32_VMX_CR4_FIXED1:
2721 *pdata = -1ULL;
2722 break;
2723 case MSR_IA32_VMX_VMCS_ENUM:
5381417f 2724 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
b87a51ae
NHE
2725 break;
2726 case MSR_IA32_VMX_PROCBASED_CTLS2:
b9c237bb
WV
2727 *pdata = vmx_control_msr(
2728 vmx->nested.nested_vmx_secondary_ctls_low,
2729 vmx->nested.nested_vmx_secondary_ctls_high);
b87a51ae
NHE
2730 break;
2731 case MSR_IA32_VMX_EPT_VPID_CAP:
afa61f75 2732 /* Currently, no nested vpid support */
089d7b6e
WL
2733 *pdata = vmx->nested.nested_vmx_ept_caps |
2734 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
b87a51ae
NHE
2735 break;
2736 default:
b87a51ae 2737 return 1;
b3897a49
NHE
2738 }
2739
b87a51ae
NHE
2740 return 0;
2741}
2742
6aa8b732
AK
2743/*
2744 * Reads an msr value (of 'msr_index') into 'pdata'.
2745 * Returns 0 on success, non-0 otherwise.
2746 * Assumes vcpu_load() was already called.
2747 */
609e36d3 2748static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 2749{
26bb0981 2750 struct shared_msr_entry *msr;
6aa8b732 2751
609e36d3 2752 switch (msr_info->index) {
05b3e0c2 2753#ifdef CONFIG_X86_64
6aa8b732 2754 case MSR_FS_BASE:
609e36d3 2755 msr_info->data = vmcs_readl(GUEST_FS_BASE);
6aa8b732
AK
2756 break;
2757 case MSR_GS_BASE:
609e36d3 2758 msr_info->data = vmcs_readl(GUEST_GS_BASE);
6aa8b732 2759 break;
44ea2b17
AK
2760 case MSR_KERNEL_GS_BASE:
2761 vmx_load_host_state(to_vmx(vcpu));
609e36d3 2762 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
44ea2b17 2763 break;
26bb0981 2764#endif
6aa8b732 2765 case MSR_EFER:
609e36d3 2766 return kvm_get_msr_common(vcpu, msr_info);
af24a4e4 2767 case MSR_IA32_TSC:
609e36d3 2768 msr_info->data = guest_read_tsc();
6aa8b732
AK
2769 break;
2770 case MSR_IA32_SYSENTER_CS:
609e36d3 2771 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
6aa8b732
AK
2772 break;
2773 case MSR_IA32_SYSENTER_EIP:
609e36d3 2774 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
2775 break;
2776 case MSR_IA32_SYSENTER_ESP:
609e36d3 2777 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 2778 break;
0dd376e7 2779 case MSR_IA32_BNDCFGS:
93c4adc7
PB
2780 if (!vmx_mpx_supported())
2781 return 1;
609e36d3 2782 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
0dd376e7 2783 break;
cae50139
JK
2784 case MSR_IA32_FEATURE_CONTROL:
2785 if (!nested_vmx_allowed(vcpu))
2786 return 1;
609e36d3 2787 msr_info->data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
cae50139
JK
2788 break;
2789 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2790 if (!nested_vmx_allowed(vcpu))
2791 return 1;
609e36d3 2792 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
20300099
WL
2793 case MSR_IA32_XSS:
2794 if (!vmx_xsaves_supported())
2795 return 1;
609e36d3 2796 msr_info->data = vcpu->arch.ia32_xss;
20300099 2797 break;
4e47c7a6 2798 case MSR_TSC_AUX:
1cea0ce6 2799 if (!guest_cpuid_has_rdtscp(vcpu))
4e47c7a6
SY
2800 return 1;
2801 /* Otherwise falls through */
6aa8b732 2802 default:
609e36d3 2803 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3bab1f5d 2804 if (msr) {
609e36d3 2805 msr_info->data = msr->data;
3bab1f5d 2806 break;
6aa8b732 2807 }
609e36d3 2808 return kvm_get_msr_common(vcpu, msr_info);
6aa8b732
AK
2809 }
2810
6aa8b732
AK
2811 return 0;
2812}
2813
cae50139
JK
2814static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2815
6aa8b732
AK
2816/*
2817 * Writes msr value into into the appropriate "register".
2818 * Returns 0 on success, non-0 otherwise.
2819 * Assumes vcpu_load() was already called.
2820 */
8fe8ab46 2821static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 2822{
a2fa3e9f 2823 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2824 struct shared_msr_entry *msr;
2cc51560 2825 int ret = 0;
8fe8ab46
WA
2826 u32 msr_index = msr_info->index;
2827 u64 data = msr_info->data;
2cc51560 2828
6aa8b732 2829 switch (msr_index) {
3bab1f5d 2830 case MSR_EFER:
8fe8ab46 2831 ret = kvm_set_msr_common(vcpu, msr_info);
2cc51560 2832 break;
16175a79 2833#ifdef CONFIG_X86_64
6aa8b732 2834 case MSR_FS_BASE:
2fb92db1 2835 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2836 vmcs_writel(GUEST_FS_BASE, data);
2837 break;
2838 case MSR_GS_BASE:
2fb92db1 2839 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2840 vmcs_writel(GUEST_GS_BASE, data);
2841 break;
44ea2b17
AK
2842 case MSR_KERNEL_GS_BASE:
2843 vmx_load_host_state(vmx);
2844 vmx->msr_guest_kernel_gs_base = data;
2845 break;
6aa8b732
AK
2846#endif
2847 case MSR_IA32_SYSENTER_CS:
2848 vmcs_write32(GUEST_SYSENTER_CS, data);
2849 break;
2850 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2851 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
2852 break;
2853 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2854 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 2855 break;
0dd376e7 2856 case MSR_IA32_BNDCFGS:
93c4adc7
PB
2857 if (!vmx_mpx_supported())
2858 return 1;
0dd376e7
LJ
2859 vmcs_write64(GUEST_BNDCFGS, data);
2860 break;
af24a4e4 2861 case MSR_IA32_TSC:
8fe8ab46 2862 kvm_write_tsc(vcpu, msr_info);
6aa8b732 2863 break;
468d472f
SY
2864 case MSR_IA32_CR_PAT:
2865 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4566654b
NA
2866 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2867 return 1;
468d472f
SY
2868 vmcs_write64(GUEST_IA32_PAT, data);
2869 vcpu->arch.pat = data;
2870 break;
2871 }
8fe8ab46 2872 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 2873 break;
ba904635
WA
2874 case MSR_IA32_TSC_ADJUST:
2875 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 2876 break;
cae50139
JK
2877 case MSR_IA32_FEATURE_CONTROL:
2878 if (!nested_vmx_allowed(vcpu) ||
2879 (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2880 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2881 return 1;
2882 vmx->nested.msr_ia32_feature_control = data;
2883 if (msr_info->host_initiated && data == 0)
2884 vmx_leave_nested(vcpu);
2885 break;
2886 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2887 return 1; /* they are read-only */
20300099
WL
2888 case MSR_IA32_XSS:
2889 if (!vmx_xsaves_supported())
2890 return 1;
2891 /*
2892 * The only supported bit as of Skylake is bit 8, but
2893 * it is not supported on KVM.
2894 */
2895 if (data != 0)
2896 return 1;
2897 vcpu->arch.ia32_xss = data;
2898 if (vcpu->arch.ia32_xss != host_xss)
2899 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
2900 vcpu->arch.ia32_xss, host_xss);
2901 else
2902 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
2903 break;
4e47c7a6 2904 case MSR_TSC_AUX:
1cea0ce6 2905 if (!guest_cpuid_has_rdtscp(vcpu))
4e47c7a6
SY
2906 return 1;
2907 /* Check reserved bit, higher 32 bits should be zero */
2908 if ((data >> 32) != 0)
2909 return 1;
2910 /* Otherwise falls through */
6aa8b732 2911 default:
8b9cf98c 2912 msr = find_msr_entry(vmx, msr_index);
3bab1f5d 2913 if (msr) {
8b3c3104 2914 u64 old_msr_data = msr->data;
3bab1f5d 2915 msr->data = data;
2225fd56
AK
2916 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2917 preempt_disable();
8b3c3104
AH
2918 ret = kvm_set_shared_msr(msr->index, msr->data,
2919 msr->mask);
2225fd56 2920 preempt_enable();
8b3c3104
AH
2921 if (ret)
2922 msr->data = old_msr_data;
2225fd56 2923 }
3bab1f5d 2924 break;
6aa8b732 2925 }
8fe8ab46 2926 ret = kvm_set_msr_common(vcpu, msr_info);
6aa8b732
AK
2927 }
2928
2cc51560 2929 return ret;
6aa8b732
AK
2930}
2931
5fdbf976 2932static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 2933{
5fdbf976
MT
2934 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2935 switch (reg) {
2936 case VCPU_REGS_RSP:
2937 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2938 break;
2939 case VCPU_REGS_RIP:
2940 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2941 break;
6de4f3ad
AK
2942 case VCPU_EXREG_PDPTR:
2943 if (enable_ept)
2944 ept_save_pdptrs(vcpu);
2945 break;
5fdbf976
MT
2946 default:
2947 break;
2948 }
6aa8b732
AK
2949}
2950
6aa8b732
AK
2951static __init int cpu_has_kvm_support(void)
2952{
6210e37b 2953 return cpu_has_vmx();
6aa8b732
AK
2954}
2955
2956static __init int vmx_disabled_by_bios(void)
2957{
2958 u64 msr;
2959
2960 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 2961 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 2962 /* launched w/ TXT and VMX disabled */
cafd6659
SW
2963 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2964 && tboot_enabled())
2965 return 1;
23f3e991 2966 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 2967 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 2968 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
2969 && !tboot_enabled()) {
2970 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 2971 "activate TXT before enabling KVM\n");
cafd6659 2972 return 1;
f9335afe 2973 }
23f3e991
JC
2974 /* launched w/o TXT and VMX disabled */
2975 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2976 && !tboot_enabled())
2977 return 1;
cafd6659
SW
2978 }
2979
2980 return 0;
6aa8b732
AK
2981}
2982
7725b894
DX
2983static void kvm_cpu_vmxon(u64 addr)
2984{
2985 asm volatile (ASM_VMX_VMXON_RAX
2986 : : "a"(&addr), "m"(addr)
2987 : "memory", "cc");
2988}
2989
13a34e06 2990static int hardware_enable(void)
6aa8b732
AK
2991{
2992 int cpu = raw_smp_processor_id();
2993 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 2994 u64 old, test_bits;
6aa8b732 2995
1e02ce4c 2996 if (cr4_read_shadow() & X86_CR4_VMXE)
10474ae8
AG
2997 return -EBUSY;
2998
d462b819 2999 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
bf9f6ac8
FW
3000 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3001 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
8f536b76
ZY
3002
3003 /*
3004 * Now we can enable the vmclear operation in kdump
3005 * since the loaded_vmcss_on_cpu list on this cpu
3006 * has been initialized.
3007 *
3008 * Though the cpu is not in VMX operation now, there
3009 * is no problem to enable the vmclear operation
3010 * for the loaded_vmcss_on_cpu list is empty!
3011 */
3012 crash_enable_local_vmclear(cpu);
3013
6aa8b732 3014 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
3015
3016 test_bits = FEATURE_CONTROL_LOCKED;
3017 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3018 if (tboot_enabled())
3019 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3020
3021 if ((old & test_bits) != test_bits) {
6aa8b732 3022 /* enable and lock */
cafd6659
SW
3023 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3024 }
375074cc 3025 cr4_set_bits(X86_CR4_VMXE);
10474ae8 3026
4610c9cc
DX
3027 if (vmm_exclusive) {
3028 kvm_cpu_vmxon(phys_addr);
3029 ept_sync_global();
3030 }
10474ae8 3031
89cbc767 3032 native_store_gdt(this_cpu_ptr(&host_gdt));
3444d7da 3033
10474ae8 3034 return 0;
6aa8b732
AK
3035}
3036
d462b819 3037static void vmclear_local_loaded_vmcss(void)
543e4243
AK
3038{
3039 int cpu = raw_smp_processor_id();
d462b819 3040 struct loaded_vmcs *v, *n;
543e4243 3041
d462b819
NHE
3042 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3043 loaded_vmcss_on_cpu_link)
3044 __loaded_vmcs_clear(v);
543e4243
AK
3045}
3046
710ff4a8
EH
3047
3048/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3049 * tricks.
3050 */
3051static void kvm_cpu_vmxoff(void)
6aa8b732 3052{
4ecac3fd 3053 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
6aa8b732
AK
3054}
3055
13a34e06 3056static void hardware_disable(void)
710ff4a8 3057{
4610c9cc 3058 if (vmm_exclusive) {
d462b819 3059 vmclear_local_loaded_vmcss();
4610c9cc
DX
3060 kvm_cpu_vmxoff();
3061 }
375074cc 3062 cr4_clear_bits(X86_CR4_VMXE);
710ff4a8
EH
3063}
3064
1c3d14fe 3065static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 3066 u32 msr, u32 *result)
1c3d14fe
YS
3067{
3068 u32 vmx_msr_low, vmx_msr_high;
3069 u32 ctl = ctl_min | ctl_opt;
3070
3071 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3072
3073 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3074 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3075
3076 /* Ensure minimum (required) set of control bits are supported. */
3077 if (ctl_min & ~ctl)
002c7f7c 3078 return -EIO;
1c3d14fe
YS
3079
3080 *result = ctl;
3081 return 0;
3082}
3083
110312c8
AK
3084static __init bool allow_1_setting(u32 msr, u32 ctl)
3085{
3086 u32 vmx_msr_low, vmx_msr_high;
3087
3088 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3089 return vmx_msr_high & ctl;
3090}
3091
002c7f7c 3092static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
3093{
3094 u32 vmx_msr_low, vmx_msr_high;
d56f546d 3095 u32 min, opt, min2, opt2;
1c3d14fe
YS
3096 u32 _pin_based_exec_control = 0;
3097 u32 _cpu_based_exec_control = 0;
f78e0e2e 3098 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
3099 u32 _vmexit_control = 0;
3100 u32 _vmentry_control = 0;
3101
10166744 3102 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
3103#ifdef CONFIG_X86_64
3104 CPU_BASED_CR8_LOAD_EXITING |
3105 CPU_BASED_CR8_STORE_EXITING |
3106#endif
d56f546d
SY
3107 CPU_BASED_CR3_LOAD_EXITING |
3108 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
3109 CPU_BASED_USE_IO_BITMAPS |
3110 CPU_BASED_MOV_DR_EXITING |
a7052897 3111 CPU_BASED_USE_TSC_OFFSETING |
59708670
SY
3112 CPU_BASED_MWAIT_EXITING |
3113 CPU_BASED_MONITOR_EXITING |
fee84b07
AK
3114 CPU_BASED_INVLPG_EXITING |
3115 CPU_BASED_RDPMC_EXITING;
443381a8 3116
f78e0e2e 3117 opt = CPU_BASED_TPR_SHADOW |
25c5f225 3118 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 3119 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
3120 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3121 &_cpu_based_exec_control) < 0)
002c7f7c 3122 return -EIO;
6e5d865c
YS
3123#ifdef CONFIG_X86_64
3124 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3125 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3126 ~CPU_BASED_CR8_STORE_EXITING;
3127#endif
f78e0e2e 3128 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
3129 min2 = 0;
3130 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8d14695f 3131 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2384d2b3 3132 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 3133 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 3134 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 3135 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6 3136 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
ad756a16 3137 SECONDARY_EXEC_RDTSCP |
83d4c286 3138 SECONDARY_EXEC_ENABLE_INVPCID |
c7c9c56c 3139 SECONDARY_EXEC_APIC_REGISTER_VIRT |
abc4fc58 3140 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
20300099 3141 SECONDARY_EXEC_SHADOW_VMCS |
843e4330 3142 SECONDARY_EXEC_XSAVES |
8b3e34e4 3143 SECONDARY_EXEC_ENABLE_PML |
64903d61
HZ
3144 SECONDARY_EXEC_PCOMMIT |
3145 SECONDARY_EXEC_TSC_SCALING;
d56f546d
SY
3146 if (adjust_vmx_controls(min2, opt2,
3147 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
3148 &_cpu_based_2nd_exec_control) < 0)
3149 return -EIO;
3150 }
3151#ifndef CONFIG_X86_64
3152 if (!(_cpu_based_2nd_exec_control &
3153 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3154 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3155#endif
83d4c286
YZ
3156
3157 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3158 _cpu_based_2nd_exec_control &= ~(
8d14695f 3159 SECONDARY_EXEC_APIC_REGISTER_VIRT |
c7c9c56c
YZ
3160 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3161 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
83d4c286 3162
d56f546d 3163 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
3164 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3165 enabled */
5fff7d27
GN
3166 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3167 CPU_BASED_CR3_STORE_EXITING |
3168 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
3169 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3170 vmx_capability.ept, vmx_capability.vpid);
3171 }
1c3d14fe 3172
81908bf4 3173 min = VM_EXIT_SAVE_DEBUG_CONTROLS;
1c3d14fe
YS
3174#ifdef CONFIG_X86_64
3175 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3176#endif
a547c6db 3177 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
da8999d3 3178 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
1c3d14fe
YS
3179 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3180 &_vmexit_control) < 0)
002c7f7c 3181 return -EIO;
1c3d14fe 3182
01e439be
YZ
3183 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3184 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
3185 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3186 &_pin_based_exec_control) < 0)
3187 return -EIO;
3188
3189 if (!(_cpu_based_2nd_exec_control &
3190 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
3191 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
3192 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3193
c845f9c6 3194 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
da8999d3 3195 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
1c3d14fe
YS
3196 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3197 &_vmentry_control) < 0)
002c7f7c 3198 return -EIO;
6aa8b732 3199
c68876fd 3200 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
3201
3202 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3203 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 3204 return -EIO;
1c3d14fe
YS
3205
3206#ifdef CONFIG_X86_64
3207 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3208 if (vmx_msr_high & (1u<<16))
002c7f7c 3209 return -EIO;
1c3d14fe
YS
3210#endif
3211
3212 /* Require Write-Back (WB) memory type for VMCS accesses. */
3213 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 3214 return -EIO;
1c3d14fe 3215
002c7f7c
YS
3216 vmcs_conf->size = vmx_msr_high & 0x1fff;
3217 vmcs_conf->order = get_order(vmcs_config.size);
3218 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 3219
002c7f7c
YS
3220 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3221 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 3222 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
3223 vmcs_conf->vmexit_ctrl = _vmexit_control;
3224 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 3225
110312c8
AK
3226 cpu_has_load_ia32_efer =
3227 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3228 VM_ENTRY_LOAD_IA32_EFER)
3229 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3230 VM_EXIT_LOAD_IA32_EFER);
3231
8bf00a52
GN
3232 cpu_has_load_perf_global_ctrl =
3233 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3234 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3235 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3236 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3237
3238 /*
3239 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3240 * but due to arrata below it can't be used. Workaround is to use
3241 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3242 *
3243 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3244 *
3245 * AAK155 (model 26)
3246 * AAP115 (model 30)
3247 * AAT100 (model 37)
3248 * BC86,AAY89,BD102 (model 44)
3249 * BA97 (model 46)
3250 *
3251 */
3252 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3253 switch (boot_cpu_data.x86_model) {
3254 case 26:
3255 case 30:
3256 case 37:
3257 case 44:
3258 case 46:
3259 cpu_has_load_perf_global_ctrl = false;
3260 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3261 "does not work properly. Using workaround\n");
3262 break;
3263 default:
3264 break;
3265 }
3266 }
3267
20300099
WL
3268 if (cpu_has_xsaves)
3269 rdmsrl(MSR_IA32_XSS, host_xss);
3270
1c3d14fe 3271 return 0;
c68876fd 3272}
6aa8b732
AK
3273
3274static struct vmcs *alloc_vmcs_cpu(int cpu)
3275{
3276 int node = cpu_to_node(cpu);
3277 struct page *pages;
3278 struct vmcs *vmcs;
3279
96db800f 3280 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
3281 if (!pages)
3282 return NULL;
3283 vmcs = page_address(pages);
1c3d14fe
YS
3284 memset(vmcs, 0, vmcs_config.size);
3285 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
3286 return vmcs;
3287}
3288
3289static struct vmcs *alloc_vmcs(void)
3290{
d3b2c338 3291 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
3292}
3293
3294static void free_vmcs(struct vmcs *vmcs)
3295{
1c3d14fe 3296 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
3297}
3298
d462b819
NHE
3299/*
3300 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3301 */
3302static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3303{
3304 if (!loaded_vmcs->vmcs)
3305 return;
3306 loaded_vmcs_clear(loaded_vmcs);
3307 free_vmcs(loaded_vmcs->vmcs);
3308 loaded_vmcs->vmcs = NULL;
3309}
3310
39959588 3311static void free_kvm_area(void)
6aa8b732
AK
3312{
3313 int cpu;
3314
3230bb47 3315 for_each_possible_cpu(cpu) {
6aa8b732 3316 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
3317 per_cpu(vmxarea, cpu) = NULL;
3318 }
6aa8b732
AK
3319}
3320
fe2b201b
BD
3321static void init_vmcs_shadow_fields(void)
3322{
3323 int i, j;
3324
3325 /* No checks for read only fields yet */
3326
3327 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3328 switch (shadow_read_write_fields[i]) {
3329 case GUEST_BNDCFGS:
3330 if (!vmx_mpx_supported())
3331 continue;
3332 break;
3333 default:
3334 break;
3335 }
3336
3337 if (j < i)
3338 shadow_read_write_fields[j] =
3339 shadow_read_write_fields[i];
3340 j++;
3341 }
3342 max_shadow_read_write_fields = j;
3343
3344 /* shadowed fields guest access without vmexit */
3345 for (i = 0; i < max_shadow_read_write_fields; i++) {
3346 clear_bit(shadow_read_write_fields[i],
3347 vmx_vmwrite_bitmap);
3348 clear_bit(shadow_read_write_fields[i],
3349 vmx_vmread_bitmap);
3350 }
3351 for (i = 0; i < max_shadow_read_only_fields; i++)
3352 clear_bit(shadow_read_only_fields[i],
3353 vmx_vmread_bitmap);
3354}
3355
6aa8b732
AK
3356static __init int alloc_kvm_area(void)
3357{
3358 int cpu;
3359
3230bb47 3360 for_each_possible_cpu(cpu) {
6aa8b732
AK
3361 struct vmcs *vmcs;
3362
3363 vmcs = alloc_vmcs_cpu(cpu);
3364 if (!vmcs) {
3365 free_kvm_area();
3366 return -ENOMEM;
3367 }
3368
3369 per_cpu(vmxarea, cpu) = vmcs;
3370 }
3371 return 0;
3372}
3373
14168786
GN
3374static bool emulation_required(struct kvm_vcpu *vcpu)
3375{
3376 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3377}
3378
91b0aa2c 3379static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
d99e4152 3380 struct kvm_segment *save)
6aa8b732 3381{
d99e4152
GN
3382 if (!emulate_invalid_guest_state) {
3383 /*
3384 * CS and SS RPL should be equal during guest entry according
3385 * to VMX spec, but in reality it is not always so. Since vcpu
3386 * is in the middle of the transition from real mode to
3387 * protected mode it is safe to assume that RPL 0 is a good
3388 * default value.
3389 */
3390 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
b32a9918
NA
3391 save->selector &= ~SEGMENT_RPL_MASK;
3392 save->dpl = save->selector & SEGMENT_RPL_MASK;
d99e4152 3393 save->s = 1;
6aa8b732 3394 }
d99e4152 3395 vmx_set_segment(vcpu, save, seg);
6aa8b732
AK
3396}
3397
3398static void enter_pmode(struct kvm_vcpu *vcpu)
3399{
3400 unsigned long flags;
a89a8fb9 3401 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3402
d99e4152
GN
3403 /*
3404 * Update real mode segment cache. It may be not up-to-date if sement
3405 * register was written while vcpu was in a guest mode.
3406 */
3407 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3408 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3409 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3410 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3411 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3412 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3413
7ffd92c5 3414 vmx->rmode.vm86_active = 0;
6aa8b732 3415
2fb92db1
AK
3416 vmx_segment_cache_clear(vmx);
3417
f5f7b2fe 3418 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
6aa8b732
AK
3419
3420 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
3421 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3422 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
3423 vmcs_writel(GUEST_RFLAGS, flags);
3424
66aee91a
RR
3425 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3426 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
3427
3428 update_exception_bitmap(vcpu);
3429
91b0aa2c
GN
3430 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3431 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3432 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3433 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3434 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3435 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
6aa8b732
AK
3436}
3437
f5f7b2fe 3438static void fix_rmode_seg(int seg, struct kvm_segment *save)
6aa8b732 3439{
772e0318 3440 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
d99e4152
GN
3441 struct kvm_segment var = *save;
3442
3443 var.dpl = 0x3;
3444 if (seg == VCPU_SREG_CS)
3445 var.type = 0x3;
3446
3447 if (!emulate_invalid_guest_state) {
3448 var.selector = var.base >> 4;
3449 var.base = var.base & 0xffff0;
3450 var.limit = 0xffff;
3451 var.g = 0;
3452 var.db = 0;
3453 var.present = 1;
3454 var.s = 1;
3455 var.l = 0;
3456 var.unusable = 0;
3457 var.type = 0x3;
3458 var.avl = 0;
3459 if (save->base & 0xf)
3460 printk_once(KERN_WARNING "kvm: segment base is not "
3461 "paragraph aligned when entering "
3462 "protected mode (seg=%d)", seg);
3463 }
6aa8b732 3464
d99e4152
GN
3465 vmcs_write16(sf->selector, var.selector);
3466 vmcs_write32(sf->base, var.base);
3467 vmcs_write32(sf->limit, var.limit);
3468 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
6aa8b732
AK
3469}
3470
3471static void enter_rmode(struct kvm_vcpu *vcpu)
3472{
3473 unsigned long flags;
a89a8fb9 3474 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3475
f5f7b2fe
AK
3476 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3477 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3478 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3479 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3480 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
c6ad1153
GN
3481 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3482 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
f5f7b2fe 3483
7ffd92c5 3484 vmx->rmode.vm86_active = 1;
6aa8b732 3485
776e58ea
GN
3486 /*
3487 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4918c6ca 3488 * vcpu. Warn the user that an update is overdue.
776e58ea 3489 */
4918c6ca 3490 if (!vcpu->kvm->arch.tss_addr)
776e58ea
GN
3491 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3492 "called before entering vcpu\n");
776e58ea 3493
2fb92db1
AK
3494 vmx_segment_cache_clear(vmx);
3495
4918c6ca 3496 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
6aa8b732 3497 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
6aa8b732
AK
3498 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3499
3500 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 3501 vmx->rmode.save_rflags = flags;
6aa8b732 3502
053de044 3503 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
3504
3505 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 3506 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
3507 update_exception_bitmap(vcpu);
3508
d99e4152
GN
3509 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3510 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3511 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3512 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3513 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3514 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
b246dd5d 3515
8668a3c4 3516 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
3517}
3518
401d10de
AS
3519static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3520{
3521 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
3522 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3523
3524 if (!msr)
3525 return;
401d10de 3526
44ea2b17
AK
3527 /*
3528 * Force kernel_gs_base reloading before EFER changes, as control
3529 * of this msr depends on is_long_mode().
3530 */
3531 vmx_load_host_state(to_vmx(vcpu));
f6801dff 3532 vcpu->arch.efer = efer;
401d10de 3533 if (efer & EFER_LMA) {
2961e876 3534 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
3535 msr->data = efer;
3536 } else {
2961e876 3537 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
3538
3539 msr->data = efer & ~EFER_LME;
3540 }
3541 setup_msrs(vmx);
3542}
3543
05b3e0c2 3544#ifdef CONFIG_X86_64
6aa8b732
AK
3545
3546static void enter_lmode(struct kvm_vcpu *vcpu)
3547{
3548 u32 guest_tr_ar;
3549
2fb92db1
AK
3550 vmx_segment_cache_clear(to_vmx(vcpu));
3551
6aa8b732 3552 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4d283ec9 3553 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
3554 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3555 __func__);
6aa8b732 3556 vmcs_write32(GUEST_TR_AR_BYTES,
4d283ec9
AL
3557 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3558 | VMX_AR_TYPE_BUSY_64_TSS);
6aa8b732 3559 }
da38f438 3560 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
3561}
3562
3563static void exit_lmode(struct kvm_vcpu *vcpu)
3564{
2961e876 3565 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
da38f438 3566 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
3567}
3568
3569#endif
3570
dd5f5341 3571static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
2384d2b3 3572{
dd5f5341 3573 vpid_sync_context(vpid);
dd180b3e
XG
3574 if (enable_ept) {
3575 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3576 return;
4e1096d2 3577 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
dd180b3e 3578 }
2384d2b3
SY
3579}
3580
dd5f5341
WL
3581static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3582{
3583 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
3584}
3585
e8467fda
AK
3586static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3587{
3588 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3589
3590 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3591 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3592}
3593
aff48baa
AK
3594static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3595{
3596 if (enable_ept && is_paging(vcpu))
3597 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3598 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3599}
3600
25c4c276 3601static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 3602{
fc78f519
AK
3603 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3604
3605 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3606 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
3607}
3608
1439442c
SY
3609static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3610{
d0d538b9
GN
3611 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3612
6de4f3ad
AK
3613 if (!test_bit(VCPU_EXREG_PDPTR,
3614 (unsigned long *)&vcpu->arch.regs_dirty))
3615 return;
3616
1439442c 3617 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
3618 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3619 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3620 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3621 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
1439442c
SY
3622 }
3623}
3624
8f5d549f
AK
3625static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3626{
d0d538b9
GN
3627 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3628
8f5d549f 3629 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
3630 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3631 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3632 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3633 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 3634 }
6de4f3ad
AK
3635
3636 __set_bit(VCPU_EXREG_PDPTR,
3637 (unsigned long *)&vcpu->arch.regs_avail);
3638 __set_bit(VCPU_EXREG_PDPTR,
3639 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
3640}
3641
5e1746d6 3642static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
3643
3644static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3645 unsigned long cr0,
3646 struct kvm_vcpu *vcpu)
3647{
5233dd51
MT
3648 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3649 vmx_decache_cr3(vcpu);
1439442c
SY
3650 if (!(cr0 & X86_CR0_PG)) {
3651 /* From paging/starting to nonpaging */
3652 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 3653 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
3654 (CPU_BASED_CR3_LOAD_EXITING |
3655 CPU_BASED_CR3_STORE_EXITING));
3656 vcpu->arch.cr0 = cr0;
fc78f519 3657 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
3658 } else if (!is_paging(vcpu)) {
3659 /* From nonpaging to paging */
3660 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 3661 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
3662 ~(CPU_BASED_CR3_LOAD_EXITING |
3663 CPU_BASED_CR3_STORE_EXITING));
3664 vcpu->arch.cr0 = cr0;
fc78f519 3665 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 3666 }
95eb84a7
SY
3667
3668 if (!(cr0 & X86_CR0_WP))
3669 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
3670}
3671
6aa8b732
AK
3672static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3673{
7ffd92c5 3674 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
3675 unsigned long hw_cr0;
3676
5037878e 3677 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3a624e29 3678 if (enable_unrestricted_guest)
5037878e 3679 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
218e763f 3680 else {
5037878e 3681 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
1439442c 3682
218e763f
GN
3683 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3684 enter_pmode(vcpu);
6aa8b732 3685
218e763f
GN
3686 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3687 enter_rmode(vcpu);
3688 }
6aa8b732 3689
05b3e0c2 3690#ifdef CONFIG_X86_64
f6801dff 3691 if (vcpu->arch.efer & EFER_LME) {
707d92fa 3692 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 3693 enter_lmode(vcpu);
707d92fa 3694 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
3695 exit_lmode(vcpu);
3696 }
3697#endif
3698
089d034e 3699 if (enable_ept)
1439442c
SY
3700 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3701
02daab21 3702 if (!vcpu->fpu_active)
81231c69 3703 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
02daab21 3704
6aa8b732 3705 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 3706 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 3707 vcpu->arch.cr0 = cr0;
14168786
GN
3708
3709 /* depends on vcpu->arch.cr0 to be set to a new value */
3710 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
3711}
3712
1439442c
SY
3713static u64 construct_eptp(unsigned long root_hpa)
3714{
3715 u64 eptp;
3716
3717 /* TODO write the value reading from MSR */
3718 eptp = VMX_EPT_DEFAULT_MT |
3719 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
b38f9934
XH
3720 if (enable_ept_ad_bits)
3721 eptp |= VMX_EPT_AD_ENABLE_BIT;
1439442c
SY
3722 eptp |= (root_hpa & PAGE_MASK);
3723
3724 return eptp;
3725}
3726
6aa8b732
AK
3727static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3728{
1439442c
SY
3729 unsigned long guest_cr3;
3730 u64 eptp;
3731
3732 guest_cr3 = cr3;
089d034e 3733 if (enable_ept) {
1439442c
SY
3734 eptp = construct_eptp(cr3);
3735 vmcs_write64(EPT_POINTER, eptp);
59ab5a8f
JK
3736 if (is_paging(vcpu) || is_guest_mode(vcpu))
3737 guest_cr3 = kvm_read_cr3(vcpu);
3738 else
3739 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 3740 ept_load_pdptrs(vcpu);
1439442c
SY
3741 }
3742
2384d2b3 3743 vmx_flush_tlb(vcpu);
1439442c 3744 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
3745}
3746
5e1746d6 3747static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 3748{
085e68ee
BS
3749 /*
3750 * Pass through host's Machine Check Enable value to hw_cr4, which
3751 * is in force while we are in guest mode. Do not let guests control
3752 * this bit, even if host CR4.MCE == 0.
3753 */
3754 unsigned long hw_cr4 =
3755 (cr4_read_shadow() & X86_CR4_MCE) |
3756 (cr4 & ~X86_CR4_MCE) |
3757 (to_vmx(vcpu)->rmode.vm86_active ?
3758 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1439442c 3759
5e1746d6
NHE
3760 if (cr4 & X86_CR4_VMXE) {
3761 /*
3762 * To use VMXON (and later other VMX instructions), a guest
3763 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3764 * So basically the check on whether to allow nested VMX
3765 * is here.
3766 */
3767 if (!nested_vmx_allowed(vcpu))
3768 return 1;
1a0d74e6
JK
3769 }
3770 if (to_vmx(vcpu)->nested.vmxon &&
3771 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
5e1746d6
NHE
3772 return 1;
3773
ad312c7c 3774 vcpu->arch.cr4 = cr4;
bc23008b
AK
3775 if (enable_ept) {
3776 if (!is_paging(vcpu)) {
3777 hw_cr4 &= ~X86_CR4_PAE;
3778 hw_cr4 |= X86_CR4_PSE;
3779 } else if (!(cr4 & X86_CR4_PAE)) {
3780 hw_cr4 &= ~X86_CR4_PAE;
3781 }
3782 }
1439442c 3783
656ec4a4
RK
3784 if (!enable_unrestricted_guest && !is_paging(vcpu))
3785 /*
3786 * SMEP/SMAP is disabled if CPU is in non-paging mode in
3787 * hardware. However KVM always uses paging mode without
3788 * unrestricted guest.
3789 * To emulate this behavior, SMEP/SMAP needs to be manually
3790 * disabled when guest switches to non-paging mode.
3791 */
3792 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
3793
1439442c
SY
3794 vmcs_writel(CR4_READ_SHADOW, cr4);
3795 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 3796 return 0;
6aa8b732
AK
3797}
3798
6aa8b732
AK
3799static void vmx_get_segment(struct kvm_vcpu *vcpu,
3800 struct kvm_segment *var, int seg)
3801{
a9179499 3802 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732
AK
3803 u32 ar;
3804
c6ad1153 3805 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
f5f7b2fe 3806 *var = vmx->rmode.segs[seg];
a9179499 3807 if (seg == VCPU_SREG_TR
2fb92db1 3808 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
f5f7b2fe 3809 return;
1390a28b
AK
3810 var->base = vmx_read_guest_seg_base(vmx, seg);
3811 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3812 return;
a9179499 3813 }
2fb92db1
AK
3814 var->base = vmx_read_guest_seg_base(vmx, seg);
3815 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3816 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3817 ar = vmx_read_guest_seg_ar(vmx, seg);
03617c18 3818 var->unusable = (ar >> 16) & 1;
6aa8b732
AK
3819 var->type = ar & 15;
3820 var->s = (ar >> 4) & 1;
3821 var->dpl = (ar >> 5) & 3;
03617c18
GN
3822 /*
3823 * Some userspaces do not preserve unusable property. Since usable
3824 * segment has to be present according to VMX spec we can use present
3825 * property to amend userspace bug by making unusable segment always
3826 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3827 * segment as unusable.
3828 */
3829 var->present = !var->unusable;
6aa8b732
AK
3830 var->avl = (ar >> 12) & 1;
3831 var->l = (ar >> 13) & 1;
3832 var->db = (ar >> 14) & 1;
3833 var->g = (ar >> 15) & 1;
6aa8b732
AK
3834}
3835
a9179499
AK
3836static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3837{
a9179499
AK
3838 struct kvm_segment s;
3839
3840 if (to_vmx(vcpu)->rmode.vm86_active) {
3841 vmx_get_segment(vcpu, &s, seg);
3842 return s.base;
3843 }
2fb92db1 3844 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
3845}
3846
b09408d0 3847static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 3848{
b09408d0
MT
3849 struct vcpu_vmx *vmx = to_vmx(vcpu);
3850
ae9fedc7 3851 if (unlikely(vmx->rmode.vm86_active))
2e4d2653 3852 return 0;
ae9fedc7
PB
3853 else {
3854 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4d283ec9 3855 return VMX_AR_DPL(ar);
69c73028 3856 }
69c73028
AK
3857}
3858
653e3108 3859static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 3860{
6aa8b732
AK
3861 u32 ar;
3862
f0495f9b 3863 if (var->unusable || !var->present)
6aa8b732
AK
3864 ar = 1 << 16;
3865 else {
3866 ar = var->type & 15;
3867 ar |= (var->s & 1) << 4;
3868 ar |= (var->dpl & 3) << 5;
3869 ar |= (var->present & 1) << 7;
3870 ar |= (var->avl & 1) << 12;
3871 ar |= (var->l & 1) << 13;
3872 ar |= (var->db & 1) << 14;
3873 ar |= (var->g & 1) << 15;
3874 }
653e3108
AK
3875
3876 return ar;
3877}
3878
3879static void vmx_set_segment(struct kvm_vcpu *vcpu,
3880 struct kvm_segment *var, int seg)
3881{
7ffd92c5 3882 struct vcpu_vmx *vmx = to_vmx(vcpu);
772e0318 3883 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
653e3108 3884
2fb92db1
AK
3885 vmx_segment_cache_clear(vmx);
3886
1ecd50a9
GN
3887 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3888 vmx->rmode.segs[seg] = *var;
3889 if (seg == VCPU_SREG_TR)
3890 vmcs_write16(sf->selector, var->selector);
3891 else if (var->s)
3892 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
d99e4152 3893 goto out;
653e3108 3894 }
1ecd50a9 3895
653e3108
AK
3896 vmcs_writel(sf->base, var->base);
3897 vmcs_write32(sf->limit, var->limit);
3898 vmcs_write16(sf->selector, var->selector);
3a624e29
NK
3899
3900 /*
3901 * Fix the "Accessed" bit in AR field of segment registers for older
3902 * qemu binaries.
3903 * IA32 arch specifies that at the time of processor reset the
3904 * "Accessed" bit in the AR field of segment registers is 1. And qemu
0fa06071 3905 * is setting it to 0 in the userland code. This causes invalid guest
3a624e29
NK
3906 * state vmexit when "unrestricted guest" mode is turned on.
3907 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3908 * tree. Newer qemu binaries with that qemu fix would not need this
3909 * kvm hack.
3910 */
3911 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
f924d66d 3912 var->type |= 0x1; /* Accessed */
3a624e29 3913
f924d66d 3914 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
d99e4152
GN
3915
3916out:
98eb2f8b 3917 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
3918}
3919
6aa8b732
AK
3920static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3921{
2fb92db1 3922 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
3923
3924 *db = (ar >> 14) & 1;
3925 *l = (ar >> 13) & 1;
3926}
3927
89a27f4d 3928static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3929{
89a27f4d
GN
3930 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3931 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
3932}
3933
89a27f4d 3934static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3935{
89a27f4d
GN
3936 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3937 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
3938}
3939
89a27f4d 3940static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3941{
89a27f4d
GN
3942 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3943 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
3944}
3945
89a27f4d 3946static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3947{
89a27f4d
GN
3948 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3949 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
3950}
3951
648dfaa7
MG
3952static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3953{
3954 struct kvm_segment var;
3955 u32 ar;
3956
3957 vmx_get_segment(vcpu, &var, seg);
07f42f5f 3958 var.dpl = 0x3;
0647f4aa
GN
3959 if (seg == VCPU_SREG_CS)
3960 var.type = 0x3;
648dfaa7
MG
3961 ar = vmx_segment_access_rights(&var);
3962
3963 if (var.base != (var.selector << 4))
3964 return false;
89efbed0 3965 if (var.limit != 0xffff)
648dfaa7 3966 return false;
07f42f5f 3967 if (ar != 0xf3)
648dfaa7
MG
3968 return false;
3969
3970 return true;
3971}
3972
3973static bool code_segment_valid(struct kvm_vcpu *vcpu)
3974{
3975 struct kvm_segment cs;
3976 unsigned int cs_rpl;
3977
3978 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
b32a9918 3979 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
648dfaa7 3980
1872a3f4
AK
3981 if (cs.unusable)
3982 return false;
4d283ec9 3983 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
648dfaa7
MG
3984 return false;
3985 if (!cs.s)
3986 return false;
4d283ec9 3987 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
3988 if (cs.dpl > cs_rpl)
3989 return false;
1872a3f4 3990 } else {
648dfaa7
MG
3991 if (cs.dpl != cs_rpl)
3992 return false;
3993 }
3994 if (!cs.present)
3995 return false;
3996
3997 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3998 return true;
3999}
4000
4001static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4002{
4003 struct kvm_segment ss;
4004 unsigned int ss_rpl;
4005
4006 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
b32a9918 4007 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
648dfaa7 4008
1872a3f4
AK
4009 if (ss.unusable)
4010 return true;
4011 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
4012 return false;
4013 if (!ss.s)
4014 return false;
4015 if (ss.dpl != ss_rpl) /* DPL != RPL */
4016 return false;
4017 if (!ss.present)
4018 return false;
4019
4020 return true;
4021}
4022
4023static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4024{
4025 struct kvm_segment var;
4026 unsigned int rpl;
4027
4028 vmx_get_segment(vcpu, &var, seg);
b32a9918 4029 rpl = var.selector & SEGMENT_RPL_MASK;
648dfaa7 4030
1872a3f4
AK
4031 if (var.unusable)
4032 return true;
648dfaa7
MG
4033 if (!var.s)
4034 return false;
4035 if (!var.present)
4036 return false;
4d283ec9 4037 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
648dfaa7
MG
4038 if (var.dpl < rpl) /* DPL < RPL */
4039 return false;
4040 }
4041
4042 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4043 * rights flags
4044 */
4045 return true;
4046}
4047
4048static bool tr_valid(struct kvm_vcpu *vcpu)
4049{
4050 struct kvm_segment tr;
4051
4052 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4053
1872a3f4
AK
4054 if (tr.unusable)
4055 return false;
b32a9918 4056 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7 4057 return false;
1872a3f4 4058 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
4059 return false;
4060 if (!tr.present)
4061 return false;
4062
4063 return true;
4064}
4065
4066static bool ldtr_valid(struct kvm_vcpu *vcpu)
4067{
4068 struct kvm_segment ldtr;
4069
4070 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4071
1872a3f4
AK
4072 if (ldtr.unusable)
4073 return true;
b32a9918 4074 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7
MG
4075 return false;
4076 if (ldtr.type != 2)
4077 return false;
4078 if (!ldtr.present)
4079 return false;
4080
4081 return true;
4082}
4083
4084static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4085{
4086 struct kvm_segment cs, ss;
4087
4088 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4089 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4090
b32a9918
NA
4091 return ((cs.selector & SEGMENT_RPL_MASK) ==
4092 (ss.selector & SEGMENT_RPL_MASK));
648dfaa7
MG
4093}
4094
4095/*
4096 * Check if guest state is valid. Returns true if valid, false if
4097 * not.
4098 * We assume that registers are always usable
4099 */
4100static bool guest_state_valid(struct kvm_vcpu *vcpu)
4101{
c5e97c80
GN
4102 if (enable_unrestricted_guest)
4103 return true;
4104
648dfaa7 4105 /* real mode guest state checks */
f13882d8 4106 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
648dfaa7
MG
4107 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4108 return false;
4109 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4110 return false;
4111 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4112 return false;
4113 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4114 return false;
4115 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4116 return false;
4117 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4118 return false;
4119 } else {
4120 /* protected mode guest state checks */
4121 if (!cs_ss_rpl_check(vcpu))
4122 return false;
4123 if (!code_segment_valid(vcpu))
4124 return false;
4125 if (!stack_segment_valid(vcpu))
4126 return false;
4127 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4128 return false;
4129 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4130 return false;
4131 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4132 return false;
4133 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4134 return false;
4135 if (!tr_valid(vcpu))
4136 return false;
4137 if (!ldtr_valid(vcpu))
4138 return false;
4139 }
4140 /* TODO:
4141 * - Add checks on RIP
4142 * - Add checks on RFLAGS
4143 */
4144
4145 return true;
4146}
4147
d77c26fc 4148static int init_rmode_tss(struct kvm *kvm)
6aa8b732 4149{
40dcaa9f 4150 gfn_t fn;
195aefde 4151 u16 data = 0;
1f755a82 4152 int idx, r;
6aa8b732 4153
40dcaa9f 4154 idx = srcu_read_lock(&kvm->srcu);
4918c6ca 4155 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
195aefde
IE
4156 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4157 if (r < 0)
10589a46 4158 goto out;
195aefde 4159 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
4160 r = kvm_write_guest_page(kvm, fn++, &data,
4161 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 4162 if (r < 0)
10589a46 4163 goto out;
195aefde
IE
4164 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4165 if (r < 0)
10589a46 4166 goto out;
195aefde
IE
4167 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4168 if (r < 0)
10589a46 4169 goto out;
195aefde 4170 data = ~0;
10589a46
MT
4171 r = kvm_write_guest_page(kvm, fn, &data,
4172 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4173 sizeof(u8));
10589a46 4174out:
40dcaa9f 4175 srcu_read_unlock(&kvm->srcu, idx);
1f755a82 4176 return r;
6aa8b732
AK
4177}
4178
b7ebfb05
SY
4179static int init_rmode_identity_map(struct kvm *kvm)
4180{
f51770ed 4181 int i, idx, r = 0;
b7ebfb05
SY
4182 pfn_t identity_map_pfn;
4183 u32 tmp;
4184
089d034e 4185 if (!enable_ept)
f51770ed 4186 return 0;
a255d479
TC
4187
4188 /* Protect kvm->arch.ept_identity_pagetable_done. */
4189 mutex_lock(&kvm->slots_lock);
4190
f51770ed 4191 if (likely(kvm->arch.ept_identity_pagetable_done))
a255d479 4192 goto out2;
a255d479 4193
b927a3ce 4194 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
a255d479
TC
4195
4196 r = alloc_identity_pagetable(kvm);
f51770ed 4197 if (r < 0)
a255d479
TC
4198 goto out2;
4199
40dcaa9f 4200 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
4201 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4202 if (r < 0)
4203 goto out;
4204 /* Set up identity-mapping pagetable for EPT in real mode */
4205 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4206 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4207 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4208 r = kvm_write_guest_page(kvm, identity_map_pfn,
4209 &tmp, i * sizeof(tmp), sizeof(tmp));
4210 if (r < 0)
4211 goto out;
4212 }
4213 kvm->arch.ept_identity_pagetable_done = true;
f51770ed 4214
b7ebfb05 4215out:
40dcaa9f 4216 srcu_read_unlock(&kvm->srcu, idx);
a255d479
TC
4217
4218out2:
4219 mutex_unlock(&kvm->slots_lock);
f51770ed 4220 return r;
b7ebfb05
SY
4221}
4222
6aa8b732
AK
4223static void seg_setup(int seg)
4224{
772e0318 4225 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 4226 unsigned int ar;
6aa8b732
AK
4227
4228 vmcs_write16(sf->selector, 0);
4229 vmcs_writel(sf->base, 0);
4230 vmcs_write32(sf->limit, 0xffff);
d54d07b2
GN
4231 ar = 0x93;
4232 if (seg == VCPU_SREG_CS)
4233 ar |= 0x08; /* code segment */
3a624e29
NK
4234
4235 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
4236}
4237
f78e0e2e
SY
4238static int alloc_apic_access_page(struct kvm *kvm)
4239{
4484141a 4240 struct page *page;
f78e0e2e
SY
4241 int r = 0;
4242
79fac95e 4243 mutex_lock(&kvm->slots_lock);
c24ae0dc 4244 if (kvm->arch.apic_access_page_done)
f78e0e2e 4245 goto out;
1d8007bd
PB
4246 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4247 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
f78e0e2e
SY
4248 if (r)
4249 goto out;
72dc67a6 4250
73a6d941 4251 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4484141a
XG
4252 if (is_error_page(page)) {
4253 r = -EFAULT;
4254 goto out;
4255 }
4256
c24ae0dc
TC
4257 /*
4258 * Do not pin the page in memory, so that memory hot-unplug
4259 * is able to migrate it.
4260 */
4261 put_page(page);
4262 kvm->arch.apic_access_page_done = true;
f78e0e2e 4263out:
79fac95e 4264 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
4265 return r;
4266}
4267
b7ebfb05
SY
4268static int alloc_identity_pagetable(struct kvm *kvm)
4269{
a255d479
TC
4270 /* Called with kvm->slots_lock held. */
4271
b7ebfb05
SY
4272 int r = 0;
4273
a255d479
TC
4274 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4275
1d8007bd
PB
4276 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4277 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
b7ebfb05 4278
b7ebfb05
SY
4279 return r;
4280}
4281
991e7a0e 4282static int allocate_vpid(void)
2384d2b3
SY
4283{
4284 int vpid;
4285
919818ab 4286 if (!enable_vpid)
991e7a0e 4287 return 0;
2384d2b3
SY
4288 spin_lock(&vmx_vpid_lock);
4289 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
991e7a0e 4290 if (vpid < VMX_NR_VPIDS)
2384d2b3 4291 __set_bit(vpid, vmx_vpid_bitmap);
991e7a0e
WL
4292 else
4293 vpid = 0;
2384d2b3 4294 spin_unlock(&vmx_vpid_lock);
991e7a0e 4295 return vpid;
2384d2b3
SY
4296}
4297
991e7a0e 4298static void free_vpid(int vpid)
cdbecfc3 4299{
991e7a0e 4300 if (!enable_vpid || vpid == 0)
cdbecfc3
LJ
4301 return;
4302 spin_lock(&vmx_vpid_lock);
991e7a0e 4303 __clear_bit(vpid, vmx_vpid_bitmap);
cdbecfc3
LJ
4304 spin_unlock(&vmx_vpid_lock);
4305}
4306
8d14695f
YZ
4307#define MSR_TYPE_R 1
4308#define MSR_TYPE_W 2
4309static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4310 u32 msr, int type)
25c5f225 4311{
3e7c73e9 4312 int f = sizeof(unsigned long);
25c5f225
SY
4313
4314 if (!cpu_has_vmx_msr_bitmap())
4315 return;
4316
4317 /*
4318 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4319 * have the write-low and read-high bitmap offsets the wrong way round.
4320 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4321 */
25c5f225 4322 if (msr <= 0x1fff) {
8d14695f
YZ
4323 if (type & MSR_TYPE_R)
4324 /* read-low */
4325 __clear_bit(msr, msr_bitmap + 0x000 / f);
4326
4327 if (type & MSR_TYPE_W)
4328 /* write-low */
4329 __clear_bit(msr, msr_bitmap + 0x800 / f);
4330
25c5f225
SY
4331 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4332 msr &= 0x1fff;
8d14695f
YZ
4333 if (type & MSR_TYPE_R)
4334 /* read-high */
4335 __clear_bit(msr, msr_bitmap + 0x400 / f);
4336
4337 if (type & MSR_TYPE_W)
4338 /* write-high */
4339 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4340
4341 }
4342}
4343
4344static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4345 u32 msr, int type)
4346{
4347 int f = sizeof(unsigned long);
4348
4349 if (!cpu_has_vmx_msr_bitmap())
4350 return;
4351
4352 /*
4353 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4354 * have the write-low and read-high bitmap offsets the wrong way round.
4355 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4356 */
4357 if (msr <= 0x1fff) {
4358 if (type & MSR_TYPE_R)
4359 /* read-low */
4360 __set_bit(msr, msr_bitmap + 0x000 / f);
4361
4362 if (type & MSR_TYPE_W)
4363 /* write-low */
4364 __set_bit(msr, msr_bitmap + 0x800 / f);
4365
4366 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4367 msr &= 0x1fff;
4368 if (type & MSR_TYPE_R)
4369 /* read-high */
4370 __set_bit(msr, msr_bitmap + 0x400 / f);
4371
4372 if (type & MSR_TYPE_W)
4373 /* write-high */
4374 __set_bit(msr, msr_bitmap + 0xc00 / f);
4375
25c5f225 4376 }
25c5f225
SY
4377}
4378
f2b93280
WV
4379/*
4380 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4381 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4382 */
4383static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4384 unsigned long *msr_bitmap_nested,
4385 u32 msr, int type)
4386{
4387 int f = sizeof(unsigned long);
4388
4389 if (!cpu_has_vmx_msr_bitmap()) {
4390 WARN_ON(1);
4391 return;
4392 }
4393
4394 /*
4395 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4396 * have the write-low and read-high bitmap offsets the wrong way round.
4397 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4398 */
4399 if (msr <= 0x1fff) {
4400 if (type & MSR_TYPE_R &&
4401 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4402 /* read-low */
4403 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4404
4405 if (type & MSR_TYPE_W &&
4406 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4407 /* write-low */
4408 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4409
4410 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4411 msr &= 0x1fff;
4412 if (type & MSR_TYPE_R &&
4413 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4414 /* read-high */
4415 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4416
4417 if (type & MSR_TYPE_W &&
4418 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4419 /* write-high */
4420 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4421
4422 }
4423}
4424
5897297b
AK
4425static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4426{
4427 if (!longmode_only)
8d14695f
YZ
4428 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4429 msr, MSR_TYPE_R | MSR_TYPE_W);
4430 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4431 msr, MSR_TYPE_R | MSR_TYPE_W);
4432}
4433
4434static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4435{
4436 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4437 msr, MSR_TYPE_R);
4438 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4439 msr, MSR_TYPE_R);
4440}
4441
4442static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4443{
4444 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4445 msr, MSR_TYPE_R);
4446 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4447 msr, MSR_TYPE_R);
4448}
4449
4450static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4451{
4452 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4453 msr, MSR_TYPE_W);
4454 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4455 msr, MSR_TYPE_W);
5897297b
AK
4456}
4457
d50ab6c1
PB
4458static int vmx_cpu_uses_apicv(struct kvm_vcpu *vcpu)
4459{
35754c98 4460 return enable_apicv && lapic_in_kernel(vcpu);
d50ab6c1
PB
4461}
4462
705699a1
WV
4463static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4464{
4465 struct vcpu_vmx *vmx = to_vmx(vcpu);
4466 int max_irr;
4467 void *vapic_page;
4468 u16 status;
4469
4470 if (vmx->nested.pi_desc &&
4471 vmx->nested.pi_pending) {
4472 vmx->nested.pi_pending = false;
4473 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4474 return 0;
4475
4476 max_irr = find_last_bit(
4477 (unsigned long *)vmx->nested.pi_desc->pir, 256);
4478
4479 if (max_irr == 256)
4480 return 0;
4481
4482 vapic_page = kmap(vmx->nested.virtual_apic_page);
4483 if (!vapic_page) {
4484 WARN_ON(1);
4485 return -ENOMEM;
4486 }
4487 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4488 kunmap(vmx->nested.virtual_apic_page);
4489
4490 status = vmcs_read16(GUEST_INTR_STATUS);
4491 if ((u8)max_irr > ((u8)status & 0xff)) {
4492 status &= ~0xff;
4493 status |= (u8)max_irr;
4494 vmcs_write16(GUEST_INTR_STATUS, status);
4495 }
4496 }
4497 return 0;
4498}
4499
21bc8dc5
RK
4500static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4501{
4502#ifdef CONFIG_SMP
4503 if (vcpu->mode == IN_GUEST_MODE) {
28b835d6
FW
4504 struct vcpu_vmx *vmx = to_vmx(vcpu);
4505
4506 /*
4507 * Currently, we don't support urgent interrupt,
4508 * all interrupts are recognized as non-urgent
4509 * interrupt, so we cannot post interrupts when
4510 * 'SN' is set.
4511 *
4512 * If the vcpu is in guest mode, it means it is
4513 * running instead of being scheduled out and
4514 * waiting in the run queue, and that's the only
4515 * case when 'SN' is set currently, warning if
4516 * 'SN' is set.
4517 */
4518 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
4519
21bc8dc5
RK
4520 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4521 POSTED_INTR_VECTOR);
4522 return true;
4523 }
4524#endif
4525 return false;
4526}
4527
705699a1
WV
4528static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4529 int vector)
4530{
4531 struct vcpu_vmx *vmx = to_vmx(vcpu);
4532
4533 if (is_guest_mode(vcpu) &&
4534 vector == vmx->nested.posted_intr_nv) {
4535 /* the PIR and ON have been set by L1. */
21bc8dc5 4536 kvm_vcpu_trigger_posted_interrupt(vcpu);
705699a1
WV
4537 /*
4538 * If a posted intr is not recognized by hardware,
4539 * we will accomplish it in the next vmentry.
4540 */
4541 vmx->nested.pi_pending = true;
4542 kvm_make_request(KVM_REQ_EVENT, vcpu);
4543 return 0;
4544 }
4545 return -1;
4546}
a20ed54d
YZ
4547/*
4548 * Send interrupt to vcpu via posted interrupt way.
4549 * 1. If target vcpu is running(non-root mode), send posted interrupt
4550 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4551 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4552 * interrupt from PIR in next vmentry.
4553 */
4554static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4555{
4556 struct vcpu_vmx *vmx = to_vmx(vcpu);
4557 int r;
4558
705699a1
WV
4559 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4560 if (!r)
4561 return;
4562
a20ed54d
YZ
4563 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4564 return;
4565
4566 r = pi_test_and_set_on(&vmx->pi_desc);
4567 kvm_make_request(KVM_REQ_EVENT, vcpu);
21bc8dc5 4568 if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
a20ed54d
YZ
4569 kvm_vcpu_kick(vcpu);
4570}
4571
4572static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4573{
4574 struct vcpu_vmx *vmx = to_vmx(vcpu);
4575
4576 if (!pi_test_and_clear_on(&vmx->pi_desc))
4577 return;
4578
4579 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4580}
4581
4582static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4583{
4584 return;
4585}
4586
a3a8ff8e
NHE
4587/*
4588 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4589 * will not change in the lifetime of the guest.
4590 * Note that host-state that does change is set elsewhere. E.g., host-state
4591 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4592 */
a547c6db 4593static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
a3a8ff8e
NHE
4594{
4595 u32 low32, high32;
4596 unsigned long tmpl;
4597 struct desc_ptr dt;
d974baa3 4598 unsigned long cr4;
a3a8ff8e 4599
b1a74bf8 4600 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
a3a8ff8e
NHE
4601 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4602
d974baa3 4603 /* Save the most likely value for this task's CR4 in the VMCS. */
1e02ce4c 4604 cr4 = cr4_read_shadow();
d974baa3
AL
4605 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4606 vmx->host_state.vmcs_host_cr4 = cr4;
4607
a3a8ff8e 4608 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
b2da15ac
AK
4609#ifdef CONFIG_X86_64
4610 /*
4611 * Load null selectors, so we can avoid reloading them in
4612 * __vmx_load_host_state(), in case userspace uses the null selectors
4613 * too (the expected case).
4614 */
4615 vmcs_write16(HOST_DS_SELECTOR, 0);
4616 vmcs_write16(HOST_ES_SELECTOR, 0);
4617#else
a3a8ff8e
NHE
4618 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4619 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
b2da15ac 4620#endif
a3a8ff8e
NHE
4621 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4622 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4623
4624 native_store_idt(&dt);
4625 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
a547c6db 4626 vmx->host_idt_base = dt.address;
a3a8ff8e 4627
83287ea4 4628 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
a3a8ff8e
NHE
4629
4630 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4631 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4632 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4633 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4634
4635 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4636 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4637 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4638 }
4639}
4640
bf8179a0
NHE
4641static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4642{
4643 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4644 if (enable_ept)
4645 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
4646 if (is_guest_mode(&vmx->vcpu))
4647 vmx->vcpu.arch.cr4_guest_owned_bits &=
4648 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
4649 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4650}
4651
01e439be
YZ
4652static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4653{
4654 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4655
35754c98 4656 if (!vmx_cpu_uses_apicv(&vmx->vcpu))
01e439be
YZ
4657 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4658 return pin_based_exec_ctrl;
4659}
4660
bf8179a0
NHE
4661static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4662{
4663 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
d16c293e
PB
4664
4665 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4666 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4667
35754c98 4668 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
bf8179a0
NHE
4669 exec_control &= ~CPU_BASED_TPR_SHADOW;
4670#ifdef CONFIG_X86_64
4671 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4672 CPU_BASED_CR8_LOAD_EXITING;
4673#endif
4674 }
4675 if (!enable_ept)
4676 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4677 CPU_BASED_CR3_LOAD_EXITING |
4678 CPU_BASED_INVLPG_EXITING;
4679 return exec_control;
4680}
4681
4682static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4683{
4684 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
35754c98 4685 if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
bf8179a0
NHE
4686 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4687 if (vmx->vpid == 0)
4688 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4689 if (!enable_ept) {
4690 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4691 enable_unrestricted_guest = 0;
ad756a16
MJ
4692 /* Enable INVPCID for non-ept guests may cause performance regression. */
4693 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
bf8179a0
NHE
4694 }
4695 if (!enable_unrestricted_guest)
4696 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4697 if (!ple_gap)
4698 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
35754c98 4699 if (!vmx_cpu_uses_apicv(&vmx->vcpu))
c7c9c56c
YZ
4700 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4701 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
8d14695f 4702 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
abc4fc58
AG
4703 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4704 (handle_vmptrld).
4705 We can NOT enable shadow_vmcs here because we don't have yet
4706 a current VMCS12
4707 */
4708 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
a3eaa864
KH
4709
4710 if (!enable_pml)
4711 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
843e4330 4712
8b3e34e4
XG
4713 /* Currently, we allow L1 guest to directly run pcommit instruction. */
4714 exec_control &= ~SECONDARY_EXEC_PCOMMIT;
4715
bf8179a0
NHE
4716 return exec_control;
4717}
4718
ce88decf
XG
4719static void ept_set_mmio_spte_mask(void)
4720{
4721 /*
4722 * EPT Misconfigurations can be generated if the value of bits 2:0
4723 * of an EPT paging-structure entry is 110b (write/execute).
885032b9 4724 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
ce88decf
XG
4725 * spte.
4726 */
885032b9 4727 kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
ce88decf
XG
4728}
4729
f53cd63c 4730#define VMX_XSS_EXIT_BITMAP 0
6aa8b732
AK
4731/*
4732 * Sets up the vmcs for emulated real mode.
4733 */
8b9cf98c 4734static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 4735{
2e4ce7f5 4736#ifdef CONFIG_X86_64
6aa8b732 4737 unsigned long a;
2e4ce7f5 4738#endif
6aa8b732 4739 int i;
6aa8b732 4740
6aa8b732 4741 /* I/O */
3e7c73e9
AK
4742 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4743 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 4744
4607c2d7
AG
4745 if (enable_shadow_vmcs) {
4746 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4747 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4748 }
25c5f225 4749 if (cpu_has_vmx_msr_bitmap())
5897297b 4750 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 4751
6aa8b732
AK
4752 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4753
6aa8b732 4754 /* Control */
01e439be 4755 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
6e5d865c 4756
bf8179a0 4757 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 4758
8b3e34e4 4759 if (cpu_has_secondary_exec_ctrls())
bf8179a0
NHE
4760 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4761 vmx_secondary_exec_control(vmx));
f78e0e2e 4762
35754c98 4763 if (vmx_cpu_uses_apicv(&vmx->vcpu)) {
c7c9c56c
YZ
4764 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4765 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4766 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4767 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4768
4769 vmcs_write16(GUEST_INTR_STATUS, 0);
01e439be
YZ
4770
4771 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4772 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
c7c9c56c
YZ
4773 }
4774
4b8d54f9
ZE
4775 if (ple_gap) {
4776 vmcs_write32(PLE_GAP, ple_gap);
a7653ecd
RK
4777 vmx->ple_window = ple_window;
4778 vmx->ple_window_dirty = true;
4b8d54f9
ZE
4779 }
4780
c3707958
XG
4781 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4782 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
4783 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4784
9581d442
AK
4785 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4786 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a547c6db 4787 vmx_set_constant_host_state(vmx);
05b3e0c2 4788#ifdef CONFIG_X86_64
6aa8b732
AK
4789 rdmsrl(MSR_FS_BASE, a);
4790 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4791 rdmsrl(MSR_GS_BASE, a);
4792 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4793#else
4794 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4795 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4796#endif
4797
2cc51560
ED
4798 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4799 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 4800 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 4801 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 4802 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 4803
74545705
RK
4804 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4805 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
468d472f 4806
03916db9 4807 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6aa8b732
AK
4808 u32 index = vmx_msr_index[i];
4809 u32 data_low, data_high;
a2fa3e9f 4810 int j = vmx->nmsrs;
6aa8b732
AK
4811
4812 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4813 continue;
432bd6cb
AK
4814 if (wrmsr_safe(index, data_low, data_high) < 0)
4815 continue;
26bb0981
AK
4816 vmx->guest_msrs[j].index = i;
4817 vmx->guest_msrs[j].data = 0;
d5696725 4818 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 4819 ++vmx->nmsrs;
6aa8b732 4820 }
6aa8b732 4821
2961e876
GN
4822
4823 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
6aa8b732
AK
4824
4825 /* 22.2.1, 20.8.1 */
2961e876 4826 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
1c3d14fe 4827
e00c8cf2 4828 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
bf8179a0 4829 set_cr4_guest_host_mask(vmx);
e00c8cf2 4830
f53cd63c
WL
4831 if (vmx_xsaves_supported())
4832 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4833
e00c8cf2
AK
4834 return 0;
4835}
4836
d28bc9dd 4837static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
e00c8cf2
AK
4838{
4839 struct vcpu_vmx *vmx = to_vmx(vcpu);
58cb628d 4840 struct msr_data apic_base_msr;
d28bc9dd 4841 u64 cr0;
e00c8cf2 4842
7ffd92c5 4843 vmx->rmode.vm86_active = 0;
e00c8cf2 4844
3b86cd99
JK
4845 vmx->soft_vnmi_blocked = 0;
4846
ad312c7c 4847 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
d28bc9dd
NA
4848 kvm_set_cr8(vcpu, 0);
4849
4850 if (!init_event) {
4851 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4852 MSR_IA32_APICBASE_ENABLE;
4853 if (kvm_vcpu_is_reset_bsp(vcpu))
4854 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4855 apic_base_msr.host_initiated = true;
4856 kvm_set_apic_base(vcpu, &apic_base_msr);
4857 }
e00c8cf2 4858
2fb92db1
AK
4859 vmx_segment_cache_clear(vmx);
4860
5706be0d 4861 seg_setup(VCPU_SREG_CS);
66450a21 4862 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
04b66839 4863 vmcs_write32(GUEST_CS_BASE, 0xffff0000);
e00c8cf2
AK
4864
4865 seg_setup(VCPU_SREG_DS);
4866 seg_setup(VCPU_SREG_ES);
4867 seg_setup(VCPU_SREG_FS);
4868 seg_setup(VCPU_SREG_GS);
4869 seg_setup(VCPU_SREG_SS);
4870
4871 vmcs_write16(GUEST_TR_SELECTOR, 0);
4872 vmcs_writel(GUEST_TR_BASE, 0);
4873 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4874 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4875
4876 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4877 vmcs_writel(GUEST_LDTR_BASE, 0);
4878 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4879 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4880
d28bc9dd
NA
4881 if (!init_event) {
4882 vmcs_write32(GUEST_SYSENTER_CS, 0);
4883 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4884 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4885 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4886 }
e00c8cf2
AK
4887
4888 vmcs_writel(GUEST_RFLAGS, 0x02);
66450a21 4889 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 4890
e00c8cf2
AK
4891 vmcs_writel(GUEST_GDTR_BASE, 0);
4892 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4893
4894 vmcs_writel(GUEST_IDTR_BASE, 0);
4895 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4896
443381a8 4897 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2
AK
4898 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4899 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4900
e00c8cf2
AK
4901 setup_msrs(vmx);
4902
6aa8b732
AK
4903 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4904
d28bc9dd 4905 if (cpu_has_vmx_tpr_shadow() && !init_event) {
f78e0e2e 4906 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
35754c98 4907 if (cpu_need_tpr_shadow(vcpu))
f78e0e2e 4908 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
d28bc9dd 4909 __pa(vcpu->arch.apic->regs));
f78e0e2e
SY
4910 vmcs_write32(TPR_THRESHOLD, 0);
4911 }
4912
a73896cb 4913 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6aa8b732 4914
35754c98 4915 if (vmx_cpu_uses_apicv(vcpu))
01e439be
YZ
4916 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4917
2384d2b3
SY
4918 if (vmx->vpid != 0)
4919 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4920
d28bc9dd
NA
4921 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4922 vmx_set_cr0(vcpu, cr0); /* enter rmode */
4923 vmx->vcpu.arch.cr0 = cr0;
4924 vmx_set_cr4(vcpu, 0);
5690891b 4925 vmx_set_efer(vcpu, 0);
d28bc9dd
NA
4926 vmx_fpu_activate(vcpu);
4927 update_exception_bitmap(vcpu);
6aa8b732 4928
dd5f5341 4929 vpid_sync_context(vmx->vpid);
6aa8b732
AK
4930}
4931
b6f1250e
NHE
4932/*
4933 * In nested virtualization, check if L1 asked to exit on external interrupts.
4934 * For most existing hypervisors, this will always return true.
4935 */
4936static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4937{
4938 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4939 PIN_BASED_EXT_INTR_MASK;
4940}
4941
77b0f5d6
BD
4942/*
4943 * In nested virtualization, check if L1 has set
4944 * VM_EXIT_ACK_INTR_ON_EXIT
4945 */
4946static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
4947{
4948 return get_vmcs12(vcpu)->vm_exit_controls &
4949 VM_EXIT_ACK_INTR_ON_EXIT;
4950}
4951
ea8ceb83
JK
4952static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4953{
4954 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4955 PIN_BASED_NMI_EXITING;
4956}
4957
c9a7953f 4958static void enable_irq_window(struct kvm_vcpu *vcpu)
3b86cd99
JK
4959{
4960 u32 cpu_based_vm_exec_control;
730dca42 4961
3b86cd99
JK
4962 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4963 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4964 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4965}
4966
c9a7953f 4967static void enable_nmi_window(struct kvm_vcpu *vcpu)
3b86cd99
JK
4968{
4969 u32 cpu_based_vm_exec_control;
4970
c9a7953f
JK
4971 if (!cpu_has_virtual_nmis() ||
4972 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4973 enable_irq_window(vcpu);
4974 return;
4975 }
3b86cd99
JK
4976
4977 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4978 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4979 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4980}
4981
66fd3f7f 4982static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 4983{
9c8cba37 4984 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
4985 uint32_t intr;
4986 int irq = vcpu->arch.interrupt.nr;
9c8cba37 4987
229456fc 4988 trace_kvm_inj_virq(irq);
2714d1d3 4989
fa89a817 4990 ++vcpu->stat.irq_injections;
7ffd92c5 4991 if (vmx->rmode.vm86_active) {
71f9833b
SH
4992 int inc_eip = 0;
4993 if (vcpu->arch.interrupt.soft)
4994 inc_eip = vcpu->arch.event_exit_inst_len;
4995 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 4996 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
4997 return;
4998 }
66fd3f7f
GN
4999 intr = irq | INTR_INFO_VALID_MASK;
5000 if (vcpu->arch.interrupt.soft) {
5001 intr |= INTR_TYPE_SOFT_INTR;
5002 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5003 vmx->vcpu.arch.event_exit_inst_len);
5004 } else
5005 intr |= INTR_TYPE_EXT_INTR;
5006 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
5007}
5008
f08864b4
SY
5009static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5010{
66a5a347
JK
5011 struct vcpu_vmx *vmx = to_vmx(vcpu);
5012
0b6ac343
NHE
5013 if (is_guest_mode(vcpu))
5014 return;
5015
3b86cd99
JK
5016 if (!cpu_has_virtual_nmis()) {
5017 /*
5018 * Tracking the NMI-blocked state in software is built upon
5019 * finding the next open IRQ window. This, in turn, depends on
5020 * well-behaving guests: They have to keep IRQs disabled at
5021 * least as long as the NMI handler runs. Otherwise we may
5022 * cause NMI nesting, maybe breaking the guest. But as this is
5023 * highly unlikely, we can live with the residual risk.
5024 */
5025 vmx->soft_vnmi_blocked = 1;
5026 vmx->vnmi_blocked_time = 0;
5027 }
5028
487b391d 5029 ++vcpu->stat.nmi_injections;
9d58b931 5030 vmx->nmi_known_unmasked = false;
7ffd92c5 5031 if (vmx->rmode.vm86_active) {
71f9833b 5032 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 5033 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
5034 return;
5035 }
f08864b4
SY
5036 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5037 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
5038}
5039
3cfc3092
JK
5040static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5041{
5042 if (!cpu_has_virtual_nmis())
5043 return to_vmx(vcpu)->soft_vnmi_blocked;
9d58b931
AK
5044 if (to_vmx(vcpu)->nmi_known_unmasked)
5045 return false;
c332c83a 5046 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3cfc3092
JK
5047}
5048
5049static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5050{
5051 struct vcpu_vmx *vmx = to_vmx(vcpu);
5052
5053 if (!cpu_has_virtual_nmis()) {
5054 if (vmx->soft_vnmi_blocked != masked) {
5055 vmx->soft_vnmi_blocked = masked;
5056 vmx->vnmi_blocked_time = 0;
5057 }
5058 } else {
9d58b931 5059 vmx->nmi_known_unmasked = !masked;
3cfc3092
JK
5060 if (masked)
5061 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5062 GUEST_INTR_STATE_NMI);
5063 else
5064 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5065 GUEST_INTR_STATE_NMI);
5066 }
5067}
5068
2505dc9f
JK
5069static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5070{
b6b8a145
JK
5071 if (to_vmx(vcpu)->nested.nested_run_pending)
5072 return 0;
ea8ceb83 5073
2505dc9f
JK
5074 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
5075 return 0;
5076
5077 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5078 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5079 | GUEST_INTR_STATE_NMI));
5080}
5081
78646121
GN
5082static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5083{
b6b8a145
JK
5084 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5085 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
c4282df9
GN
5086 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5087 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
5088}
5089
cbc94022
IE
5090static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5091{
5092 int ret;
cbc94022 5093
1d8007bd
PB
5094 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5095 PAGE_SIZE * 3);
cbc94022
IE
5096 if (ret)
5097 return ret;
bfc6d222 5098 kvm->arch.tss_addr = addr;
1f755a82 5099 return init_rmode_tss(kvm);
cbc94022
IE
5100}
5101
0ca1b4f4 5102static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6aa8b732 5103{
77ab6db0 5104 switch (vec) {
77ab6db0 5105 case BP_VECTOR:
c573cd22
JK
5106 /*
5107 * Update instruction length as we may reinject the exception
5108 * from user space while in guest debugging mode.
5109 */
5110 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5111 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940 5112 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
0ca1b4f4
GN
5113 return false;
5114 /* fall through */
5115 case DB_VECTOR:
5116 if (vcpu->guest_debug &
5117 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5118 return false;
d0bfb940
JK
5119 /* fall through */
5120 case DE_VECTOR:
77ab6db0
JK
5121 case OF_VECTOR:
5122 case BR_VECTOR:
5123 case UD_VECTOR:
5124 case DF_VECTOR:
5125 case SS_VECTOR:
5126 case GP_VECTOR:
5127 case MF_VECTOR:
0ca1b4f4
GN
5128 return true;
5129 break;
77ab6db0 5130 }
0ca1b4f4
GN
5131 return false;
5132}
5133
5134static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5135 int vec, u32 err_code)
5136{
5137 /*
5138 * Instruction with address size override prefix opcode 0x67
5139 * Cause the #SS fault with 0 error code in VM86 mode.
5140 */
5141 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5142 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5143 if (vcpu->arch.halt_request) {
5144 vcpu->arch.halt_request = 0;
5cb56059 5145 return kvm_vcpu_halt(vcpu);
0ca1b4f4
GN
5146 }
5147 return 1;
5148 }
5149 return 0;
5150 }
5151
5152 /*
5153 * Forward all other exceptions that are valid in real mode.
5154 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5155 * the required debugging infrastructure rework.
5156 */
5157 kvm_queue_exception(vcpu, vec);
5158 return 1;
6aa8b732
AK
5159}
5160
a0861c02
AK
5161/*
5162 * Trigger machine check on the host. We assume all the MSRs are already set up
5163 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5164 * We pass a fake environment to the machine check handler because we want
5165 * the guest to be always treated like user space, no matter what context
5166 * it used internally.
5167 */
5168static void kvm_machine_check(void)
5169{
5170#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5171 struct pt_regs regs = {
5172 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5173 .flags = X86_EFLAGS_IF,
5174 };
5175
5176 do_machine_check(&regs, 0);
5177#endif
5178}
5179
851ba692 5180static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
5181{
5182 /* already handled by vcpu_run */
5183 return 1;
5184}
5185
851ba692 5186static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 5187{
1155f76a 5188 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 5189 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 5190 u32 intr_info, ex_no, error_code;
42dbaa5a 5191 unsigned long cr2, rip, dr6;
6aa8b732
AK
5192 u32 vect_info;
5193 enum emulation_result er;
5194
1155f76a 5195 vect_info = vmx->idt_vectoring_info;
88786475 5196 intr_info = vmx->exit_intr_info;
6aa8b732 5197
a0861c02 5198 if (is_machine_check(intr_info))
851ba692 5199 return handle_machine_check(vcpu);
a0861c02 5200
e4a41889 5201 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
1b6269db 5202 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc
AL
5203
5204 if (is_no_device(intr_info)) {
5fd86fcf 5205 vmx_fpu_activate(vcpu);
2ab455cc
AL
5206 return 1;
5207 }
5208
7aa81cc0 5209 if (is_invalid_opcode(intr_info)) {
ae1f5767
JK
5210 if (is_guest_mode(vcpu)) {
5211 kvm_queue_exception(vcpu, UD_VECTOR);
5212 return 1;
5213 }
51d8b661 5214 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 5215 if (er != EMULATE_DONE)
7ee5d940 5216 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
5217 return 1;
5218 }
5219
6aa8b732 5220 error_code = 0;
2e11384c 5221 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732 5222 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
bf4ca23e
XG
5223
5224 /*
5225 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5226 * MMIO, it is better to report an internal error.
5227 * See the comments in vmx_handle_exit.
5228 */
5229 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5230 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5231 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5232 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
80f0e95d 5233 vcpu->run->internal.ndata = 3;
bf4ca23e
XG
5234 vcpu->run->internal.data[0] = vect_info;
5235 vcpu->run->internal.data[1] = intr_info;
80f0e95d 5236 vcpu->run->internal.data[2] = error_code;
bf4ca23e
XG
5237 return 0;
5238 }
5239
6aa8b732 5240 if (is_page_fault(intr_info)) {
1439442c 5241 /* EPT won't cause page fault directly */
cf3ace79 5242 BUG_ON(enable_ept);
6aa8b732 5243 cr2 = vmcs_readl(EXIT_QUALIFICATION);
229456fc
MT
5244 trace_kvm_page_fault(cr2, error_code);
5245
3298b75c 5246 if (kvm_event_needs_reinjection(vcpu))
577bdc49 5247 kvm_mmu_unprotect_page_virt(vcpu, cr2);
dc25e89e 5248 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
6aa8b732
AK
5249 }
5250
d0bfb940 5251 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
0ca1b4f4
GN
5252
5253 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5254 return handle_rmode_exception(vcpu, ex_no, error_code);
5255
42dbaa5a
JK
5256 switch (ex_no) {
5257 case DB_VECTOR:
5258 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5259 if (!(vcpu->guest_debug &
5260 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
8246bf52 5261 vcpu->arch.dr6 &= ~15;
6f43ed01 5262 vcpu->arch.dr6 |= dr6 | DR6_RTM;
fd2a445a
HD
5263 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5264 skip_emulated_instruction(vcpu);
5265
42dbaa5a
JK
5266 kvm_queue_exception(vcpu, DB_VECTOR);
5267 return 1;
5268 }
5269 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5270 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5271 /* fall through */
5272 case BP_VECTOR:
c573cd22
JK
5273 /*
5274 * Update instruction length as we may reinject #BP from
5275 * user space while in guest debugging mode. Reading it for
5276 * #DB as well causes no harm, it is not used in that case.
5277 */
5278 vmx->vcpu.arch.event_exit_inst_len =
5279 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 5280 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 5281 rip = kvm_rip_read(vcpu);
d0bfb940
JK
5282 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5283 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
5284 break;
5285 default:
d0bfb940
JK
5286 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5287 kvm_run->ex.exception = ex_no;
5288 kvm_run->ex.error_code = error_code;
42dbaa5a 5289 break;
6aa8b732 5290 }
6aa8b732
AK
5291 return 0;
5292}
5293
851ba692 5294static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 5295{
1165f5fe 5296 ++vcpu->stat.irq_exits;
6aa8b732
AK
5297 return 1;
5298}
5299
851ba692 5300static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 5301{
851ba692 5302 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
988ad74f
AK
5303 return 0;
5304}
6aa8b732 5305
851ba692 5306static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 5307{
bfdaab09 5308 unsigned long exit_qualification;
34c33d16 5309 int size, in, string;
039576c0 5310 unsigned port;
6aa8b732 5311
bfdaab09 5312 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 5313 string = (exit_qualification & 16) != 0;
cf8f70bf 5314 in = (exit_qualification & 8) != 0;
e70669ab 5315
cf8f70bf 5316 ++vcpu->stat.io_exits;
e70669ab 5317
cf8f70bf 5318 if (string || in)
51d8b661 5319 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 5320
cf8f70bf
GN
5321 port = exit_qualification >> 16;
5322 size = (exit_qualification & 7) + 1;
e93f36bc 5323 skip_emulated_instruction(vcpu);
cf8f70bf
GN
5324
5325 return kvm_fast_pio_out(vcpu, size, port);
6aa8b732
AK
5326}
5327
102d8325
IM
5328static void
5329vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5330{
5331 /*
5332 * Patch in the VMCALL instruction:
5333 */
5334 hypercall[0] = 0x0f;
5335 hypercall[1] = 0x01;
5336 hypercall[2] = 0xc1;
102d8325
IM
5337}
5338
b9c237bb 5339static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
92fbc7b1
JK
5340{
5341 unsigned long always_on = VMXON_CR0_ALWAYSON;
b9c237bb 5342 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
92fbc7b1 5343
b9c237bb 5344 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
92fbc7b1
JK
5345 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5346 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5347 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5348 return (val & always_on) == always_on;
5349}
5350
0fa06071 5351/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
eeadf9e7
NHE
5352static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5353{
eeadf9e7 5354 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
5355 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5356 unsigned long orig_val = val;
5357
eeadf9e7
NHE
5358 /*
5359 * We get here when L2 changed cr0 in a way that did not change
5360 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
1a0d74e6
JK
5361 * but did change L0 shadowed bits. So we first calculate the
5362 * effective cr0 value that L1 would like to write into the
5363 * hardware. It consists of the L2-owned bits from the new
5364 * value combined with the L1-owned bits from L1's guest_cr0.
eeadf9e7 5365 */
1a0d74e6
JK
5366 val = (val & ~vmcs12->cr0_guest_host_mask) |
5367 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5368
b9c237bb 5369 if (!nested_cr0_valid(vcpu, val))
eeadf9e7 5370 return 1;
1a0d74e6
JK
5371
5372 if (kvm_set_cr0(vcpu, val))
5373 return 1;
5374 vmcs_writel(CR0_READ_SHADOW, orig_val);
eeadf9e7 5375 return 0;
1a0d74e6
JK
5376 } else {
5377 if (to_vmx(vcpu)->nested.vmxon &&
5378 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5379 return 1;
eeadf9e7 5380 return kvm_set_cr0(vcpu, val);
1a0d74e6 5381 }
eeadf9e7
NHE
5382}
5383
5384static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5385{
5386 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
5387 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5388 unsigned long orig_val = val;
5389
5390 /* analogously to handle_set_cr0 */
5391 val = (val & ~vmcs12->cr4_guest_host_mask) |
5392 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5393 if (kvm_set_cr4(vcpu, val))
eeadf9e7 5394 return 1;
1a0d74e6 5395 vmcs_writel(CR4_READ_SHADOW, orig_val);
eeadf9e7
NHE
5396 return 0;
5397 } else
5398 return kvm_set_cr4(vcpu, val);
5399}
5400
5401/* called to set cr0 as approriate for clts instruction exit. */
5402static void handle_clts(struct kvm_vcpu *vcpu)
5403{
5404 if (is_guest_mode(vcpu)) {
5405 /*
5406 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5407 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5408 * just pretend it's off (also in arch.cr0 for fpu_activate).
5409 */
5410 vmcs_writel(CR0_READ_SHADOW,
5411 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5412 vcpu->arch.cr0 &= ~X86_CR0_TS;
5413 } else
5414 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5415}
5416
851ba692 5417static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 5418{
229456fc 5419 unsigned long exit_qualification, val;
6aa8b732
AK
5420 int cr;
5421 int reg;
49a9b07e 5422 int err;
6aa8b732 5423
bfdaab09 5424 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
5425 cr = exit_qualification & 15;
5426 reg = (exit_qualification >> 8) & 15;
5427 switch ((exit_qualification >> 4) & 3) {
5428 case 0: /* mov to cr */
1e32c079 5429 val = kvm_register_readl(vcpu, reg);
229456fc 5430 trace_kvm_cr_write(cr, val);
6aa8b732
AK
5431 switch (cr) {
5432 case 0:
eeadf9e7 5433 err = handle_set_cr0(vcpu, val);
db8fcefa 5434 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
5435 return 1;
5436 case 3:
2390218b 5437 err = kvm_set_cr3(vcpu, val);
db8fcefa 5438 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
5439 return 1;
5440 case 4:
eeadf9e7 5441 err = handle_set_cr4(vcpu, val);
db8fcefa 5442 kvm_complete_insn_gp(vcpu, err);
6aa8b732 5443 return 1;
0a5fff19
GN
5444 case 8: {
5445 u8 cr8_prev = kvm_get_cr8(vcpu);
1e32c079 5446 u8 cr8 = (u8)val;
eea1cff9 5447 err = kvm_set_cr8(vcpu, cr8);
db8fcefa 5448 kvm_complete_insn_gp(vcpu, err);
35754c98 5449 if (lapic_in_kernel(vcpu))
0a5fff19
GN
5450 return 1;
5451 if (cr8_prev <= cr8)
5452 return 1;
851ba692 5453 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
5454 return 0;
5455 }
4b8073e4 5456 }
6aa8b732 5457 break;
25c4c276 5458 case 2: /* clts */
eeadf9e7 5459 handle_clts(vcpu);
4d4ec087 5460 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
25c4c276 5461 skip_emulated_instruction(vcpu);
6b52d186 5462 vmx_fpu_activate(vcpu);
25c4c276 5463 return 1;
6aa8b732
AK
5464 case 1: /*mov from cr*/
5465 switch (cr) {
5466 case 3:
9f8fe504
AK
5467 val = kvm_read_cr3(vcpu);
5468 kvm_register_write(vcpu, reg, val);
5469 trace_kvm_cr_read(cr, val);
6aa8b732
AK
5470 skip_emulated_instruction(vcpu);
5471 return 1;
5472 case 8:
229456fc
MT
5473 val = kvm_get_cr8(vcpu);
5474 kvm_register_write(vcpu, reg, val);
5475 trace_kvm_cr_read(cr, val);
6aa8b732
AK
5476 skip_emulated_instruction(vcpu);
5477 return 1;
5478 }
5479 break;
5480 case 3: /* lmsw */
a1f83a74 5481 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 5482 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 5483 kvm_lmsw(vcpu, val);
6aa8b732
AK
5484
5485 skip_emulated_instruction(vcpu);
5486 return 1;
5487 default:
5488 break;
5489 }
851ba692 5490 vcpu->run->exit_reason = 0;
a737f256 5491 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
5492 (int)(exit_qualification >> 4) & 3, cr);
5493 return 0;
5494}
5495
851ba692 5496static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 5497{
bfdaab09 5498 unsigned long exit_qualification;
16f8a6f9
NA
5499 int dr, dr7, reg;
5500
5501 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5502 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5503
5504 /* First, if DR does not exist, trigger UD */
5505 if (!kvm_require_dr(vcpu, dr))
5506 return 1;
6aa8b732 5507
f2483415 5508 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
5509 if (!kvm_require_cpl(vcpu, 0))
5510 return 1;
16f8a6f9
NA
5511 dr7 = vmcs_readl(GUEST_DR7);
5512 if (dr7 & DR7_GD) {
42dbaa5a
JK
5513 /*
5514 * As the vm-exit takes precedence over the debug trap, we
5515 * need to emulate the latter, either for the host or the
5516 * guest debugging itself.
5517 */
5518 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692 5519 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
16f8a6f9 5520 vcpu->run->debug.arch.dr7 = dr7;
82b32774 5521 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
851ba692
AK
5522 vcpu->run->debug.arch.exception = DB_VECTOR;
5523 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
5524 return 0;
5525 } else {
7305eb5d 5526 vcpu->arch.dr6 &= ~15;
6f43ed01 5527 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
42dbaa5a
JK
5528 kvm_queue_exception(vcpu, DB_VECTOR);
5529 return 1;
5530 }
5531 }
5532
81908bf4
PB
5533 if (vcpu->guest_debug == 0) {
5534 u32 cpu_based_vm_exec_control;
5535
5536 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5537 cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5538 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5539
5540 /*
5541 * No more DR vmexits; force a reload of the debug registers
5542 * and reenter on this instruction. The next vmexit will
5543 * retrieve the full state of the debug registers.
5544 */
5545 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5546 return 1;
5547 }
5548
42dbaa5a
JK
5549 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5550 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079 5551 unsigned long val;
4c4d563b
JK
5552
5553 if (kvm_get_dr(vcpu, dr, &val))
5554 return 1;
5555 kvm_register_write(vcpu, reg, val);
020df079 5556 } else
5777392e 5557 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4c4d563b
JK
5558 return 1;
5559
6aa8b732
AK
5560 skip_emulated_instruction(vcpu);
5561 return 1;
5562}
5563
73aaf249
JK
5564static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5565{
5566 return vcpu->arch.dr6;
5567}
5568
5569static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5570{
5571}
5572
81908bf4
PB
5573static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5574{
5575 u32 cpu_based_vm_exec_control;
5576
5577 get_debugreg(vcpu->arch.db[0], 0);
5578 get_debugreg(vcpu->arch.db[1], 1);
5579 get_debugreg(vcpu->arch.db[2], 2);
5580 get_debugreg(vcpu->arch.db[3], 3);
5581 get_debugreg(vcpu->arch.dr6, 6);
5582 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5583
5584 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5585
5586 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5587 cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5588 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5589}
5590
020df079
GN
5591static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5592{
5593 vmcs_writel(GUEST_DR7, val);
5594}
5595
851ba692 5596static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 5597{
06465c5a
AK
5598 kvm_emulate_cpuid(vcpu);
5599 return 1;
6aa8b732
AK
5600}
5601
851ba692 5602static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 5603{
ad312c7c 5604 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
609e36d3 5605 struct msr_data msr_info;
6aa8b732 5606
609e36d3
PB
5607 msr_info.index = ecx;
5608 msr_info.host_initiated = false;
5609 if (vmx_get_msr(vcpu, &msr_info)) {
59200273 5610 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 5611 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
5612 return 1;
5613 }
5614
609e36d3 5615 trace_kvm_msr_read(ecx, msr_info.data);
2714d1d3 5616
6aa8b732 5617 /* FIXME: handling of bits 32:63 of rax, rdx */
609e36d3
PB
5618 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
5619 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6aa8b732
AK
5620 skip_emulated_instruction(vcpu);
5621 return 1;
5622}
5623
851ba692 5624static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 5625{
8fe8ab46 5626 struct msr_data msr;
ad312c7c
ZX
5627 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5628 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5629 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732 5630
8fe8ab46
WA
5631 msr.data = data;
5632 msr.index = ecx;
5633 msr.host_initiated = false;
854e8bb1 5634 if (kvm_set_msr(vcpu, &msr) != 0) {
59200273 5635 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 5636 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
5637 return 1;
5638 }
5639
59200273 5640 trace_kvm_msr_write(ecx, data);
6aa8b732
AK
5641 skip_emulated_instruction(vcpu);
5642 return 1;
5643}
5644
851ba692 5645static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 5646{
3842d135 5647 kvm_make_request(KVM_REQ_EVENT, vcpu);
6e5d865c
YS
5648 return 1;
5649}
5650
851ba692 5651static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 5652{
85f455f7
ED
5653 u32 cpu_based_vm_exec_control;
5654
5655 /* clear pending irq */
5656 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5657 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5658 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2714d1d3 5659
3842d135
AK
5660 kvm_make_request(KVM_REQ_EVENT, vcpu);
5661
a26bf12a 5662 ++vcpu->stat.irq_window_exits;
6aa8b732
AK
5663 return 1;
5664}
5665
851ba692 5666static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732 5667{
d3bef15f 5668 return kvm_emulate_halt(vcpu);
6aa8b732
AK
5669}
5670
851ba692 5671static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 5672{
7aa81cc0
AL
5673 kvm_emulate_hypercall(vcpu);
5674 return 1;
c21415e8
IM
5675}
5676
ec25d5e6
GN
5677static int handle_invd(struct kvm_vcpu *vcpu)
5678{
51d8b661 5679 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
5680}
5681
851ba692 5682static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 5683{
f9c617f6 5684 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
5685
5686 kvm_mmu_invlpg(vcpu, exit_qualification);
5687 skip_emulated_instruction(vcpu);
5688 return 1;
5689}
5690
fee84b07
AK
5691static int handle_rdpmc(struct kvm_vcpu *vcpu)
5692{
5693 int err;
5694
5695 err = kvm_rdpmc(vcpu);
5696 kvm_complete_insn_gp(vcpu, err);
5697
5698 return 1;
5699}
5700
851ba692 5701static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01 5702{
f5f48ee1 5703 kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
5704 return 1;
5705}
5706
2acf923e
DC
5707static int handle_xsetbv(struct kvm_vcpu *vcpu)
5708{
5709 u64 new_bv = kvm_read_edx_eax(vcpu);
5710 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5711
5712 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5713 skip_emulated_instruction(vcpu);
5714 return 1;
5715}
5716
f53cd63c
WL
5717static int handle_xsaves(struct kvm_vcpu *vcpu)
5718{
5719 skip_emulated_instruction(vcpu);
5720 WARN(1, "this should never happen\n");
5721 return 1;
5722}
5723
5724static int handle_xrstors(struct kvm_vcpu *vcpu)
5725{
5726 skip_emulated_instruction(vcpu);
5727 WARN(1, "this should never happen\n");
5728 return 1;
5729}
5730
851ba692 5731static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 5732{
58fbbf26
KT
5733 if (likely(fasteoi)) {
5734 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5735 int access_type, offset;
5736
5737 access_type = exit_qualification & APIC_ACCESS_TYPE;
5738 offset = exit_qualification & APIC_ACCESS_OFFSET;
5739 /*
5740 * Sane guest uses MOV to write EOI, with written value
5741 * not cared. So make a short-circuit here by avoiding
5742 * heavy instruction emulation.
5743 */
5744 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5745 (offset == APIC_EOI)) {
5746 kvm_lapic_set_eoi(vcpu);
5747 skip_emulated_instruction(vcpu);
5748 return 1;
5749 }
5750 }
51d8b661 5751 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
5752}
5753
c7c9c56c
YZ
5754static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5755{
5756 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5757 int vector = exit_qualification & 0xff;
5758
5759 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5760 kvm_apic_set_eoi_accelerated(vcpu, vector);
5761 return 1;
5762}
5763
83d4c286
YZ
5764static int handle_apic_write(struct kvm_vcpu *vcpu)
5765{
5766 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5767 u32 offset = exit_qualification & 0xfff;
5768
5769 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5770 kvm_apic_write_nodecode(vcpu, offset);
5771 return 1;
5772}
5773
851ba692 5774static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 5775{
60637aac 5776 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 5777 unsigned long exit_qualification;
e269fb21
JK
5778 bool has_error_code = false;
5779 u32 error_code = 0;
37817f29 5780 u16 tss_selector;
7f3d35fd 5781 int reason, type, idt_v, idt_index;
64a7ec06
GN
5782
5783 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 5784 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 5785 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
5786
5787 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5788
5789 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
5790 if (reason == TASK_SWITCH_GATE && idt_v) {
5791 switch (type) {
5792 case INTR_TYPE_NMI_INTR:
5793 vcpu->arch.nmi_injected = false;
654f06fc 5794 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
5795 break;
5796 case INTR_TYPE_EXT_INTR:
66fd3f7f 5797 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
5798 kvm_clear_interrupt_queue(vcpu);
5799 break;
5800 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
5801 if (vmx->idt_vectoring_info &
5802 VECTORING_INFO_DELIVER_CODE_MASK) {
5803 has_error_code = true;
5804 error_code =
5805 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5806 }
5807 /* fall through */
64a7ec06
GN
5808 case INTR_TYPE_SOFT_EXCEPTION:
5809 kvm_clear_exception_queue(vcpu);
5810 break;
5811 default:
5812 break;
5813 }
60637aac 5814 }
37817f29
IE
5815 tss_selector = exit_qualification;
5816
64a7ec06
GN
5817 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5818 type != INTR_TYPE_EXT_INTR &&
5819 type != INTR_TYPE_NMI_INTR))
5820 skip_emulated_instruction(vcpu);
5821
7f3d35fd
KW
5822 if (kvm_task_switch(vcpu, tss_selector,
5823 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5824 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
5825 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5826 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5827 vcpu->run->internal.ndata = 0;
42dbaa5a 5828 return 0;
acb54517 5829 }
42dbaa5a 5830
42dbaa5a
JK
5831 /*
5832 * TODO: What about debug traps on tss switch?
5833 * Are we supposed to inject them and update dr6?
5834 */
5835
5836 return 1;
37817f29
IE
5837}
5838
851ba692 5839static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 5840{
f9c617f6 5841 unsigned long exit_qualification;
1439442c 5842 gpa_t gpa;
4f5982a5 5843 u32 error_code;
1439442c 5844 int gla_validity;
1439442c 5845
f9c617f6 5846 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c 5847
1439442c
SY
5848 gla_validity = (exit_qualification >> 7) & 0x3;
5849 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5850 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5851 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5852 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
f9c617f6 5853 vmcs_readl(GUEST_LINEAR_ADDRESS));
1439442c
SY
5854 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5855 (long unsigned int)exit_qualification);
851ba692
AK
5856 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5857 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
596ae895 5858 return 0;
1439442c
SY
5859 }
5860
0be9c7a8
GN
5861 /*
5862 * EPT violation happened while executing iret from NMI,
5863 * "blocked by NMI" bit has to be set before next VM entry.
5864 * There are errata that may cause this bit to not be set:
5865 * AAK134, BY25.
5866 */
bcd1c294
GN
5867 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5868 cpu_has_virtual_nmis() &&
5869 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
0be9c7a8
GN
5870 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5871
1439442c 5872 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 5873 trace_kvm_page_fault(gpa, exit_qualification);
4f5982a5
XG
5874
5875 /* It is a write fault? */
81ed33e4 5876 error_code = exit_qualification & PFERR_WRITE_MASK;
25d92081 5877 /* It is a fetch fault? */
81ed33e4 5878 error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
4f5982a5 5879 /* ept page table is present? */
81ed33e4 5880 error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
4f5982a5 5881
25d92081
YZ
5882 vcpu->arch.exit_qualification = exit_qualification;
5883
4f5982a5 5884 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
1439442c
SY
5885}
5886
851ba692 5887static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400 5888{
f735d4af 5889 int ret;
68f89400
MT
5890 gpa_t gpa;
5891
5892 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
e32edf4f 5893 if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
68c3b4d1 5894 skip_emulated_instruction(vcpu);
931c33b1 5895 trace_kvm_fast_mmio(gpa);
68c3b4d1
MT
5896 return 1;
5897 }
68f89400 5898
450869d6 5899 ret = handle_mmio_page_fault(vcpu, gpa, true);
b37fbea6 5900 if (likely(ret == RET_MMIO_PF_EMULATE))
ce88decf
XG
5901 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5902 EMULATE_DONE;
f8f55942
XG
5903
5904 if (unlikely(ret == RET_MMIO_PF_INVALID))
5905 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5906
b37fbea6 5907 if (unlikely(ret == RET_MMIO_PF_RETRY))
ce88decf
XG
5908 return 1;
5909
5910 /* It is the real ept misconfig */
f735d4af 5911 WARN_ON(1);
68f89400 5912
851ba692
AK
5913 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5914 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
5915
5916 return 0;
5917}
5918
851ba692 5919static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4
SY
5920{
5921 u32 cpu_based_vm_exec_control;
5922
5923 /* clear pending NMI */
5924 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5925 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5926 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5927 ++vcpu->stat.nmi_window_exits;
3842d135 5928 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
5929
5930 return 1;
5931}
5932
80ced186 5933static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 5934{
8b3079a5
AK
5935 struct vcpu_vmx *vmx = to_vmx(vcpu);
5936 enum emulation_result err = EMULATE_DONE;
80ced186 5937 int ret = 1;
49e9d557
AK
5938 u32 cpu_exec_ctrl;
5939 bool intr_window_requested;
b8405c18 5940 unsigned count = 130;
49e9d557
AK
5941
5942 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5943 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0 5944
98eb2f8b 5945 while (vmx->emulation_required && count-- != 0) {
bdea48e3 5946 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
49e9d557
AK
5947 return handle_interrupt_window(&vmx->vcpu);
5948
de87dcdd
AK
5949 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5950 return 1;
5951
991eebf9 5952 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
ea953ef0 5953
ac0a48c3 5954 if (err == EMULATE_USER_EXIT) {
94452b9e 5955 ++vcpu->stat.mmio_exits;
80ced186
MG
5956 ret = 0;
5957 goto out;
5958 }
1d5a4d9b 5959
de5f70e0
AK
5960 if (err != EMULATE_DONE) {
5961 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5962 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5963 vcpu->run->internal.ndata = 0;
6d77dbfc 5964 return 0;
de5f70e0 5965 }
ea953ef0 5966
8d76c49e
GN
5967 if (vcpu->arch.halt_request) {
5968 vcpu->arch.halt_request = 0;
5cb56059 5969 ret = kvm_vcpu_halt(vcpu);
8d76c49e
GN
5970 goto out;
5971 }
5972
ea953ef0 5973 if (signal_pending(current))
80ced186 5974 goto out;
ea953ef0
MG
5975 if (need_resched())
5976 schedule();
5977 }
5978
80ced186
MG
5979out:
5980 return ret;
ea953ef0
MG
5981}
5982
b4a2d31d
RK
5983static int __grow_ple_window(int val)
5984{
5985 if (ple_window_grow < 1)
5986 return ple_window;
5987
5988 val = min(val, ple_window_actual_max);
5989
5990 if (ple_window_grow < ple_window)
5991 val *= ple_window_grow;
5992 else
5993 val += ple_window_grow;
5994
5995 return val;
5996}
5997
5998static int __shrink_ple_window(int val, int modifier, int minimum)
5999{
6000 if (modifier < 1)
6001 return ple_window;
6002
6003 if (modifier < ple_window)
6004 val /= modifier;
6005 else
6006 val -= modifier;
6007
6008 return max(val, minimum);
6009}
6010
6011static void grow_ple_window(struct kvm_vcpu *vcpu)
6012{
6013 struct vcpu_vmx *vmx = to_vmx(vcpu);
6014 int old = vmx->ple_window;
6015
6016 vmx->ple_window = __grow_ple_window(old);
6017
6018 if (vmx->ple_window != old)
6019 vmx->ple_window_dirty = true;
7b46268d
RK
6020
6021 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6022}
6023
6024static void shrink_ple_window(struct kvm_vcpu *vcpu)
6025{
6026 struct vcpu_vmx *vmx = to_vmx(vcpu);
6027 int old = vmx->ple_window;
6028
6029 vmx->ple_window = __shrink_ple_window(old,
6030 ple_window_shrink, ple_window);
6031
6032 if (vmx->ple_window != old)
6033 vmx->ple_window_dirty = true;
7b46268d
RK
6034
6035 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6036}
6037
6038/*
6039 * ple_window_actual_max is computed to be one grow_ple_window() below
6040 * ple_window_max. (See __grow_ple_window for the reason.)
6041 * This prevents overflows, because ple_window_max is int.
6042 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6043 * this process.
6044 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6045 */
6046static void update_ple_window_actual_max(void)
6047{
6048 ple_window_actual_max =
6049 __shrink_ple_window(max(ple_window_max, ple_window),
6050 ple_window_grow, INT_MIN);
6051}
6052
bf9f6ac8
FW
6053/*
6054 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6055 */
6056static void wakeup_handler(void)
6057{
6058 struct kvm_vcpu *vcpu;
6059 int cpu = smp_processor_id();
6060
6061 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6062 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6063 blocked_vcpu_list) {
6064 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6065
6066 if (pi_test_on(pi_desc) == 1)
6067 kvm_vcpu_kick(vcpu);
6068 }
6069 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6070}
6071
f2c7648d
TC
6072static __init int hardware_setup(void)
6073{
34a1cd60
TC
6074 int r = -ENOMEM, i, msr;
6075
6076 rdmsrl_safe(MSR_EFER, &host_efer);
6077
6078 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6079 kvm_define_shared_msr(i, vmx_msr_index[i]);
6080
6081 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
6082 if (!vmx_io_bitmap_a)
6083 return r;
6084
6085 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6086 if (!vmx_io_bitmap_b)
6087 goto out;
6088
6089 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
6090 if (!vmx_msr_bitmap_legacy)
6091 goto out1;
6092
6093 vmx_msr_bitmap_legacy_x2apic =
6094 (unsigned long *)__get_free_page(GFP_KERNEL);
6095 if (!vmx_msr_bitmap_legacy_x2apic)
6096 goto out2;
6097
6098 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
6099 if (!vmx_msr_bitmap_longmode)
6100 goto out3;
6101
6102 vmx_msr_bitmap_longmode_x2apic =
6103 (unsigned long *)__get_free_page(GFP_KERNEL);
6104 if (!vmx_msr_bitmap_longmode_x2apic)
6105 goto out4;
3af18d9c
WV
6106
6107 if (nested) {
6108 vmx_msr_bitmap_nested =
6109 (unsigned long *)__get_free_page(GFP_KERNEL);
6110 if (!vmx_msr_bitmap_nested)
6111 goto out5;
6112 }
6113
34a1cd60
TC
6114 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6115 if (!vmx_vmread_bitmap)
3af18d9c 6116 goto out6;
34a1cd60
TC
6117
6118 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6119 if (!vmx_vmwrite_bitmap)
3af18d9c 6120 goto out7;
34a1cd60
TC
6121
6122 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6123 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6124
6125 /*
6126 * Allow direct access to the PC debug port (it is often used for I/O
6127 * delays, but the vmexits simply slow things down).
6128 */
6129 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6130 clear_bit(0x80, vmx_io_bitmap_a);
6131
6132 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6133
6134 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6135 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
3af18d9c
WV
6136 if (nested)
6137 memset(vmx_msr_bitmap_nested, 0xff, PAGE_SIZE);
34a1cd60 6138
34a1cd60
TC
6139 if (setup_vmcs_config(&vmcs_config) < 0) {
6140 r = -EIO;
3af18d9c 6141 goto out8;
baa03522 6142 }
f2c7648d
TC
6143
6144 if (boot_cpu_has(X86_FEATURE_NX))
6145 kvm_enable_efer_bits(EFER_NX);
6146
6147 if (!cpu_has_vmx_vpid())
6148 enable_vpid = 0;
6149 if (!cpu_has_vmx_shadow_vmcs())
6150 enable_shadow_vmcs = 0;
6151 if (enable_shadow_vmcs)
6152 init_vmcs_shadow_fields();
6153
6154 if (!cpu_has_vmx_ept() ||
6155 !cpu_has_vmx_ept_4levels()) {
6156 enable_ept = 0;
6157 enable_unrestricted_guest = 0;
6158 enable_ept_ad_bits = 0;
6159 }
6160
6161 if (!cpu_has_vmx_ept_ad_bits())
6162 enable_ept_ad_bits = 0;
6163
6164 if (!cpu_has_vmx_unrestricted_guest())
6165 enable_unrestricted_guest = 0;
6166
ad15a296 6167 if (!cpu_has_vmx_flexpriority())
f2c7648d
TC
6168 flexpriority_enabled = 0;
6169
ad15a296
PB
6170 /*
6171 * set_apic_access_page_addr() is used to reload apic access
6172 * page upon invalidation. No need to do anything if not
6173 * using the APIC_ACCESS_ADDR VMCS field.
6174 */
6175 if (!flexpriority_enabled)
f2c7648d 6176 kvm_x86_ops->set_apic_access_page_addr = NULL;
f2c7648d
TC
6177
6178 if (!cpu_has_vmx_tpr_shadow())
6179 kvm_x86_ops->update_cr8_intercept = NULL;
6180
6181 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6182 kvm_disable_largepages();
6183
6184 if (!cpu_has_vmx_ple())
6185 ple_gap = 0;
6186
6187 if (!cpu_has_vmx_apicv())
6188 enable_apicv = 0;
6189
64903d61
HZ
6190 if (cpu_has_vmx_tsc_scaling()) {
6191 kvm_has_tsc_control = true;
6192 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6193 kvm_tsc_scaling_ratio_frac_bits = 48;
6194 }
6195
f2c7648d
TC
6196 if (enable_apicv)
6197 kvm_x86_ops->update_cr8_intercept = NULL;
6198 else {
6199 kvm_x86_ops->hwapic_irr_update = NULL;
b4eef9b3 6200 kvm_x86_ops->hwapic_isr_update = NULL;
f2c7648d
TC
6201 kvm_x86_ops->deliver_posted_interrupt = NULL;
6202 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
6203 }
6204
baa03522
TC
6205 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6206 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6207 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6208 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6209 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6210 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6211 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6212
6213 memcpy(vmx_msr_bitmap_legacy_x2apic,
6214 vmx_msr_bitmap_legacy, PAGE_SIZE);
6215 memcpy(vmx_msr_bitmap_longmode_x2apic,
6216 vmx_msr_bitmap_longmode, PAGE_SIZE);
6217
04bb92e4
WL
6218 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6219
baa03522
TC
6220 if (enable_apicv) {
6221 for (msr = 0x800; msr <= 0x8ff; msr++)
6222 vmx_disable_intercept_msr_read_x2apic(msr);
6223
6224 /* According SDM, in x2apic mode, the whole id reg is used.
6225 * But in KVM, it only use the highest eight bits. Need to
6226 * intercept it */
6227 vmx_enable_intercept_msr_read_x2apic(0x802);
6228 /* TMCCT */
6229 vmx_enable_intercept_msr_read_x2apic(0x839);
6230 /* TPR */
6231 vmx_disable_intercept_msr_write_x2apic(0x808);
6232 /* EOI */
6233 vmx_disable_intercept_msr_write_x2apic(0x80b);
6234 /* SELF-IPI */
6235 vmx_disable_intercept_msr_write_x2apic(0x83f);
6236 }
6237
6238 if (enable_ept) {
6239 kvm_mmu_set_mask_ptes(0ull,
6240 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
6241 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
6242 0ull, VMX_EPT_EXECUTABLE_MASK);
6243 ept_set_mmio_spte_mask();
6244 kvm_enable_tdp();
6245 } else
6246 kvm_disable_tdp();
6247
6248 update_ple_window_actual_max();
6249
843e4330
KH
6250 /*
6251 * Only enable PML when hardware supports PML feature, and both EPT
6252 * and EPT A/D bit features are enabled -- PML depends on them to work.
6253 */
6254 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6255 enable_pml = 0;
6256
6257 if (!enable_pml) {
6258 kvm_x86_ops->slot_enable_log_dirty = NULL;
6259 kvm_x86_ops->slot_disable_log_dirty = NULL;
6260 kvm_x86_ops->flush_log_dirty = NULL;
6261 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6262 }
6263
bf9f6ac8
FW
6264 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6265
f2c7648d 6266 return alloc_kvm_area();
34a1cd60 6267
3af18d9c 6268out8:
34a1cd60 6269 free_page((unsigned long)vmx_vmwrite_bitmap);
3af18d9c 6270out7:
34a1cd60 6271 free_page((unsigned long)vmx_vmread_bitmap);
3af18d9c
WV
6272out6:
6273 if (nested)
6274 free_page((unsigned long)vmx_msr_bitmap_nested);
34a1cd60
TC
6275out5:
6276 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6277out4:
6278 free_page((unsigned long)vmx_msr_bitmap_longmode);
6279out3:
6280 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6281out2:
6282 free_page((unsigned long)vmx_msr_bitmap_legacy);
6283out1:
6284 free_page((unsigned long)vmx_io_bitmap_b);
6285out:
6286 free_page((unsigned long)vmx_io_bitmap_a);
6287
6288 return r;
f2c7648d
TC
6289}
6290
6291static __exit void hardware_unsetup(void)
6292{
34a1cd60
TC
6293 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6294 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6295 free_page((unsigned long)vmx_msr_bitmap_legacy);
6296 free_page((unsigned long)vmx_msr_bitmap_longmode);
6297 free_page((unsigned long)vmx_io_bitmap_b);
6298 free_page((unsigned long)vmx_io_bitmap_a);
6299 free_page((unsigned long)vmx_vmwrite_bitmap);
6300 free_page((unsigned long)vmx_vmread_bitmap);
3af18d9c
WV
6301 if (nested)
6302 free_page((unsigned long)vmx_msr_bitmap_nested);
34a1cd60 6303
f2c7648d
TC
6304 free_kvm_area();
6305}
6306
4b8d54f9
ZE
6307/*
6308 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6309 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6310 */
9fb41ba8 6311static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9 6312{
b4a2d31d
RK
6313 if (ple_gap)
6314 grow_ple_window(vcpu);
6315
4b8d54f9
ZE
6316 skip_emulated_instruction(vcpu);
6317 kvm_vcpu_on_spin(vcpu);
6318
6319 return 1;
6320}
6321
87c00572 6322static int handle_nop(struct kvm_vcpu *vcpu)
59708670 6323{
87c00572 6324 skip_emulated_instruction(vcpu);
59708670
SY
6325 return 1;
6326}
6327
87c00572
GS
6328static int handle_mwait(struct kvm_vcpu *vcpu)
6329{
6330 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6331 return handle_nop(vcpu);
6332}
6333
5f3d45e7
MD
6334static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6335{
6336 return 1;
6337}
6338
87c00572
GS
6339static int handle_monitor(struct kvm_vcpu *vcpu)
6340{
6341 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6342 return handle_nop(vcpu);
6343}
6344
ff2f6fe9
NHE
6345/*
6346 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6347 * We could reuse a single VMCS for all the L2 guests, but we also want the
6348 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6349 * allows keeping them loaded on the processor, and in the future will allow
6350 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6351 * every entry if they never change.
6352 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6353 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6354 *
6355 * The following functions allocate and free a vmcs02 in this pool.
6356 */
6357
6358/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6359static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6360{
6361 struct vmcs02_list *item;
6362 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6363 if (item->vmptr == vmx->nested.current_vmptr) {
6364 list_move(&item->list, &vmx->nested.vmcs02_pool);
6365 return &item->vmcs02;
6366 }
6367
6368 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6369 /* Recycle the least recently used VMCS. */
6370 item = list_entry(vmx->nested.vmcs02_pool.prev,
6371 struct vmcs02_list, list);
6372 item->vmptr = vmx->nested.current_vmptr;
6373 list_move(&item->list, &vmx->nested.vmcs02_pool);
6374 return &item->vmcs02;
6375 }
6376
6377 /* Create a new VMCS */
0fa24ce3 6378 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
ff2f6fe9
NHE
6379 if (!item)
6380 return NULL;
6381 item->vmcs02.vmcs = alloc_vmcs();
6382 if (!item->vmcs02.vmcs) {
6383 kfree(item);
6384 return NULL;
6385 }
6386 loaded_vmcs_init(&item->vmcs02);
6387 item->vmptr = vmx->nested.current_vmptr;
6388 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6389 vmx->nested.vmcs02_num++;
6390 return &item->vmcs02;
6391}
6392
6393/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6394static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6395{
6396 struct vmcs02_list *item;
6397 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6398 if (item->vmptr == vmptr) {
6399 free_loaded_vmcs(&item->vmcs02);
6400 list_del(&item->list);
6401 kfree(item);
6402 vmx->nested.vmcs02_num--;
6403 return;
6404 }
6405}
6406
6407/*
6408 * Free all VMCSs saved for this vcpu, except the one pointed by
4fa7734c
PB
6409 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6410 * must be &vmx->vmcs01.
ff2f6fe9
NHE
6411 */
6412static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6413{
6414 struct vmcs02_list *item, *n;
4fa7734c
PB
6415
6416 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
ff2f6fe9 6417 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4fa7734c
PB
6418 /*
6419 * Something will leak if the above WARN triggers. Better than
6420 * a use-after-free.
6421 */
6422 if (vmx->loaded_vmcs == &item->vmcs02)
6423 continue;
6424
6425 free_loaded_vmcs(&item->vmcs02);
ff2f6fe9
NHE
6426 list_del(&item->list);
6427 kfree(item);
4fa7734c 6428 vmx->nested.vmcs02_num--;
ff2f6fe9 6429 }
ff2f6fe9
NHE
6430}
6431
0658fbaa
ACL
6432/*
6433 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6434 * set the success or error code of an emulated VMX instruction, as specified
6435 * by Vol 2B, VMX Instruction Reference, "Conventions".
6436 */
6437static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6438{
6439 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6440 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6441 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6442}
6443
6444static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6445{
6446 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6447 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6448 X86_EFLAGS_SF | X86_EFLAGS_OF))
6449 | X86_EFLAGS_CF);
6450}
6451
145c28dd 6452static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
0658fbaa
ACL
6453 u32 vm_instruction_error)
6454{
6455 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6456 /*
6457 * failValid writes the error number to the current VMCS, which
6458 * can't be done there isn't a current VMCS.
6459 */
6460 nested_vmx_failInvalid(vcpu);
6461 return;
6462 }
6463 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6464 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6465 X86_EFLAGS_SF | X86_EFLAGS_OF))
6466 | X86_EFLAGS_ZF);
6467 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6468 /*
6469 * We don't need to force a shadow sync because
6470 * VM_INSTRUCTION_ERROR is not shadowed
6471 */
6472}
145c28dd 6473
ff651cb6
WV
6474static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6475{
6476 /* TODO: not to reset guest simply here. */
6477 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6478 pr_warn("kvm: nested vmx abort, indicator %d\n", indicator);
6479}
6480
f4124500
JK
6481static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6482{
6483 struct vcpu_vmx *vmx =
6484 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6485
6486 vmx->nested.preemption_timer_expired = true;
6487 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6488 kvm_vcpu_kick(&vmx->vcpu);
6489
6490 return HRTIMER_NORESTART;
6491}
6492
19677e32
BD
6493/*
6494 * Decode the memory-address operand of a vmx instruction, as recorded on an
6495 * exit caused by such an instruction (run by a guest hypervisor).
6496 * On success, returns 0. When the operand is invalid, returns 1 and throws
6497 * #UD or #GP.
6498 */
6499static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6500 unsigned long exit_qualification,
f9eb4af6 6501 u32 vmx_instruction_info, bool wr, gva_t *ret)
19677e32 6502{
f9eb4af6
EK
6503 gva_t off;
6504 bool exn;
6505 struct kvm_segment s;
6506
19677e32
BD
6507 /*
6508 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6509 * Execution", on an exit, vmx_instruction_info holds most of the
6510 * addressing components of the operand. Only the displacement part
6511 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6512 * For how an actual address is calculated from all these components,
6513 * refer to Vol. 1, "Operand Addressing".
6514 */
6515 int scaling = vmx_instruction_info & 3;
6516 int addr_size = (vmx_instruction_info >> 7) & 7;
6517 bool is_reg = vmx_instruction_info & (1u << 10);
6518 int seg_reg = (vmx_instruction_info >> 15) & 7;
6519 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6520 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6521 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6522 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6523
6524 if (is_reg) {
6525 kvm_queue_exception(vcpu, UD_VECTOR);
6526 return 1;
6527 }
6528
6529 /* Addr = segment_base + offset */
6530 /* offset = base + [index * scale] + displacement */
f9eb4af6 6531 off = exit_qualification; /* holds the displacement */
19677e32 6532 if (base_is_valid)
f9eb4af6 6533 off += kvm_register_read(vcpu, base_reg);
19677e32 6534 if (index_is_valid)
f9eb4af6
EK
6535 off += kvm_register_read(vcpu, index_reg)<<scaling;
6536 vmx_get_segment(vcpu, &s, seg_reg);
6537 *ret = s.base + off;
19677e32
BD
6538
6539 if (addr_size == 1) /* 32 bit */
6540 *ret &= 0xffffffff;
6541
f9eb4af6
EK
6542 /* Checks for #GP/#SS exceptions. */
6543 exn = false;
6544 if (is_protmode(vcpu)) {
6545 /* Protected mode: apply checks for segment validity in the
6546 * following order:
6547 * - segment type check (#GP(0) may be thrown)
6548 * - usability check (#GP(0)/#SS(0))
6549 * - limit check (#GP(0)/#SS(0))
6550 */
6551 if (wr)
6552 /* #GP(0) if the destination operand is located in a
6553 * read-only data segment or any code segment.
6554 */
6555 exn = ((s.type & 0xa) == 0 || (s.type & 8));
6556 else
6557 /* #GP(0) if the source operand is located in an
6558 * execute-only code segment
6559 */
6560 exn = ((s.type & 0xa) == 8);
6561 }
6562 if (exn) {
6563 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6564 return 1;
6565 }
6566 if (is_long_mode(vcpu)) {
6567 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6568 * non-canonical form. This is an only check for long mode.
6569 */
6570 exn = is_noncanonical_address(*ret);
6571 } else if (is_protmode(vcpu)) {
6572 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6573 */
6574 exn = (s.unusable != 0);
6575 /* Protected mode: #GP(0)/#SS(0) if the memory
6576 * operand is outside the segment limit.
6577 */
6578 exn = exn || (off + sizeof(u64) > s.limit);
6579 }
6580 if (exn) {
6581 kvm_queue_exception_e(vcpu,
6582 seg_reg == VCPU_SREG_SS ?
6583 SS_VECTOR : GP_VECTOR,
6584 0);
6585 return 1;
6586 }
6587
19677e32
BD
6588 return 0;
6589}
6590
3573e22c
BD
6591/*
6592 * This function performs the various checks including
6593 * - if it's 4KB aligned
6594 * - No bits beyond the physical address width are set
6595 * - Returns 0 on success or else 1
4291b588 6596 * (Intel SDM Section 30.3)
3573e22c 6597 */
4291b588
BD
6598static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6599 gpa_t *vmpointer)
3573e22c
BD
6600{
6601 gva_t gva;
6602 gpa_t vmptr;
6603 struct x86_exception e;
6604 struct page *page;
6605 struct vcpu_vmx *vmx = to_vmx(vcpu);
6606 int maxphyaddr = cpuid_maxphyaddr(vcpu);
6607
6608 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 6609 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
3573e22c
BD
6610 return 1;
6611
6612 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6613 sizeof(vmptr), &e)) {
6614 kvm_inject_page_fault(vcpu, &e);
6615 return 1;
6616 }
6617
6618 switch (exit_reason) {
6619 case EXIT_REASON_VMON:
6620 /*
6621 * SDM 3: 24.11.5
6622 * The first 4 bytes of VMXON region contain the supported
6623 * VMCS revision identifier
6624 *
6625 * Note - IA32_VMX_BASIC[48] will never be 1
6626 * for the nested case;
6627 * which replaces physical address width with 32
6628 *
6629 */
bc39c4db 6630 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
3573e22c
BD
6631 nested_vmx_failInvalid(vcpu);
6632 skip_emulated_instruction(vcpu);
6633 return 1;
6634 }
6635
6636 page = nested_get_page(vcpu, vmptr);
6637 if (page == NULL ||
6638 *(u32 *)kmap(page) != VMCS12_REVISION) {
6639 nested_vmx_failInvalid(vcpu);
6640 kunmap(page);
6641 skip_emulated_instruction(vcpu);
6642 return 1;
6643 }
6644 kunmap(page);
6645 vmx->nested.vmxon_ptr = vmptr;
6646 break;
4291b588 6647 case EXIT_REASON_VMCLEAR:
bc39c4db 6648 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
4291b588
BD
6649 nested_vmx_failValid(vcpu,
6650 VMXERR_VMCLEAR_INVALID_ADDRESS);
6651 skip_emulated_instruction(vcpu);
6652 return 1;
6653 }
6654
6655 if (vmptr == vmx->nested.vmxon_ptr) {
6656 nested_vmx_failValid(vcpu,
6657 VMXERR_VMCLEAR_VMXON_POINTER);
6658 skip_emulated_instruction(vcpu);
6659 return 1;
6660 }
6661 break;
6662 case EXIT_REASON_VMPTRLD:
bc39c4db 6663 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
4291b588
BD
6664 nested_vmx_failValid(vcpu,
6665 VMXERR_VMPTRLD_INVALID_ADDRESS);
6666 skip_emulated_instruction(vcpu);
6667 return 1;
6668 }
3573e22c 6669
4291b588
BD
6670 if (vmptr == vmx->nested.vmxon_ptr) {
6671 nested_vmx_failValid(vcpu,
6672 VMXERR_VMCLEAR_VMXON_POINTER);
6673 skip_emulated_instruction(vcpu);
6674 return 1;
6675 }
6676 break;
3573e22c
BD
6677 default:
6678 return 1; /* shouldn't happen */
6679 }
6680
4291b588
BD
6681 if (vmpointer)
6682 *vmpointer = vmptr;
3573e22c
BD
6683 return 0;
6684}
6685
ec378aee
NHE
6686/*
6687 * Emulate the VMXON instruction.
6688 * Currently, we just remember that VMX is active, and do not save or even
6689 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6690 * do not currently need to store anything in that guest-allocated memory
6691 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6692 * argument is different from the VMXON pointer (which the spec says they do).
6693 */
6694static int handle_vmon(struct kvm_vcpu *vcpu)
6695{
6696 struct kvm_segment cs;
6697 struct vcpu_vmx *vmx = to_vmx(vcpu);
8de48833 6698 struct vmcs *shadow_vmcs;
b3897a49
NHE
6699 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6700 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
ec378aee
NHE
6701
6702 /* The Intel VMX Instruction Reference lists a bunch of bits that
6703 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6704 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6705 * Otherwise, we should fail with #UD. We test these now:
6706 */
6707 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6708 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6709 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6710 kvm_queue_exception(vcpu, UD_VECTOR);
6711 return 1;
6712 }
6713
6714 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6715 if (is_long_mode(vcpu) && !cs.l) {
6716 kvm_queue_exception(vcpu, UD_VECTOR);
6717 return 1;
6718 }
6719
6720 if (vmx_get_cpl(vcpu)) {
6721 kvm_inject_gp(vcpu, 0);
6722 return 1;
6723 }
3573e22c 6724
4291b588 6725 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
3573e22c
BD
6726 return 1;
6727
145c28dd
AG
6728 if (vmx->nested.vmxon) {
6729 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6730 skip_emulated_instruction(vcpu);
6731 return 1;
6732 }
b3897a49
NHE
6733
6734 if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6735 != VMXON_NEEDED_FEATURES) {
6736 kvm_inject_gp(vcpu, 0);
6737 return 1;
6738 }
6739
8de48833
AG
6740 if (enable_shadow_vmcs) {
6741 shadow_vmcs = alloc_vmcs();
6742 if (!shadow_vmcs)
6743 return -ENOMEM;
6744 /* mark vmcs as shadow */
6745 shadow_vmcs->revision_id |= (1u << 31);
6746 /* init shadow vmcs */
6747 vmcs_clear(shadow_vmcs);
6748 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6749 }
ec378aee 6750
ff2f6fe9
NHE
6751 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6752 vmx->nested.vmcs02_num = 0;
6753
f4124500
JK
6754 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6755 HRTIMER_MODE_REL);
6756 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6757
ec378aee
NHE
6758 vmx->nested.vmxon = true;
6759
6760 skip_emulated_instruction(vcpu);
a25eb114 6761 nested_vmx_succeed(vcpu);
ec378aee
NHE
6762 return 1;
6763}
6764
6765/*
6766 * Intel's VMX Instruction Reference specifies a common set of prerequisites
6767 * for running VMX instructions (except VMXON, whose prerequisites are
6768 * slightly different). It also specifies what exception to inject otherwise.
6769 */
6770static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6771{
6772 struct kvm_segment cs;
6773 struct vcpu_vmx *vmx = to_vmx(vcpu);
6774
6775 if (!vmx->nested.vmxon) {
6776 kvm_queue_exception(vcpu, UD_VECTOR);
6777 return 0;
6778 }
6779
6780 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6781 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6782 (is_long_mode(vcpu) && !cs.l)) {
6783 kvm_queue_exception(vcpu, UD_VECTOR);
6784 return 0;
6785 }
6786
6787 if (vmx_get_cpl(vcpu)) {
6788 kvm_inject_gp(vcpu, 0);
6789 return 0;
6790 }
6791
6792 return 1;
6793}
6794
e7953d7f
AG
6795static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6796{
9a2a05b9
PB
6797 if (vmx->nested.current_vmptr == -1ull)
6798 return;
6799
6800 /* current_vmptr and current_vmcs12 are always set/reset together */
6801 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6802 return;
6803
012f83cb 6804 if (enable_shadow_vmcs) {
9a2a05b9
PB
6805 /* copy to memory all shadowed fields in case
6806 they were modified */
6807 copy_shadow_to_vmcs12(vmx);
6808 vmx->nested.sync_shadow_vmcs = false;
7ec36296
XG
6809 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
6810 SECONDARY_EXEC_SHADOW_VMCS);
9a2a05b9 6811 vmcs_write64(VMCS_LINK_POINTER, -1ull);
012f83cb 6812 }
705699a1 6813 vmx->nested.posted_intr_nv = -1;
e7953d7f
AG
6814 kunmap(vmx->nested.current_vmcs12_page);
6815 nested_release_page(vmx->nested.current_vmcs12_page);
9a2a05b9
PB
6816 vmx->nested.current_vmptr = -1ull;
6817 vmx->nested.current_vmcs12 = NULL;
e7953d7f
AG
6818}
6819
ec378aee
NHE
6820/*
6821 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6822 * just stops using VMX.
6823 */
6824static void free_nested(struct vcpu_vmx *vmx)
6825{
6826 if (!vmx->nested.vmxon)
6827 return;
9a2a05b9 6828
ec378aee 6829 vmx->nested.vmxon = false;
5c614b35 6830 free_vpid(vmx->nested.vpid02);
9a2a05b9 6831 nested_release_vmcs12(vmx);
e7953d7f
AG
6832 if (enable_shadow_vmcs)
6833 free_vmcs(vmx->nested.current_shadow_vmcs);
fe3ef05c
NHE
6834 /* Unpin physical memory we referred to in current vmcs02 */
6835 if (vmx->nested.apic_access_page) {
6836 nested_release_page(vmx->nested.apic_access_page);
48d89b92 6837 vmx->nested.apic_access_page = NULL;
fe3ef05c 6838 }
a7c0b07d
WL
6839 if (vmx->nested.virtual_apic_page) {
6840 nested_release_page(vmx->nested.virtual_apic_page);
48d89b92 6841 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 6842 }
705699a1
WV
6843 if (vmx->nested.pi_desc_page) {
6844 kunmap(vmx->nested.pi_desc_page);
6845 nested_release_page(vmx->nested.pi_desc_page);
6846 vmx->nested.pi_desc_page = NULL;
6847 vmx->nested.pi_desc = NULL;
6848 }
ff2f6fe9
NHE
6849
6850 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
6851}
6852
6853/* Emulate the VMXOFF instruction */
6854static int handle_vmoff(struct kvm_vcpu *vcpu)
6855{
6856 if (!nested_vmx_check_permission(vcpu))
6857 return 1;
6858 free_nested(to_vmx(vcpu));
6859 skip_emulated_instruction(vcpu);
a25eb114 6860 nested_vmx_succeed(vcpu);
ec378aee
NHE
6861 return 1;
6862}
6863
27d6c865
NHE
6864/* Emulate the VMCLEAR instruction */
6865static int handle_vmclear(struct kvm_vcpu *vcpu)
6866{
6867 struct vcpu_vmx *vmx = to_vmx(vcpu);
27d6c865
NHE
6868 gpa_t vmptr;
6869 struct vmcs12 *vmcs12;
6870 struct page *page;
27d6c865
NHE
6871
6872 if (!nested_vmx_check_permission(vcpu))
6873 return 1;
6874
4291b588 6875 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
27d6c865 6876 return 1;
27d6c865 6877
9a2a05b9 6878 if (vmptr == vmx->nested.current_vmptr)
e7953d7f 6879 nested_release_vmcs12(vmx);
27d6c865
NHE
6880
6881 page = nested_get_page(vcpu, vmptr);
6882 if (page == NULL) {
6883 /*
6884 * For accurate processor emulation, VMCLEAR beyond available
6885 * physical memory should do nothing at all. However, it is
6886 * possible that a nested vmx bug, not a guest hypervisor bug,
6887 * resulted in this case, so let's shut down before doing any
6888 * more damage:
6889 */
6890 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6891 return 1;
6892 }
6893 vmcs12 = kmap(page);
6894 vmcs12->launch_state = 0;
6895 kunmap(page);
6896 nested_release_page(page);
6897
6898 nested_free_vmcs02(vmx, vmptr);
6899
6900 skip_emulated_instruction(vcpu);
6901 nested_vmx_succeed(vcpu);
6902 return 1;
6903}
6904
cd232ad0
NHE
6905static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6906
6907/* Emulate the VMLAUNCH instruction */
6908static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6909{
6910 return nested_vmx_run(vcpu, true);
6911}
6912
6913/* Emulate the VMRESUME instruction */
6914static int handle_vmresume(struct kvm_vcpu *vcpu)
6915{
6916
6917 return nested_vmx_run(vcpu, false);
6918}
6919
49f705c5
NHE
6920enum vmcs_field_type {
6921 VMCS_FIELD_TYPE_U16 = 0,
6922 VMCS_FIELD_TYPE_U64 = 1,
6923 VMCS_FIELD_TYPE_U32 = 2,
6924 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6925};
6926
6927static inline int vmcs_field_type(unsigned long field)
6928{
6929 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
6930 return VMCS_FIELD_TYPE_U32;
6931 return (field >> 13) & 0x3 ;
6932}
6933
6934static inline int vmcs_field_readonly(unsigned long field)
6935{
6936 return (((field >> 10) & 0x3) == 1);
6937}
6938
6939/*
6940 * Read a vmcs12 field. Since these can have varying lengths and we return
6941 * one type, we chose the biggest type (u64) and zero-extend the return value
6942 * to that size. Note that the caller, handle_vmread, might need to use only
6943 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6944 * 64-bit fields are to be returned).
6945 */
a2ae9df7
PB
6946static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
6947 unsigned long field, u64 *ret)
49f705c5
NHE
6948{
6949 short offset = vmcs_field_to_offset(field);
6950 char *p;
6951
6952 if (offset < 0)
a2ae9df7 6953 return offset;
49f705c5
NHE
6954
6955 p = ((char *)(get_vmcs12(vcpu))) + offset;
6956
6957 switch (vmcs_field_type(field)) {
6958 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6959 *ret = *((natural_width *)p);
a2ae9df7 6960 return 0;
49f705c5
NHE
6961 case VMCS_FIELD_TYPE_U16:
6962 *ret = *((u16 *)p);
a2ae9df7 6963 return 0;
49f705c5
NHE
6964 case VMCS_FIELD_TYPE_U32:
6965 *ret = *((u32 *)p);
a2ae9df7 6966 return 0;
49f705c5
NHE
6967 case VMCS_FIELD_TYPE_U64:
6968 *ret = *((u64 *)p);
a2ae9df7 6969 return 0;
49f705c5 6970 default:
a2ae9df7
PB
6971 WARN_ON(1);
6972 return -ENOENT;
49f705c5
NHE
6973 }
6974}
6975
20b97fea 6976
a2ae9df7
PB
6977static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
6978 unsigned long field, u64 field_value){
20b97fea
AG
6979 short offset = vmcs_field_to_offset(field);
6980 char *p = ((char *) get_vmcs12(vcpu)) + offset;
6981 if (offset < 0)
a2ae9df7 6982 return offset;
20b97fea
AG
6983
6984 switch (vmcs_field_type(field)) {
6985 case VMCS_FIELD_TYPE_U16:
6986 *(u16 *)p = field_value;
a2ae9df7 6987 return 0;
20b97fea
AG
6988 case VMCS_FIELD_TYPE_U32:
6989 *(u32 *)p = field_value;
a2ae9df7 6990 return 0;
20b97fea
AG
6991 case VMCS_FIELD_TYPE_U64:
6992 *(u64 *)p = field_value;
a2ae9df7 6993 return 0;
20b97fea
AG
6994 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6995 *(natural_width *)p = field_value;
a2ae9df7 6996 return 0;
20b97fea 6997 default:
a2ae9df7
PB
6998 WARN_ON(1);
6999 return -ENOENT;
20b97fea
AG
7000 }
7001
7002}
7003
16f5b903
AG
7004static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7005{
7006 int i;
7007 unsigned long field;
7008 u64 field_value;
7009 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
c2bae893
MK
7010 const unsigned long *fields = shadow_read_write_fields;
7011 const int num_fields = max_shadow_read_write_fields;
16f5b903 7012
282da870
JK
7013 preempt_disable();
7014
16f5b903
AG
7015 vmcs_load(shadow_vmcs);
7016
7017 for (i = 0; i < num_fields; i++) {
7018 field = fields[i];
7019 switch (vmcs_field_type(field)) {
7020 case VMCS_FIELD_TYPE_U16:
7021 field_value = vmcs_read16(field);
7022 break;
7023 case VMCS_FIELD_TYPE_U32:
7024 field_value = vmcs_read32(field);
7025 break;
7026 case VMCS_FIELD_TYPE_U64:
7027 field_value = vmcs_read64(field);
7028 break;
7029 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7030 field_value = vmcs_readl(field);
7031 break;
a2ae9df7
PB
7032 default:
7033 WARN_ON(1);
7034 continue;
16f5b903
AG
7035 }
7036 vmcs12_write_any(&vmx->vcpu, field, field_value);
7037 }
7038
7039 vmcs_clear(shadow_vmcs);
7040 vmcs_load(vmx->loaded_vmcs->vmcs);
282da870
JK
7041
7042 preempt_enable();
16f5b903
AG
7043}
7044
c3114420
AG
7045static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7046{
c2bae893
MK
7047 const unsigned long *fields[] = {
7048 shadow_read_write_fields,
7049 shadow_read_only_fields
c3114420 7050 };
c2bae893 7051 const int max_fields[] = {
c3114420
AG
7052 max_shadow_read_write_fields,
7053 max_shadow_read_only_fields
7054 };
7055 int i, q;
7056 unsigned long field;
7057 u64 field_value = 0;
7058 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7059
7060 vmcs_load(shadow_vmcs);
7061
c2bae893 7062 for (q = 0; q < ARRAY_SIZE(fields); q++) {
c3114420
AG
7063 for (i = 0; i < max_fields[q]; i++) {
7064 field = fields[q][i];
7065 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7066
7067 switch (vmcs_field_type(field)) {
7068 case VMCS_FIELD_TYPE_U16:
7069 vmcs_write16(field, (u16)field_value);
7070 break;
7071 case VMCS_FIELD_TYPE_U32:
7072 vmcs_write32(field, (u32)field_value);
7073 break;
7074 case VMCS_FIELD_TYPE_U64:
7075 vmcs_write64(field, (u64)field_value);
7076 break;
7077 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7078 vmcs_writel(field, (long)field_value);
7079 break;
a2ae9df7
PB
7080 default:
7081 WARN_ON(1);
7082 break;
c3114420
AG
7083 }
7084 }
7085 }
7086
7087 vmcs_clear(shadow_vmcs);
7088 vmcs_load(vmx->loaded_vmcs->vmcs);
7089}
7090
49f705c5
NHE
7091/*
7092 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7093 * used before) all generate the same failure when it is missing.
7094 */
7095static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7096{
7097 struct vcpu_vmx *vmx = to_vmx(vcpu);
7098 if (vmx->nested.current_vmptr == -1ull) {
7099 nested_vmx_failInvalid(vcpu);
7100 skip_emulated_instruction(vcpu);
7101 return 0;
7102 }
7103 return 1;
7104}
7105
7106static int handle_vmread(struct kvm_vcpu *vcpu)
7107{
7108 unsigned long field;
7109 u64 field_value;
7110 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7111 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7112 gva_t gva = 0;
7113
7114 if (!nested_vmx_check_permission(vcpu) ||
7115 !nested_vmx_check_vmcs12(vcpu))
7116 return 1;
7117
7118 /* Decode instruction info and find the field to read */
27e6fb5d 7119 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5 7120 /* Read the field, zero-extended to a u64 field_value */
a2ae9df7 7121 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
49f705c5
NHE
7122 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7123 skip_emulated_instruction(vcpu);
7124 return 1;
7125 }
7126 /*
7127 * Now copy part of this value to register or memory, as requested.
7128 * Note that the number of bits actually copied is 32 or 64 depending
7129 * on the guest's mode (32 or 64 bit), not on the given field's length.
7130 */
7131 if (vmx_instruction_info & (1u << 10)) {
27e6fb5d 7132 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
49f705c5
NHE
7133 field_value);
7134 } else {
7135 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7136 vmx_instruction_info, true, &gva))
49f705c5
NHE
7137 return 1;
7138 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
7139 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7140 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7141 }
7142
7143 nested_vmx_succeed(vcpu);
7144 skip_emulated_instruction(vcpu);
7145 return 1;
7146}
7147
7148
7149static int handle_vmwrite(struct kvm_vcpu *vcpu)
7150{
7151 unsigned long field;
7152 gva_t gva;
7153 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7154 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
49f705c5
NHE
7155 /* The value to write might be 32 or 64 bits, depending on L1's long
7156 * mode, and eventually we need to write that into a field of several
7157 * possible lengths. The code below first zero-extends the value to 64
7158 * bit (field_value), and then copies only the approriate number of
7159 * bits into the vmcs12 field.
7160 */
7161 u64 field_value = 0;
7162 struct x86_exception e;
7163
7164 if (!nested_vmx_check_permission(vcpu) ||
7165 !nested_vmx_check_vmcs12(vcpu))
7166 return 1;
7167
7168 if (vmx_instruction_info & (1u << 10))
27e6fb5d 7169 field_value = kvm_register_readl(vcpu,
49f705c5
NHE
7170 (((vmx_instruction_info) >> 3) & 0xf));
7171 else {
7172 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7173 vmx_instruction_info, false, &gva))
49f705c5
NHE
7174 return 1;
7175 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
27e6fb5d 7176 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
49f705c5
NHE
7177 kvm_inject_page_fault(vcpu, &e);
7178 return 1;
7179 }
7180 }
7181
7182
27e6fb5d 7183 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5
NHE
7184 if (vmcs_field_readonly(field)) {
7185 nested_vmx_failValid(vcpu,
7186 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7187 skip_emulated_instruction(vcpu);
7188 return 1;
7189 }
7190
a2ae9df7 7191 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
49f705c5
NHE
7192 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7193 skip_emulated_instruction(vcpu);
7194 return 1;
7195 }
7196
7197 nested_vmx_succeed(vcpu);
7198 skip_emulated_instruction(vcpu);
7199 return 1;
7200}
7201
63846663
NHE
7202/* Emulate the VMPTRLD instruction */
7203static int handle_vmptrld(struct kvm_vcpu *vcpu)
7204{
7205 struct vcpu_vmx *vmx = to_vmx(vcpu);
63846663 7206 gpa_t vmptr;
63846663
NHE
7207
7208 if (!nested_vmx_check_permission(vcpu))
7209 return 1;
7210
4291b588 7211 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
63846663 7212 return 1;
63846663
NHE
7213
7214 if (vmx->nested.current_vmptr != vmptr) {
7215 struct vmcs12 *new_vmcs12;
7216 struct page *page;
7217 page = nested_get_page(vcpu, vmptr);
7218 if (page == NULL) {
7219 nested_vmx_failInvalid(vcpu);
7220 skip_emulated_instruction(vcpu);
7221 return 1;
7222 }
7223 new_vmcs12 = kmap(page);
7224 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7225 kunmap(page);
7226 nested_release_page_clean(page);
7227 nested_vmx_failValid(vcpu,
7228 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7229 skip_emulated_instruction(vcpu);
7230 return 1;
7231 }
63846663 7232
9a2a05b9 7233 nested_release_vmcs12(vmx);
63846663
NHE
7234 vmx->nested.current_vmptr = vmptr;
7235 vmx->nested.current_vmcs12 = new_vmcs12;
7236 vmx->nested.current_vmcs12_page = page;
012f83cb 7237 if (enable_shadow_vmcs) {
7ec36296
XG
7238 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7239 SECONDARY_EXEC_SHADOW_VMCS);
8a1b9dd0
AG
7240 vmcs_write64(VMCS_LINK_POINTER,
7241 __pa(vmx->nested.current_shadow_vmcs));
012f83cb
AG
7242 vmx->nested.sync_shadow_vmcs = true;
7243 }
63846663
NHE
7244 }
7245
7246 nested_vmx_succeed(vcpu);
7247 skip_emulated_instruction(vcpu);
7248 return 1;
7249}
7250
6a4d7550
NHE
7251/* Emulate the VMPTRST instruction */
7252static int handle_vmptrst(struct kvm_vcpu *vcpu)
7253{
7254 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7255 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7256 gva_t vmcs_gva;
7257 struct x86_exception e;
7258
7259 if (!nested_vmx_check_permission(vcpu))
7260 return 1;
7261
7262 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7263 vmx_instruction_info, true, &vmcs_gva))
6a4d7550
NHE
7264 return 1;
7265 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7266 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7267 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7268 sizeof(u64), &e)) {
7269 kvm_inject_page_fault(vcpu, &e);
7270 return 1;
7271 }
7272 nested_vmx_succeed(vcpu);
7273 skip_emulated_instruction(vcpu);
7274 return 1;
7275}
7276
bfd0a56b
NHE
7277/* Emulate the INVEPT instruction */
7278static int handle_invept(struct kvm_vcpu *vcpu)
7279{
b9c237bb 7280 struct vcpu_vmx *vmx = to_vmx(vcpu);
bfd0a56b
NHE
7281 u32 vmx_instruction_info, types;
7282 unsigned long type;
7283 gva_t gva;
7284 struct x86_exception e;
7285 struct {
7286 u64 eptp, gpa;
7287 } operand;
bfd0a56b 7288
b9c237bb
WV
7289 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7290 SECONDARY_EXEC_ENABLE_EPT) ||
7291 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
bfd0a56b
NHE
7292 kvm_queue_exception(vcpu, UD_VECTOR);
7293 return 1;
7294 }
7295
7296 if (!nested_vmx_check_permission(vcpu))
7297 return 1;
7298
7299 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7300 kvm_queue_exception(vcpu, UD_VECTOR);
7301 return 1;
7302 }
7303
7304 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
27e6fb5d 7305 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
bfd0a56b 7306
b9c237bb 7307 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
bfd0a56b
NHE
7308
7309 if (!(types & (1UL << type))) {
7310 nested_vmx_failValid(vcpu,
7311 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7312 return 1;
7313 }
7314
7315 /* According to the Intel VMX instruction reference, the memory
7316 * operand is read even if it isn't needed (e.g., for type==global)
7317 */
7318 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 7319 vmx_instruction_info, false, &gva))
bfd0a56b
NHE
7320 return 1;
7321 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7322 sizeof(operand), &e)) {
7323 kvm_inject_page_fault(vcpu, &e);
7324 return 1;
7325 }
7326
7327 switch (type) {
bfd0a56b
NHE
7328 case VMX_EPT_EXTENT_GLOBAL:
7329 kvm_mmu_sync_roots(vcpu);
77c3913b 7330 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
bfd0a56b
NHE
7331 nested_vmx_succeed(vcpu);
7332 break;
7333 default:
4b855078 7334 /* Trap single context invalidation invept calls */
bfd0a56b
NHE
7335 BUG_ON(1);
7336 break;
7337 }
7338
7339 skip_emulated_instruction(vcpu);
7340 return 1;
7341}
7342
a642fc30
PM
7343static int handle_invvpid(struct kvm_vcpu *vcpu)
7344{
99b83ac8
WL
7345 struct vcpu_vmx *vmx = to_vmx(vcpu);
7346 u32 vmx_instruction_info;
7347 unsigned long type, types;
7348 gva_t gva;
7349 struct x86_exception e;
7350 int vpid;
7351
7352 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7353 SECONDARY_EXEC_ENABLE_VPID) ||
7354 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7355 kvm_queue_exception(vcpu, UD_VECTOR);
7356 return 1;
7357 }
7358
7359 if (!nested_vmx_check_permission(vcpu))
7360 return 1;
7361
7362 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7363 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7364
7365 types = (vmx->nested.nested_vmx_vpid_caps >> 8) & 0x7;
7366
7367 if (!(types & (1UL << type))) {
7368 nested_vmx_failValid(vcpu,
7369 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7370 return 1;
7371 }
7372
7373 /* according to the intel vmx instruction reference, the memory
7374 * operand is read even if it isn't needed (e.g., for type==global)
7375 */
7376 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7377 vmx_instruction_info, false, &gva))
7378 return 1;
7379 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vpid,
7380 sizeof(u32), &e)) {
7381 kvm_inject_page_fault(vcpu, &e);
7382 return 1;
7383 }
7384
7385 switch (type) {
7386 case VMX_VPID_EXTENT_ALL_CONTEXT:
7387 if (get_vmcs12(vcpu)->virtual_processor_id == 0) {
7388 nested_vmx_failValid(vcpu,
7389 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7390 return 1;
7391 }
5c614b35 7392 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
99b83ac8
WL
7393 nested_vmx_succeed(vcpu);
7394 break;
7395 default:
7396 /* Trap single context invalidation invvpid calls */
7397 BUG_ON(1);
7398 break;
7399 }
7400
7401 skip_emulated_instruction(vcpu);
a642fc30
PM
7402 return 1;
7403}
7404
843e4330
KH
7405static int handle_pml_full(struct kvm_vcpu *vcpu)
7406{
7407 unsigned long exit_qualification;
7408
7409 trace_kvm_pml_full(vcpu->vcpu_id);
7410
7411 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7412
7413 /*
7414 * PML buffer FULL happened while executing iret from NMI,
7415 * "blocked by NMI" bit has to be set before next VM entry.
7416 */
7417 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7418 cpu_has_virtual_nmis() &&
7419 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7420 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7421 GUEST_INTR_STATE_NMI);
7422
7423 /*
7424 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7425 * here.., and there's no userspace involvement needed for PML.
7426 */
7427 return 1;
7428}
7429
8b3e34e4
XG
7430static int handle_pcommit(struct kvm_vcpu *vcpu)
7431{
7432 /* we never catch pcommit instruct for L1 guest. */
7433 WARN_ON(1);
7434 return 1;
7435}
7436
6aa8b732
AK
7437/*
7438 * The exit handlers return 1 if the exit was handled fully and guest execution
7439 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7440 * to be done to userspace and return 0.
7441 */
772e0318 7442static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
7443 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
7444 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 7445 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 7446 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 7447 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
7448 [EXIT_REASON_CR_ACCESS] = handle_cr,
7449 [EXIT_REASON_DR_ACCESS] = handle_dr,
7450 [EXIT_REASON_CPUID] = handle_cpuid,
7451 [EXIT_REASON_MSR_READ] = handle_rdmsr,
7452 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
7453 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
7454 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 7455 [EXIT_REASON_INVD] = handle_invd,
a7052897 7456 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 7457 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 7458 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 7459 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 7460 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 7461 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 7462 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 7463 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 7464 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 7465 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
7466 [EXIT_REASON_VMOFF] = handle_vmoff,
7467 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
7468 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
7469 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
83d4c286 7470 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
c7c9c56c 7471 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
e5edaa01 7472 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 7473 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 7474 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 7475 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
7476 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
7477 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 7478 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
87c00572 7479 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5f3d45e7 7480 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
87c00572 7481 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
bfd0a56b 7482 [EXIT_REASON_INVEPT] = handle_invept,
a642fc30 7483 [EXIT_REASON_INVVPID] = handle_invvpid,
f53cd63c
WL
7484 [EXIT_REASON_XSAVES] = handle_xsaves,
7485 [EXIT_REASON_XRSTORS] = handle_xrstors,
843e4330 7486 [EXIT_REASON_PML_FULL] = handle_pml_full,
8b3e34e4 7487 [EXIT_REASON_PCOMMIT] = handle_pcommit,
6aa8b732
AK
7488};
7489
7490static const int kvm_vmx_max_exit_handlers =
50a3485c 7491 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 7492
908a7bdd
JK
7493static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7494 struct vmcs12 *vmcs12)
7495{
7496 unsigned long exit_qualification;
7497 gpa_t bitmap, last_bitmap;
7498 unsigned int port;
7499 int size;
7500 u8 b;
7501
908a7bdd 7502 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
2f0a6397 7503 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
908a7bdd
JK
7504
7505 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7506
7507 port = exit_qualification >> 16;
7508 size = (exit_qualification & 7) + 1;
7509
7510 last_bitmap = (gpa_t)-1;
7511 b = -1;
7512
7513 while (size > 0) {
7514 if (port < 0x8000)
7515 bitmap = vmcs12->io_bitmap_a;
7516 else if (port < 0x10000)
7517 bitmap = vmcs12->io_bitmap_b;
7518 else
1d804d07 7519 return true;
908a7bdd
JK
7520 bitmap += (port & 0x7fff) / 8;
7521
7522 if (last_bitmap != bitmap)
54bf36aa 7523 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
1d804d07 7524 return true;
908a7bdd 7525 if (b & (1 << (port & 7)))
1d804d07 7526 return true;
908a7bdd
JK
7527
7528 port++;
7529 size--;
7530 last_bitmap = bitmap;
7531 }
7532
1d804d07 7533 return false;
908a7bdd
JK
7534}
7535
644d711a
NHE
7536/*
7537 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7538 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7539 * disinterest in the current event (read or write a specific MSR) by using an
7540 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7541 */
7542static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7543 struct vmcs12 *vmcs12, u32 exit_reason)
7544{
7545 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7546 gpa_t bitmap;
7547
cbd29cb6 7548 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
1d804d07 7549 return true;
644d711a
NHE
7550
7551 /*
7552 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7553 * for the four combinations of read/write and low/high MSR numbers.
7554 * First we need to figure out which of the four to use:
7555 */
7556 bitmap = vmcs12->msr_bitmap;
7557 if (exit_reason == EXIT_REASON_MSR_WRITE)
7558 bitmap += 2048;
7559 if (msr_index >= 0xc0000000) {
7560 msr_index -= 0xc0000000;
7561 bitmap += 1024;
7562 }
7563
7564 /* Then read the msr_index'th bit from this bitmap: */
7565 if (msr_index < 1024*8) {
7566 unsigned char b;
54bf36aa 7567 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
1d804d07 7568 return true;
644d711a
NHE
7569 return 1 & (b >> (msr_index & 7));
7570 } else
1d804d07 7571 return true; /* let L1 handle the wrong parameter */
644d711a
NHE
7572}
7573
7574/*
7575 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7576 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7577 * intercept (via guest_host_mask etc.) the current event.
7578 */
7579static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7580 struct vmcs12 *vmcs12)
7581{
7582 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7583 int cr = exit_qualification & 15;
7584 int reg = (exit_qualification >> 8) & 15;
1e32c079 7585 unsigned long val = kvm_register_readl(vcpu, reg);
644d711a
NHE
7586
7587 switch ((exit_qualification >> 4) & 3) {
7588 case 0: /* mov to cr */
7589 switch (cr) {
7590 case 0:
7591 if (vmcs12->cr0_guest_host_mask &
7592 (val ^ vmcs12->cr0_read_shadow))
1d804d07 7593 return true;
644d711a
NHE
7594 break;
7595 case 3:
7596 if ((vmcs12->cr3_target_count >= 1 &&
7597 vmcs12->cr3_target_value0 == val) ||
7598 (vmcs12->cr3_target_count >= 2 &&
7599 vmcs12->cr3_target_value1 == val) ||
7600 (vmcs12->cr3_target_count >= 3 &&
7601 vmcs12->cr3_target_value2 == val) ||
7602 (vmcs12->cr3_target_count >= 4 &&
7603 vmcs12->cr3_target_value3 == val))
1d804d07 7604 return false;
644d711a 7605 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
1d804d07 7606 return true;
644d711a
NHE
7607 break;
7608 case 4:
7609 if (vmcs12->cr4_guest_host_mask &
7610 (vmcs12->cr4_read_shadow ^ val))
1d804d07 7611 return true;
644d711a
NHE
7612 break;
7613 case 8:
7614 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
1d804d07 7615 return true;
644d711a
NHE
7616 break;
7617 }
7618 break;
7619 case 2: /* clts */
7620 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7621 (vmcs12->cr0_read_shadow & X86_CR0_TS))
1d804d07 7622 return true;
644d711a
NHE
7623 break;
7624 case 1: /* mov from cr */
7625 switch (cr) {
7626 case 3:
7627 if (vmcs12->cpu_based_vm_exec_control &
7628 CPU_BASED_CR3_STORE_EXITING)
1d804d07 7629 return true;
644d711a
NHE
7630 break;
7631 case 8:
7632 if (vmcs12->cpu_based_vm_exec_control &
7633 CPU_BASED_CR8_STORE_EXITING)
1d804d07 7634 return true;
644d711a
NHE
7635 break;
7636 }
7637 break;
7638 case 3: /* lmsw */
7639 /*
7640 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7641 * cr0. Other attempted changes are ignored, with no exit.
7642 */
7643 if (vmcs12->cr0_guest_host_mask & 0xe &
7644 (val ^ vmcs12->cr0_read_shadow))
1d804d07 7645 return true;
644d711a
NHE
7646 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7647 !(vmcs12->cr0_read_shadow & 0x1) &&
7648 (val & 0x1))
1d804d07 7649 return true;
644d711a
NHE
7650 break;
7651 }
1d804d07 7652 return false;
644d711a
NHE
7653}
7654
7655/*
7656 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7657 * should handle it ourselves in L0 (and then continue L2). Only call this
7658 * when in is_guest_mode (L2).
7659 */
7660static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7661{
644d711a
NHE
7662 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7663 struct vcpu_vmx *vmx = to_vmx(vcpu);
7664 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
957c897e 7665 u32 exit_reason = vmx->exit_reason;
644d711a 7666
542060ea
JK
7667 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7668 vmcs_readl(EXIT_QUALIFICATION),
7669 vmx->idt_vectoring_info,
7670 intr_info,
7671 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7672 KVM_ISA_VMX);
7673
644d711a 7674 if (vmx->nested.nested_run_pending)
1d804d07 7675 return false;
644d711a
NHE
7676
7677 if (unlikely(vmx->fail)) {
bd80158a
JK
7678 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7679 vmcs_read32(VM_INSTRUCTION_ERROR));
1d804d07 7680 return true;
644d711a
NHE
7681 }
7682
7683 switch (exit_reason) {
7684 case EXIT_REASON_EXCEPTION_NMI:
7685 if (!is_exception(intr_info))
1d804d07 7686 return false;
644d711a
NHE
7687 else if (is_page_fault(intr_info))
7688 return enable_ept;
e504c909 7689 else if (is_no_device(intr_info) &&
ccf9844e 7690 !(vmcs12->guest_cr0 & X86_CR0_TS))
1d804d07 7691 return false;
644d711a
NHE
7692 return vmcs12->exception_bitmap &
7693 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
7694 case EXIT_REASON_EXTERNAL_INTERRUPT:
1d804d07 7695 return false;
644d711a 7696 case EXIT_REASON_TRIPLE_FAULT:
1d804d07 7697 return true;
644d711a 7698 case EXIT_REASON_PENDING_INTERRUPT:
3b656cf7 7699 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
644d711a 7700 case EXIT_REASON_NMI_WINDOW:
3b656cf7 7701 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
644d711a 7702 case EXIT_REASON_TASK_SWITCH:
1d804d07 7703 return true;
644d711a 7704 case EXIT_REASON_CPUID:
bc613494 7705 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
1d804d07
JP
7706 return false;
7707 return true;
644d711a
NHE
7708 case EXIT_REASON_HLT:
7709 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7710 case EXIT_REASON_INVD:
1d804d07 7711 return true;
644d711a
NHE
7712 case EXIT_REASON_INVLPG:
7713 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7714 case EXIT_REASON_RDPMC:
7715 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
b3a2a907 7716 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
644d711a
NHE
7717 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7718 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7719 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7720 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7721 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7722 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
a642fc30 7723 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
644d711a
NHE
7724 /*
7725 * VMX instructions trap unconditionally. This allows L1 to
7726 * emulate them for its L2 guest, i.e., allows 3-level nesting!
7727 */
1d804d07 7728 return true;
644d711a
NHE
7729 case EXIT_REASON_CR_ACCESS:
7730 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7731 case EXIT_REASON_DR_ACCESS:
7732 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7733 case EXIT_REASON_IO_INSTRUCTION:
908a7bdd 7734 return nested_vmx_exit_handled_io(vcpu, vmcs12);
644d711a
NHE
7735 case EXIT_REASON_MSR_READ:
7736 case EXIT_REASON_MSR_WRITE:
7737 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7738 case EXIT_REASON_INVALID_STATE:
1d804d07 7739 return true;
644d711a
NHE
7740 case EXIT_REASON_MWAIT_INSTRUCTION:
7741 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5f3d45e7
MD
7742 case EXIT_REASON_MONITOR_TRAP_FLAG:
7743 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
644d711a
NHE
7744 case EXIT_REASON_MONITOR_INSTRUCTION:
7745 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7746 case EXIT_REASON_PAUSE_INSTRUCTION:
7747 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7748 nested_cpu_has2(vmcs12,
7749 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7750 case EXIT_REASON_MCE_DURING_VMENTRY:
1d804d07 7751 return false;
644d711a 7752 case EXIT_REASON_TPR_BELOW_THRESHOLD:
a7c0b07d 7753 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
644d711a
NHE
7754 case EXIT_REASON_APIC_ACCESS:
7755 return nested_cpu_has2(vmcs12,
7756 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
82f0dd4b 7757 case EXIT_REASON_APIC_WRITE:
608406e2
WV
7758 case EXIT_REASON_EOI_INDUCED:
7759 /* apic_write and eoi_induced should exit unconditionally. */
1d804d07 7760 return true;
644d711a 7761 case EXIT_REASON_EPT_VIOLATION:
2b1be677
NHE
7762 /*
7763 * L0 always deals with the EPT violation. If nested EPT is
7764 * used, and the nested mmu code discovers that the address is
7765 * missing in the guest EPT table (EPT12), the EPT violation
7766 * will be injected with nested_ept_inject_page_fault()
7767 */
1d804d07 7768 return false;
644d711a 7769 case EXIT_REASON_EPT_MISCONFIG:
2b1be677
NHE
7770 /*
7771 * L2 never uses directly L1's EPT, but rather L0's own EPT
7772 * table (shadow on EPT) or a merged EPT table that L0 built
7773 * (EPT on EPT). So any problems with the structure of the
7774 * table is L0's fault.
7775 */
1d804d07 7776 return false;
644d711a
NHE
7777 case EXIT_REASON_WBINVD:
7778 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7779 case EXIT_REASON_XSETBV:
1d804d07 7780 return true;
81dc01f7
WL
7781 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
7782 /*
7783 * This should never happen, since it is not possible to
7784 * set XSS to a non-zero value---neither in L1 nor in L2.
7785 * If if it were, XSS would have to be checked against
7786 * the XSS exit bitmap in vmcs12.
7787 */
7788 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
8b3e34e4
XG
7789 case EXIT_REASON_PCOMMIT:
7790 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_PCOMMIT);
644d711a 7791 default:
1d804d07 7792 return true;
644d711a
NHE
7793 }
7794}
7795
586f9607
AK
7796static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7797{
7798 *info1 = vmcs_readl(EXIT_QUALIFICATION);
7799 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7800}
7801
a3eaa864 7802static int vmx_create_pml_buffer(struct vcpu_vmx *vmx)
843e4330
KH
7803{
7804 struct page *pml_pg;
843e4330
KH
7805
7806 pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
7807 if (!pml_pg)
7808 return -ENOMEM;
7809
7810 vmx->pml_pg = pml_pg;
7811
7812 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
7813 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7814
843e4330
KH
7815 return 0;
7816}
7817
a3eaa864 7818static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
843e4330 7819{
a3eaa864
KH
7820 if (vmx->pml_pg) {
7821 __free_page(vmx->pml_pg);
7822 vmx->pml_pg = NULL;
7823 }
843e4330
KH
7824}
7825
54bf36aa 7826static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
843e4330 7827{
54bf36aa 7828 struct vcpu_vmx *vmx = to_vmx(vcpu);
843e4330
KH
7829 u64 *pml_buf;
7830 u16 pml_idx;
7831
7832 pml_idx = vmcs_read16(GUEST_PML_INDEX);
7833
7834 /* Do nothing if PML buffer is empty */
7835 if (pml_idx == (PML_ENTITY_NUM - 1))
7836 return;
7837
7838 /* PML index always points to next available PML buffer entity */
7839 if (pml_idx >= PML_ENTITY_NUM)
7840 pml_idx = 0;
7841 else
7842 pml_idx++;
7843
7844 pml_buf = page_address(vmx->pml_pg);
7845 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
7846 u64 gpa;
7847
7848 gpa = pml_buf[pml_idx];
7849 WARN_ON(gpa & (PAGE_SIZE - 1));
54bf36aa 7850 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
843e4330
KH
7851 }
7852
7853 /* reset PML index */
7854 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7855}
7856
7857/*
7858 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
7859 * Called before reporting dirty_bitmap to userspace.
7860 */
7861static void kvm_flush_pml_buffers(struct kvm *kvm)
7862{
7863 int i;
7864 struct kvm_vcpu *vcpu;
7865 /*
7866 * We only need to kick vcpu out of guest mode here, as PML buffer
7867 * is flushed at beginning of all VMEXITs, and it's obvious that only
7868 * vcpus running in guest are possible to have unflushed GPAs in PML
7869 * buffer.
7870 */
7871 kvm_for_each_vcpu(i, vcpu, kvm)
7872 kvm_vcpu_kick(vcpu);
7873}
7874
4eb64dce
PB
7875static void vmx_dump_sel(char *name, uint32_t sel)
7876{
7877 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
7878 name, vmcs_read32(sel),
7879 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
7880 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
7881 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
7882}
7883
7884static void vmx_dump_dtsel(char *name, uint32_t limit)
7885{
7886 pr_err("%s limit=0x%08x, base=0x%016lx\n",
7887 name, vmcs_read32(limit),
7888 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
7889}
7890
7891static void dump_vmcs(void)
7892{
7893 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
7894 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
7895 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
7896 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
7897 u32 secondary_exec_control = 0;
7898 unsigned long cr4 = vmcs_readl(GUEST_CR4);
7899 u64 efer = vmcs_readl(GUEST_IA32_EFER);
7900 int i, n;
7901
7902 if (cpu_has_secondary_exec_ctrls())
7903 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7904
7905 pr_err("*** Guest State ***\n");
7906 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
7907 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
7908 vmcs_readl(CR0_GUEST_HOST_MASK));
7909 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
7910 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
7911 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
7912 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
7913 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
7914 {
7915 pr_err("PDPTR0 = 0x%016lx PDPTR1 = 0x%016lx\n",
7916 vmcs_readl(GUEST_PDPTR0), vmcs_readl(GUEST_PDPTR1));
7917 pr_err("PDPTR2 = 0x%016lx PDPTR3 = 0x%016lx\n",
7918 vmcs_readl(GUEST_PDPTR2), vmcs_readl(GUEST_PDPTR3));
7919 }
7920 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
7921 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
7922 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
7923 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
7924 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
7925 vmcs_readl(GUEST_SYSENTER_ESP),
7926 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
7927 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
7928 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
7929 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
7930 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
7931 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
7932 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
7933 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
7934 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
7935 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
7936 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
7937 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
7938 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
7939 pr_err("EFER = 0x%016llx PAT = 0x%016lx\n",
7940 efer, vmcs_readl(GUEST_IA32_PAT));
7941 pr_err("DebugCtl = 0x%016lx DebugExceptions = 0x%016lx\n",
7942 vmcs_readl(GUEST_IA32_DEBUGCTL),
7943 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
7944 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
7945 pr_err("PerfGlobCtl = 0x%016lx\n",
7946 vmcs_readl(GUEST_IA32_PERF_GLOBAL_CTRL));
7947 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
7948 pr_err("BndCfgS = 0x%016lx\n", vmcs_readl(GUEST_BNDCFGS));
7949 pr_err("Interruptibility = %08x ActivityState = %08x\n",
7950 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
7951 vmcs_read32(GUEST_ACTIVITY_STATE));
7952 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
7953 pr_err("InterruptStatus = %04x\n",
7954 vmcs_read16(GUEST_INTR_STATUS));
7955
7956 pr_err("*** Host State ***\n");
7957 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
7958 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
7959 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
7960 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
7961 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
7962 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
7963 vmcs_read16(HOST_TR_SELECTOR));
7964 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
7965 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
7966 vmcs_readl(HOST_TR_BASE));
7967 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
7968 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
7969 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
7970 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
7971 vmcs_readl(HOST_CR4));
7972 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
7973 vmcs_readl(HOST_IA32_SYSENTER_ESP),
7974 vmcs_read32(HOST_IA32_SYSENTER_CS),
7975 vmcs_readl(HOST_IA32_SYSENTER_EIP));
7976 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
7977 pr_err("EFER = 0x%016lx PAT = 0x%016lx\n",
7978 vmcs_readl(HOST_IA32_EFER), vmcs_readl(HOST_IA32_PAT));
7979 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7980 pr_err("PerfGlobCtl = 0x%016lx\n",
7981 vmcs_readl(HOST_IA32_PERF_GLOBAL_CTRL));
7982
7983 pr_err("*** Control State ***\n");
7984 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
7985 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
7986 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
7987 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
7988 vmcs_read32(EXCEPTION_BITMAP),
7989 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
7990 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
7991 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
7992 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7993 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
7994 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
7995 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
7996 vmcs_read32(VM_EXIT_INTR_INFO),
7997 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7998 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
7999 pr_err(" reason=%08x qualification=%016lx\n",
8000 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8001 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8002 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8003 vmcs_read32(IDT_VECTORING_ERROR_CODE));
8004 pr_err("TSC Offset = 0x%016lx\n", vmcs_readl(TSC_OFFSET));
8005 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8006 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8007 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8008 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8009 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8010 pr_err("EPT pointer = 0x%016lx\n", vmcs_readl(EPT_POINTER));
8011 n = vmcs_read32(CR3_TARGET_COUNT);
8012 for (i = 0; i + 1 < n; i += 4)
8013 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8014 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8015 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8016 if (i < n)
8017 pr_err("CR3 target%u=%016lx\n",
8018 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8019 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8020 pr_err("PLE Gap=%08x Window=%08x\n",
8021 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8022 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8023 pr_err("Virtual processor ID = 0x%04x\n",
8024 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8025}
8026
6aa8b732
AK
8027/*
8028 * The guest has exited. See if we can fix it or if we need userspace
8029 * assistance.
8030 */
851ba692 8031static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 8032{
29bd8a78 8033 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 8034 u32 exit_reason = vmx->exit_reason;
1155f76a 8035 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 8036
843e4330
KH
8037 /*
8038 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8039 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8040 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8041 * mode as if vcpus is in root mode, the PML buffer must has been
8042 * flushed already.
8043 */
8044 if (enable_pml)
54bf36aa 8045 vmx_flush_pml_buffer(vcpu);
843e4330 8046
80ced186 8047 /* If guest state is invalid, start emulating */
14168786 8048 if (vmx->emulation_required)
80ced186 8049 return handle_invalid_guest_state(vcpu);
1d5a4d9b 8050
644d711a 8051 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
533558bc
JK
8052 nested_vmx_vmexit(vcpu, exit_reason,
8053 vmcs_read32(VM_EXIT_INTR_INFO),
8054 vmcs_readl(EXIT_QUALIFICATION));
644d711a
NHE
8055 return 1;
8056 }
8057
5120702e 8058 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
4eb64dce 8059 dump_vmcs();
5120702e
MG
8060 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8061 vcpu->run->fail_entry.hardware_entry_failure_reason
8062 = exit_reason;
8063 return 0;
8064 }
8065
29bd8a78 8066 if (unlikely(vmx->fail)) {
851ba692
AK
8067 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8068 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
8069 = vmcs_read32(VM_INSTRUCTION_ERROR);
8070 return 0;
8071 }
6aa8b732 8072
b9bf6882
XG
8073 /*
8074 * Note:
8075 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8076 * delivery event since it indicates guest is accessing MMIO.
8077 * The vm-exit can be triggered again after return to guest that
8078 * will cause infinite loop.
8079 */
d77c26fc 8080 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 8081 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac 8082 exit_reason != EXIT_REASON_EPT_VIOLATION &&
b9bf6882
XG
8083 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8084 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8085 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8086 vcpu->run->internal.ndata = 2;
8087 vcpu->run->internal.data[0] = vectoring_info;
8088 vcpu->run->internal.data[1] = exit_reason;
8089 return 0;
8090 }
3b86cd99 8091
644d711a
NHE
8092 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
8093 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
f5c4368f 8094 get_vmcs12(vcpu))))) {
c4282df9 8095 if (vmx_interrupt_allowed(vcpu)) {
3b86cd99 8096 vmx->soft_vnmi_blocked = 0;
3b86cd99 8097 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
4531220b 8098 vcpu->arch.nmi_pending) {
3b86cd99
JK
8099 /*
8100 * This CPU don't support us in finding the end of an
8101 * NMI-blocked window if the guest runs with IRQs
8102 * disabled. So we pull the trigger after 1 s of
8103 * futile waiting, but inform the user about this.
8104 */
8105 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
8106 "state on VCPU %d after 1 s timeout\n",
8107 __func__, vcpu->vcpu_id);
8108 vmx->soft_vnmi_blocked = 0;
3b86cd99 8109 }
3b86cd99
JK
8110 }
8111
6aa8b732
AK
8112 if (exit_reason < kvm_vmx_max_exit_handlers
8113 && kvm_vmx_exit_handlers[exit_reason])
851ba692 8114 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 8115 else {
2bc19dc3
MT
8116 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
8117 kvm_queue_exception(vcpu, UD_VECTOR);
8118 return 1;
6aa8b732 8119 }
6aa8b732
AK
8120}
8121
95ba8273 8122static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 8123{
a7c0b07d
WL
8124 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8125
8126 if (is_guest_mode(vcpu) &&
8127 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8128 return;
8129
95ba8273 8130 if (irr == -1 || tpr < irr) {
6e5d865c
YS
8131 vmcs_write32(TPR_THRESHOLD, 0);
8132 return;
8133 }
8134
95ba8273 8135 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
8136}
8137
8d14695f
YZ
8138static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8139{
8140 u32 sec_exec_control;
8141
8142 /*
8143 * There is not point to enable virtualize x2apic without enable
8144 * apicv
8145 */
c7c9c56c 8146 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
35754c98 8147 !vmx_cpu_uses_apicv(vcpu))
8d14695f
YZ
8148 return;
8149
35754c98 8150 if (!cpu_need_tpr_shadow(vcpu))
8d14695f
YZ
8151 return;
8152
8153 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8154
8155 if (set) {
8156 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8157 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8158 } else {
8159 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8160 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8161 }
8162 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8163
8164 vmx_set_msr_bitmap(vcpu);
8165}
8166
38b99173
TC
8167static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8168{
8169 struct vcpu_vmx *vmx = to_vmx(vcpu);
8170
8171 /*
8172 * Currently we do not handle the nested case where L2 has an
8173 * APIC access page of its own; that page is still pinned.
8174 * Hence, we skip the case where the VCPU is in guest mode _and_
8175 * L1 prepared an APIC access page for L2.
8176 *
8177 * For the case where L1 and L2 share the same APIC access page
8178 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8179 * in the vmcs12), this function will only update either the vmcs01
8180 * or the vmcs02. If the former, the vmcs02 will be updated by
8181 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8182 * the next L2->L1 exit.
8183 */
8184 if (!is_guest_mode(vcpu) ||
8185 !nested_cpu_has2(vmx->nested.current_vmcs12,
8186 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
8187 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8188}
8189
c7c9c56c
YZ
8190static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
8191{
8192 u16 status;
8193 u8 old;
8194
c7c9c56c
YZ
8195 if (isr == -1)
8196 isr = 0;
8197
8198 status = vmcs_read16(GUEST_INTR_STATUS);
8199 old = status >> 8;
8200 if (isr != old) {
8201 status &= 0xff;
8202 status |= isr << 8;
8203 vmcs_write16(GUEST_INTR_STATUS, status);
8204 }
8205}
8206
8207static void vmx_set_rvi(int vector)
8208{
8209 u16 status;
8210 u8 old;
8211
4114c27d
WW
8212 if (vector == -1)
8213 vector = 0;
8214
c7c9c56c
YZ
8215 status = vmcs_read16(GUEST_INTR_STATUS);
8216 old = (u8)status & 0xff;
8217 if ((u8)vector != old) {
8218 status &= ~0xff;
8219 status |= (u8)vector;
8220 vmcs_write16(GUEST_INTR_STATUS, status);
8221 }
8222}
8223
8224static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8225{
4114c27d
WW
8226 if (!is_guest_mode(vcpu)) {
8227 vmx_set_rvi(max_irr);
8228 return;
8229 }
8230
c7c9c56c
YZ
8231 if (max_irr == -1)
8232 return;
8233
963fee16 8234 /*
4114c27d
WW
8235 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8236 * handles it.
963fee16 8237 */
4114c27d 8238 if (nested_exit_on_intr(vcpu))
963fee16
WL
8239 return;
8240
963fee16 8241 /*
4114c27d 8242 * Else, fall back to pre-APICv interrupt injection since L2
963fee16
WL
8243 * is run without virtual interrupt delivery.
8244 */
8245 if (!kvm_event_needs_reinjection(vcpu) &&
8246 vmx_interrupt_allowed(vcpu)) {
8247 kvm_queue_interrupt(vcpu, max_irr, false);
8248 vmx_inject_irq(vcpu);
8249 }
c7c9c56c
YZ
8250}
8251
3bb345f3 8252static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu)
c7c9c56c 8253{
3bb345f3 8254 u64 *eoi_exit_bitmap = vcpu->arch.eoi_exit_bitmap;
35754c98 8255 if (!vmx_cpu_uses_apicv(vcpu))
3d81bc7e
YZ
8256 return;
8257
c7c9c56c
YZ
8258 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8259 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8260 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8261 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8262}
8263
51aa01d1 8264static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 8265{
00eba012
AK
8266 u32 exit_intr_info;
8267
8268 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8269 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8270 return;
8271
c5ca8e57 8272 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
00eba012 8273 exit_intr_info = vmx->exit_intr_info;
a0861c02
AK
8274
8275 /* Handle machine checks before interrupts are enabled */
00eba012 8276 if (is_machine_check(exit_intr_info))
a0861c02
AK
8277 kvm_machine_check();
8278
20f65983 8279 /* We need to handle NMIs before interrupts are enabled */
00eba012 8280 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
ff9d07a0
ZY
8281 (exit_intr_info & INTR_INFO_VALID_MASK)) {
8282 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 8283 asm("int $2");
ff9d07a0
ZY
8284 kvm_after_handle_nmi(&vmx->vcpu);
8285 }
51aa01d1 8286}
20f65983 8287
a547c6db
YZ
8288static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8289{
8290 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8291
8292 /*
8293 * If external interrupt exists, IF bit is set in rflags/eflags on the
8294 * interrupt stack frame, and interrupt will be enabled on a return
8295 * from interrupt handler.
8296 */
8297 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8298 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8299 unsigned int vector;
8300 unsigned long entry;
8301 gate_desc *desc;
8302 struct vcpu_vmx *vmx = to_vmx(vcpu);
8303#ifdef CONFIG_X86_64
8304 unsigned long tmp;
8305#endif
8306
8307 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8308 desc = (gate_desc *)vmx->host_idt_base + vector;
8309 entry = gate_offset(*desc);
8310 asm volatile(
8311#ifdef CONFIG_X86_64
8312 "mov %%" _ASM_SP ", %[sp]\n\t"
8313 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8314 "push $%c[ss]\n\t"
8315 "push %[sp]\n\t"
8316#endif
8317 "pushf\n\t"
8318 "orl $0x200, (%%" _ASM_SP ")\n\t"
8319 __ASM_SIZE(push) " $%c[cs]\n\t"
8320 "call *%[entry]\n\t"
8321 :
8322#ifdef CONFIG_X86_64
8323 [sp]"=&r"(tmp)
8324#endif
8325 :
8326 [entry]"r"(entry),
8327 [ss]"i"(__KERNEL_DS),
8328 [cs]"i"(__KERNEL_CS)
8329 );
8330 } else
8331 local_irq_enable();
8332}
8333
6d396b55
PB
8334static bool vmx_has_high_real_mode_segbase(void)
8335{
8336 return enable_unrestricted_guest || emulate_invalid_guest_state;
8337}
8338
da8999d3
LJ
8339static bool vmx_mpx_supported(void)
8340{
8341 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8342 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8343}
8344
55412b2e
WL
8345static bool vmx_xsaves_supported(void)
8346{
8347 return vmcs_config.cpu_based_2nd_exec_ctrl &
8348 SECONDARY_EXEC_XSAVES;
8349}
8350
51aa01d1
AK
8351static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8352{
c5ca8e57 8353 u32 exit_intr_info;
51aa01d1
AK
8354 bool unblock_nmi;
8355 u8 vector;
8356 bool idtv_info_valid;
8357
8358 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 8359
cf393f75 8360 if (cpu_has_virtual_nmis()) {
9d58b931
AK
8361 if (vmx->nmi_known_unmasked)
8362 return;
c5ca8e57
AK
8363 /*
8364 * Can't use vmx->exit_intr_info since we're not sure what
8365 * the exit reason is.
8366 */
8367 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
cf393f75
AK
8368 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8369 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8370 /*
7b4a25cb 8371 * SDM 3: 27.7.1.2 (September 2008)
cf393f75
AK
8372 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8373 * a guest IRET fault.
7b4a25cb
GN
8374 * SDM 3: 23.2.2 (September 2008)
8375 * Bit 12 is undefined in any of the following cases:
8376 * If the VM exit sets the valid bit in the IDT-vectoring
8377 * information field.
8378 * If the VM exit is due to a double fault.
cf393f75 8379 */
7b4a25cb
GN
8380 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8381 vector != DF_VECTOR && !idtv_info_valid)
cf393f75
AK
8382 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8383 GUEST_INTR_STATE_NMI);
9d58b931
AK
8384 else
8385 vmx->nmi_known_unmasked =
8386 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8387 & GUEST_INTR_STATE_NMI);
3b86cd99
JK
8388 } else if (unlikely(vmx->soft_vnmi_blocked))
8389 vmx->vnmi_blocked_time +=
8390 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
51aa01d1
AK
8391}
8392
3ab66e8a 8393static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
83422e17
AK
8394 u32 idt_vectoring_info,
8395 int instr_len_field,
8396 int error_code_field)
51aa01d1 8397{
51aa01d1
AK
8398 u8 vector;
8399 int type;
8400 bool idtv_info_valid;
8401
8402 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 8403
3ab66e8a
JK
8404 vcpu->arch.nmi_injected = false;
8405 kvm_clear_exception_queue(vcpu);
8406 kvm_clear_interrupt_queue(vcpu);
37b96e98
GN
8407
8408 if (!idtv_info_valid)
8409 return;
8410
3ab66e8a 8411 kvm_make_request(KVM_REQ_EVENT, vcpu);
3842d135 8412
668f612f
AK
8413 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8414 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 8415
64a7ec06 8416 switch (type) {
37b96e98 8417 case INTR_TYPE_NMI_INTR:
3ab66e8a 8418 vcpu->arch.nmi_injected = true;
668f612f 8419 /*
7b4a25cb 8420 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
8421 * Clear bit "block by NMI" before VM entry if a NMI
8422 * delivery faulted.
668f612f 8423 */
3ab66e8a 8424 vmx_set_nmi_mask(vcpu, false);
37b96e98 8425 break;
37b96e98 8426 case INTR_TYPE_SOFT_EXCEPTION:
3ab66e8a 8427 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f
GN
8428 /* fall through */
8429 case INTR_TYPE_HARD_EXCEPTION:
35920a35 8430 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 8431 u32 err = vmcs_read32(error_code_field);
851eb667 8432 kvm_requeue_exception_e(vcpu, vector, err);
35920a35 8433 } else
851eb667 8434 kvm_requeue_exception(vcpu, vector);
37b96e98 8435 break;
66fd3f7f 8436 case INTR_TYPE_SOFT_INTR:
3ab66e8a 8437 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f 8438 /* fall through */
37b96e98 8439 case INTR_TYPE_EXT_INTR:
3ab66e8a 8440 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
8441 break;
8442 default:
8443 break;
f7d9238f 8444 }
cf393f75
AK
8445}
8446
83422e17
AK
8447static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8448{
3ab66e8a 8449 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
83422e17
AK
8450 VM_EXIT_INSTRUCTION_LEN,
8451 IDT_VECTORING_ERROR_CODE);
8452}
8453
b463a6f7
AK
8454static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8455{
3ab66e8a 8456 __vmx_complete_interrupts(vcpu,
b463a6f7
AK
8457 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8458 VM_ENTRY_INSTRUCTION_LEN,
8459 VM_ENTRY_EXCEPTION_ERROR_CODE);
8460
8461 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8462}
8463
d7cd9796
GN
8464static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8465{
8466 int i, nr_msrs;
8467 struct perf_guest_switch_msr *msrs;
8468
8469 msrs = perf_guest_get_msrs(&nr_msrs);
8470
8471 if (!msrs)
8472 return;
8473
8474 for (i = 0; i < nr_msrs; i++)
8475 if (msrs[i].host == msrs[i].guest)
8476 clear_atomic_switch_msr(vmx, msrs[i].msr);
8477 else
8478 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8479 msrs[i].host);
8480}
8481
a3b5ba49 8482static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 8483{
a2fa3e9f 8484 struct vcpu_vmx *vmx = to_vmx(vcpu);
d974baa3 8485 unsigned long debugctlmsr, cr4;
104f226b
AK
8486
8487 /* Record the guest's net vcpu time for enforced NMI injections. */
8488 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8489 vmx->entry_time = ktime_get();
8490
8491 /* Don't enter VMX if guest state is invalid, let the exit handler
8492 start emulation until we arrive back to a valid state */
14168786 8493 if (vmx->emulation_required)
104f226b
AK
8494 return;
8495
a7653ecd
RK
8496 if (vmx->ple_window_dirty) {
8497 vmx->ple_window_dirty = false;
8498 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8499 }
8500
012f83cb
AG
8501 if (vmx->nested.sync_shadow_vmcs) {
8502 copy_vmcs12_to_shadow(vmx);
8503 vmx->nested.sync_shadow_vmcs = false;
8504 }
8505
104f226b
AK
8506 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8507 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8508 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8509 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8510
1e02ce4c 8511 cr4 = cr4_read_shadow();
d974baa3
AL
8512 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8513 vmcs_writel(HOST_CR4, cr4);
8514 vmx->host_state.vmcs_host_cr4 = cr4;
8515 }
8516
104f226b
AK
8517 /* When single-stepping over STI and MOV SS, we must clear the
8518 * corresponding interruptibility bits in the guest state. Otherwise
8519 * vmentry fails as it then expects bit 14 (BS) in pending debug
8520 * exceptions being set, but that's not correct for the guest debugging
8521 * case. */
8522 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8523 vmx_set_interrupt_shadow(vcpu, 0);
8524
d7cd9796 8525 atomic_switch_perf_msrs(vmx);
2a7921b7 8526 debugctlmsr = get_debugctlmsr();
d7cd9796 8527
d462b819 8528 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 8529 asm(
6aa8b732 8530 /* Store host registers */
b188c81f
AK
8531 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8532 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8533 "push %%" _ASM_CX " \n\t"
8534 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
313dbd49 8535 "je 1f \n\t"
b188c81f 8536 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
4ecac3fd 8537 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 8538 "1: \n\t"
d3edefc0 8539 /* Reload cr2 if changed */
b188c81f
AK
8540 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8541 "mov %%cr2, %%" _ASM_DX " \n\t"
8542 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
d3edefc0 8543 "je 2f \n\t"
b188c81f 8544 "mov %%" _ASM_AX", %%cr2 \n\t"
d3edefc0 8545 "2: \n\t"
6aa8b732 8546 /* Check if vmlaunch of vmresume is needed */
e08aa78a 8547 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 8548 /* Load guest registers. Don't clobber flags. */
b188c81f
AK
8549 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8550 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8551 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8552 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8553 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8554 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
05b3e0c2 8555#ifdef CONFIG_X86_64
e08aa78a
AK
8556 "mov %c[r8](%0), %%r8 \n\t"
8557 "mov %c[r9](%0), %%r9 \n\t"
8558 "mov %c[r10](%0), %%r10 \n\t"
8559 "mov %c[r11](%0), %%r11 \n\t"
8560 "mov %c[r12](%0), %%r12 \n\t"
8561 "mov %c[r13](%0), %%r13 \n\t"
8562 "mov %c[r14](%0), %%r14 \n\t"
8563 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 8564#endif
b188c81f 8565 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
c801949d 8566
6aa8b732 8567 /* Enter guest mode */
83287ea4 8568 "jne 1f \n\t"
4ecac3fd 8569 __ex(ASM_VMX_VMLAUNCH) "\n\t"
83287ea4
AK
8570 "jmp 2f \n\t"
8571 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8572 "2: "
6aa8b732 8573 /* Save guest registers, load host registers, keep flags */
b188c81f 8574 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
40712fae 8575 "pop %0 \n\t"
b188c81f
AK
8576 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8577 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8578 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8579 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8580 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8581 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8582 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
05b3e0c2 8583#ifdef CONFIG_X86_64
e08aa78a
AK
8584 "mov %%r8, %c[r8](%0) \n\t"
8585 "mov %%r9, %c[r9](%0) \n\t"
8586 "mov %%r10, %c[r10](%0) \n\t"
8587 "mov %%r11, %c[r11](%0) \n\t"
8588 "mov %%r12, %c[r12](%0) \n\t"
8589 "mov %%r13, %c[r13](%0) \n\t"
8590 "mov %%r14, %c[r14](%0) \n\t"
8591 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 8592#endif
b188c81f
AK
8593 "mov %%cr2, %%" _ASM_AX " \n\t"
8594 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
c801949d 8595
b188c81f 8596 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
e08aa78a 8597 "setbe %c[fail](%0) \n\t"
83287ea4
AK
8598 ".pushsection .rodata \n\t"
8599 ".global vmx_return \n\t"
8600 "vmx_return: " _ASM_PTR " 2b \n\t"
8601 ".popsection"
e08aa78a 8602 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 8603 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 8604 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 8605 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
8606 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8607 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8608 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8609 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8610 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8611 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8612 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 8613#ifdef CONFIG_X86_64
ad312c7c
ZX
8614 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8615 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8616 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8617 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8618 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8619 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8620 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8621 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 8622#endif
40712fae
AK
8623 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8624 [wordsize]"i"(sizeof(ulong))
c2036300
LV
8625 : "cc", "memory"
8626#ifdef CONFIG_X86_64
b188c81f 8627 , "rax", "rbx", "rdi", "rsi"
c2036300 8628 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
b188c81f
AK
8629#else
8630 , "eax", "ebx", "edi", "esi"
c2036300
LV
8631#endif
8632 );
6aa8b732 8633
2a7921b7
GN
8634 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8635 if (debugctlmsr)
8636 update_debugctlmsr(debugctlmsr);
8637
aa67f609
AK
8638#ifndef CONFIG_X86_64
8639 /*
8640 * The sysexit path does not restore ds/es, so we must set them to
8641 * a reasonable value ourselves.
8642 *
8643 * We can't defer this to vmx_load_host_state() since that function
8644 * may be executed in interrupt context, which saves and restore segments
8645 * around it, nullifying its effect.
8646 */
8647 loadsegment(ds, __USER_DS);
8648 loadsegment(es, __USER_DS);
8649#endif
8650
6de4f3ad 8651 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 8652 | (1 << VCPU_EXREG_RFLAGS)
aff48baa 8653 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 8654 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 8655 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
8656 vcpu->arch.regs_dirty = 0;
8657
1155f76a
AK
8658 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
8659
d462b819 8660 vmx->loaded_vmcs->launched = 1;
1b6269db 8661
51aa01d1 8662 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
1e2b1dd7 8663 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
51aa01d1 8664
e0b890d3
GN
8665 /*
8666 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
8667 * we did not inject a still-pending event to L1 now because of
8668 * nested_run_pending, we need to re-enable this bit.
8669 */
8670 if (vmx->nested.nested_run_pending)
8671 kvm_make_request(KVM_REQ_EVENT, vcpu);
8672
8673 vmx->nested.nested_run_pending = 0;
8674
51aa01d1
AK
8675 vmx_complete_atomic_exit(vmx);
8676 vmx_recover_nmi_blocking(vmx);
cf393f75 8677 vmx_complete_interrupts(vmx);
6aa8b732
AK
8678}
8679
4fa7734c
PB
8680static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
8681{
8682 struct vcpu_vmx *vmx = to_vmx(vcpu);
8683 int cpu;
8684
8685 if (vmx->loaded_vmcs == &vmx->vmcs01)
8686 return;
8687
8688 cpu = get_cpu();
8689 vmx->loaded_vmcs = &vmx->vmcs01;
8690 vmx_vcpu_put(vcpu);
8691 vmx_vcpu_load(vcpu, cpu);
8692 vcpu->cpu = cpu;
8693 put_cpu();
8694}
8695
6aa8b732
AK
8696static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
8697{
fb3f0f51
RR
8698 struct vcpu_vmx *vmx = to_vmx(vcpu);
8699
843e4330 8700 if (enable_pml)
a3eaa864 8701 vmx_destroy_pml_buffer(vmx);
991e7a0e 8702 free_vpid(vmx->vpid);
4fa7734c
PB
8703 leave_guest_mode(vcpu);
8704 vmx_load_vmcs01(vcpu);
26a865f4 8705 free_nested(vmx);
4fa7734c 8706 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
8707 kfree(vmx->guest_msrs);
8708 kvm_vcpu_uninit(vcpu);
a4770347 8709 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
8710}
8711
fb3f0f51 8712static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 8713{
fb3f0f51 8714 int err;
c16f862d 8715 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 8716 int cpu;
6aa8b732 8717
a2fa3e9f 8718 if (!vmx)
fb3f0f51
RR
8719 return ERR_PTR(-ENOMEM);
8720
991e7a0e 8721 vmx->vpid = allocate_vpid();
2384d2b3 8722
fb3f0f51
RR
8723 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
8724 if (err)
8725 goto free_vcpu;
965b58a5 8726
a2fa3e9f 8727 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
03916db9
PB
8728 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
8729 > PAGE_SIZE);
0123be42 8730
be6d05cf 8731 err = -ENOMEM;
fb3f0f51 8732 if (!vmx->guest_msrs) {
fb3f0f51
RR
8733 goto uninit_vcpu;
8734 }
965b58a5 8735
d462b819
NHE
8736 vmx->loaded_vmcs = &vmx->vmcs01;
8737 vmx->loaded_vmcs->vmcs = alloc_vmcs();
8738 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 8739 goto free_msrs;
d462b819
NHE
8740 if (!vmm_exclusive)
8741 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
8742 loaded_vmcs_init(vmx->loaded_vmcs);
8743 if (!vmm_exclusive)
8744 kvm_cpu_vmxoff();
a2fa3e9f 8745
15ad7146
AK
8746 cpu = get_cpu();
8747 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 8748 vmx->vcpu.cpu = cpu;
8b9cf98c 8749 err = vmx_vcpu_setup(vmx);
fb3f0f51 8750 vmx_vcpu_put(&vmx->vcpu);
15ad7146 8751 put_cpu();
fb3f0f51
RR
8752 if (err)
8753 goto free_vmcs;
35754c98 8754 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
be6d05cf
JK
8755 err = alloc_apic_access_page(kvm);
8756 if (err)
5e4a0b3c 8757 goto free_vmcs;
a63cb560 8758 }
fb3f0f51 8759
b927a3ce
SY
8760 if (enable_ept) {
8761 if (!kvm->arch.ept_identity_map_addr)
8762 kvm->arch.ept_identity_map_addr =
8763 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
f51770ed
TC
8764 err = init_rmode_identity_map(kvm);
8765 if (err)
93ea5388 8766 goto free_vmcs;
b927a3ce 8767 }
b7ebfb05 8768
5c614b35 8769 if (nested) {
b9c237bb 8770 nested_vmx_setup_ctls_msrs(vmx);
5c614b35
WL
8771 vmx->nested.vpid02 = allocate_vpid();
8772 }
b9c237bb 8773
705699a1 8774 vmx->nested.posted_intr_nv = -1;
a9d30f33
NHE
8775 vmx->nested.current_vmptr = -1ull;
8776 vmx->nested.current_vmcs12 = NULL;
8777
843e4330
KH
8778 /*
8779 * If PML is turned on, failure on enabling PML just results in failure
8780 * of creating the vcpu, therefore we can simplify PML logic (by
8781 * avoiding dealing with cases, such as enabling PML partially on vcpus
8782 * for the guest, etc.
8783 */
8784 if (enable_pml) {
a3eaa864 8785 err = vmx_create_pml_buffer(vmx);
843e4330
KH
8786 if (err)
8787 goto free_vmcs;
8788 }
8789
fb3f0f51
RR
8790 return &vmx->vcpu;
8791
8792free_vmcs:
5c614b35 8793 free_vpid(vmx->nested.vpid02);
5f3fbc34 8794 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51 8795free_msrs:
fb3f0f51
RR
8796 kfree(vmx->guest_msrs);
8797uninit_vcpu:
8798 kvm_vcpu_uninit(&vmx->vcpu);
8799free_vcpu:
991e7a0e 8800 free_vpid(vmx->vpid);
a4770347 8801 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 8802 return ERR_PTR(err);
6aa8b732
AK
8803}
8804
002c7f7c
YS
8805static void __init vmx_check_processor_compat(void *rtn)
8806{
8807 struct vmcs_config vmcs_conf;
8808
8809 *(int *)rtn = 0;
8810 if (setup_vmcs_config(&vmcs_conf) < 0)
8811 *(int *)rtn = -EIO;
8812 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
8813 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
8814 smp_processor_id());
8815 *(int *)rtn = -EIO;
8816 }
8817}
8818
67253af5
SY
8819static int get_ept_level(void)
8820{
8821 return VMX_EPT_DEFAULT_GAW + 1;
8822}
8823
4b12f0de 8824static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 8825{
b18d5431
XG
8826 u8 cache;
8827 u64 ipat = 0;
4b12f0de 8828
522c68c4 8829 /* For VT-d and EPT combination
606decd6 8830 * 1. MMIO: always map as UC
522c68c4
SY
8831 * 2. EPT with VT-d:
8832 * a. VT-d without snooping control feature: can't guarantee the
606decd6 8833 * result, try to trust guest.
522c68c4
SY
8834 * b. VT-d with snooping control feature: snooping control feature of
8835 * VT-d engine can guarantee the cache correctness. Just set it
8836 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 8837 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
8838 * consistent with host MTRR
8839 */
606decd6
PB
8840 if (is_mmio) {
8841 cache = MTRR_TYPE_UNCACHABLE;
8842 goto exit;
8843 }
8844
8845 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
b18d5431
XG
8846 ipat = VMX_EPT_IPAT_BIT;
8847 cache = MTRR_TYPE_WRBACK;
8848 goto exit;
8849 }
8850
8851 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
8852 ipat = VMX_EPT_IPAT_BIT;
0da029ed 8853 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
fb279950
XG
8854 cache = MTRR_TYPE_WRBACK;
8855 else
8856 cache = MTRR_TYPE_UNCACHABLE;
b18d5431
XG
8857 goto exit;
8858 }
8859
ff53604b 8860 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
b18d5431
XG
8861
8862exit:
8863 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
64d4d521
SY
8864}
8865
17cc3935 8866static int vmx_get_lpage_level(void)
344f414f 8867{
878403b7
SY
8868 if (enable_ept && !cpu_has_vmx_ept_1g_page())
8869 return PT_DIRECTORY_LEVEL;
8870 else
8871 /* For shadow and EPT supported 1GB page */
8872 return PT_PDPE_LEVEL;
344f414f
JR
8873}
8874
feda805f
XG
8875static void vmcs_set_secondary_exec_control(u32 new_ctl)
8876{
8877 /*
8878 * These bits in the secondary execution controls field
8879 * are dynamic, the others are mostly based on the hypervisor
8880 * architecture and the guest's CPUID. Do not touch the
8881 * dynamic bits.
8882 */
8883 u32 mask =
8884 SECONDARY_EXEC_SHADOW_VMCS |
8885 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
8886 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8887
8888 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8889
8890 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8891 (new_ctl & ~mask) | (cur_ctl & mask));
8892}
8893
0e851880
SY
8894static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
8895{
4e47c7a6
SY
8896 struct kvm_cpuid_entry2 *best;
8897 struct vcpu_vmx *vmx = to_vmx(vcpu);
feda805f 8898 u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
4e47c7a6 8899
4e47c7a6 8900 if (vmx_rdtscp_supported()) {
1cea0ce6
XG
8901 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
8902 if (!rdtscp_enabled)
feda805f 8903 secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
f36201e5 8904
8b97265a 8905 if (nested) {
1cea0ce6 8906 if (rdtscp_enabled)
8b97265a
PB
8907 vmx->nested.nested_vmx_secondary_ctls_high |=
8908 SECONDARY_EXEC_RDTSCP;
8909 else
8910 vmx->nested.nested_vmx_secondary_ctls_high &=
8911 ~SECONDARY_EXEC_RDTSCP;
8912 }
4e47c7a6 8913 }
ad756a16 8914
ad756a16
MJ
8915 /* Exposing INVPCID only when PCID is exposed */
8916 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
8917 if (vmx_invpcid_supported() &&
29541bb8
XG
8918 (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
8919 !guest_cpuid_has_pcid(vcpu))) {
feda805f 8920 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
29541bb8 8921
ad756a16 8922 if (best)
4f977045 8923 best->ebx &= ~bit(X86_FEATURE_INVPCID);
ad756a16 8924 }
8b3e34e4 8925
feda805f
XG
8926 vmcs_set_secondary_exec_control(secondary_exec_ctl);
8927
8b3e34e4
XG
8928 if (static_cpu_has(X86_FEATURE_PCOMMIT) && nested) {
8929 if (guest_cpuid_has_pcommit(vcpu))
8930 vmx->nested.nested_vmx_secondary_ctls_high |=
8931 SECONDARY_EXEC_PCOMMIT;
8932 else
8933 vmx->nested.nested_vmx_secondary_ctls_high &=
8934 ~SECONDARY_EXEC_PCOMMIT;
8935 }
0e851880
SY
8936}
8937
d4330ef2
JR
8938static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
8939{
7b8050f5
NHE
8940 if (func == 1 && nested)
8941 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
8942}
8943
25d92081
YZ
8944static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
8945 struct x86_exception *fault)
8946{
533558bc
JK
8947 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8948 u32 exit_reason;
25d92081
YZ
8949
8950 if (fault->error_code & PFERR_RSVD_MASK)
533558bc 8951 exit_reason = EXIT_REASON_EPT_MISCONFIG;
25d92081 8952 else
533558bc
JK
8953 exit_reason = EXIT_REASON_EPT_VIOLATION;
8954 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
25d92081
YZ
8955 vmcs12->guest_physical_address = fault->address;
8956}
8957
155a97a3
NHE
8958/* Callbacks for nested_ept_init_mmu_context: */
8959
8960static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
8961{
8962 /* return the page table to be shadowed - in our case, EPT12 */
8963 return get_vmcs12(vcpu)->ept_pointer;
8964}
8965
8a3c1a33 8966static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
155a97a3 8967{
ad896af0
PB
8968 WARN_ON(mmu_is_nested(vcpu));
8969 kvm_init_shadow_ept_mmu(vcpu,
b9c237bb
WV
8970 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
8971 VMX_EPT_EXECUTE_ONLY_BIT);
155a97a3
NHE
8972 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
8973 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
8974 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
8975
8976 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
155a97a3
NHE
8977}
8978
8979static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
8980{
8981 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
8982}
8983
19d5f10b
EK
8984static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
8985 u16 error_code)
8986{
8987 bool inequality, bit;
8988
8989 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
8990 inequality =
8991 (error_code & vmcs12->page_fault_error_code_mask) !=
8992 vmcs12->page_fault_error_code_match;
8993 return inequality ^ bit;
8994}
8995
feaf0c7d
GN
8996static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
8997 struct x86_exception *fault)
8998{
8999 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9000
9001 WARN_ON(!is_guest_mode(vcpu));
9002
19d5f10b 9003 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
533558bc
JK
9004 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9005 vmcs_read32(VM_EXIT_INTR_INFO),
9006 vmcs_readl(EXIT_QUALIFICATION));
feaf0c7d
GN
9007 else
9008 kvm_inject_page_fault(vcpu, fault);
9009}
9010
a2bcba50
WL
9011static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9012 struct vmcs12 *vmcs12)
9013{
9014 struct vcpu_vmx *vmx = to_vmx(vcpu);
9090422f 9015 int maxphyaddr = cpuid_maxphyaddr(vcpu);
a2bcba50
WL
9016
9017 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9090422f
EK
9018 if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
9019 vmcs12->apic_access_addr >> maxphyaddr)
a2bcba50
WL
9020 return false;
9021
9022 /*
9023 * Translate L1 physical address to host physical
9024 * address for vmcs02. Keep the page pinned, so this
9025 * physical address remains valid. We keep a reference
9026 * to it so we can release it later.
9027 */
9028 if (vmx->nested.apic_access_page) /* shouldn't happen */
9029 nested_release_page(vmx->nested.apic_access_page);
9030 vmx->nested.apic_access_page =
9031 nested_get_page(vcpu, vmcs12->apic_access_addr);
9032 }
a7c0b07d
WL
9033
9034 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9090422f
EK
9035 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
9036 vmcs12->virtual_apic_page_addr >> maxphyaddr)
a7c0b07d
WL
9037 return false;
9038
9039 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9040 nested_release_page(vmx->nested.virtual_apic_page);
9041 vmx->nested.virtual_apic_page =
9042 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9043
9044 /*
9045 * Failing the vm entry is _not_ what the processor does
9046 * but it's basically the only possibility we have.
9047 * We could still enter the guest if CR8 load exits are
9048 * enabled, CR8 store exits are enabled, and virtualize APIC
9049 * access is disabled; in this case the processor would never
9050 * use the TPR shadow and we could simply clear the bit from
9051 * the execution control. But such a configuration is useless,
9052 * so let's keep the code simple.
9053 */
9054 if (!vmx->nested.virtual_apic_page)
9055 return false;
9056 }
9057
705699a1 9058 if (nested_cpu_has_posted_intr(vmcs12)) {
9090422f
EK
9059 if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
9060 vmcs12->posted_intr_desc_addr >> maxphyaddr)
705699a1
WV
9061 return false;
9062
9063 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9064 kunmap(vmx->nested.pi_desc_page);
9065 nested_release_page(vmx->nested.pi_desc_page);
9066 }
9067 vmx->nested.pi_desc_page =
9068 nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9069 if (!vmx->nested.pi_desc_page)
9070 return false;
9071
9072 vmx->nested.pi_desc =
9073 (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9074 if (!vmx->nested.pi_desc) {
9075 nested_release_page_clean(vmx->nested.pi_desc_page);
9076 return false;
9077 }
9078 vmx->nested.pi_desc =
9079 (struct pi_desc *)((void *)vmx->nested.pi_desc +
9080 (unsigned long)(vmcs12->posted_intr_desc_addr &
9081 (PAGE_SIZE - 1)));
9082 }
9083
a2bcba50
WL
9084 return true;
9085}
9086
f4124500
JK
9087static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9088{
9089 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9090 struct vcpu_vmx *vmx = to_vmx(vcpu);
9091
9092 if (vcpu->arch.virtual_tsc_khz == 0)
9093 return;
9094
9095 /* Make sure short timeouts reliably trigger an immediate vmexit.
9096 * hrtimer_start does not guarantee this. */
9097 if (preemption_timeout <= 1) {
9098 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9099 return;
9100 }
9101
9102 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9103 preemption_timeout *= 1000000;
9104 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9105 hrtimer_start(&vmx->nested.preemption_timer,
9106 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9107}
9108
3af18d9c
WV
9109static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9110 struct vmcs12 *vmcs12)
9111{
9112 int maxphyaddr;
9113 u64 addr;
9114
9115 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9116 return 0;
9117
9118 if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
9119 WARN_ON(1);
9120 return -EINVAL;
9121 }
9122 maxphyaddr = cpuid_maxphyaddr(vcpu);
9123
9124 if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
9125 ((addr + PAGE_SIZE) >> maxphyaddr))
9126 return -EINVAL;
9127
9128 return 0;
9129}
9130
9131/*
9132 * Merge L0's and L1's MSR bitmap, return false to indicate that
9133 * we do not use the hardware.
9134 */
9135static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9136 struct vmcs12 *vmcs12)
9137{
82f0dd4b 9138 int msr;
f2b93280
WV
9139 struct page *page;
9140 unsigned long *msr_bitmap;
9141
9142 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9143 return false;
9144
9145 page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9146 if (!page) {
9147 WARN_ON(1);
9148 return false;
9149 }
9150 msr_bitmap = (unsigned long *)kmap(page);
9151 if (!msr_bitmap) {
9152 nested_release_page_clean(page);
9153 WARN_ON(1);
9154 return false;
9155 }
9156
9157 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
82f0dd4b
WV
9158 if (nested_cpu_has_apic_reg_virt(vmcs12))
9159 for (msr = 0x800; msr <= 0x8ff; msr++)
9160 nested_vmx_disable_intercept_for_msr(
9161 msr_bitmap,
9162 vmx_msr_bitmap_nested,
9163 msr, MSR_TYPE_R);
f2b93280
WV
9164 /* TPR is allowed */
9165 nested_vmx_disable_intercept_for_msr(msr_bitmap,
9166 vmx_msr_bitmap_nested,
9167 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9168 MSR_TYPE_R | MSR_TYPE_W);
608406e2
WV
9169 if (nested_cpu_has_vid(vmcs12)) {
9170 /* EOI and self-IPI are allowed */
9171 nested_vmx_disable_intercept_for_msr(
9172 msr_bitmap,
9173 vmx_msr_bitmap_nested,
9174 APIC_BASE_MSR + (APIC_EOI >> 4),
9175 MSR_TYPE_W);
9176 nested_vmx_disable_intercept_for_msr(
9177 msr_bitmap,
9178 vmx_msr_bitmap_nested,
9179 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9180 MSR_TYPE_W);
9181 }
82f0dd4b
WV
9182 } else {
9183 /*
9184 * Enable reading intercept of all the x2apic
9185 * MSRs. We should not rely on vmcs12 to do any
9186 * optimizations here, it may have been modified
9187 * by L1.
9188 */
9189 for (msr = 0x800; msr <= 0x8ff; msr++)
9190 __vmx_enable_intercept_for_msr(
9191 vmx_msr_bitmap_nested,
9192 msr,
9193 MSR_TYPE_R);
9194
f2b93280
WV
9195 __vmx_enable_intercept_for_msr(
9196 vmx_msr_bitmap_nested,
9197 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
82f0dd4b 9198 MSR_TYPE_W);
608406e2
WV
9199 __vmx_enable_intercept_for_msr(
9200 vmx_msr_bitmap_nested,
9201 APIC_BASE_MSR + (APIC_EOI >> 4),
9202 MSR_TYPE_W);
9203 __vmx_enable_intercept_for_msr(
9204 vmx_msr_bitmap_nested,
9205 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9206 MSR_TYPE_W);
82f0dd4b 9207 }
f2b93280
WV
9208 kunmap(page);
9209 nested_release_page_clean(page);
9210
9211 return true;
9212}
9213
9214static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9215 struct vmcs12 *vmcs12)
9216{
82f0dd4b 9217 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
608406e2 9218 !nested_cpu_has_apic_reg_virt(vmcs12) &&
705699a1
WV
9219 !nested_cpu_has_vid(vmcs12) &&
9220 !nested_cpu_has_posted_intr(vmcs12))
f2b93280
WV
9221 return 0;
9222
9223 /*
9224 * If virtualize x2apic mode is enabled,
9225 * virtualize apic access must be disabled.
9226 */
82f0dd4b
WV
9227 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9228 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
f2b93280
WV
9229 return -EINVAL;
9230
608406e2
WV
9231 /*
9232 * If virtual interrupt delivery is enabled,
9233 * we must exit on external interrupts.
9234 */
9235 if (nested_cpu_has_vid(vmcs12) &&
9236 !nested_exit_on_intr(vcpu))
9237 return -EINVAL;
9238
705699a1
WV
9239 /*
9240 * bits 15:8 should be zero in posted_intr_nv,
9241 * the descriptor address has been already checked
9242 * in nested_get_vmcs12_pages.
9243 */
9244 if (nested_cpu_has_posted_intr(vmcs12) &&
9245 (!nested_cpu_has_vid(vmcs12) ||
9246 !nested_exit_intr_ack_set(vcpu) ||
9247 vmcs12->posted_intr_nv & 0xff00))
9248 return -EINVAL;
9249
f2b93280
WV
9250 /* tpr shadow is needed by all apicv features. */
9251 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9252 return -EINVAL;
9253
9254 return 0;
3af18d9c
WV
9255}
9256
e9ac033e
EK
9257static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9258 unsigned long count_field,
92d71bc6 9259 unsigned long addr_field)
ff651cb6 9260{
92d71bc6 9261 int maxphyaddr;
e9ac033e
EK
9262 u64 count, addr;
9263
9264 if (vmcs12_read_any(vcpu, count_field, &count) ||
9265 vmcs12_read_any(vcpu, addr_field, &addr)) {
9266 WARN_ON(1);
9267 return -EINVAL;
9268 }
9269 if (count == 0)
9270 return 0;
92d71bc6 9271 maxphyaddr = cpuid_maxphyaddr(vcpu);
e9ac033e
EK
9272 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9273 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9274 pr_warn_ratelimited(
9275 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9276 addr_field, maxphyaddr, count, addr);
9277 return -EINVAL;
9278 }
9279 return 0;
9280}
9281
9282static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9283 struct vmcs12 *vmcs12)
9284{
e9ac033e
EK
9285 if (vmcs12->vm_exit_msr_load_count == 0 &&
9286 vmcs12->vm_exit_msr_store_count == 0 &&
9287 vmcs12->vm_entry_msr_load_count == 0)
9288 return 0; /* Fast path */
e9ac033e 9289 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
92d71bc6 9290 VM_EXIT_MSR_LOAD_ADDR) ||
e9ac033e 9291 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
92d71bc6 9292 VM_EXIT_MSR_STORE_ADDR) ||
e9ac033e 9293 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
92d71bc6 9294 VM_ENTRY_MSR_LOAD_ADDR))
e9ac033e
EK
9295 return -EINVAL;
9296 return 0;
9297}
9298
9299static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9300 struct vmx_msr_entry *e)
9301{
9302 /* x2APIC MSR accesses are not allowed */
8a9781f7 9303 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
e9ac033e
EK
9304 return -EINVAL;
9305 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9306 e->index == MSR_IA32_UCODE_REV)
9307 return -EINVAL;
9308 if (e->reserved != 0)
ff651cb6
WV
9309 return -EINVAL;
9310 return 0;
9311}
9312
e9ac033e
EK
9313static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9314 struct vmx_msr_entry *e)
ff651cb6
WV
9315{
9316 if (e->index == MSR_FS_BASE ||
9317 e->index == MSR_GS_BASE ||
e9ac033e
EK
9318 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9319 nested_vmx_msr_check_common(vcpu, e))
9320 return -EINVAL;
9321 return 0;
9322}
9323
9324static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9325 struct vmx_msr_entry *e)
9326{
9327 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9328 nested_vmx_msr_check_common(vcpu, e))
ff651cb6
WV
9329 return -EINVAL;
9330 return 0;
9331}
9332
9333/*
9334 * Load guest's/host's msr at nested entry/exit.
9335 * return 0 for success, entry index for failure.
9336 */
9337static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9338{
9339 u32 i;
9340 struct vmx_msr_entry e;
9341 struct msr_data msr;
9342
9343 msr.host_initiated = false;
9344 for (i = 0; i < count; i++) {
54bf36aa
PB
9345 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9346 &e, sizeof(e))) {
e9ac033e
EK
9347 pr_warn_ratelimited(
9348 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9349 __func__, i, gpa + i * sizeof(e));
ff651cb6 9350 goto fail;
e9ac033e
EK
9351 }
9352 if (nested_vmx_load_msr_check(vcpu, &e)) {
9353 pr_warn_ratelimited(
9354 "%s check failed (%u, 0x%x, 0x%x)\n",
9355 __func__, i, e.index, e.reserved);
9356 goto fail;
9357 }
ff651cb6
WV
9358 msr.index = e.index;
9359 msr.data = e.value;
e9ac033e
EK
9360 if (kvm_set_msr(vcpu, &msr)) {
9361 pr_warn_ratelimited(
9362 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9363 __func__, i, e.index, e.value);
ff651cb6 9364 goto fail;
e9ac033e 9365 }
ff651cb6
WV
9366 }
9367 return 0;
9368fail:
9369 return i + 1;
9370}
9371
9372static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9373{
9374 u32 i;
9375 struct vmx_msr_entry e;
9376
9377 for (i = 0; i < count; i++) {
609e36d3 9378 struct msr_data msr_info;
54bf36aa
PB
9379 if (kvm_vcpu_read_guest(vcpu,
9380 gpa + i * sizeof(e),
9381 &e, 2 * sizeof(u32))) {
e9ac033e
EK
9382 pr_warn_ratelimited(
9383 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9384 __func__, i, gpa + i * sizeof(e));
ff651cb6 9385 return -EINVAL;
e9ac033e
EK
9386 }
9387 if (nested_vmx_store_msr_check(vcpu, &e)) {
9388 pr_warn_ratelimited(
9389 "%s check failed (%u, 0x%x, 0x%x)\n",
9390 __func__, i, e.index, e.reserved);
ff651cb6 9391 return -EINVAL;
e9ac033e 9392 }
609e36d3
PB
9393 msr_info.host_initiated = false;
9394 msr_info.index = e.index;
9395 if (kvm_get_msr(vcpu, &msr_info)) {
e9ac033e
EK
9396 pr_warn_ratelimited(
9397 "%s cannot read MSR (%u, 0x%x)\n",
9398 __func__, i, e.index);
9399 return -EINVAL;
9400 }
54bf36aa
PB
9401 if (kvm_vcpu_write_guest(vcpu,
9402 gpa + i * sizeof(e) +
9403 offsetof(struct vmx_msr_entry, value),
9404 &msr_info.data, sizeof(msr_info.data))) {
e9ac033e
EK
9405 pr_warn_ratelimited(
9406 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
609e36d3 9407 __func__, i, e.index, msr_info.data);
e9ac033e
EK
9408 return -EINVAL;
9409 }
ff651cb6
WV
9410 }
9411 return 0;
9412}
9413
fe3ef05c
NHE
9414/*
9415 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9416 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
b4619660 9417 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
fe3ef05c
NHE
9418 * guest in a way that will both be appropriate to L1's requests, and our
9419 * needs. In addition to modifying the active vmcs (which is vmcs02), this
9420 * function also has additional necessary side-effects, like setting various
9421 * vcpu->arch fields.
9422 */
9423static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9424{
9425 struct vcpu_vmx *vmx = to_vmx(vcpu);
9426 u32 exec_control;
9427
9428 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9429 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9430 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9431 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9432 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9433 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9434 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9435 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9436 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9437 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9438 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9439 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9440 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9441 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9442 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9443 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9444 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9445 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9446 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9447 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9448 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9449 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9450 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9451 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9452 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9453 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9454 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9455 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9456 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9457 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9458 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9459 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9460 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9461 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9462 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9463 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9464
2996fca0
JK
9465 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
9466 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9467 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9468 } else {
9469 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9470 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9471 }
fe3ef05c
NHE
9472 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9473 vmcs12->vm_entry_intr_info_field);
9474 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9475 vmcs12->vm_entry_exception_error_code);
9476 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9477 vmcs12->vm_entry_instruction_len);
9478 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9479 vmcs12->guest_interruptibility_info);
fe3ef05c 9480 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
63fbf59f 9481 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
fe3ef05c
NHE
9482 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9483 vmcs12->guest_pending_dbg_exceptions);
9484 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9485 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9486
81dc01f7
WL
9487 if (nested_cpu_has_xsaves(vmcs12))
9488 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
fe3ef05c
NHE
9489 vmcs_write64(VMCS_LINK_POINTER, -1ull);
9490
f4124500
JK
9491 exec_control = vmcs12->pin_based_vm_exec_control;
9492 exec_control |= vmcs_config.pin_based_exec_ctrl;
705699a1
WV
9493 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9494
9495 if (nested_cpu_has_posted_intr(vmcs12)) {
9496 /*
9497 * Note that we use L0's vector here and in
9498 * vmx_deliver_nested_posted_interrupt.
9499 */
9500 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9501 vmx->nested.pi_pending = false;
9502 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
9503 vmcs_write64(POSTED_INTR_DESC_ADDR,
9504 page_to_phys(vmx->nested.pi_desc_page) +
9505 (unsigned long)(vmcs12->posted_intr_desc_addr &
9506 (PAGE_SIZE - 1)));
9507 } else
9508 exec_control &= ~PIN_BASED_POSTED_INTR;
9509
f4124500 9510 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
fe3ef05c 9511
f4124500
JK
9512 vmx->nested.preemption_timer_expired = false;
9513 if (nested_cpu_has_preemption_timer(vmcs12))
9514 vmx_start_preemption_timer(vcpu);
0238ea91 9515
fe3ef05c
NHE
9516 /*
9517 * Whether page-faults are trapped is determined by a combination of
9518 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9519 * If enable_ept, L0 doesn't care about page faults and we should
9520 * set all of these to L1's desires. However, if !enable_ept, L0 does
9521 * care about (at least some) page faults, and because it is not easy
9522 * (if at all possible?) to merge L0 and L1's desires, we simply ask
9523 * to exit on each and every L2 page fault. This is done by setting
9524 * MASK=MATCH=0 and (see below) EB.PF=1.
9525 * Note that below we don't need special code to set EB.PF beyond the
9526 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9527 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9528 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9529 *
9530 * A problem with this approach (when !enable_ept) is that L1 may be
9531 * injected with more page faults than it asked for. This could have
9532 * caused problems, but in practice existing hypervisors don't care.
9533 * To fix this, we will need to emulate the PFEC checking (on the L1
9534 * page tables), using walk_addr(), when injecting PFs to L1.
9535 */
9536 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
9537 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
9538 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
9539 enable_ept ? vmcs12->page_fault_error_code_match : 0);
9540
9541 if (cpu_has_secondary_exec_ctrls()) {
f4124500 9542 exec_control = vmx_secondary_exec_control(vmx);
e2821620 9543
fe3ef05c 9544 /* Take the following fields only from vmcs12 */
696dfd95 9545 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
b3a2a907 9546 SECONDARY_EXEC_RDTSCP |
696dfd95 9547 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
8b3e34e4
XG
9548 SECONDARY_EXEC_APIC_REGISTER_VIRT |
9549 SECONDARY_EXEC_PCOMMIT);
fe3ef05c
NHE
9550 if (nested_cpu_has(vmcs12,
9551 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
9552 exec_control |= vmcs12->secondary_vm_exec_control;
9553
9554 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
fe3ef05c
NHE
9555 /*
9556 * If translation failed, no matter: This feature asks
9557 * to exit when accessing the given address, and if it
9558 * can never be accessed, this feature won't do
9559 * anything anyway.
9560 */
9561 if (!vmx->nested.apic_access_page)
9562 exec_control &=
9563 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9564 else
9565 vmcs_write64(APIC_ACCESS_ADDR,
9566 page_to_phys(vmx->nested.apic_access_page));
f2b93280 9567 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
35754c98 9568 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
ca3f257a
JK
9569 exec_control |=
9570 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
38b99173 9571 kvm_vcpu_reload_apic_access_page(vcpu);
fe3ef05c
NHE
9572 }
9573
608406e2
WV
9574 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
9575 vmcs_write64(EOI_EXIT_BITMAP0,
9576 vmcs12->eoi_exit_bitmap0);
9577 vmcs_write64(EOI_EXIT_BITMAP1,
9578 vmcs12->eoi_exit_bitmap1);
9579 vmcs_write64(EOI_EXIT_BITMAP2,
9580 vmcs12->eoi_exit_bitmap2);
9581 vmcs_write64(EOI_EXIT_BITMAP3,
9582 vmcs12->eoi_exit_bitmap3);
9583 vmcs_write16(GUEST_INTR_STATUS,
9584 vmcs12->guest_intr_status);
9585 }
9586
fe3ef05c
NHE
9587 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
9588 }
9589
9590
9591 /*
9592 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9593 * Some constant fields are set here by vmx_set_constant_host_state().
9594 * Other fields are different per CPU, and will be set later when
9595 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9596 */
a547c6db 9597 vmx_set_constant_host_state(vmx);
fe3ef05c
NHE
9598
9599 /*
9600 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9601 * entry, but only if the current (host) sp changed from the value
9602 * we wrote last (vmx->host_rsp). This cache is no longer relevant
9603 * if we switch vmcs, and rather than hold a separate cache per vmcs,
9604 * here we just force the write to happen on entry.
9605 */
9606 vmx->host_rsp = 0;
9607
9608 exec_control = vmx_exec_control(vmx); /* L0's desires */
9609 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
9610 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
9611 exec_control &= ~CPU_BASED_TPR_SHADOW;
9612 exec_control |= vmcs12->cpu_based_vm_exec_control;
a7c0b07d
WL
9613
9614 if (exec_control & CPU_BASED_TPR_SHADOW) {
9615 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
9616 page_to_phys(vmx->nested.virtual_apic_page));
9617 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
9618 }
9619
3af18d9c 9620 if (cpu_has_vmx_msr_bitmap() &&
670125bd
WV
9621 exec_control & CPU_BASED_USE_MSR_BITMAPS) {
9622 nested_vmx_merge_msr_bitmap(vcpu, vmcs12);
9623 /* MSR_BITMAP will be set by following vmx_set_efer. */
3af18d9c
WV
9624 } else
9625 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
9626
fe3ef05c 9627 /*
3af18d9c 9628 * Merging of IO bitmap not currently supported.
fe3ef05c
NHE
9629 * Rather, exit every time.
9630 */
fe3ef05c
NHE
9631 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
9632 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
9633
9634 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
9635
9636 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
9637 * bitwise-or of what L1 wants to trap for L2, and what we want to
9638 * trap. Note that CR0.TS also needs updating - we do this later.
9639 */
9640 update_exception_bitmap(vcpu);
9641 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
9642 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9643
8049d651
NHE
9644 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
9645 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
9646 * bits are further modified by vmx_set_efer() below.
9647 */
f4124500 9648 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8049d651
NHE
9649
9650 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
9651 * emulated by vmx_set_efer(), below.
9652 */
2961e876 9653 vm_entry_controls_init(vmx,
8049d651
NHE
9654 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
9655 ~VM_ENTRY_IA32E_MODE) |
fe3ef05c
NHE
9656 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
9657
44811c02 9658 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
fe3ef05c 9659 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
44811c02
JK
9660 vcpu->arch.pat = vmcs12->guest_ia32_pat;
9661 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
fe3ef05c
NHE
9662 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
9663
9664
9665 set_cr4_guest_host_mask(vmx);
9666
36be0b9d
PB
9667 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
9668 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
9669
27fc51b2
NHE
9670 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
9671 vmcs_write64(TSC_OFFSET,
9672 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
9673 else
9674 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
fe3ef05c
NHE
9675
9676 if (enable_vpid) {
9677 /*
5c614b35
WL
9678 * There is no direct mapping between vpid02 and vpid12, the
9679 * vpid02 is per-vCPU for L0 and reused while the value of
9680 * vpid12 is changed w/ one invvpid during nested vmentry.
9681 * The vpid12 is allocated by L1 for L2, so it will not
9682 * influence global bitmap(for vpid01 and vpid02 allocation)
9683 * even if spawn a lot of nested vCPUs.
fe3ef05c 9684 */
5c614b35
WL
9685 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
9686 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
9687 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
9688 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
9689 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
9690 }
9691 } else {
9692 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
9693 vmx_flush_tlb(vcpu);
9694 }
9695
fe3ef05c
NHE
9696 }
9697
155a97a3
NHE
9698 if (nested_cpu_has_ept(vmcs12)) {
9699 kvm_mmu_unload(vcpu);
9700 nested_ept_init_mmu_context(vcpu);
9701 }
9702
fe3ef05c
NHE
9703 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
9704 vcpu->arch.efer = vmcs12->guest_ia32_efer;
d1fa0352 9705 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
fe3ef05c
NHE
9706 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9707 else
9708 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9709 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
9710 vmx_set_efer(vcpu, vcpu->arch.efer);
9711
9712 /*
9713 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
9714 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
9715 * The CR0_READ_SHADOW is what L2 should have expected to read given
9716 * the specifications by L1; It's not enough to take
9717 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
9718 * have more bits than L1 expected.
9719 */
9720 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
9721 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
9722
9723 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
9724 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
9725
9726 /* shadow page tables on either EPT or shadow page tables */
9727 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
9728 kvm_mmu_reset_context(vcpu);
9729
feaf0c7d
GN
9730 if (!enable_ept)
9731 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
9732
3633cfc3
NHE
9733 /*
9734 * L1 may access the L2's PDPTR, so save them to construct vmcs12
9735 */
9736 if (enable_ept) {
9737 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
9738 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
9739 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
9740 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
9741 }
9742
fe3ef05c
NHE
9743 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
9744 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
9745}
9746
cd232ad0
NHE
9747/*
9748 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
9749 * for running an L2 nested guest.
9750 */
9751static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
9752{
9753 struct vmcs12 *vmcs12;
9754 struct vcpu_vmx *vmx = to_vmx(vcpu);
9755 int cpu;
9756 struct loaded_vmcs *vmcs02;
384bb783 9757 bool ia32e;
ff651cb6 9758 u32 msr_entry_idx;
cd232ad0
NHE
9759
9760 if (!nested_vmx_check_permission(vcpu) ||
9761 !nested_vmx_check_vmcs12(vcpu))
9762 return 1;
9763
9764 skip_emulated_instruction(vcpu);
9765 vmcs12 = get_vmcs12(vcpu);
9766
012f83cb
AG
9767 if (enable_shadow_vmcs)
9768 copy_shadow_to_vmcs12(vmx);
9769
7c177938
NHE
9770 /*
9771 * The nested entry process starts with enforcing various prerequisites
9772 * on vmcs12 as required by the Intel SDM, and act appropriately when
9773 * they fail: As the SDM explains, some conditions should cause the
9774 * instruction to fail, while others will cause the instruction to seem
9775 * to succeed, but return an EXIT_REASON_INVALID_STATE.
9776 * To speed up the normal (success) code path, we should avoid checking
9777 * for misconfigurations which will anyway be caught by the processor
9778 * when using the merged vmcs02.
9779 */
9780 if (vmcs12->launch_state == launch) {
9781 nested_vmx_failValid(vcpu,
9782 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
9783 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
9784 return 1;
9785 }
9786
6dfacadd
JK
9787 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
9788 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
26539bd0
PB
9789 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9790 return 1;
9791 }
9792
3af18d9c 9793 if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
7c177938
NHE
9794 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9795 return 1;
9796 }
9797
3af18d9c 9798 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
7c177938
NHE
9799 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9800 return 1;
9801 }
9802
f2b93280
WV
9803 if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
9804 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9805 return 1;
9806 }
9807
e9ac033e
EK
9808 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
9809 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9810 return 1;
9811 }
9812
7c177938 9813 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
b9c237bb
WV
9814 vmx->nested.nested_vmx_true_procbased_ctls_low,
9815 vmx->nested.nested_vmx_procbased_ctls_high) ||
7c177938 9816 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
b9c237bb
WV
9817 vmx->nested.nested_vmx_secondary_ctls_low,
9818 vmx->nested.nested_vmx_secondary_ctls_high) ||
7c177938 9819 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
b9c237bb
WV
9820 vmx->nested.nested_vmx_pinbased_ctls_low,
9821 vmx->nested.nested_vmx_pinbased_ctls_high) ||
7c177938 9822 !vmx_control_verify(vmcs12->vm_exit_controls,
b9c237bb
WV
9823 vmx->nested.nested_vmx_true_exit_ctls_low,
9824 vmx->nested.nested_vmx_exit_ctls_high) ||
7c177938 9825 !vmx_control_verify(vmcs12->vm_entry_controls,
b9c237bb
WV
9826 vmx->nested.nested_vmx_true_entry_ctls_low,
9827 vmx->nested.nested_vmx_entry_ctls_high))
7c177938
NHE
9828 {
9829 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9830 return 1;
9831 }
9832
9833 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
9834 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9835 nested_vmx_failValid(vcpu,
9836 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
9837 return 1;
9838 }
9839
b9c237bb 9840 if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
7c177938
NHE
9841 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9842 nested_vmx_entry_failure(vcpu, vmcs12,
9843 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9844 return 1;
9845 }
9846 if (vmcs12->vmcs_link_pointer != -1ull) {
9847 nested_vmx_entry_failure(vcpu, vmcs12,
9848 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
9849 return 1;
9850 }
9851
384bb783 9852 /*
cb0c8cda 9853 * If the load IA32_EFER VM-entry control is 1, the following checks
384bb783
JK
9854 * are performed on the field for the IA32_EFER MSR:
9855 * - Bits reserved in the IA32_EFER MSR must be 0.
9856 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
9857 * the IA-32e mode guest VM-exit control. It must also be identical
9858 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
9859 * CR0.PG) is 1.
9860 */
9861 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
9862 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
9863 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
9864 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
9865 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
9866 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
9867 nested_vmx_entry_failure(vcpu, vmcs12,
9868 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9869 return 1;
9870 }
9871 }
9872
9873 /*
9874 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
9875 * IA32_EFER MSR must be 0 in the field for that register. In addition,
9876 * the values of the LMA and LME bits in the field must each be that of
9877 * the host address-space size VM-exit control.
9878 */
9879 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
9880 ia32e = (vmcs12->vm_exit_controls &
9881 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
9882 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
9883 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
9884 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
9885 nested_vmx_entry_failure(vcpu, vmcs12,
9886 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9887 return 1;
9888 }
9889 }
9890
7c177938
NHE
9891 /*
9892 * We're finally done with prerequisite checking, and can start with
9893 * the nested entry.
9894 */
9895
cd232ad0
NHE
9896 vmcs02 = nested_get_current_vmcs02(vmx);
9897 if (!vmcs02)
9898 return -ENOMEM;
9899
9900 enter_guest_mode(vcpu);
9901
9902 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
9903
2996fca0
JK
9904 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
9905 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
9906
cd232ad0
NHE
9907 cpu = get_cpu();
9908 vmx->loaded_vmcs = vmcs02;
9909 vmx_vcpu_put(vcpu);
9910 vmx_vcpu_load(vcpu, cpu);
9911 vcpu->cpu = cpu;
9912 put_cpu();
9913
36c3cc42
JK
9914 vmx_segment_cache_clear(vmx);
9915
cd232ad0
NHE
9916 prepare_vmcs02(vcpu, vmcs12);
9917
ff651cb6
WV
9918 msr_entry_idx = nested_vmx_load_msr(vcpu,
9919 vmcs12->vm_entry_msr_load_addr,
9920 vmcs12->vm_entry_msr_load_count);
9921 if (msr_entry_idx) {
9922 leave_guest_mode(vcpu);
9923 vmx_load_vmcs01(vcpu);
9924 nested_vmx_entry_failure(vcpu, vmcs12,
9925 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
9926 return 1;
9927 }
9928
9929 vmcs12->launch_state = 1;
9930
6dfacadd 9931 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
5cb56059 9932 return kvm_vcpu_halt(vcpu);
6dfacadd 9933
7af40ad3
JK
9934 vmx->nested.nested_run_pending = 1;
9935
cd232ad0
NHE
9936 /*
9937 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
9938 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
9939 * returned as far as L1 is concerned. It will only return (and set
9940 * the success flag) when L2 exits (see nested_vmx_vmexit()).
9941 */
9942 return 1;
9943}
9944
4704d0be
NHE
9945/*
9946 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
9947 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
9948 * This function returns the new value we should put in vmcs12.guest_cr0.
9949 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
9950 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
9951 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
9952 * didn't trap the bit, because if L1 did, so would L0).
9953 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
9954 * been modified by L2, and L1 knows it. So just leave the old value of
9955 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
9956 * isn't relevant, because if L0 traps this bit it can set it to anything.
9957 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
9958 * changed these bits, and therefore they need to be updated, but L0
9959 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
9960 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
9961 */
9962static inline unsigned long
9963vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9964{
9965 return
9966 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
9967 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
9968 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
9969 vcpu->arch.cr0_guest_owned_bits));
9970}
9971
9972static inline unsigned long
9973vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9974{
9975 return
9976 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
9977 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
9978 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
9979 vcpu->arch.cr4_guest_owned_bits));
9980}
9981
5f3d5799
JK
9982static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
9983 struct vmcs12 *vmcs12)
9984{
9985 u32 idt_vectoring;
9986 unsigned int nr;
9987
851eb667 9988 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
5f3d5799
JK
9989 nr = vcpu->arch.exception.nr;
9990 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
9991
9992 if (kvm_exception_is_soft(nr)) {
9993 vmcs12->vm_exit_instruction_len =
9994 vcpu->arch.event_exit_inst_len;
9995 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
9996 } else
9997 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
9998
9999 if (vcpu->arch.exception.has_error_code) {
10000 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10001 vmcs12->idt_vectoring_error_code =
10002 vcpu->arch.exception.error_code;
10003 }
10004
10005 vmcs12->idt_vectoring_info_field = idt_vectoring;
cd2633c5 10006 } else if (vcpu->arch.nmi_injected) {
5f3d5799
JK
10007 vmcs12->idt_vectoring_info_field =
10008 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10009 } else if (vcpu->arch.interrupt.pending) {
10010 nr = vcpu->arch.interrupt.nr;
10011 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10012
10013 if (vcpu->arch.interrupt.soft) {
10014 idt_vectoring |= INTR_TYPE_SOFT_INTR;
10015 vmcs12->vm_entry_instruction_len =
10016 vcpu->arch.event_exit_inst_len;
10017 } else
10018 idt_vectoring |= INTR_TYPE_EXT_INTR;
10019
10020 vmcs12->idt_vectoring_info_field = idt_vectoring;
10021 }
10022}
10023
b6b8a145
JK
10024static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10025{
10026 struct vcpu_vmx *vmx = to_vmx(vcpu);
10027
f4124500
JK
10028 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10029 vmx->nested.preemption_timer_expired) {
10030 if (vmx->nested.nested_run_pending)
10031 return -EBUSY;
10032 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10033 return 0;
10034 }
10035
b6b8a145 10036 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
220c5672
JK
10037 if (vmx->nested.nested_run_pending ||
10038 vcpu->arch.interrupt.pending)
b6b8a145
JK
10039 return -EBUSY;
10040 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10041 NMI_VECTOR | INTR_TYPE_NMI_INTR |
10042 INTR_INFO_VALID_MASK, 0);
10043 /*
10044 * The NMI-triggered VM exit counts as injection:
10045 * clear this one and block further NMIs.
10046 */
10047 vcpu->arch.nmi_pending = 0;
10048 vmx_set_nmi_mask(vcpu, true);
10049 return 0;
10050 }
10051
10052 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10053 nested_exit_on_intr(vcpu)) {
10054 if (vmx->nested.nested_run_pending)
10055 return -EBUSY;
10056 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
705699a1 10057 return 0;
b6b8a145
JK
10058 }
10059
705699a1 10060 return vmx_complete_nested_posted_interrupt(vcpu);
b6b8a145
JK
10061}
10062
f4124500
JK
10063static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10064{
10065 ktime_t remaining =
10066 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10067 u64 value;
10068
10069 if (ktime_to_ns(remaining) <= 0)
10070 return 0;
10071
10072 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10073 do_div(value, 1000000);
10074 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10075}
10076
4704d0be
NHE
10077/*
10078 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10079 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10080 * and this function updates it to reflect the changes to the guest state while
10081 * L2 was running (and perhaps made some exits which were handled directly by L0
10082 * without going back to L1), and to reflect the exit reason.
10083 * Note that we do not have to copy here all VMCS fields, just those that
10084 * could have changed by the L2 guest or the exit - i.e., the guest-state and
10085 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10086 * which already writes to vmcs12 directly.
10087 */
533558bc
JK
10088static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10089 u32 exit_reason, u32 exit_intr_info,
10090 unsigned long exit_qualification)
4704d0be
NHE
10091{
10092 /* update guest state fields: */
10093 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10094 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10095
4704d0be
NHE
10096 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10097 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10098 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10099
10100 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10101 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10102 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10103 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10104 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10105 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10106 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10107 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10108 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10109 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10110 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10111 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10112 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10113 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10114 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10115 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10116 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10117 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10118 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10119 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10120 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10121 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10122 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10123 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10124 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10125 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10126 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10127 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10128 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10129 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10130 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10131 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10132 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10133 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10134 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10135 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10136
4704d0be
NHE
10137 vmcs12->guest_interruptibility_info =
10138 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10139 vmcs12->guest_pending_dbg_exceptions =
10140 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3edf1e69
JK
10141 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10142 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10143 else
10144 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4704d0be 10145
f4124500
JK
10146 if (nested_cpu_has_preemption_timer(vmcs12)) {
10147 if (vmcs12->vm_exit_controls &
10148 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10149 vmcs12->vmx_preemption_timer_value =
10150 vmx_get_preemption_timer_value(vcpu);
10151 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10152 }
7854cbca 10153
3633cfc3
NHE
10154 /*
10155 * In some cases (usually, nested EPT), L2 is allowed to change its
10156 * own CR3 without exiting. If it has changed it, we must keep it.
10157 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10158 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10159 *
10160 * Additionally, restore L2's PDPTR to vmcs12.
10161 */
10162 if (enable_ept) {
10163 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
10164 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10165 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10166 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10167 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10168 }
10169
608406e2
WV
10170 if (nested_cpu_has_vid(vmcs12))
10171 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10172
c18911a2
JK
10173 vmcs12->vm_entry_controls =
10174 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
2961e876 10175 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
c18911a2 10176
2996fca0
JK
10177 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10178 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10179 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10180 }
10181
4704d0be
NHE
10182 /* TODO: These cannot have changed unless we have MSR bitmaps and
10183 * the relevant bit asks not to trap the change */
b8c07d55 10184 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
4704d0be 10185 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10ba54a5
JK
10186 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10187 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4704d0be
NHE
10188 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10189 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10190 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
36be0b9d
PB
10191 if (vmx_mpx_supported())
10192 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
81dc01f7
WL
10193 if (nested_cpu_has_xsaves(vmcs12))
10194 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
4704d0be
NHE
10195
10196 /* update exit information fields: */
10197
533558bc
JK
10198 vmcs12->vm_exit_reason = exit_reason;
10199 vmcs12->exit_qualification = exit_qualification;
4704d0be 10200
533558bc 10201 vmcs12->vm_exit_intr_info = exit_intr_info;
c0d1c770
JK
10202 if ((vmcs12->vm_exit_intr_info &
10203 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10204 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10205 vmcs12->vm_exit_intr_error_code =
10206 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5f3d5799 10207 vmcs12->idt_vectoring_info_field = 0;
4704d0be
NHE
10208 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10209 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10210
5f3d5799
JK
10211 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10212 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10213 * instead of reading the real value. */
4704d0be 10214 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
5f3d5799
JK
10215
10216 /*
10217 * Transfer the event that L0 or L1 may wanted to inject into
10218 * L2 to IDT_VECTORING_INFO_FIELD.
10219 */
10220 vmcs12_save_pending_event(vcpu, vmcs12);
10221 }
10222
10223 /*
10224 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10225 * preserved above and would only end up incorrectly in L1.
10226 */
10227 vcpu->arch.nmi_injected = false;
10228 kvm_clear_exception_queue(vcpu);
10229 kvm_clear_interrupt_queue(vcpu);
4704d0be
NHE
10230}
10231
10232/*
10233 * A part of what we need to when the nested L2 guest exits and we want to
10234 * run its L1 parent, is to reset L1's guest state to the host state specified
10235 * in vmcs12.
10236 * This function is to be called not only on normal nested exit, but also on
10237 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10238 * Failures During or After Loading Guest State").
10239 * This function should be called when the active VMCS is L1's (vmcs01).
10240 */
733568f9
JK
10241static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10242 struct vmcs12 *vmcs12)
4704d0be 10243{
21feb4eb
ACL
10244 struct kvm_segment seg;
10245
4704d0be
NHE
10246 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10247 vcpu->arch.efer = vmcs12->host_ia32_efer;
d1fa0352 10248 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4704d0be
NHE
10249 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10250 else
10251 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10252 vmx_set_efer(vcpu, vcpu->arch.efer);
10253
10254 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10255 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
1adfa76a 10256 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4704d0be
NHE
10257 /*
10258 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10259 * actually changed, because it depends on the current state of
10260 * fpu_active (which may have changed).
10261 * Note that vmx_set_cr0 refers to efer set above.
10262 */
9e3e4dbf 10263 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4704d0be
NHE
10264 /*
10265 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
10266 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
10267 * but we also need to update cr0_guest_host_mask and exception_bitmap.
10268 */
10269 update_exception_bitmap(vcpu);
10270 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
10271 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10272
10273 /*
10274 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
10275 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
10276 */
10277 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10278 kvm_set_cr4(vcpu, vmcs12->host_cr4);
10279
29bf08f1 10280 nested_ept_uninit_mmu_context(vcpu);
155a97a3 10281
4704d0be
NHE
10282 kvm_set_cr3(vcpu, vmcs12->host_cr3);
10283 kvm_mmu_reset_context(vcpu);
10284
feaf0c7d
GN
10285 if (!enable_ept)
10286 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10287
4704d0be
NHE
10288 if (enable_vpid) {
10289 /*
10290 * Trivially support vpid by letting L2s share their parent
10291 * L1's vpid. TODO: move to a more elaborate solution, giving
10292 * each L2 its own vpid and exposing the vpid feature to L1.
10293 */
10294 vmx_flush_tlb(vcpu);
10295 }
10296
10297
10298 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10299 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10300 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10301 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10302 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4704d0be 10303
36be0b9d
PB
10304 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
10305 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10306 vmcs_write64(GUEST_BNDCFGS, 0);
10307
44811c02 10308 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4704d0be 10309 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
44811c02
JK
10310 vcpu->arch.pat = vmcs12->host_ia32_pat;
10311 }
4704d0be
NHE
10312 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10313 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10314 vmcs12->host_ia32_perf_global_ctrl);
503cd0c5 10315
21feb4eb
ACL
10316 /* Set L1 segment info according to Intel SDM
10317 27.5.2 Loading Host Segment and Descriptor-Table Registers */
10318 seg = (struct kvm_segment) {
10319 .base = 0,
10320 .limit = 0xFFFFFFFF,
10321 .selector = vmcs12->host_cs_selector,
10322 .type = 11,
10323 .present = 1,
10324 .s = 1,
10325 .g = 1
10326 };
10327 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10328 seg.l = 1;
10329 else
10330 seg.db = 1;
10331 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10332 seg = (struct kvm_segment) {
10333 .base = 0,
10334 .limit = 0xFFFFFFFF,
10335 .type = 3,
10336 .present = 1,
10337 .s = 1,
10338 .db = 1,
10339 .g = 1
10340 };
10341 seg.selector = vmcs12->host_ds_selector;
10342 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10343 seg.selector = vmcs12->host_es_selector;
10344 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10345 seg.selector = vmcs12->host_ss_selector;
10346 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10347 seg.selector = vmcs12->host_fs_selector;
10348 seg.base = vmcs12->host_fs_base;
10349 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10350 seg.selector = vmcs12->host_gs_selector;
10351 seg.base = vmcs12->host_gs_base;
10352 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10353 seg = (struct kvm_segment) {
205befd9 10354 .base = vmcs12->host_tr_base,
21feb4eb
ACL
10355 .limit = 0x67,
10356 .selector = vmcs12->host_tr_selector,
10357 .type = 11,
10358 .present = 1
10359 };
10360 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10361
503cd0c5
JK
10362 kvm_set_dr(vcpu, 7, 0x400);
10363 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
ff651cb6 10364
3af18d9c
WV
10365 if (cpu_has_vmx_msr_bitmap())
10366 vmx_set_msr_bitmap(vcpu);
10367
ff651cb6
WV
10368 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10369 vmcs12->vm_exit_msr_load_count))
10370 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4704d0be
NHE
10371}
10372
10373/*
10374 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10375 * and modify vmcs12 to make it see what it would expect to see there if
10376 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10377 */
533558bc
JK
10378static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10379 u32 exit_intr_info,
10380 unsigned long exit_qualification)
4704d0be
NHE
10381{
10382 struct vcpu_vmx *vmx = to_vmx(vcpu);
4704d0be
NHE
10383 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10384
5f3d5799
JK
10385 /* trying to cancel vmlaunch/vmresume is a bug */
10386 WARN_ON_ONCE(vmx->nested.nested_run_pending);
10387
4704d0be 10388 leave_guest_mode(vcpu);
533558bc
JK
10389 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10390 exit_qualification);
4704d0be 10391
ff651cb6
WV
10392 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10393 vmcs12->vm_exit_msr_store_count))
10394 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10395
f3380ca5
WL
10396 vmx_load_vmcs01(vcpu);
10397
77b0f5d6
BD
10398 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10399 && nested_exit_intr_ack_set(vcpu)) {
10400 int irq = kvm_cpu_get_interrupt(vcpu);
10401 WARN_ON(irq < 0);
10402 vmcs12->vm_exit_intr_info = irq |
10403 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10404 }
10405
542060ea
JK
10406 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10407 vmcs12->exit_qualification,
10408 vmcs12->idt_vectoring_info_field,
10409 vmcs12->vm_exit_intr_info,
10410 vmcs12->vm_exit_intr_error_code,
10411 KVM_ISA_VMX);
4704d0be 10412
2961e876
GN
10413 vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
10414 vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
36c3cc42
JK
10415 vmx_segment_cache_clear(vmx);
10416
4704d0be
NHE
10417 /* if no vmcs02 cache requested, remove the one we used */
10418 if (VMCS02_POOL_SIZE == 0)
10419 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
10420
10421 load_vmcs12_host_state(vcpu, vmcs12);
10422
27fc51b2 10423 /* Update TSC_OFFSET if TSC was changed while L2 ran */
4704d0be
NHE
10424 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
10425
10426 /* This is needed for same reason as it was needed in prepare_vmcs02 */
10427 vmx->host_rsp = 0;
10428
10429 /* Unpin physical memory we referred to in vmcs02 */
10430 if (vmx->nested.apic_access_page) {
10431 nested_release_page(vmx->nested.apic_access_page);
48d89b92 10432 vmx->nested.apic_access_page = NULL;
4704d0be 10433 }
a7c0b07d
WL
10434 if (vmx->nested.virtual_apic_page) {
10435 nested_release_page(vmx->nested.virtual_apic_page);
48d89b92 10436 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 10437 }
705699a1
WV
10438 if (vmx->nested.pi_desc_page) {
10439 kunmap(vmx->nested.pi_desc_page);
10440 nested_release_page(vmx->nested.pi_desc_page);
10441 vmx->nested.pi_desc_page = NULL;
10442 vmx->nested.pi_desc = NULL;
10443 }
4704d0be 10444
38b99173
TC
10445 /*
10446 * We are now running in L2, mmu_notifier will force to reload the
10447 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10448 */
10449 kvm_vcpu_reload_apic_access_page(vcpu);
10450
4704d0be
NHE
10451 /*
10452 * Exiting from L2 to L1, we're now back to L1 which thinks it just
10453 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10454 * success or failure flag accordingly.
10455 */
10456 if (unlikely(vmx->fail)) {
10457 vmx->fail = 0;
10458 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
10459 } else
10460 nested_vmx_succeed(vcpu);
012f83cb
AG
10461 if (enable_shadow_vmcs)
10462 vmx->nested.sync_shadow_vmcs = true;
b6b8a145
JK
10463
10464 /* in case we halted in L2 */
10465 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4704d0be
NHE
10466}
10467
42124925
JK
10468/*
10469 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10470 */
10471static void vmx_leave_nested(struct kvm_vcpu *vcpu)
10472{
10473 if (is_guest_mode(vcpu))
533558bc 10474 nested_vmx_vmexit(vcpu, -1, 0, 0);
42124925
JK
10475 free_nested(to_vmx(vcpu));
10476}
10477
7c177938
NHE
10478/*
10479 * L1's failure to enter L2 is a subset of a normal exit, as explained in
10480 * 23.7 "VM-entry failures during or after loading guest state" (this also
10481 * lists the acceptable exit-reason and exit-qualification parameters).
10482 * It should only be called before L2 actually succeeded to run, and when
10483 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10484 */
10485static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
10486 struct vmcs12 *vmcs12,
10487 u32 reason, unsigned long qualification)
10488{
10489 load_vmcs12_host_state(vcpu, vmcs12);
10490 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
10491 vmcs12->exit_qualification = qualification;
10492 nested_vmx_succeed(vcpu);
012f83cb
AG
10493 if (enable_shadow_vmcs)
10494 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
7c177938
NHE
10495}
10496
8a76d7f2
JR
10497static int vmx_check_intercept(struct kvm_vcpu *vcpu,
10498 struct x86_instruction_info *info,
10499 enum x86_intercept_stage stage)
10500{
10501 return X86EMUL_CONTINUE;
10502}
10503
48d89b92 10504static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
ae97a3b8 10505{
b4a2d31d
RK
10506 if (ple_gap)
10507 shrink_ple_window(vcpu);
ae97a3b8
RK
10508}
10509
843e4330
KH
10510static void vmx_slot_enable_log_dirty(struct kvm *kvm,
10511 struct kvm_memory_slot *slot)
10512{
10513 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
10514 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
10515}
10516
10517static void vmx_slot_disable_log_dirty(struct kvm *kvm,
10518 struct kvm_memory_slot *slot)
10519{
10520 kvm_mmu_slot_set_dirty(kvm, slot);
10521}
10522
10523static void vmx_flush_log_dirty(struct kvm *kvm)
10524{
10525 kvm_flush_pml_buffers(kvm);
10526}
10527
10528static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
10529 struct kvm_memory_slot *memslot,
10530 gfn_t offset, unsigned long mask)
10531{
10532 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
10533}
10534
bf9f6ac8
FW
10535/*
10536 * This routine does the following things for vCPU which is going
10537 * to be blocked if VT-d PI is enabled.
10538 * - Store the vCPU to the wakeup list, so when interrupts happen
10539 * we can find the right vCPU to wake up.
10540 * - Change the Posted-interrupt descriptor as below:
10541 * 'NDST' <-- vcpu->pre_pcpu
10542 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
10543 * - If 'ON' is set during this process, which means at least one
10544 * interrupt is posted for this vCPU, we cannot block it, in
10545 * this case, return 1, otherwise, return 0.
10546 *
10547 */
10548static int vmx_pre_block(struct kvm_vcpu *vcpu)
10549{
10550 unsigned long flags;
10551 unsigned int dest;
10552 struct pi_desc old, new;
10553 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10554
10555 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10556 !irq_remapping_cap(IRQ_POSTING_CAP))
10557 return 0;
10558
10559 vcpu->pre_pcpu = vcpu->cpu;
10560 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10561 vcpu->pre_pcpu), flags);
10562 list_add_tail(&vcpu->blocked_vcpu_list,
10563 &per_cpu(blocked_vcpu_on_cpu,
10564 vcpu->pre_pcpu));
10565 spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
10566 vcpu->pre_pcpu), flags);
10567
10568 do {
10569 old.control = new.control = pi_desc->control;
10570
10571 /*
10572 * We should not block the vCPU if
10573 * an interrupt is posted for it.
10574 */
10575 if (pi_test_on(pi_desc) == 1) {
10576 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10577 vcpu->pre_pcpu), flags);
10578 list_del(&vcpu->blocked_vcpu_list);
10579 spin_unlock_irqrestore(
10580 &per_cpu(blocked_vcpu_on_cpu_lock,
10581 vcpu->pre_pcpu), flags);
10582 vcpu->pre_pcpu = -1;
10583
10584 return 1;
10585 }
10586
10587 WARN((pi_desc->sn == 1),
10588 "Warning: SN field of posted-interrupts "
10589 "is set before blocking\n");
10590
10591 /*
10592 * Since vCPU can be preempted during this process,
10593 * vcpu->cpu could be different with pre_pcpu, we
10594 * need to set pre_pcpu as the destination of wakeup
10595 * notification event, then we can find the right vCPU
10596 * to wakeup in wakeup handler if interrupts happen
10597 * when the vCPU is in blocked state.
10598 */
10599 dest = cpu_physical_id(vcpu->pre_pcpu);
10600
10601 if (x2apic_enabled())
10602 new.ndst = dest;
10603 else
10604 new.ndst = (dest << 8) & 0xFF00;
10605
10606 /* set 'NV' to 'wakeup vector' */
10607 new.nv = POSTED_INTR_WAKEUP_VECTOR;
10608 } while (cmpxchg(&pi_desc->control, old.control,
10609 new.control) != old.control);
10610
10611 return 0;
10612}
10613
10614static void vmx_post_block(struct kvm_vcpu *vcpu)
10615{
10616 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10617 struct pi_desc old, new;
10618 unsigned int dest;
10619 unsigned long flags;
10620
10621 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10622 !irq_remapping_cap(IRQ_POSTING_CAP))
10623 return;
10624
10625 do {
10626 old.control = new.control = pi_desc->control;
10627
10628 dest = cpu_physical_id(vcpu->cpu);
10629
10630 if (x2apic_enabled())
10631 new.ndst = dest;
10632 else
10633 new.ndst = (dest << 8) & 0xFF00;
10634
10635 /* Allow posting non-urgent interrupts */
10636 new.sn = 0;
10637
10638 /* set 'NV' to 'notification vector' */
10639 new.nv = POSTED_INTR_VECTOR;
10640 } while (cmpxchg(&pi_desc->control, old.control,
10641 new.control) != old.control);
10642
10643 if(vcpu->pre_pcpu != -1) {
10644 spin_lock_irqsave(
10645 &per_cpu(blocked_vcpu_on_cpu_lock,
10646 vcpu->pre_pcpu), flags);
10647 list_del(&vcpu->blocked_vcpu_list);
10648 spin_unlock_irqrestore(
10649 &per_cpu(blocked_vcpu_on_cpu_lock,
10650 vcpu->pre_pcpu), flags);
10651 vcpu->pre_pcpu = -1;
10652 }
10653}
10654
efc64404
FW
10655/*
10656 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
10657 *
10658 * @kvm: kvm
10659 * @host_irq: host irq of the interrupt
10660 * @guest_irq: gsi of the interrupt
10661 * @set: set or unset PI
10662 * returns 0 on success, < 0 on failure
10663 */
10664static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
10665 uint32_t guest_irq, bool set)
10666{
10667 struct kvm_kernel_irq_routing_entry *e;
10668 struct kvm_irq_routing_table *irq_rt;
10669 struct kvm_lapic_irq irq;
10670 struct kvm_vcpu *vcpu;
10671 struct vcpu_data vcpu_info;
10672 int idx, ret = -EINVAL;
10673
10674 if (!kvm_arch_has_assigned_device(kvm) ||
10675 !irq_remapping_cap(IRQ_POSTING_CAP))
10676 return 0;
10677
10678 idx = srcu_read_lock(&kvm->irq_srcu);
10679 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
10680 BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
10681
10682 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
10683 if (e->type != KVM_IRQ_ROUTING_MSI)
10684 continue;
10685 /*
10686 * VT-d PI cannot support posting multicast/broadcast
10687 * interrupts to a vCPU, we still use interrupt remapping
10688 * for these kind of interrupts.
10689 *
10690 * For lowest-priority interrupts, we only support
10691 * those with single CPU as the destination, e.g. user
10692 * configures the interrupts via /proc/irq or uses
10693 * irqbalance to make the interrupts single-CPU.
10694 *
10695 * We will support full lowest-priority interrupt later.
10696 */
10697
10698 kvm_set_msi_irq(e, &irq);
10699 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu))
10700 continue;
10701
10702 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
10703 vcpu_info.vector = irq.vector;
10704
10705 trace_kvm_pi_irte_update(vcpu->vcpu_id, e->gsi,
10706 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
10707
10708 if (set)
10709 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
10710 else {
10711 /* suppress notification event before unposting */
10712 pi_set_sn(vcpu_to_pi_desc(vcpu));
10713 ret = irq_set_vcpu_affinity(host_irq, NULL);
10714 pi_clear_sn(vcpu_to_pi_desc(vcpu));
10715 }
10716
10717 if (ret < 0) {
10718 printk(KERN_INFO "%s: failed to update PI IRTE\n",
10719 __func__);
10720 goto out;
10721 }
10722 }
10723
10724 ret = 0;
10725out:
10726 srcu_read_unlock(&kvm->irq_srcu, idx);
10727 return ret;
10728}
10729
cbdd1bea 10730static struct kvm_x86_ops vmx_x86_ops = {
6aa8b732
AK
10731 .cpu_has_kvm_support = cpu_has_kvm_support,
10732 .disabled_by_bios = vmx_disabled_by_bios,
10733 .hardware_setup = hardware_setup,
10734 .hardware_unsetup = hardware_unsetup,
002c7f7c 10735 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
10736 .hardware_enable = hardware_enable,
10737 .hardware_disable = hardware_disable,
04547156 10738 .cpu_has_accelerated_tpr = report_flexpriority,
6d396b55 10739 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
6aa8b732
AK
10740
10741 .vcpu_create = vmx_create_vcpu,
10742 .vcpu_free = vmx_free_vcpu,
04d2cc77 10743 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 10744
04d2cc77 10745 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
10746 .vcpu_load = vmx_vcpu_load,
10747 .vcpu_put = vmx_vcpu_put,
10748
c8639010 10749 .update_db_bp_intercept = update_exception_bitmap,
6aa8b732
AK
10750 .get_msr = vmx_get_msr,
10751 .set_msr = vmx_set_msr,
10752 .get_segment_base = vmx_get_segment_base,
10753 .get_segment = vmx_get_segment,
10754 .set_segment = vmx_set_segment,
2e4d2653 10755 .get_cpl = vmx_get_cpl,
6aa8b732 10756 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 10757 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 10758 .decache_cr3 = vmx_decache_cr3,
25c4c276 10759 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 10760 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
10761 .set_cr3 = vmx_set_cr3,
10762 .set_cr4 = vmx_set_cr4,
6aa8b732 10763 .set_efer = vmx_set_efer,
6aa8b732
AK
10764 .get_idt = vmx_get_idt,
10765 .set_idt = vmx_set_idt,
10766 .get_gdt = vmx_get_gdt,
10767 .set_gdt = vmx_set_gdt,
73aaf249
JK
10768 .get_dr6 = vmx_get_dr6,
10769 .set_dr6 = vmx_set_dr6,
020df079 10770 .set_dr7 = vmx_set_dr7,
81908bf4 10771 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
5fdbf976 10772 .cache_reg = vmx_cache_reg,
6aa8b732
AK
10773 .get_rflags = vmx_get_rflags,
10774 .set_rflags = vmx_set_rflags,
0fdd74f7 10775 .fpu_activate = vmx_fpu_activate,
02daab21 10776 .fpu_deactivate = vmx_fpu_deactivate,
6aa8b732
AK
10777
10778 .tlb_flush = vmx_flush_tlb,
6aa8b732 10779
6aa8b732 10780 .run = vmx_vcpu_run,
6062d012 10781 .handle_exit = vmx_handle_exit,
6aa8b732 10782 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
10783 .set_interrupt_shadow = vmx_set_interrupt_shadow,
10784 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 10785 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 10786 .set_irq = vmx_inject_irq,
95ba8273 10787 .set_nmi = vmx_inject_nmi,
298101da 10788 .queue_exception = vmx_queue_exception,
b463a6f7 10789 .cancel_injection = vmx_cancel_injection,
78646121 10790 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 10791 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
10792 .get_nmi_mask = vmx_get_nmi_mask,
10793 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
10794 .enable_nmi_window = enable_nmi_window,
10795 .enable_irq_window = enable_irq_window,
10796 .update_cr8_intercept = update_cr8_intercept,
8d14695f 10797 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
38b99173 10798 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
d50ab6c1 10799 .cpu_uses_apicv = vmx_cpu_uses_apicv,
c7c9c56c
YZ
10800 .load_eoi_exitmap = vmx_load_eoi_exitmap,
10801 .hwapic_irr_update = vmx_hwapic_irr_update,
10802 .hwapic_isr_update = vmx_hwapic_isr_update,
a20ed54d
YZ
10803 .sync_pir_to_irr = vmx_sync_pir_to_irr,
10804 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
95ba8273 10805
cbc94022 10806 .set_tss_addr = vmx_set_tss_addr,
67253af5 10807 .get_tdp_level = get_ept_level,
4b12f0de 10808 .get_mt_mask = vmx_get_mt_mask,
229456fc 10809
586f9607 10810 .get_exit_info = vmx_get_exit_info,
586f9607 10811
17cc3935 10812 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
10813
10814 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
10815
10816 .rdtscp_supported = vmx_rdtscp_supported,
ad756a16 10817 .invpcid_supported = vmx_invpcid_supported,
d4330ef2
JR
10818
10819 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
10820
10821 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a 10822
ba904635 10823 .read_tsc_offset = vmx_read_tsc_offset,
99e3e30a 10824 .write_tsc_offset = vmx_write_tsc_offset,
58ea6767 10825 .adjust_tsc_offset_guest = vmx_adjust_tsc_offset_guest,
d5c1785d 10826 .read_l1_tsc = vmx_read_l1_tsc,
1c97f0a0
JR
10827
10828 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
10829
10830 .check_intercept = vmx_check_intercept,
a547c6db 10831 .handle_external_intr = vmx_handle_external_intr,
da8999d3 10832 .mpx_supported = vmx_mpx_supported,
55412b2e 10833 .xsaves_supported = vmx_xsaves_supported,
b6b8a145
JK
10834
10835 .check_nested_events = vmx_check_nested_events,
ae97a3b8
RK
10836
10837 .sched_in = vmx_sched_in,
843e4330
KH
10838
10839 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
10840 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
10841 .flush_log_dirty = vmx_flush_log_dirty,
10842 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
25462f7f 10843
bf9f6ac8
FW
10844 .pre_block = vmx_pre_block,
10845 .post_block = vmx_post_block,
10846
25462f7f 10847 .pmu_ops = &intel_pmu_ops,
efc64404
FW
10848
10849 .update_pi_irte = vmx_update_pi_irte,
6aa8b732
AK
10850};
10851
10852static int __init vmx_init(void)
10853{
34a1cd60
TC
10854 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
10855 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 10856 if (r)
34a1cd60 10857 return r;
25c5f225 10858
2965faa5 10859#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
10860 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
10861 crash_vmclear_local_loaded_vmcss);
10862#endif
10863
fdef3ad1 10864 return 0;
6aa8b732
AK
10865}
10866
10867static void __exit vmx_exit(void)
10868{
2965faa5 10869#ifdef CONFIG_KEXEC_CORE
3b63a43f 10870 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8f536b76
ZY
10871 synchronize_rcu();
10872#endif
10873
cb498ea2 10874 kvm_exit();
6aa8b732
AK
10875}
10876
10877module_init(vmx_init)
10878module_exit(vmx_exit)
This page took 3.283429 seconds and 5 git commands to generate.