KVM: Disable SMAP for guests in EPT realmode and EPT unpaging mode
[deliverable/linux.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
e495606d 22
edf88417 23#include <linux/kvm_host.h>
6aa8b732 24#include <linux/module.h>
9d8f549d 25#include <linux/kernel.h>
6aa8b732
AK
26#include <linux/mm.h>
27#include <linux/highmem.h>
e8edc6e0 28#include <linux/sched.h>
c7addb90 29#include <linux/moduleparam.h>
e9bda3b3 30#include <linux/mod_devicetable.h>
229456fc 31#include <linux/ftrace_event.h>
5a0e3ad6 32#include <linux/slab.h>
cafd6659 33#include <linux/tboot.h>
f4124500 34#include <linux/hrtimer.h>
5fdbf976 35#include "kvm_cache_regs.h"
35920a35 36#include "x86.h"
e495606d 37
6aa8b732 38#include <asm/io.h>
3b3be0d1 39#include <asm/desc.h>
13673a90 40#include <asm/vmx.h>
6210e37b 41#include <asm/virtext.h>
a0861c02 42#include <asm/mce.h>
2acf923e
DC
43#include <asm/i387.h>
44#include <asm/xcr.h>
d7cd9796 45#include <asm/perf_event.h>
81908bf4 46#include <asm/debugreg.h>
8f536b76 47#include <asm/kexec.h>
6aa8b732 48
229456fc
MT
49#include "trace.h"
50
4ecac3fd 51#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
52#define __ex_clear(x, reg) \
53 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 54
6aa8b732
AK
55MODULE_AUTHOR("Qumranet");
56MODULE_LICENSE("GPL");
57
e9bda3b3
JT
58static const struct x86_cpu_id vmx_cpu_id[] = {
59 X86_FEATURE_MATCH(X86_FEATURE_VMX),
60 {}
61};
62MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
63
476bc001 64static bool __read_mostly enable_vpid = 1;
736caefe 65module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 66
476bc001 67static bool __read_mostly flexpriority_enabled = 1;
736caefe 68module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 69
476bc001 70static bool __read_mostly enable_ept = 1;
736caefe 71module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 72
476bc001 73static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
74module_param_named(unrestricted_guest,
75 enable_unrestricted_guest, bool, S_IRUGO);
76
83c3a331
XH
77static bool __read_mostly enable_ept_ad_bits = 1;
78module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
79
a27685c3 80static bool __read_mostly emulate_invalid_guest_state = true;
c1f8bc04 81module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 82
476bc001 83static bool __read_mostly vmm_exclusive = 1;
b923e62e
DX
84module_param(vmm_exclusive, bool, S_IRUGO);
85
476bc001 86static bool __read_mostly fasteoi = 1;
58fbbf26
KT
87module_param(fasteoi, bool, S_IRUGO);
88
5a71785d 89static bool __read_mostly enable_apicv = 1;
01e439be 90module_param(enable_apicv, bool, S_IRUGO);
83d4c286 91
abc4fc58
AG
92static bool __read_mostly enable_shadow_vmcs = 1;
93module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
801d3424
NHE
94/*
95 * If nested=1, nested virtualization is supported, i.e., guests may use
96 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
97 * use VMX instructions.
98 */
476bc001 99static bool __read_mostly nested = 0;
801d3424
NHE
100module_param(nested, bool, S_IRUGO);
101
5037878e
GN
102#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
103#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
104#define KVM_VM_CR0_ALWAYS_ON \
105 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
106#define KVM_CR4_GUEST_OWNED_BITS \
107 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
108 | X86_CR4_OSXMMEXCPT)
109
cdc0e244
AK
110#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
111#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
112
78ac8b47
AK
113#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
114
f4124500
JK
115#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
116
4b8d54f9
ZE
117/*
118 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
119 * ple_gap: upper bound on the amount of time between two successive
120 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 121 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
122 * ple_window: upper bound on the amount of time a guest is allowed to execute
123 * in a PAUSE loop. Tests indicate that most spinlocks are held for
124 * less than 2^12 cycles
125 * Time is measured based on a counter that runs at the same rate as the TSC,
126 * refer SDM volume 3b section 21.6.13 & 22.1.3.
127 */
00c25bce 128#define KVM_VMX_DEFAULT_PLE_GAP 128
4b8d54f9
ZE
129#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
130static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
131module_param(ple_gap, int, S_IRUGO);
132
133static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
134module_param(ple_window, int, S_IRUGO);
135
83287ea4
AK
136extern const ulong vmx_return;
137
8bf00a52 138#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 139#define VMCS02_POOL_SIZE 1
61d2ef2c 140
a2fa3e9f
GH
141struct vmcs {
142 u32 revision_id;
143 u32 abort;
144 char data[0];
145};
146
d462b819
NHE
147/*
148 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
149 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
150 * loaded on this CPU (so we can clear them if the CPU goes down).
151 */
152struct loaded_vmcs {
153 struct vmcs *vmcs;
154 int cpu;
155 int launched;
156 struct list_head loaded_vmcss_on_cpu_link;
157};
158
26bb0981
AK
159struct shared_msr_entry {
160 unsigned index;
161 u64 data;
d5696725 162 u64 mask;
26bb0981
AK
163};
164
a9d30f33
NHE
165/*
166 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
167 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
168 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
169 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
170 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
171 * More than one of these structures may exist, if L1 runs multiple L2 guests.
172 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
173 * underlying hardware which will be used to run L2.
174 * This structure is packed to ensure that its layout is identical across
175 * machines (necessary for live migration).
176 * If there are changes in this struct, VMCS12_REVISION must be changed.
177 */
22bd0358 178typedef u64 natural_width;
a9d30f33
NHE
179struct __packed vmcs12 {
180 /* According to the Intel spec, a VMCS region must start with the
181 * following two fields. Then follow implementation-specific data.
182 */
183 u32 revision_id;
184 u32 abort;
22bd0358 185
27d6c865
NHE
186 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
187 u32 padding[7]; /* room for future expansion */
188
22bd0358
NHE
189 u64 io_bitmap_a;
190 u64 io_bitmap_b;
191 u64 msr_bitmap;
192 u64 vm_exit_msr_store_addr;
193 u64 vm_exit_msr_load_addr;
194 u64 vm_entry_msr_load_addr;
195 u64 tsc_offset;
196 u64 virtual_apic_page_addr;
197 u64 apic_access_addr;
198 u64 ept_pointer;
199 u64 guest_physical_address;
200 u64 vmcs_link_pointer;
201 u64 guest_ia32_debugctl;
202 u64 guest_ia32_pat;
203 u64 guest_ia32_efer;
204 u64 guest_ia32_perf_global_ctrl;
205 u64 guest_pdptr0;
206 u64 guest_pdptr1;
207 u64 guest_pdptr2;
208 u64 guest_pdptr3;
36be0b9d 209 u64 guest_bndcfgs;
22bd0358
NHE
210 u64 host_ia32_pat;
211 u64 host_ia32_efer;
212 u64 host_ia32_perf_global_ctrl;
213 u64 padding64[8]; /* room for future expansion */
214 /*
215 * To allow migration of L1 (complete with its L2 guests) between
216 * machines of different natural widths (32 or 64 bit), we cannot have
217 * unsigned long fields with no explict size. We use u64 (aliased
218 * natural_width) instead. Luckily, x86 is little-endian.
219 */
220 natural_width cr0_guest_host_mask;
221 natural_width cr4_guest_host_mask;
222 natural_width cr0_read_shadow;
223 natural_width cr4_read_shadow;
224 natural_width cr3_target_value0;
225 natural_width cr3_target_value1;
226 natural_width cr3_target_value2;
227 natural_width cr3_target_value3;
228 natural_width exit_qualification;
229 natural_width guest_linear_address;
230 natural_width guest_cr0;
231 natural_width guest_cr3;
232 natural_width guest_cr4;
233 natural_width guest_es_base;
234 natural_width guest_cs_base;
235 natural_width guest_ss_base;
236 natural_width guest_ds_base;
237 natural_width guest_fs_base;
238 natural_width guest_gs_base;
239 natural_width guest_ldtr_base;
240 natural_width guest_tr_base;
241 natural_width guest_gdtr_base;
242 natural_width guest_idtr_base;
243 natural_width guest_dr7;
244 natural_width guest_rsp;
245 natural_width guest_rip;
246 natural_width guest_rflags;
247 natural_width guest_pending_dbg_exceptions;
248 natural_width guest_sysenter_esp;
249 natural_width guest_sysenter_eip;
250 natural_width host_cr0;
251 natural_width host_cr3;
252 natural_width host_cr4;
253 natural_width host_fs_base;
254 natural_width host_gs_base;
255 natural_width host_tr_base;
256 natural_width host_gdtr_base;
257 natural_width host_idtr_base;
258 natural_width host_ia32_sysenter_esp;
259 natural_width host_ia32_sysenter_eip;
260 natural_width host_rsp;
261 natural_width host_rip;
262 natural_width paddingl[8]; /* room for future expansion */
263 u32 pin_based_vm_exec_control;
264 u32 cpu_based_vm_exec_control;
265 u32 exception_bitmap;
266 u32 page_fault_error_code_mask;
267 u32 page_fault_error_code_match;
268 u32 cr3_target_count;
269 u32 vm_exit_controls;
270 u32 vm_exit_msr_store_count;
271 u32 vm_exit_msr_load_count;
272 u32 vm_entry_controls;
273 u32 vm_entry_msr_load_count;
274 u32 vm_entry_intr_info_field;
275 u32 vm_entry_exception_error_code;
276 u32 vm_entry_instruction_len;
277 u32 tpr_threshold;
278 u32 secondary_vm_exec_control;
279 u32 vm_instruction_error;
280 u32 vm_exit_reason;
281 u32 vm_exit_intr_info;
282 u32 vm_exit_intr_error_code;
283 u32 idt_vectoring_info_field;
284 u32 idt_vectoring_error_code;
285 u32 vm_exit_instruction_len;
286 u32 vmx_instruction_info;
287 u32 guest_es_limit;
288 u32 guest_cs_limit;
289 u32 guest_ss_limit;
290 u32 guest_ds_limit;
291 u32 guest_fs_limit;
292 u32 guest_gs_limit;
293 u32 guest_ldtr_limit;
294 u32 guest_tr_limit;
295 u32 guest_gdtr_limit;
296 u32 guest_idtr_limit;
297 u32 guest_es_ar_bytes;
298 u32 guest_cs_ar_bytes;
299 u32 guest_ss_ar_bytes;
300 u32 guest_ds_ar_bytes;
301 u32 guest_fs_ar_bytes;
302 u32 guest_gs_ar_bytes;
303 u32 guest_ldtr_ar_bytes;
304 u32 guest_tr_ar_bytes;
305 u32 guest_interruptibility_info;
306 u32 guest_activity_state;
307 u32 guest_sysenter_cs;
308 u32 host_ia32_sysenter_cs;
0238ea91
JK
309 u32 vmx_preemption_timer_value;
310 u32 padding32[7]; /* room for future expansion */
22bd0358
NHE
311 u16 virtual_processor_id;
312 u16 guest_es_selector;
313 u16 guest_cs_selector;
314 u16 guest_ss_selector;
315 u16 guest_ds_selector;
316 u16 guest_fs_selector;
317 u16 guest_gs_selector;
318 u16 guest_ldtr_selector;
319 u16 guest_tr_selector;
320 u16 host_es_selector;
321 u16 host_cs_selector;
322 u16 host_ss_selector;
323 u16 host_ds_selector;
324 u16 host_fs_selector;
325 u16 host_gs_selector;
326 u16 host_tr_selector;
a9d30f33
NHE
327};
328
329/*
330 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
331 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
332 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
333 */
334#define VMCS12_REVISION 0x11e57ed0
335
336/*
337 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
338 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
339 * current implementation, 4K are reserved to avoid future complications.
340 */
341#define VMCS12_SIZE 0x1000
342
ff2f6fe9
NHE
343/* Used to remember the last vmcs02 used for some recently used vmcs12s */
344struct vmcs02_list {
345 struct list_head list;
346 gpa_t vmptr;
347 struct loaded_vmcs vmcs02;
348};
349
ec378aee
NHE
350/*
351 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
352 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
353 */
354struct nested_vmx {
355 /* Has the level1 guest done vmxon? */
356 bool vmxon;
a9d30f33
NHE
357
358 /* The guest-physical address of the current VMCS L1 keeps for L2 */
359 gpa_t current_vmptr;
360 /* The host-usable pointer to the above */
361 struct page *current_vmcs12_page;
362 struct vmcs12 *current_vmcs12;
8de48833 363 struct vmcs *current_shadow_vmcs;
012f83cb
AG
364 /*
365 * Indicates if the shadow vmcs must be updated with the
366 * data hold by vmcs12
367 */
368 bool sync_shadow_vmcs;
ff2f6fe9
NHE
369
370 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
371 struct list_head vmcs02_pool;
372 int vmcs02_num;
fe3ef05c 373 u64 vmcs01_tsc_offset;
644d711a
NHE
374 /* L2 must run next, and mustn't decide to exit to L1. */
375 bool nested_run_pending;
fe3ef05c
NHE
376 /*
377 * Guest pages referred to in vmcs02 with host-physical pointers, so
378 * we must keep them pinned while L2 runs.
379 */
380 struct page *apic_access_page;
b3897a49 381 u64 msr_ia32_feature_control;
f4124500
JK
382
383 struct hrtimer preemption_timer;
384 bool preemption_timer_expired;
ec378aee
NHE
385};
386
01e439be
YZ
387#define POSTED_INTR_ON 0
388/* Posted-Interrupt Descriptor */
389struct pi_desc {
390 u32 pir[8]; /* Posted interrupt requested */
391 u32 control; /* bit 0 of control is outstanding notification bit */
392 u32 rsvd[7];
393} __aligned(64);
394
a20ed54d
YZ
395static bool pi_test_and_set_on(struct pi_desc *pi_desc)
396{
397 return test_and_set_bit(POSTED_INTR_ON,
398 (unsigned long *)&pi_desc->control);
399}
400
401static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
402{
403 return test_and_clear_bit(POSTED_INTR_ON,
404 (unsigned long *)&pi_desc->control);
405}
406
407static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
408{
409 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
410}
411
a2fa3e9f 412struct vcpu_vmx {
fb3f0f51 413 struct kvm_vcpu vcpu;
313dbd49 414 unsigned long host_rsp;
29bd8a78 415 u8 fail;
69c73028 416 u8 cpl;
9d58b931 417 bool nmi_known_unmasked;
51aa01d1 418 u32 exit_intr_info;
1155f76a 419 u32 idt_vectoring_info;
6de12732 420 ulong rflags;
26bb0981 421 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
422 int nmsrs;
423 int save_nmsrs;
a547c6db 424 unsigned long host_idt_base;
a2fa3e9f 425#ifdef CONFIG_X86_64
44ea2b17
AK
426 u64 msr_host_kernel_gs_base;
427 u64 msr_guest_kernel_gs_base;
a2fa3e9f 428#endif
2961e876
GN
429 u32 vm_entry_controls_shadow;
430 u32 vm_exit_controls_shadow;
d462b819
NHE
431 /*
432 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
433 * non-nested (L1) guest, it always points to vmcs01. For a nested
434 * guest (L2), it points to a different VMCS.
435 */
436 struct loaded_vmcs vmcs01;
437 struct loaded_vmcs *loaded_vmcs;
438 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
439 struct msr_autoload {
440 unsigned nr;
441 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
442 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
443 } msr_autoload;
a2fa3e9f
GH
444 struct {
445 int loaded;
446 u16 fs_sel, gs_sel, ldt_sel;
b2da15ac
AK
447#ifdef CONFIG_X86_64
448 u16 ds_sel, es_sel;
449#endif
152d3f2f
LV
450 int gs_ldt_reload_needed;
451 int fs_reload_needed;
da8999d3 452 u64 msr_host_bndcfgs;
d77c26fc 453 } host_state;
9c8cba37 454 struct {
7ffd92c5 455 int vm86_active;
78ac8b47 456 ulong save_rflags;
f5f7b2fe
AK
457 struct kvm_segment segs[8];
458 } rmode;
459 struct {
460 u32 bitmask; /* 4 bits per segment (1 bit per field) */
7ffd92c5
AK
461 struct kvm_save_segment {
462 u16 selector;
463 unsigned long base;
464 u32 limit;
465 u32 ar;
f5f7b2fe 466 } seg[8];
2fb92db1 467 } segment_cache;
2384d2b3 468 int vpid;
04fa4d32 469 bool emulation_required;
3b86cd99
JK
470
471 /* Support for vnmi-less CPUs */
472 int soft_vnmi_blocked;
473 ktime_t entry_time;
474 s64 vnmi_blocked_time;
a0861c02 475 u32 exit_reason;
4e47c7a6
SY
476
477 bool rdtscp_enabled;
ec378aee 478
01e439be
YZ
479 /* Posted interrupt descriptor */
480 struct pi_desc pi_desc;
481
ec378aee
NHE
482 /* Support for a guest hypervisor (nested VMX) */
483 struct nested_vmx nested;
a2fa3e9f
GH
484};
485
2fb92db1
AK
486enum segment_cache_field {
487 SEG_FIELD_SEL = 0,
488 SEG_FIELD_BASE = 1,
489 SEG_FIELD_LIMIT = 2,
490 SEG_FIELD_AR = 3,
491
492 SEG_FIELD_NR = 4
493};
494
a2fa3e9f
GH
495static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
496{
fb3f0f51 497 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
498}
499
22bd0358
NHE
500#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
501#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
502#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
503 [number##_HIGH] = VMCS12_OFFSET(name)+4
504
4607c2d7
AG
505
506static const unsigned long shadow_read_only_fields[] = {
507 /*
508 * We do NOT shadow fields that are modified when L0
509 * traps and emulates any vmx instruction (e.g. VMPTRLD,
510 * VMXON...) executed by L1.
511 * For example, VM_INSTRUCTION_ERROR is read
512 * by L1 if a vmx instruction fails (part of the error path).
513 * Note the code assumes this logic. If for some reason
514 * we start shadowing these fields then we need to
515 * force a shadow sync when L0 emulates vmx instructions
516 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
517 * by nested_vmx_failValid)
518 */
519 VM_EXIT_REASON,
520 VM_EXIT_INTR_INFO,
521 VM_EXIT_INSTRUCTION_LEN,
522 IDT_VECTORING_INFO_FIELD,
523 IDT_VECTORING_ERROR_CODE,
524 VM_EXIT_INTR_ERROR_CODE,
525 EXIT_QUALIFICATION,
526 GUEST_LINEAR_ADDRESS,
527 GUEST_PHYSICAL_ADDRESS
528};
529static const int max_shadow_read_only_fields =
530 ARRAY_SIZE(shadow_read_only_fields);
531
532static const unsigned long shadow_read_write_fields[] = {
533 GUEST_RIP,
534 GUEST_RSP,
535 GUEST_CR0,
536 GUEST_CR3,
537 GUEST_CR4,
538 GUEST_INTERRUPTIBILITY_INFO,
539 GUEST_RFLAGS,
540 GUEST_CS_SELECTOR,
541 GUEST_CS_AR_BYTES,
542 GUEST_CS_LIMIT,
543 GUEST_CS_BASE,
544 GUEST_ES_BASE,
36be0b9d 545 GUEST_BNDCFGS,
4607c2d7
AG
546 CR0_GUEST_HOST_MASK,
547 CR0_READ_SHADOW,
548 CR4_READ_SHADOW,
549 TSC_OFFSET,
550 EXCEPTION_BITMAP,
551 CPU_BASED_VM_EXEC_CONTROL,
552 VM_ENTRY_EXCEPTION_ERROR_CODE,
553 VM_ENTRY_INTR_INFO_FIELD,
554 VM_ENTRY_INSTRUCTION_LEN,
555 VM_ENTRY_EXCEPTION_ERROR_CODE,
556 HOST_FS_BASE,
557 HOST_GS_BASE,
558 HOST_FS_SELECTOR,
559 HOST_GS_SELECTOR
560};
561static const int max_shadow_read_write_fields =
562 ARRAY_SIZE(shadow_read_write_fields);
563
772e0318 564static const unsigned short vmcs_field_to_offset_table[] = {
22bd0358
NHE
565 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
566 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
567 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
568 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
569 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
570 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
571 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
572 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
573 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
574 FIELD(HOST_ES_SELECTOR, host_es_selector),
575 FIELD(HOST_CS_SELECTOR, host_cs_selector),
576 FIELD(HOST_SS_SELECTOR, host_ss_selector),
577 FIELD(HOST_DS_SELECTOR, host_ds_selector),
578 FIELD(HOST_FS_SELECTOR, host_fs_selector),
579 FIELD(HOST_GS_SELECTOR, host_gs_selector),
580 FIELD(HOST_TR_SELECTOR, host_tr_selector),
581 FIELD64(IO_BITMAP_A, io_bitmap_a),
582 FIELD64(IO_BITMAP_B, io_bitmap_b),
583 FIELD64(MSR_BITMAP, msr_bitmap),
584 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
585 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
586 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
587 FIELD64(TSC_OFFSET, tsc_offset),
588 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
589 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
590 FIELD64(EPT_POINTER, ept_pointer),
591 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
592 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
593 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
594 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
595 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
596 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
597 FIELD64(GUEST_PDPTR0, guest_pdptr0),
598 FIELD64(GUEST_PDPTR1, guest_pdptr1),
599 FIELD64(GUEST_PDPTR2, guest_pdptr2),
600 FIELD64(GUEST_PDPTR3, guest_pdptr3),
36be0b9d 601 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
22bd0358
NHE
602 FIELD64(HOST_IA32_PAT, host_ia32_pat),
603 FIELD64(HOST_IA32_EFER, host_ia32_efer),
604 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
605 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
606 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
607 FIELD(EXCEPTION_BITMAP, exception_bitmap),
608 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
609 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
610 FIELD(CR3_TARGET_COUNT, cr3_target_count),
611 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
612 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
613 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
614 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
615 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
616 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
617 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
618 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
619 FIELD(TPR_THRESHOLD, tpr_threshold),
620 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
621 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
622 FIELD(VM_EXIT_REASON, vm_exit_reason),
623 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
624 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
625 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
626 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
627 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
628 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
629 FIELD(GUEST_ES_LIMIT, guest_es_limit),
630 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
631 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
632 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
633 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
634 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
635 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
636 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
637 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
638 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
639 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
640 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
641 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
642 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
643 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
644 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
645 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
646 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
647 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
648 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
649 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
650 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
0238ea91 651 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
22bd0358
NHE
652 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
653 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
654 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
655 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
656 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
657 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
658 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
659 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
660 FIELD(EXIT_QUALIFICATION, exit_qualification),
661 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
662 FIELD(GUEST_CR0, guest_cr0),
663 FIELD(GUEST_CR3, guest_cr3),
664 FIELD(GUEST_CR4, guest_cr4),
665 FIELD(GUEST_ES_BASE, guest_es_base),
666 FIELD(GUEST_CS_BASE, guest_cs_base),
667 FIELD(GUEST_SS_BASE, guest_ss_base),
668 FIELD(GUEST_DS_BASE, guest_ds_base),
669 FIELD(GUEST_FS_BASE, guest_fs_base),
670 FIELD(GUEST_GS_BASE, guest_gs_base),
671 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
672 FIELD(GUEST_TR_BASE, guest_tr_base),
673 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
674 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
675 FIELD(GUEST_DR7, guest_dr7),
676 FIELD(GUEST_RSP, guest_rsp),
677 FIELD(GUEST_RIP, guest_rip),
678 FIELD(GUEST_RFLAGS, guest_rflags),
679 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
680 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
681 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
682 FIELD(HOST_CR0, host_cr0),
683 FIELD(HOST_CR3, host_cr3),
684 FIELD(HOST_CR4, host_cr4),
685 FIELD(HOST_FS_BASE, host_fs_base),
686 FIELD(HOST_GS_BASE, host_gs_base),
687 FIELD(HOST_TR_BASE, host_tr_base),
688 FIELD(HOST_GDTR_BASE, host_gdtr_base),
689 FIELD(HOST_IDTR_BASE, host_idtr_base),
690 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
691 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
692 FIELD(HOST_RSP, host_rsp),
693 FIELD(HOST_RIP, host_rip),
694};
695static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
696
697static inline short vmcs_field_to_offset(unsigned long field)
698{
699 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
700 return -1;
701 return vmcs_field_to_offset_table[field];
702}
703
a9d30f33
NHE
704static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
705{
706 return to_vmx(vcpu)->nested.current_vmcs12;
707}
708
709static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
710{
711 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
32cad84f 712 if (is_error_page(page))
a9d30f33 713 return NULL;
32cad84f 714
a9d30f33
NHE
715 return page;
716}
717
718static void nested_release_page(struct page *page)
719{
720 kvm_release_page_dirty(page);
721}
722
723static void nested_release_page_clean(struct page *page)
724{
725 kvm_release_page_clean(page);
726}
727
bfd0a56b 728static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
4e1096d2 729static u64 construct_eptp(unsigned long root_hpa);
4610c9cc
DX
730static void kvm_cpu_vmxon(u64 addr);
731static void kvm_cpu_vmxoff(void);
93c4adc7 732static bool vmx_mpx_supported(void);
776e58ea 733static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
b246dd5d
OW
734static void vmx_set_segment(struct kvm_vcpu *vcpu,
735 struct kvm_segment *var, int seg);
736static void vmx_get_segment(struct kvm_vcpu *vcpu,
737 struct kvm_segment *var, int seg);
d99e4152
GN
738static bool guest_state_valid(struct kvm_vcpu *vcpu);
739static u32 vmx_segment_access_rights(struct kvm_segment *var);
a20ed54d 740static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
c3114420 741static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
16f5b903 742static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
36be0b9d 743static bool vmx_mpx_supported(void);
75880a01 744
6aa8b732
AK
745static DEFINE_PER_CPU(struct vmcs *, vmxarea);
746static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
747/*
748 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
749 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
750 */
751static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
3444d7da 752static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
6aa8b732 753
3e7c73e9
AK
754static unsigned long *vmx_io_bitmap_a;
755static unsigned long *vmx_io_bitmap_b;
5897297b
AK
756static unsigned long *vmx_msr_bitmap_legacy;
757static unsigned long *vmx_msr_bitmap_longmode;
8d14695f
YZ
758static unsigned long *vmx_msr_bitmap_legacy_x2apic;
759static unsigned long *vmx_msr_bitmap_longmode_x2apic;
4607c2d7
AG
760static unsigned long *vmx_vmread_bitmap;
761static unsigned long *vmx_vmwrite_bitmap;
fdef3ad1 762
110312c8 763static bool cpu_has_load_ia32_efer;
8bf00a52 764static bool cpu_has_load_perf_global_ctrl;
110312c8 765
2384d2b3
SY
766static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
767static DEFINE_SPINLOCK(vmx_vpid_lock);
768
1c3d14fe 769static struct vmcs_config {
6aa8b732
AK
770 int size;
771 int order;
772 u32 revision_id;
1c3d14fe
YS
773 u32 pin_based_exec_ctrl;
774 u32 cpu_based_exec_ctrl;
f78e0e2e 775 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
776 u32 vmexit_ctrl;
777 u32 vmentry_ctrl;
778} vmcs_config;
6aa8b732 779
efff9e53 780static struct vmx_capability {
d56f546d
SY
781 u32 ept;
782 u32 vpid;
783} vmx_capability;
784
6aa8b732
AK
785#define VMX_SEGMENT_FIELD(seg) \
786 [VCPU_SREG_##seg] = { \
787 .selector = GUEST_##seg##_SELECTOR, \
788 .base = GUEST_##seg##_BASE, \
789 .limit = GUEST_##seg##_LIMIT, \
790 .ar_bytes = GUEST_##seg##_AR_BYTES, \
791 }
792
772e0318 793static const struct kvm_vmx_segment_field {
6aa8b732
AK
794 unsigned selector;
795 unsigned base;
796 unsigned limit;
797 unsigned ar_bytes;
798} kvm_vmx_segment_fields[] = {
799 VMX_SEGMENT_FIELD(CS),
800 VMX_SEGMENT_FIELD(DS),
801 VMX_SEGMENT_FIELD(ES),
802 VMX_SEGMENT_FIELD(FS),
803 VMX_SEGMENT_FIELD(GS),
804 VMX_SEGMENT_FIELD(SS),
805 VMX_SEGMENT_FIELD(TR),
806 VMX_SEGMENT_FIELD(LDTR),
807};
808
26bb0981
AK
809static u64 host_efer;
810
6de4f3ad
AK
811static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
812
4d56c8a7 813/*
8c06585d 814 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
815 * away by decrementing the array size.
816 */
6aa8b732 817static const u32 vmx_msr_index[] = {
05b3e0c2 818#ifdef CONFIG_X86_64
44ea2b17 819 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 820#endif
8c06585d 821 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 822};
9d8f549d 823#define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
6aa8b732 824
31299944 825static inline bool is_page_fault(u32 intr_info)
6aa8b732
AK
826{
827 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
828 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 829 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
6aa8b732
AK
830}
831
31299944 832static inline bool is_no_device(u32 intr_info)
2ab455cc
AL
833{
834 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
835 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 836 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
2ab455cc
AL
837}
838
31299944 839static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0
AL
840{
841 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
842 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 843 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
7aa81cc0
AL
844}
845
31299944 846static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
847{
848 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
849 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
850}
851
31299944 852static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
853{
854 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
855 INTR_INFO_VALID_MASK)) ==
856 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
857}
858
31299944 859static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 860{
04547156 861 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
862}
863
31299944 864static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 865{
04547156 866 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
867}
868
31299944 869static inline bool vm_need_tpr_shadow(struct kvm *kvm)
6e5d865c 870{
04547156 871 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
6e5d865c
YS
872}
873
31299944 874static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 875{
04547156
SY
876 return vmcs_config.cpu_based_exec_ctrl &
877 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
878}
879
774ead3a 880static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 881{
04547156
SY
882 return vmcs_config.cpu_based_2nd_exec_ctrl &
883 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
884}
885
8d14695f
YZ
886static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
887{
888 return vmcs_config.cpu_based_2nd_exec_ctrl &
889 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
890}
891
83d4c286
YZ
892static inline bool cpu_has_vmx_apic_register_virt(void)
893{
894 return vmcs_config.cpu_based_2nd_exec_ctrl &
895 SECONDARY_EXEC_APIC_REGISTER_VIRT;
896}
897
c7c9c56c
YZ
898static inline bool cpu_has_vmx_virtual_intr_delivery(void)
899{
900 return vmcs_config.cpu_based_2nd_exec_ctrl &
901 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
902}
903
01e439be
YZ
904static inline bool cpu_has_vmx_posted_intr(void)
905{
906 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
907}
908
909static inline bool cpu_has_vmx_apicv(void)
910{
911 return cpu_has_vmx_apic_register_virt() &&
912 cpu_has_vmx_virtual_intr_delivery() &&
913 cpu_has_vmx_posted_intr();
914}
915
04547156
SY
916static inline bool cpu_has_vmx_flexpriority(void)
917{
918 return cpu_has_vmx_tpr_shadow() &&
919 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
920}
921
e799794e
MT
922static inline bool cpu_has_vmx_ept_execute_only(void)
923{
31299944 924 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
925}
926
927static inline bool cpu_has_vmx_eptp_uncacheable(void)
928{
31299944 929 return vmx_capability.ept & VMX_EPTP_UC_BIT;
e799794e
MT
930}
931
932static inline bool cpu_has_vmx_eptp_writeback(void)
933{
31299944 934 return vmx_capability.ept & VMX_EPTP_WB_BIT;
e799794e
MT
935}
936
937static inline bool cpu_has_vmx_ept_2m_page(void)
938{
31299944 939 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
940}
941
878403b7
SY
942static inline bool cpu_has_vmx_ept_1g_page(void)
943{
31299944 944 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
945}
946
4bc9b982
SY
947static inline bool cpu_has_vmx_ept_4levels(void)
948{
949 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
950}
951
83c3a331
XH
952static inline bool cpu_has_vmx_ept_ad_bits(void)
953{
954 return vmx_capability.ept & VMX_EPT_AD_BIT;
955}
956
31299944 957static inline bool cpu_has_vmx_invept_context(void)
d56f546d 958{
31299944 959 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
960}
961
31299944 962static inline bool cpu_has_vmx_invept_global(void)
d56f546d 963{
31299944 964 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
965}
966
518c8aee
GJ
967static inline bool cpu_has_vmx_invvpid_single(void)
968{
969 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
970}
971
b9d762fa
GJ
972static inline bool cpu_has_vmx_invvpid_global(void)
973{
974 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
975}
976
31299944 977static inline bool cpu_has_vmx_ept(void)
d56f546d 978{
04547156
SY
979 return vmcs_config.cpu_based_2nd_exec_ctrl &
980 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
981}
982
31299944 983static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
984{
985 return vmcs_config.cpu_based_2nd_exec_ctrl &
986 SECONDARY_EXEC_UNRESTRICTED_GUEST;
987}
988
31299944 989static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
990{
991 return vmcs_config.cpu_based_2nd_exec_ctrl &
992 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
993}
994
31299944 995static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
f78e0e2e 996{
6d3e435e 997 return flexpriority_enabled && irqchip_in_kernel(kvm);
f78e0e2e
SY
998}
999
31299944 1000static inline bool cpu_has_vmx_vpid(void)
2384d2b3 1001{
04547156
SY
1002 return vmcs_config.cpu_based_2nd_exec_ctrl &
1003 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
1004}
1005
31299944 1006static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
1007{
1008 return vmcs_config.cpu_based_2nd_exec_ctrl &
1009 SECONDARY_EXEC_RDTSCP;
1010}
1011
ad756a16
MJ
1012static inline bool cpu_has_vmx_invpcid(void)
1013{
1014 return vmcs_config.cpu_based_2nd_exec_ctrl &
1015 SECONDARY_EXEC_ENABLE_INVPCID;
1016}
1017
31299944 1018static inline bool cpu_has_virtual_nmis(void)
f08864b4
SY
1019{
1020 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1021}
1022
f5f48ee1
SY
1023static inline bool cpu_has_vmx_wbinvd_exit(void)
1024{
1025 return vmcs_config.cpu_based_2nd_exec_ctrl &
1026 SECONDARY_EXEC_WBINVD_EXITING;
1027}
1028
abc4fc58
AG
1029static inline bool cpu_has_vmx_shadow_vmcs(void)
1030{
1031 u64 vmx_msr;
1032 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1033 /* check if the cpu supports writing r/o exit information fields */
1034 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1035 return false;
1036
1037 return vmcs_config.cpu_based_2nd_exec_ctrl &
1038 SECONDARY_EXEC_SHADOW_VMCS;
1039}
1040
04547156
SY
1041static inline bool report_flexpriority(void)
1042{
1043 return flexpriority_enabled;
1044}
1045
fe3ef05c
NHE
1046static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1047{
1048 return vmcs12->cpu_based_vm_exec_control & bit;
1049}
1050
1051static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1052{
1053 return (vmcs12->cpu_based_vm_exec_control &
1054 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1055 (vmcs12->secondary_vm_exec_control & bit);
1056}
1057
f5c4368f 1058static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
644d711a
NHE
1059{
1060 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1061}
1062
f4124500
JK
1063static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1064{
1065 return vmcs12->pin_based_vm_exec_control &
1066 PIN_BASED_VMX_PREEMPTION_TIMER;
1067}
1068
155a97a3
NHE
1069static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1070{
1071 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1072}
1073
644d711a
NHE
1074static inline bool is_exception(u32 intr_info)
1075{
1076 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1077 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1078}
1079
533558bc
JK
1080static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1081 u32 exit_intr_info,
1082 unsigned long exit_qualification);
7c177938
NHE
1083static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1084 struct vmcs12 *vmcs12,
1085 u32 reason, unsigned long qualification);
1086
8b9cf98c 1087static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
1088{
1089 int i;
1090
a2fa3e9f 1091 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 1092 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
1093 return i;
1094 return -1;
1095}
1096
2384d2b3
SY
1097static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1098{
1099 struct {
1100 u64 vpid : 16;
1101 u64 rsvd : 48;
1102 u64 gva;
1103 } operand = { vpid, 0, gva };
1104
4ecac3fd 1105 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
1106 /* CF==1 or ZF==1 --> rc = -1 */
1107 "; ja 1f ; ud2 ; 1:"
1108 : : "a"(&operand), "c"(ext) : "cc", "memory");
1109}
1110
1439442c
SY
1111static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1112{
1113 struct {
1114 u64 eptp, gpa;
1115 } operand = {eptp, gpa};
1116
4ecac3fd 1117 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
1118 /* CF==1 or ZF==1 --> rc = -1 */
1119 "; ja 1f ; ud2 ; 1:\n"
1120 : : "a" (&operand), "c" (ext) : "cc", "memory");
1121}
1122
26bb0981 1123static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
1124{
1125 int i;
1126
8b9cf98c 1127 i = __find_msr_index(vmx, msr);
a75beee6 1128 if (i >= 0)
a2fa3e9f 1129 return &vmx->guest_msrs[i];
8b6d44c7 1130 return NULL;
7725f0ba
AK
1131}
1132
6aa8b732
AK
1133static void vmcs_clear(struct vmcs *vmcs)
1134{
1135 u64 phys_addr = __pa(vmcs);
1136 u8 error;
1137
4ecac3fd 1138 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 1139 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
1140 : "cc", "memory");
1141 if (error)
1142 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1143 vmcs, phys_addr);
1144}
1145
d462b819
NHE
1146static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1147{
1148 vmcs_clear(loaded_vmcs->vmcs);
1149 loaded_vmcs->cpu = -1;
1150 loaded_vmcs->launched = 0;
1151}
1152
7725b894
DX
1153static void vmcs_load(struct vmcs *vmcs)
1154{
1155 u64 phys_addr = __pa(vmcs);
1156 u8 error;
1157
1158 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 1159 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
1160 : "cc", "memory");
1161 if (error)
2844d849 1162 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
1163 vmcs, phys_addr);
1164}
1165
8f536b76
ZY
1166#ifdef CONFIG_KEXEC
1167/*
1168 * This bitmap is used to indicate whether the vmclear
1169 * operation is enabled on all cpus. All disabled by
1170 * default.
1171 */
1172static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1173
1174static inline void crash_enable_local_vmclear(int cpu)
1175{
1176 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1177}
1178
1179static inline void crash_disable_local_vmclear(int cpu)
1180{
1181 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1182}
1183
1184static inline int crash_local_vmclear_enabled(int cpu)
1185{
1186 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1187}
1188
1189static void crash_vmclear_local_loaded_vmcss(void)
1190{
1191 int cpu = raw_smp_processor_id();
1192 struct loaded_vmcs *v;
1193
1194 if (!crash_local_vmclear_enabled(cpu))
1195 return;
1196
1197 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1198 loaded_vmcss_on_cpu_link)
1199 vmcs_clear(v->vmcs);
1200}
1201#else
1202static inline void crash_enable_local_vmclear(int cpu) { }
1203static inline void crash_disable_local_vmclear(int cpu) { }
1204#endif /* CONFIG_KEXEC */
1205
d462b819 1206static void __loaded_vmcs_clear(void *arg)
6aa8b732 1207{
d462b819 1208 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 1209 int cpu = raw_smp_processor_id();
6aa8b732 1210
d462b819
NHE
1211 if (loaded_vmcs->cpu != cpu)
1212 return; /* vcpu migration can race with cpu offline */
1213 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 1214 per_cpu(current_vmcs, cpu) = NULL;
8f536b76 1215 crash_disable_local_vmclear(cpu);
d462b819 1216 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
5a560f8b
XG
1217
1218 /*
1219 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1220 * is before setting loaded_vmcs->vcpu to -1 which is done in
1221 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1222 * then adds the vmcs into percpu list before it is deleted.
1223 */
1224 smp_wmb();
1225
d462b819 1226 loaded_vmcs_init(loaded_vmcs);
8f536b76 1227 crash_enable_local_vmclear(cpu);
6aa8b732
AK
1228}
1229
d462b819 1230static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 1231{
e6c7d321
XG
1232 int cpu = loaded_vmcs->cpu;
1233
1234 if (cpu != -1)
1235 smp_call_function_single(cpu,
1236 __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
1237}
1238
1760dd49 1239static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
2384d2b3
SY
1240{
1241 if (vmx->vpid == 0)
1242 return;
1243
518c8aee
GJ
1244 if (cpu_has_vmx_invvpid_single())
1245 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
2384d2b3
SY
1246}
1247
b9d762fa
GJ
1248static inline void vpid_sync_vcpu_global(void)
1249{
1250 if (cpu_has_vmx_invvpid_global())
1251 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1252}
1253
1254static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1255{
1256 if (cpu_has_vmx_invvpid_single())
1760dd49 1257 vpid_sync_vcpu_single(vmx);
b9d762fa
GJ
1258 else
1259 vpid_sync_vcpu_global();
1260}
1261
1439442c
SY
1262static inline void ept_sync_global(void)
1263{
1264 if (cpu_has_vmx_invept_global())
1265 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1266}
1267
1268static inline void ept_sync_context(u64 eptp)
1269{
089d034e 1270 if (enable_ept) {
1439442c
SY
1271 if (cpu_has_vmx_invept_context())
1272 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1273 else
1274 ept_sync_global();
1275 }
1276}
1277
96304217 1278static __always_inline unsigned long vmcs_readl(unsigned long field)
6aa8b732 1279{
5e520e62 1280 unsigned long value;
6aa8b732 1281
5e520e62
AK
1282 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1283 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1284 return value;
1285}
1286
96304217 1287static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732
AK
1288{
1289 return vmcs_readl(field);
1290}
1291
96304217 1292static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732
AK
1293{
1294 return vmcs_readl(field);
1295}
1296
96304217 1297static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1298{
05b3e0c2 1299#ifdef CONFIG_X86_64
6aa8b732
AK
1300 return vmcs_readl(field);
1301#else
1302 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1303#endif
1304}
1305
e52de1b8
AK
1306static noinline void vmwrite_error(unsigned long field, unsigned long value)
1307{
1308 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1309 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1310 dump_stack();
1311}
1312
6aa8b732
AK
1313static void vmcs_writel(unsigned long field, unsigned long value)
1314{
1315 u8 error;
1316
4ecac3fd 1317 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1318 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1319 if (unlikely(error))
1320 vmwrite_error(field, value);
6aa8b732
AK
1321}
1322
1323static void vmcs_write16(unsigned long field, u16 value)
1324{
1325 vmcs_writel(field, value);
1326}
1327
1328static void vmcs_write32(unsigned long field, u32 value)
1329{
1330 vmcs_writel(field, value);
1331}
1332
1333static void vmcs_write64(unsigned long field, u64 value)
1334{
6aa8b732 1335 vmcs_writel(field, value);
7682f2d0 1336#ifndef CONFIG_X86_64
6aa8b732
AK
1337 asm volatile ("");
1338 vmcs_writel(field+1, value >> 32);
1339#endif
1340}
1341
2ab455cc
AL
1342static void vmcs_clear_bits(unsigned long field, u32 mask)
1343{
1344 vmcs_writel(field, vmcs_readl(field) & ~mask);
1345}
1346
1347static void vmcs_set_bits(unsigned long field, u32 mask)
1348{
1349 vmcs_writel(field, vmcs_readl(field) | mask);
1350}
1351
2961e876
GN
1352static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1353{
1354 vmcs_write32(VM_ENTRY_CONTROLS, val);
1355 vmx->vm_entry_controls_shadow = val;
1356}
1357
1358static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1359{
1360 if (vmx->vm_entry_controls_shadow != val)
1361 vm_entry_controls_init(vmx, val);
1362}
1363
1364static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1365{
1366 return vmx->vm_entry_controls_shadow;
1367}
1368
1369
1370static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1371{
1372 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1373}
1374
1375static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1376{
1377 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1378}
1379
1380static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1381{
1382 vmcs_write32(VM_EXIT_CONTROLS, val);
1383 vmx->vm_exit_controls_shadow = val;
1384}
1385
1386static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1387{
1388 if (vmx->vm_exit_controls_shadow != val)
1389 vm_exit_controls_init(vmx, val);
1390}
1391
1392static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1393{
1394 return vmx->vm_exit_controls_shadow;
1395}
1396
1397
1398static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1399{
1400 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1401}
1402
1403static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1404{
1405 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1406}
1407
2fb92db1
AK
1408static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1409{
1410 vmx->segment_cache.bitmask = 0;
1411}
1412
1413static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1414 unsigned field)
1415{
1416 bool ret;
1417 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1418
1419 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1420 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1421 vmx->segment_cache.bitmask = 0;
1422 }
1423 ret = vmx->segment_cache.bitmask & mask;
1424 vmx->segment_cache.bitmask |= mask;
1425 return ret;
1426}
1427
1428static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1429{
1430 u16 *p = &vmx->segment_cache.seg[seg].selector;
1431
1432 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1433 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1434 return *p;
1435}
1436
1437static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1438{
1439 ulong *p = &vmx->segment_cache.seg[seg].base;
1440
1441 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1442 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1443 return *p;
1444}
1445
1446static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1447{
1448 u32 *p = &vmx->segment_cache.seg[seg].limit;
1449
1450 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1451 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1452 return *p;
1453}
1454
1455static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1456{
1457 u32 *p = &vmx->segment_cache.seg[seg].ar;
1458
1459 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1460 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1461 return *p;
1462}
1463
abd3f2d6
AK
1464static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1465{
1466 u32 eb;
1467
fd7373cc
JK
1468 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1469 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1470 if ((vcpu->guest_debug &
1471 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1472 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1473 eb |= 1u << BP_VECTOR;
7ffd92c5 1474 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1475 eb = ~0;
089d034e 1476 if (enable_ept)
1439442c 1477 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
02daab21
AK
1478 if (vcpu->fpu_active)
1479 eb &= ~(1u << NM_VECTOR);
36cf24e0
NHE
1480
1481 /* When we are running a nested L2 guest and L1 specified for it a
1482 * certain exception bitmap, we must trap the same exceptions and pass
1483 * them to L1. When running L2, we will only handle the exceptions
1484 * specified above if L1 did not want them.
1485 */
1486 if (is_guest_mode(vcpu))
1487 eb |= get_vmcs12(vcpu)->exception_bitmap;
1488
abd3f2d6
AK
1489 vmcs_write32(EXCEPTION_BITMAP, eb);
1490}
1491
2961e876
GN
1492static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1493 unsigned long entry, unsigned long exit)
8bf00a52 1494{
2961e876
GN
1495 vm_entry_controls_clearbit(vmx, entry);
1496 vm_exit_controls_clearbit(vmx, exit);
8bf00a52
GN
1497}
1498
61d2ef2c
AK
1499static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1500{
1501 unsigned i;
1502 struct msr_autoload *m = &vmx->msr_autoload;
1503
8bf00a52
GN
1504 switch (msr) {
1505 case MSR_EFER:
1506 if (cpu_has_load_ia32_efer) {
2961e876
GN
1507 clear_atomic_switch_msr_special(vmx,
1508 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1509 VM_EXIT_LOAD_IA32_EFER);
1510 return;
1511 }
1512 break;
1513 case MSR_CORE_PERF_GLOBAL_CTRL:
1514 if (cpu_has_load_perf_global_ctrl) {
2961e876 1515 clear_atomic_switch_msr_special(vmx,
8bf00a52
GN
1516 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1517 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1518 return;
1519 }
1520 break;
110312c8
AK
1521 }
1522
61d2ef2c
AK
1523 for (i = 0; i < m->nr; ++i)
1524 if (m->guest[i].index == msr)
1525 break;
1526
1527 if (i == m->nr)
1528 return;
1529 --m->nr;
1530 m->guest[i] = m->guest[m->nr];
1531 m->host[i] = m->host[m->nr];
1532 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1533 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1534}
1535
2961e876
GN
1536static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1537 unsigned long entry, unsigned long exit,
1538 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1539 u64 guest_val, u64 host_val)
8bf00a52
GN
1540{
1541 vmcs_write64(guest_val_vmcs, guest_val);
1542 vmcs_write64(host_val_vmcs, host_val);
2961e876
GN
1543 vm_entry_controls_setbit(vmx, entry);
1544 vm_exit_controls_setbit(vmx, exit);
8bf00a52
GN
1545}
1546
61d2ef2c
AK
1547static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1548 u64 guest_val, u64 host_val)
1549{
1550 unsigned i;
1551 struct msr_autoload *m = &vmx->msr_autoload;
1552
8bf00a52
GN
1553 switch (msr) {
1554 case MSR_EFER:
1555 if (cpu_has_load_ia32_efer) {
2961e876
GN
1556 add_atomic_switch_msr_special(vmx,
1557 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1558 VM_EXIT_LOAD_IA32_EFER,
1559 GUEST_IA32_EFER,
1560 HOST_IA32_EFER,
1561 guest_val, host_val);
1562 return;
1563 }
1564 break;
1565 case MSR_CORE_PERF_GLOBAL_CTRL:
1566 if (cpu_has_load_perf_global_ctrl) {
2961e876 1567 add_atomic_switch_msr_special(vmx,
8bf00a52
GN
1568 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1569 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1570 GUEST_IA32_PERF_GLOBAL_CTRL,
1571 HOST_IA32_PERF_GLOBAL_CTRL,
1572 guest_val, host_val);
1573 return;
1574 }
1575 break;
110312c8
AK
1576 }
1577
61d2ef2c
AK
1578 for (i = 0; i < m->nr; ++i)
1579 if (m->guest[i].index == msr)
1580 break;
1581
e7fc6f93 1582 if (i == NR_AUTOLOAD_MSRS) {
60266204 1583 printk_once(KERN_WARNING "Not enough msr switch entries. "
e7fc6f93
GN
1584 "Can't add msr %x\n", msr);
1585 return;
1586 } else if (i == m->nr) {
61d2ef2c
AK
1587 ++m->nr;
1588 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1589 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1590 }
1591
1592 m->guest[i].index = msr;
1593 m->guest[i].value = guest_val;
1594 m->host[i].index = msr;
1595 m->host[i].value = host_val;
1596}
1597
33ed6329
AK
1598static void reload_tss(void)
1599{
33ed6329
AK
1600 /*
1601 * VT restores TR but not its size. Useless.
1602 */
d359192f 1603 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
a5f61300 1604 struct desc_struct *descs;
33ed6329 1605
d359192f 1606 descs = (void *)gdt->address;
33ed6329
AK
1607 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1608 load_TR_desc();
33ed6329
AK
1609}
1610
92c0d900 1611static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 1612{
3a34a881 1613 u64 guest_efer;
51c6cf66
AK
1614 u64 ignore_bits;
1615
f6801dff 1616 guest_efer = vmx->vcpu.arch.efer;
3a34a881 1617
51c6cf66 1618 /*
0fa06071 1619 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
51c6cf66
AK
1620 * outside long mode
1621 */
1622 ignore_bits = EFER_NX | EFER_SCE;
1623#ifdef CONFIG_X86_64
1624 ignore_bits |= EFER_LMA | EFER_LME;
1625 /* SCE is meaningful only in long mode on Intel */
1626 if (guest_efer & EFER_LMA)
1627 ignore_bits &= ~(u64)EFER_SCE;
1628#endif
51c6cf66
AK
1629 guest_efer &= ~ignore_bits;
1630 guest_efer |= host_efer & ignore_bits;
26bb0981 1631 vmx->guest_msrs[efer_offset].data = guest_efer;
d5696725 1632 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef
AK
1633
1634 clear_atomic_switch_msr(vmx, MSR_EFER);
1635 /* On ept, can't emulate nx, and must switch nx atomically */
1636 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1637 guest_efer = vmx->vcpu.arch.efer;
1638 if (!(guest_efer & EFER_LMA))
1639 guest_efer &= ~EFER_LME;
1640 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1641 return false;
1642 }
1643
26bb0981 1644 return true;
51c6cf66
AK
1645}
1646
2d49ec72
GN
1647static unsigned long segment_base(u16 selector)
1648{
d359192f 1649 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
2d49ec72
GN
1650 struct desc_struct *d;
1651 unsigned long table_base;
1652 unsigned long v;
1653
1654 if (!(selector & ~3))
1655 return 0;
1656
d359192f 1657 table_base = gdt->address;
2d49ec72
GN
1658
1659 if (selector & 4) { /* from ldt */
1660 u16 ldt_selector = kvm_read_ldt();
1661
1662 if (!(ldt_selector & ~3))
1663 return 0;
1664
1665 table_base = segment_base(ldt_selector);
1666 }
1667 d = (struct desc_struct *)(table_base + (selector & ~7));
1668 v = get_desc_base(d);
1669#ifdef CONFIG_X86_64
1670 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1671 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1672#endif
1673 return v;
1674}
1675
1676static inline unsigned long kvm_read_tr_base(void)
1677{
1678 u16 tr;
1679 asm("str %0" : "=g"(tr));
1680 return segment_base(tr);
1681}
1682
04d2cc77 1683static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 1684{
04d2cc77 1685 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 1686 int i;
04d2cc77 1687
a2fa3e9f 1688 if (vmx->host_state.loaded)
33ed6329
AK
1689 return;
1690
a2fa3e9f 1691 vmx->host_state.loaded = 1;
33ed6329
AK
1692 /*
1693 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1694 * allow segment selectors with cpl > 0 or ti == 1.
1695 */
d6e88aec 1696 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 1697 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 1698 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 1699 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 1700 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
1701 vmx->host_state.fs_reload_needed = 0;
1702 } else {
33ed6329 1703 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 1704 vmx->host_state.fs_reload_needed = 1;
33ed6329 1705 }
9581d442 1706 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
1707 if (!(vmx->host_state.gs_sel & 7))
1708 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
1709 else {
1710 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 1711 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
1712 }
1713
b2da15ac
AK
1714#ifdef CONFIG_X86_64
1715 savesegment(ds, vmx->host_state.ds_sel);
1716 savesegment(es, vmx->host_state.es_sel);
1717#endif
1718
33ed6329
AK
1719#ifdef CONFIG_X86_64
1720 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1721 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1722#else
a2fa3e9f
GH
1723 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1724 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 1725#endif
707c0874
AK
1726
1727#ifdef CONFIG_X86_64
c8770e7b
AK
1728 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1729 if (is_long_mode(&vmx->vcpu))
44ea2b17 1730 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 1731#endif
da8999d3
LJ
1732 if (boot_cpu_has(X86_FEATURE_MPX))
1733 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
26bb0981
AK
1734 for (i = 0; i < vmx->save_nmsrs; ++i)
1735 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
1736 vmx->guest_msrs[i].data,
1737 vmx->guest_msrs[i].mask);
33ed6329
AK
1738}
1739
a9b21b62 1740static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 1741{
a2fa3e9f 1742 if (!vmx->host_state.loaded)
33ed6329
AK
1743 return;
1744
e1beb1d3 1745 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 1746 vmx->host_state.loaded = 0;
c8770e7b
AK
1747#ifdef CONFIG_X86_64
1748 if (is_long_mode(&vmx->vcpu))
1749 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1750#endif
152d3f2f 1751 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 1752 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 1753#ifdef CONFIG_X86_64
9581d442 1754 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
1755#else
1756 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 1757#endif
33ed6329 1758 }
0a77fe4c
AK
1759 if (vmx->host_state.fs_reload_needed)
1760 loadsegment(fs, vmx->host_state.fs_sel);
b2da15ac
AK
1761#ifdef CONFIG_X86_64
1762 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1763 loadsegment(ds, vmx->host_state.ds_sel);
1764 loadsegment(es, vmx->host_state.es_sel);
1765 }
b2da15ac 1766#endif
152d3f2f 1767 reload_tss();
44ea2b17 1768#ifdef CONFIG_X86_64
c8770e7b 1769 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 1770#endif
da8999d3
LJ
1771 if (vmx->host_state.msr_host_bndcfgs)
1772 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
b1a74bf8
SS
1773 /*
1774 * If the FPU is not active (through the host task or
1775 * the guest vcpu), then restore the cr0.TS bit.
1776 */
1777 if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1778 stts();
3444d7da 1779 load_gdt(&__get_cpu_var(host_gdt));
33ed6329
AK
1780}
1781
a9b21b62
AK
1782static void vmx_load_host_state(struct vcpu_vmx *vmx)
1783{
1784 preempt_disable();
1785 __vmx_load_host_state(vmx);
1786 preempt_enable();
1787}
1788
6aa8b732
AK
1789/*
1790 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1791 * vcpu mutex is already taken.
1792 */
15ad7146 1793static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 1794{
a2fa3e9f 1795 struct vcpu_vmx *vmx = to_vmx(vcpu);
4610c9cc 1796 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
6aa8b732 1797
4610c9cc
DX
1798 if (!vmm_exclusive)
1799 kvm_cpu_vmxon(phys_addr);
d462b819
NHE
1800 else if (vmx->loaded_vmcs->cpu != cpu)
1801 loaded_vmcs_clear(vmx->loaded_vmcs);
6aa8b732 1802
d462b819
NHE
1803 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1804 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1805 vmcs_load(vmx->loaded_vmcs->vmcs);
6aa8b732
AK
1806 }
1807
d462b819 1808 if (vmx->loaded_vmcs->cpu != cpu) {
d359192f 1809 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
6aa8b732
AK
1810 unsigned long sysenter_esp;
1811
a8eeb04a 1812 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 1813 local_irq_disable();
8f536b76 1814 crash_disable_local_vmclear(cpu);
5a560f8b
XG
1815
1816 /*
1817 * Read loaded_vmcs->cpu should be before fetching
1818 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1819 * See the comments in __loaded_vmcs_clear().
1820 */
1821 smp_rmb();
1822
d462b819
NHE
1823 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1824 &per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76 1825 crash_enable_local_vmclear(cpu);
92fe13be
DX
1826 local_irq_enable();
1827
6aa8b732
AK
1828 /*
1829 * Linux uses per-cpu TSS and GDT, so set these when switching
1830 * processors.
1831 */
d6e88aec 1832 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
d359192f 1833 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
6aa8b732
AK
1834
1835 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1836 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
d462b819 1837 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 1838 }
6aa8b732
AK
1839}
1840
1841static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1842{
a9b21b62 1843 __vmx_load_host_state(to_vmx(vcpu));
4610c9cc 1844 if (!vmm_exclusive) {
d462b819
NHE
1845 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1846 vcpu->cpu = -1;
4610c9cc
DX
1847 kvm_cpu_vmxoff();
1848 }
6aa8b732
AK
1849}
1850
5fd86fcf
AK
1851static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1852{
81231c69
AK
1853 ulong cr0;
1854
5fd86fcf
AK
1855 if (vcpu->fpu_active)
1856 return;
1857 vcpu->fpu_active = 1;
81231c69
AK
1858 cr0 = vmcs_readl(GUEST_CR0);
1859 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1860 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1861 vmcs_writel(GUEST_CR0, cr0);
5fd86fcf 1862 update_exception_bitmap(vcpu);
edcafe3c 1863 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
36cf24e0
NHE
1864 if (is_guest_mode(vcpu))
1865 vcpu->arch.cr0_guest_owned_bits &=
1866 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
edcafe3c 1867 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
5fd86fcf
AK
1868}
1869
edcafe3c
AK
1870static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1871
fe3ef05c
NHE
1872/*
1873 * Return the cr0 value that a nested guest would read. This is a combination
1874 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1875 * its hypervisor (cr0_read_shadow).
1876 */
1877static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1878{
1879 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1880 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1881}
1882static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1883{
1884 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1885 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1886}
1887
5fd86fcf
AK
1888static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1889{
36cf24e0
NHE
1890 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1891 * set this *before* calling this function.
1892 */
edcafe3c 1893 vmx_decache_cr0_guest_bits(vcpu);
81231c69 1894 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
5fd86fcf 1895 update_exception_bitmap(vcpu);
edcafe3c
AK
1896 vcpu->arch.cr0_guest_owned_bits = 0;
1897 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
36cf24e0
NHE
1898 if (is_guest_mode(vcpu)) {
1899 /*
1900 * L1's specified read shadow might not contain the TS bit,
1901 * so now that we turned on shadowing of this bit, we need to
1902 * set this bit of the shadow. Like in nested_vmx_run we need
1903 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1904 * up-to-date here because we just decached cr0.TS (and we'll
1905 * only update vmcs12->guest_cr0 on nested exit).
1906 */
1907 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1908 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1909 (vcpu->arch.cr0 & X86_CR0_TS);
1910 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1911 } else
1912 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
5fd86fcf
AK
1913}
1914
6aa8b732
AK
1915static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1916{
78ac8b47 1917 unsigned long rflags, save_rflags;
345dcaa8 1918
6de12732
AK
1919 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1920 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1921 rflags = vmcs_readl(GUEST_RFLAGS);
1922 if (to_vmx(vcpu)->rmode.vm86_active) {
1923 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1924 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1925 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1926 }
1927 to_vmx(vcpu)->rflags = rflags;
78ac8b47 1928 }
6de12732 1929 return to_vmx(vcpu)->rflags;
6aa8b732
AK
1930}
1931
1932static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1933{
6de12732
AK
1934 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1935 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
1936 if (to_vmx(vcpu)->rmode.vm86_active) {
1937 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 1938 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 1939 }
6aa8b732
AK
1940 vmcs_writel(GUEST_RFLAGS, rflags);
1941}
1942
2809f5d2
GC
1943static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1944{
1945 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1946 int ret = 0;
1947
1948 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 1949 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 1950 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 1951 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2
GC
1952
1953 return ret & mask;
1954}
1955
1956static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1957{
1958 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1959 u32 interruptibility = interruptibility_old;
1960
1961 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1962
48005f64 1963 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 1964 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 1965 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
1966 interruptibility |= GUEST_INTR_STATE_STI;
1967
1968 if ((interruptibility != interruptibility_old))
1969 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1970}
1971
6aa8b732
AK
1972static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1973{
1974 unsigned long rip;
6aa8b732 1975
5fdbf976 1976 rip = kvm_rip_read(vcpu);
6aa8b732 1977 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 1978 kvm_rip_write(vcpu, rip);
6aa8b732 1979
2809f5d2
GC
1980 /* skipping an emulated instruction also counts */
1981 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
1982}
1983
0b6ac343
NHE
1984/*
1985 * KVM wants to inject page-faults which it got to the guest. This function
1986 * checks whether in a nested guest, we need to inject them to L1 or L2.
0b6ac343 1987 */
e011c663 1988static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
0b6ac343
NHE
1989{
1990 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1991
e011c663 1992 if (!(vmcs12->exception_bitmap & (1u << nr)))
0b6ac343
NHE
1993 return 0;
1994
533558bc
JK
1995 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
1996 vmcs_read32(VM_EXIT_INTR_INFO),
1997 vmcs_readl(EXIT_QUALIFICATION));
0b6ac343
NHE
1998 return 1;
1999}
2000
298101da 2001static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
ce7ddec4
JR
2002 bool has_error_code, u32 error_code,
2003 bool reinject)
298101da 2004{
77ab6db0 2005 struct vcpu_vmx *vmx = to_vmx(vcpu);
8ab2d2e2 2006 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 2007
e011c663
GN
2008 if (!reinject && is_guest_mode(vcpu) &&
2009 nested_vmx_check_exception(vcpu, nr))
0b6ac343
NHE
2010 return;
2011
8ab2d2e2 2012 if (has_error_code) {
77ab6db0 2013 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
2014 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2015 }
77ab6db0 2016
7ffd92c5 2017 if (vmx->rmode.vm86_active) {
71f9833b
SH
2018 int inc_eip = 0;
2019 if (kvm_exception_is_soft(nr))
2020 inc_eip = vcpu->arch.event_exit_inst_len;
2021 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 2022 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
2023 return;
2024 }
2025
66fd3f7f
GN
2026 if (kvm_exception_is_soft(nr)) {
2027 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2028 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
2029 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2030 } else
2031 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2032
2033 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
2034}
2035
4e47c7a6
SY
2036static bool vmx_rdtscp_supported(void)
2037{
2038 return cpu_has_vmx_rdtscp();
2039}
2040
ad756a16
MJ
2041static bool vmx_invpcid_supported(void)
2042{
2043 return cpu_has_vmx_invpcid() && enable_ept;
2044}
2045
a75beee6
ED
2046/*
2047 * Swap MSR entry in host/guest MSR entry array.
2048 */
8b9cf98c 2049static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 2050{
26bb0981 2051 struct shared_msr_entry tmp;
a2fa3e9f
GH
2052
2053 tmp = vmx->guest_msrs[to];
2054 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2055 vmx->guest_msrs[from] = tmp;
a75beee6
ED
2056}
2057
8d14695f
YZ
2058static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2059{
2060 unsigned long *msr_bitmap;
2061
2062 if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
2063 if (is_long_mode(vcpu))
2064 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2065 else
2066 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2067 } else {
2068 if (is_long_mode(vcpu))
2069 msr_bitmap = vmx_msr_bitmap_longmode;
2070 else
2071 msr_bitmap = vmx_msr_bitmap_legacy;
2072 }
2073
2074 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2075}
2076
e38aea3e
AK
2077/*
2078 * Set up the vmcs to automatically save and restore system
2079 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2080 * mode, as fiddling with msrs is very expensive.
2081 */
8b9cf98c 2082static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 2083{
26bb0981 2084 int save_nmsrs, index;
e38aea3e 2085
a75beee6
ED
2086 save_nmsrs = 0;
2087#ifdef CONFIG_X86_64
8b9cf98c 2088 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 2089 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 2090 if (index >= 0)
8b9cf98c
RR
2091 move_msr_up(vmx, index, save_nmsrs++);
2092 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 2093 if (index >= 0)
8b9cf98c
RR
2094 move_msr_up(vmx, index, save_nmsrs++);
2095 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 2096 if (index >= 0)
8b9cf98c 2097 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6
SY
2098 index = __find_msr_index(vmx, MSR_TSC_AUX);
2099 if (index >= 0 && vmx->rdtscp_enabled)
2100 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 2101 /*
8c06585d 2102 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
2103 * if efer.sce is enabled.
2104 */
8c06585d 2105 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 2106 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 2107 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
2108 }
2109#endif
92c0d900
AK
2110 index = __find_msr_index(vmx, MSR_EFER);
2111 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 2112 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 2113
26bb0981 2114 vmx->save_nmsrs = save_nmsrs;
5897297b 2115
8d14695f
YZ
2116 if (cpu_has_vmx_msr_bitmap())
2117 vmx_set_msr_bitmap(&vmx->vcpu);
e38aea3e
AK
2118}
2119
6aa8b732
AK
2120/*
2121 * reads and returns guest's timestamp counter "register"
2122 * guest_tsc = host_tsc + tsc_offset -- 21.3
2123 */
2124static u64 guest_read_tsc(void)
2125{
2126 u64 host_tsc, tsc_offset;
2127
2128 rdtscll(host_tsc);
2129 tsc_offset = vmcs_read64(TSC_OFFSET);
2130 return host_tsc + tsc_offset;
2131}
2132
d5c1785d
NHE
2133/*
2134 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2135 * counter, even if a nested guest (L2) is currently running.
2136 */
886b470c 2137u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
d5c1785d 2138{
886b470c 2139 u64 tsc_offset;
d5c1785d 2140
d5c1785d
NHE
2141 tsc_offset = is_guest_mode(vcpu) ?
2142 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2143 vmcs_read64(TSC_OFFSET);
2144 return host_tsc + tsc_offset;
2145}
2146
4051b188 2147/*
cc578287
ZA
2148 * Engage any workarounds for mis-matched TSC rates. Currently limited to
2149 * software catchup for faster rates on slower CPUs.
4051b188 2150 */
cc578287 2151static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
4051b188 2152{
cc578287
ZA
2153 if (!scale)
2154 return;
2155
2156 if (user_tsc_khz > tsc_khz) {
2157 vcpu->arch.tsc_catchup = 1;
2158 vcpu->arch.tsc_always_catchup = 1;
2159 } else
2160 WARN(1, "user requested TSC rate below hardware speed\n");
4051b188
JR
2161}
2162
ba904635
WA
2163static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2164{
2165 return vmcs_read64(TSC_OFFSET);
2166}
2167
6aa8b732 2168/*
99e3e30a 2169 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 2170 */
99e3e30a 2171static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 2172{
27fc51b2 2173 if (is_guest_mode(vcpu)) {
7991825b 2174 /*
27fc51b2
NHE
2175 * We're here if L1 chose not to trap WRMSR to TSC. According
2176 * to the spec, this should set L1's TSC; The offset that L1
2177 * set for L2 remains unchanged, and still needs to be added
2178 * to the newly set TSC to get L2's TSC.
7991825b 2179 */
27fc51b2
NHE
2180 struct vmcs12 *vmcs12;
2181 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2182 /* recalculate vmcs02.TSC_OFFSET: */
2183 vmcs12 = get_vmcs12(vcpu);
2184 vmcs_write64(TSC_OFFSET, offset +
2185 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2186 vmcs12->tsc_offset : 0));
2187 } else {
489223ed
YY
2188 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2189 vmcs_read64(TSC_OFFSET), offset);
27fc51b2
NHE
2190 vmcs_write64(TSC_OFFSET, offset);
2191 }
6aa8b732
AK
2192}
2193
f1e2b260 2194static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
e48672fa
ZA
2195{
2196 u64 offset = vmcs_read64(TSC_OFFSET);
489223ed 2197
e48672fa 2198 vmcs_write64(TSC_OFFSET, offset + adjustment);
7991825b
NHE
2199 if (is_guest_mode(vcpu)) {
2200 /* Even when running L2, the adjustment needs to apply to L1 */
2201 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
489223ed
YY
2202 } else
2203 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2204 offset + adjustment);
e48672fa
ZA
2205}
2206
857e4099
JR
2207static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2208{
2209 return target_tsc - native_read_tsc();
2210}
2211
801d3424
NHE
2212static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2213{
2214 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2215 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2216}
2217
2218/*
2219 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2220 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2221 * all guests if the "nested" module option is off, and can also be disabled
2222 * for a single guest by disabling its VMX cpuid bit.
2223 */
2224static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2225{
2226 return nested && guest_cpuid_has_vmx(vcpu);
2227}
2228
b87a51ae
NHE
2229/*
2230 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2231 * returned for the various VMX controls MSRs when nested VMX is enabled.
2232 * The same values should also be used to verify that vmcs12 control fields are
2233 * valid during nested entry from L1 to L2.
2234 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2235 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2236 * bit in the high half is on if the corresponding bit in the control field
2237 * may be on. See also vmx_control_verify().
2238 * TODO: allow these variables to be modified (downgraded) by module options
2239 * or other means.
2240 */
2241static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
2242static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2243static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2244static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2245static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
c18911a2 2246static u32 nested_vmx_misc_low, nested_vmx_misc_high;
bfd0a56b 2247static u32 nested_vmx_ept_caps;
b87a51ae
NHE
2248static __init void nested_vmx_setup_ctls_msrs(void)
2249{
2250 /*
2251 * Note that as a general rule, the high half of the MSRs (bits in
2252 * the control fields which may be 1) should be initialized by the
2253 * intersection of the underlying hardware's MSR (i.e., features which
2254 * can be supported) and the list of features we want to expose -
2255 * because they are known to be properly supported in our code.
2256 * Also, usually, the low half of the MSRs (bits which must be 1) can
2257 * be set to 0, meaning that L1 may turn off any of these bits. The
2258 * reason is that if one of these bits is necessary, it will appear
2259 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2260 * fields of vmcs01 and vmcs02, will turn these bits off - and
2261 * nested_vmx_exit_handled() will not pass related exits to L1.
2262 * These rules have exceptions below.
2263 */
2264
2265 /* pin-based controls */
eabeaacc
JK
2266 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2267 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
b87a51ae
NHE
2268 /*
2269 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
2270 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
2271 */
eabeaacc
JK
2272 nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2273 nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
f4124500
JK
2274 PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS;
2275 nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
0238ea91 2276 PIN_BASED_VMX_PREEMPTION_TIMER;
b87a51ae 2277
33fb20c3
JK
2278 /*
2279 * Exit controls
2280 * If bit 55 of VMX_BASIC is off, bits 0-8 and 10, 11, 13, 14, 16 and
2281 * 17 must be 1.
2282 */
c0dfee58
ACL
2283 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2284 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high);
33fb20c3 2285 nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
b6f1250e 2286 /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
c0dfee58 2287 nested_vmx_exit_ctls_high &=
b87a51ae 2288#ifdef CONFIG_X86_64
c0dfee58 2289 VM_EXIT_HOST_ADDR_SPACE_SIZE |
b87a51ae 2290#endif
f4124500
JK
2291 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2292 nested_vmx_exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2293 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
7854cbca 2294 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER;
36be0b9d
PB
2295 if (vmx_mpx_supported())
2296 nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
b87a51ae
NHE
2297
2298 /* entry controls */
2299 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2300 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
33fb20c3
JK
2301 /* If bit 55 of VMX_BASIC is off, bits 0-8 and 12 must be 1. */
2302 nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae 2303 nested_vmx_entry_ctls_high &=
57435349
JK
2304#ifdef CONFIG_X86_64
2305 VM_ENTRY_IA32E_MODE |
2306#endif
2307 VM_ENTRY_LOAD_IA32_PAT;
8049d651
NHE
2308 nested_vmx_entry_ctls_high |= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR |
2309 VM_ENTRY_LOAD_IA32_EFER);
36be0b9d
PB
2310 if (vmx_mpx_supported())
2311 nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
57435349 2312
b87a51ae
NHE
2313 /* cpu-based controls */
2314 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2315 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2316 nested_vmx_procbased_ctls_low = 0;
2317 nested_vmx_procbased_ctls_high &=
a294c9bb
JK
2318 CPU_BASED_VIRTUAL_INTR_PENDING |
2319 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
b87a51ae
NHE
2320 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2321 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2322 CPU_BASED_CR3_STORE_EXITING |
2323#ifdef CONFIG_X86_64
2324 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2325#endif
2326 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2327 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
dbcb4e79 2328 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
d6851fbe 2329 CPU_BASED_PAUSE_EXITING |
b87a51ae
NHE
2330 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2331 /*
2332 * We can allow some features even when not supported by the
2333 * hardware. For example, L1 can specify an MSR bitmap - and we
2334 * can use it to avoid exits to L1 - even when L0 runs L2
2335 * without MSR bitmaps.
2336 */
2337 nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
2338
2339 /* secondary cpu-based controls */
2340 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2341 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2342 nested_vmx_secondary_ctls_low = 0;
2343 nested_vmx_secondary_ctls_high &=
d6851fbe 2344 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
92fbc7b1 2345 SECONDARY_EXEC_UNRESTRICTED_GUEST |
d6851fbe 2346 SECONDARY_EXEC_WBINVD_EXITING;
c18911a2 2347
afa61f75
NHE
2348 if (enable_ept) {
2349 /* nested EPT: emulate EPT also to L1 */
2350 nested_vmx_secondary_ctls_high |= SECONDARY_EXEC_ENABLE_EPT;
ca72d970 2351 nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
d3134dbf
JK
2352 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2353 VMX_EPT_INVEPT_BIT;
afa61f75
NHE
2354 nested_vmx_ept_caps &= vmx_capability.ept;
2355 /*
2356 * Since invept is completely emulated we support both global
2357 * and context invalidation independent of what host cpu
2358 * supports
2359 */
2360 nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2361 VMX_EPT_EXTENT_CONTEXT_BIT;
2362 } else
2363 nested_vmx_ept_caps = 0;
2364
c18911a2
JK
2365 /* miscellaneous data */
2366 rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
f4124500
JK
2367 nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2368 nested_vmx_misc_low |= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2369 VMX_MISC_ACTIVITY_HLT;
c18911a2 2370 nested_vmx_misc_high = 0;
b87a51ae
NHE
2371}
2372
2373static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2374{
2375 /*
2376 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2377 */
2378 return ((control & high) | low) == control;
2379}
2380
2381static inline u64 vmx_control_msr(u32 low, u32 high)
2382{
2383 return low | ((u64)high << 32);
2384}
2385
cae50139 2386/* Returns 0 on success, non-0 otherwise. */
b87a51ae
NHE
2387static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2388{
b87a51ae 2389 switch (msr_index) {
b87a51ae
NHE
2390 case MSR_IA32_VMX_BASIC:
2391 /*
2392 * This MSR reports some information about VMX support. We
2393 * should return information about the VMX we emulate for the
2394 * guest, and the VMCS structure we give it - not about the
2395 * VMX support of the underlying hardware.
2396 */
2397 *pdata = VMCS12_REVISION |
2398 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2399 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2400 break;
2401 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2402 case MSR_IA32_VMX_PINBASED_CTLS:
2403 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2404 nested_vmx_pinbased_ctls_high);
2405 break;
2406 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2407 case MSR_IA32_VMX_PROCBASED_CTLS:
2408 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2409 nested_vmx_procbased_ctls_high);
2410 break;
2411 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2412 case MSR_IA32_VMX_EXIT_CTLS:
2413 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2414 nested_vmx_exit_ctls_high);
2415 break;
2416 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2417 case MSR_IA32_VMX_ENTRY_CTLS:
2418 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2419 nested_vmx_entry_ctls_high);
2420 break;
2421 case MSR_IA32_VMX_MISC:
c18911a2
JK
2422 *pdata = vmx_control_msr(nested_vmx_misc_low,
2423 nested_vmx_misc_high);
b87a51ae
NHE
2424 break;
2425 /*
2426 * These MSRs specify bits which the guest must keep fixed (on or off)
2427 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2428 * We picked the standard core2 setting.
2429 */
2430#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2431#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2432 case MSR_IA32_VMX_CR0_FIXED0:
2433 *pdata = VMXON_CR0_ALWAYSON;
2434 break;
2435 case MSR_IA32_VMX_CR0_FIXED1:
2436 *pdata = -1ULL;
2437 break;
2438 case MSR_IA32_VMX_CR4_FIXED0:
2439 *pdata = VMXON_CR4_ALWAYSON;
2440 break;
2441 case MSR_IA32_VMX_CR4_FIXED1:
2442 *pdata = -1ULL;
2443 break;
2444 case MSR_IA32_VMX_VMCS_ENUM:
2445 *pdata = 0x1f;
2446 break;
2447 case MSR_IA32_VMX_PROCBASED_CTLS2:
2448 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2449 nested_vmx_secondary_ctls_high);
2450 break;
2451 case MSR_IA32_VMX_EPT_VPID_CAP:
afa61f75
NHE
2452 /* Currently, no nested vpid support */
2453 *pdata = nested_vmx_ept_caps;
b87a51ae
NHE
2454 break;
2455 default:
b87a51ae 2456 return 1;
b3897a49
NHE
2457 }
2458
b87a51ae
NHE
2459 return 0;
2460}
2461
6aa8b732
AK
2462/*
2463 * Reads an msr value (of 'msr_index') into 'pdata'.
2464 * Returns 0 on success, non-0 otherwise.
2465 * Assumes vcpu_load() was already called.
2466 */
2467static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2468{
2469 u64 data;
26bb0981 2470 struct shared_msr_entry *msr;
6aa8b732
AK
2471
2472 if (!pdata) {
2473 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2474 return -EINVAL;
2475 }
2476
2477 switch (msr_index) {
05b3e0c2 2478#ifdef CONFIG_X86_64
6aa8b732
AK
2479 case MSR_FS_BASE:
2480 data = vmcs_readl(GUEST_FS_BASE);
2481 break;
2482 case MSR_GS_BASE:
2483 data = vmcs_readl(GUEST_GS_BASE);
2484 break;
44ea2b17
AK
2485 case MSR_KERNEL_GS_BASE:
2486 vmx_load_host_state(to_vmx(vcpu));
2487 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2488 break;
26bb0981 2489#endif
6aa8b732 2490 case MSR_EFER:
3bab1f5d 2491 return kvm_get_msr_common(vcpu, msr_index, pdata);
af24a4e4 2492 case MSR_IA32_TSC:
6aa8b732
AK
2493 data = guest_read_tsc();
2494 break;
2495 case MSR_IA32_SYSENTER_CS:
2496 data = vmcs_read32(GUEST_SYSENTER_CS);
2497 break;
2498 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2499 data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
2500 break;
2501 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2502 data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 2503 break;
0dd376e7 2504 case MSR_IA32_BNDCFGS:
93c4adc7
PB
2505 if (!vmx_mpx_supported())
2506 return 1;
0dd376e7
LJ
2507 data = vmcs_read64(GUEST_BNDCFGS);
2508 break;
cae50139
JK
2509 case MSR_IA32_FEATURE_CONTROL:
2510 if (!nested_vmx_allowed(vcpu))
2511 return 1;
2512 data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2513 break;
2514 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2515 if (!nested_vmx_allowed(vcpu))
2516 return 1;
2517 return vmx_get_vmx_msr(vcpu, msr_index, pdata);
4e47c7a6
SY
2518 case MSR_TSC_AUX:
2519 if (!to_vmx(vcpu)->rdtscp_enabled)
2520 return 1;
2521 /* Otherwise falls through */
6aa8b732 2522 default:
8b9cf98c 2523 msr = find_msr_entry(to_vmx(vcpu), msr_index);
3bab1f5d
AK
2524 if (msr) {
2525 data = msr->data;
2526 break;
6aa8b732 2527 }
3bab1f5d 2528 return kvm_get_msr_common(vcpu, msr_index, pdata);
6aa8b732
AK
2529 }
2530
2531 *pdata = data;
2532 return 0;
2533}
2534
cae50139
JK
2535static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2536
6aa8b732
AK
2537/*
2538 * Writes msr value into into the appropriate "register".
2539 * Returns 0 on success, non-0 otherwise.
2540 * Assumes vcpu_load() was already called.
2541 */
8fe8ab46 2542static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 2543{
a2fa3e9f 2544 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2545 struct shared_msr_entry *msr;
2cc51560 2546 int ret = 0;
8fe8ab46
WA
2547 u32 msr_index = msr_info->index;
2548 u64 data = msr_info->data;
2cc51560 2549
6aa8b732 2550 switch (msr_index) {
3bab1f5d 2551 case MSR_EFER:
8fe8ab46 2552 ret = kvm_set_msr_common(vcpu, msr_info);
2cc51560 2553 break;
16175a79 2554#ifdef CONFIG_X86_64
6aa8b732 2555 case MSR_FS_BASE:
2fb92db1 2556 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2557 vmcs_writel(GUEST_FS_BASE, data);
2558 break;
2559 case MSR_GS_BASE:
2fb92db1 2560 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2561 vmcs_writel(GUEST_GS_BASE, data);
2562 break;
44ea2b17
AK
2563 case MSR_KERNEL_GS_BASE:
2564 vmx_load_host_state(vmx);
2565 vmx->msr_guest_kernel_gs_base = data;
2566 break;
6aa8b732
AK
2567#endif
2568 case MSR_IA32_SYSENTER_CS:
2569 vmcs_write32(GUEST_SYSENTER_CS, data);
2570 break;
2571 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2572 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
2573 break;
2574 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2575 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 2576 break;
0dd376e7 2577 case MSR_IA32_BNDCFGS:
93c4adc7
PB
2578 if (!vmx_mpx_supported())
2579 return 1;
0dd376e7
LJ
2580 vmcs_write64(GUEST_BNDCFGS, data);
2581 break;
af24a4e4 2582 case MSR_IA32_TSC:
8fe8ab46 2583 kvm_write_tsc(vcpu, msr_info);
6aa8b732 2584 break;
468d472f
SY
2585 case MSR_IA32_CR_PAT:
2586 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2587 vmcs_write64(GUEST_IA32_PAT, data);
2588 vcpu->arch.pat = data;
2589 break;
2590 }
8fe8ab46 2591 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 2592 break;
ba904635
WA
2593 case MSR_IA32_TSC_ADJUST:
2594 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 2595 break;
cae50139
JK
2596 case MSR_IA32_FEATURE_CONTROL:
2597 if (!nested_vmx_allowed(vcpu) ||
2598 (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2599 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2600 return 1;
2601 vmx->nested.msr_ia32_feature_control = data;
2602 if (msr_info->host_initiated && data == 0)
2603 vmx_leave_nested(vcpu);
2604 break;
2605 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2606 return 1; /* they are read-only */
4e47c7a6
SY
2607 case MSR_TSC_AUX:
2608 if (!vmx->rdtscp_enabled)
2609 return 1;
2610 /* Check reserved bit, higher 32 bits should be zero */
2611 if ((data >> 32) != 0)
2612 return 1;
2613 /* Otherwise falls through */
6aa8b732 2614 default:
8b9cf98c 2615 msr = find_msr_entry(vmx, msr_index);
3bab1f5d
AK
2616 if (msr) {
2617 msr->data = data;
2225fd56
AK
2618 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2619 preempt_disable();
9ee73970
AK
2620 kvm_set_shared_msr(msr->index, msr->data,
2621 msr->mask);
2225fd56
AK
2622 preempt_enable();
2623 }
3bab1f5d 2624 break;
6aa8b732 2625 }
8fe8ab46 2626 ret = kvm_set_msr_common(vcpu, msr_info);
6aa8b732
AK
2627 }
2628
2cc51560 2629 return ret;
6aa8b732
AK
2630}
2631
5fdbf976 2632static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 2633{
5fdbf976
MT
2634 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2635 switch (reg) {
2636 case VCPU_REGS_RSP:
2637 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2638 break;
2639 case VCPU_REGS_RIP:
2640 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2641 break;
6de4f3ad
AK
2642 case VCPU_EXREG_PDPTR:
2643 if (enable_ept)
2644 ept_save_pdptrs(vcpu);
2645 break;
5fdbf976
MT
2646 default:
2647 break;
2648 }
6aa8b732
AK
2649}
2650
6aa8b732
AK
2651static __init int cpu_has_kvm_support(void)
2652{
6210e37b 2653 return cpu_has_vmx();
6aa8b732
AK
2654}
2655
2656static __init int vmx_disabled_by_bios(void)
2657{
2658 u64 msr;
2659
2660 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 2661 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 2662 /* launched w/ TXT and VMX disabled */
cafd6659
SW
2663 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2664 && tboot_enabled())
2665 return 1;
23f3e991 2666 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 2667 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 2668 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
2669 && !tboot_enabled()) {
2670 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 2671 "activate TXT before enabling KVM\n");
cafd6659 2672 return 1;
f9335afe 2673 }
23f3e991
JC
2674 /* launched w/o TXT and VMX disabled */
2675 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2676 && !tboot_enabled())
2677 return 1;
cafd6659
SW
2678 }
2679
2680 return 0;
6aa8b732
AK
2681}
2682
7725b894
DX
2683static void kvm_cpu_vmxon(u64 addr)
2684{
2685 asm volatile (ASM_VMX_VMXON_RAX
2686 : : "a"(&addr), "m"(addr)
2687 : "memory", "cc");
2688}
2689
10474ae8 2690static int hardware_enable(void *garbage)
6aa8b732
AK
2691{
2692 int cpu = raw_smp_processor_id();
2693 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 2694 u64 old, test_bits;
6aa8b732 2695
10474ae8
AG
2696 if (read_cr4() & X86_CR4_VMXE)
2697 return -EBUSY;
2698
d462b819 2699 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76
ZY
2700
2701 /*
2702 * Now we can enable the vmclear operation in kdump
2703 * since the loaded_vmcss_on_cpu list on this cpu
2704 * has been initialized.
2705 *
2706 * Though the cpu is not in VMX operation now, there
2707 * is no problem to enable the vmclear operation
2708 * for the loaded_vmcss_on_cpu list is empty!
2709 */
2710 crash_enable_local_vmclear(cpu);
2711
6aa8b732 2712 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
2713
2714 test_bits = FEATURE_CONTROL_LOCKED;
2715 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2716 if (tboot_enabled())
2717 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2718
2719 if ((old & test_bits) != test_bits) {
6aa8b732 2720 /* enable and lock */
cafd6659
SW
2721 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2722 }
66aee91a 2723 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
10474ae8 2724
4610c9cc
DX
2725 if (vmm_exclusive) {
2726 kvm_cpu_vmxon(phys_addr);
2727 ept_sync_global();
2728 }
10474ae8 2729
357d1226 2730 native_store_gdt(&__get_cpu_var(host_gdt));
3444d7da 2731
10474ae8 2732 return 0;
6aa8b732
AK
2733}
2734
d462b819 2735static void vmclear_local_loaded_vmcss(void)
543e4243
AK
2736{
2737 int cpu = raw_smp_processor_id();
d462b819 2738 struct loaded_vmcs *v, *n;
543e4243 2739
d462b819
NHE
2740 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2741 loaded_vmcss_on_cpu_link)
2742 __loaded_vmcs_clear(v);
543e4243
AK
2743}
2744
710ff4a8
EH
2745
2746/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2747 * tricks.
2748 */
2749static void kvm_cpu_vmxoff(void)
6aa8b732 2750{
4ecac3fd 2751 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
6aa8b732
AK
2752}
2753
710ff4a8
EH
2754static void hardware_disable(void *garbage)
2755{
4610c9cc 2756 if (vmm_exclusive) {
d462b819 2757 vmclear_local_loaded_vmcss();
4610c9cc
DX
2758 kvm_cpu_vmxoff();
2759 }
7725b894 2760 write_cr4(read_cr4() & ~X86_CR4_VMXE);
710ff4a8
EH
2761}
2762
1c3d14fe 2763static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 2764 u32 msr, u32 *result)
1c3d14fe
YS
2765{
2766 u32 vmx_msr_low, vmx_msr_high;
2767 u32 ctl = ctl_min | ctl_opt;
2768
2769 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2770
2771 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2772 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2773
2774 /* Ensure minimum (required) set of control bits are supported. */
2775 if (ctl_min & ~ctl)
002c7f7c 2776 return -EIO;
1c3d14fe
YS
2777
2778 *result = ctl;
2779 return 0;
2780}
2781
110312c8
AK
2782static __init bool allow_1_setting(u32 msr, u32 ctl)
2783{
2784 u32 vmx_msr_low, vmx_msr_high;
2785
2786 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2787 return vmx_msr_high & ctl;
2788}
2789
002c7f7c 2790static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
2791{
2792 u32 vmx_msr_low, vmx_msr_high;
d56f546d 2793 u32 min, opt, min2, opt2;
1c3d14fe
YS
2794 u32 _pin_based_exec_control = 0;
2795 u32 _cpu_based_exec_control = 0;
f78e0e2e 2796 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
2797 u32 _vmexit_control = 0;
2798 u32 _vmentry_control = 0;
2799
10166744 2800 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
2801#ifdef CONFIG_X86_64
2802 CPU_BASED_CR8_LOAD_EXITING |
2803 CPU_BASED_CR8_STORE_EXITING |
2804#endif
d56f546d
SY
2805 CPU_BASED_CR3_LOAD_EXITING |
2806 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
2807 CPU_BASED_USE_IO_BITMAPS |
2808 CPU_BASED_MOV_DR_EXITING |
a7052897 2809 CPU_BASED_USE_TSC_OFFSETING |
59708670
SY
2810 CPU_BASED_MWAIT_EXITING |
2811 CPU_BASED_MONITOR_EXITING |
fee84b07
AK
2812 CPU_BASED_INVLPG_EXITING |
2813 CPU_BASED_RDPMC_EXITING;
443381a8 2814
f78e0e2e 2815 opt = CPU_BASED_TPR_SHADOW |
25c5f225 2816 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 2817 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
2818 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2819 &_cpu_based_exec_control) < 0)
002c7f7c 2820 return -EIO;
6e5d865c
YS
2821#ifdef CONFIG_X86_64
2822 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2823 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2824 ~CPU_BASED_CR8_STORE_EXITING;
2825#endif
f78e0e2e 2826 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
2827 min2 = 0;
2828 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8d14695f 2829 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2384d2b3 2830 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 2831 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 2832 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 2833 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6 2834 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
ad756a16 2835 SECONDARY_EXEC_RDTSCP |
83d4c286 2836 SECONDARY_EXEC_ENABLE_INVPCID |
c7c9c56c 2837 SECONDARY_EXEC_APIC_REGISTER_VIRT |
abc4fc58
AG
2838 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2839 SECONDARY_EXEC_SHADOW_VMCS;
d56f546d
SY
2840 if (adjust_vmx_controls(min2, opt2,
2841 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
2842 &_cpu_based_2nd_exec_control) < 0)
2843 return -EIO;
2844 }
2845#ifndef CONFIG_X86_64
2846 if (!(_cpu_based_2nd_exec_control &
2847 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2848 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2849#endif
83d4c286
YZ
2850
2851 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2852 _cpu_based_2nd_exec_control &= ~(
8d14695f 2853 SECONDARY_EXEC_APIC_REGISTER_VIRT |
c7c9c56c
YZ
2854 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2855 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
83d4c286 2856
d56f546d 2857 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
2858 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2859 enabled */
5fff7d27
GN
2860 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2861 CPU_BASED_CR3_STORE_EXITING |
2862 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
2863 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2864 vmx_capability.ept, vmx_capability.vpid);
2865 }
1c3d14fe 2866
81908bf4 2867 min = VM_EXIT_SAVE_DEBUG_CONTROLS;
1c3d14fe
YS
2868#ifdef CONFIG_X86_64
2869 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2870#endif
a547c6db 2871 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
da8999d3 2872 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
1c3d14fe
YS
2873 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2874 &_vmexit_control) < 0)
002c7f7c 2875 return -EIO;
1c3d14fe 2876
01e439be
YZ
2877 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2878 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
2879 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2880 &_pin_based_exec_control) < 0)
2881 return -EIO;
2882
2883 if (!(_cpu_based_2nd_exec_control &
2884 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
2885 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
2886 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2887
c845f9c6 2888 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
da8999d3 2889 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
1c3d14fe
YS
2890 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2891 &_vmentry_control) < 0)
002c7f7c 2892 return -EIO;
6aa8b732 2893
c68876fd 2894 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
2895
2896 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2897 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 2898 return -EIO;
1c3d14fe
YS
2899
2900#ifdef CONFIG_X86_64
2901 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2902 if (vmx_msr_high & (1u<<16))
002c7f7c 2903 return -EIO;
1c3d14fe
YS
2904#endif
2905
2906 /* Require Write-Back (WB) memory type for VMCS accesses. */
2907 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 2908 return -EIO;
1c3d14fe 2909
002c7f7c
YS
2910 vmcs_conf->size = vmx_msr_high & 0x1fff;
2911 vmcs_conf->order = get_order(vmcs_config.size);
2912 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 2913
002c7f7c
YS
2914 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2915 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 2916 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
2917 vmcs_conf->vmexit_ctrl = _vmexit_control;
2918 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 2919
110312c8
AK
2920 cpu_has_load_ia32_efer =
2921 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2922 VM_ENTRY_LOAD_IA32_EFER)
2923 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2924 VM_EXIT_LOAD_IA32_EFER);
2925
8bf00a52
GN
2926 cpu_has_load_perf_global_ctrl =
2927 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2928 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2929 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2930 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2931
2932 /*
2933 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2934 * but due to arrata below it can't be used. Workaround is to use
2935 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2936 *
2937 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2938 *
2939 * AAK155 (model 26)
2940 * AAP115 (model 30)
2941 * AAT100 (model 37)
2942 * BC86,AAY89,BD102 (model 44)
2943 * BA97 (model 46)
2944 *
2945 */
2946 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2947 switch (boot_cpu_data.x86_model) {
2948 case 26:
2949 case 30:
2950 case 37:
2951 case 44:
2952 case 46:
2953 cpu_has_load_perf_global_ctrl = false;
2954 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2955 "does not work properly. Using workaround\n");
2956 break;
2957 default:
2958 break;
2959 }
2960 }
2961
1c3d14fe 2962 return 0;
c68876fd 2963}
6aa8b732
AK
2964
2965static struct vmcs *alloc_vmcs_cpu(int cpu)
2966{
2967 int node = cpu_to_node(cpu);
2968 struct page *pages;
2969 struct vmcs *vmcs;
2970
6484eb3e 2971 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
2972 if (!pages)
2973 return NULL;
2974 vmcs = page_address(pages);
1c3d14fe
YS
2975 memset(vmcs, 0, vmcs_config.size);
2976 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
2977 return vmcs;
2978}
2979
2980static struct vmcs *alloc_vmcs(void)
2981{
d3b2c338 2982 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
2983}
2984
2985static void free_vmcs(struct vmcs *vmcs)
2986{
1c3d14fe 2987 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
2988}
2989
d462b819
NHE
2990/*
2991 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2992 */
2993static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2994{
2995 if (!loaded_vmcs->vmcs)
2996 return;
2997 loaded_vmcs_clear(loaded_vmcs);
2998 free_vmcs(loaded_vmcs->vmcs);
2999 loaded_vmcs->vmcs = NULL;
3000}
3001
39959588 3002static void free_kvm_area(void)
6aa8b732
AK
3003{
3004 int cpu;
3005
3230bb47 3006 for_each_possible_cpu(cpu) {
6aa8b732 3007 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
3008 per_cpu(vmxarea, cpu) = NULL;
3009 }
6aa8b732
AK
3010}
3011
6aa8b732
AK
3012static __init int alloc_kvm_area(void)
3013{
3014 int cpu;
3015
3230bb47 3016 for_each_possible_cpu(cpu) {
6aa8b732
AK
3017 struct vmcs *vmcs;
3018
3019 vmcs = alloc_vmcs_cpu(cpu);
3020 if (!vmcs) {
3021 free_kvm_area();
3022 return -ENOMEM;
3023 }
3024
3025 per_cpu(vmxarea, cpu) = vmcs;
3026 }
3027 return 0;
3028}
3029
3030static __init int hardware_setup(void)
3031{
002c7f7c
YS
3032 if (setup_vmcs_config(&vmcs_config) < 0)
3033 return -EIO;
50a37eb4
JR
3034
3035 if (boot_cpu_has(X86_FEATURE_NX))
3036 kvm_enable_efer_bits(EFER_NX);
3037
93ba03c2
SY
3038 if (!cpu_has_vmx_vpid())
3039 enable_vpid = 0;
abc4fc58
AG
3040 if (!cpu_has_vmx_shadow_vmcs())
3041 enable_shadow_vmcs = 0;
93ba03c2 3042
4bc9b982
SY
3043 if (!cpu_has_vmx_ept() ||
3044 !cpu_has_vmx_ept_4levels()) {
93ba03c2 3045 enable_ept = 0;
3a624e29 3046 enable_unrestricted_guest = 0;
83c3a331 3047 enable_ept_ad_bits = 0;
3a624e29
NK
3048 }
3049
83c3a331
XH
3050 if (!cpu_has_vmx_ept_ad_bits())
3051 enable_ept_ad_bits = 0;
3052
3a624e29
NK
3053 if (!cpu_has_vmx_unrestricted_guest())
3054 enable_unrestricted_guest = 0;
93ba03c2
SY
3055
3056 if (!cpu_has_vmx_flexpriority())
3057 flexpriority_enabled = 0;
3058
95ba8273
GN
3059 if (!cpu_has_vmx_tpr_shadow())
3060 kvm_x86_ops->update_cr8_intercept = NULL;
3061
54dee993
MT
3062 if (enable_ept && !cpu_has_vmx_ept_2m_page())
3063 kvm_disable_largepages();
3064
4b8d54f9
ZE
3065 if (!cpu_has_vmx_ple())
3066 ple_gap = 0;
3067
01e439be
YZ
3068 if (!cpu_has_vmx_apicv())
3069 enable_apicv = 0;
c7c9c56c 3070
01e439be 3071 if (enable_apicv)
c7c9c56c 3072 kvm_x86_ops->update_cr8_intercept = NULL;
a20ed54d 3073 else {
c7c9c56c 3074 kvm_x86_ops->hwapic_irr_update = NULL;
a20ed54d
YZ
3075 kvm_x86_ops->deliver_posted_interrupt = NULL;
3076 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
3077 }
83d4c286 3078
b87a51ae
NHE
3079 if (nested)
3080 nested_vmx_setup_ctls_msrs();
3081
6aa8b732
AK
3082 return alloc_kvm_area();
3083}
3084
3085static __exit void hardware_unsetup(void)
3086{
3087 free_kvm_area();
3088}
3089
14168786
GN
3090static bool emulation_required(struct kvm_vcpu *vcpu)
3091{
3092 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3093}
3094
91b0aa2c 3095static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
d99e4152 3096 struct kvm_segment *save)
6aa8b732 3097{
d99e4152
GN
3098 if (!emulate_invalid_guest_state) {
3099 /*
3100 * CS and SS RPL should be equal during guest entry according
3101 * to VMX spec, but in reality it is not always so. Since vcpu
3102 * is in the middle of the transition from real mode to
3103 * protected mode it is safe to assume that RPL 0 is a good
3104 * default value.
3105 */
3106 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3107 save->selector &= ~SELECTOR_RPL_MASK;
3108 save->dpl = save->selector & SELECTOR_RPL_MASK;
3109 save->s = 1;
6aa8b732 3110 }
d99e4152 3111 vmx_set_segment(vcpu, save, seg);
6aa8b732
AK
3112}
3113
3114static void enter_pmode(struct kvm_vcpu *vcpu)
3115{
3116 unsigned long flags;
a89a8fb9 3117 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3118
d99e4152
GN
3119 /*
3120 * Update real mode segment cache. It may be not up-to-date if sement
3121 * register was written while vcpu was in a guest mode.
3122 */
3123 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3124 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3125 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3126 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3127 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3128 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3129
7ffd92c5 3130 vmx->rmode.vm86_active = 0;
6aa8b732 3131
2fb92db1
AK
3132 vmx_segment_cache_clear(vmx);
3133
f5f7b2fe 3134 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
6aa8b732
AK
3135
3136 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
3137 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3138 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
3139 vmcs_writel(GUEST_RFLAGS, flags);
3140
66aee91a
RR
3141 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3142 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
3143
3144 update_exception_bitmap(vcpu);
3145
91b0aa2c
GN
3146 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3147 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3148 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3149 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3150 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3151 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
1f3141e8
GN
3152
3153 /* CPL is always 0 when CPU enters protected mode */
3154 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3155 vmx->cpl = 0;
6aa8b732
AK
3156}
3157
f5f7b2fe 3158static void fix_rmode_seg(int seg, struct kvm_segment *save)
6aa8b732 3159{
772e0318 3160 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
d99e4152
GN
3161 struct kvm_segment var = *save;
3162
3163 var.dpl = 0x3;
3164 if (seg == VCPU_SREG_CS)
3165 var.type = 0x3;
3166
3167 if (!emulate_invalid_guest_state) {
3168 var.selector = var.base >> 4;
3169 var.base = var.base & 0xffff0;
3170 var.limit = 0xffff;
3171 var.g = 0;
3172 var.db = 0;
3173 var.present = 1;
3174 var.s = 1;
3175 var.l = 0;
3176 var.unusable = 0;
3177 var.type = 0x3;
3178 var.avl = 0;
3179 if (save->base & 0xf)
3180 printk_once(KERN_WARNING "kvm: segment base is not "
3181 "paragraph aligned when entering "
3182 "protected mode (seg=%d)", seg);
3183 }
6aa8b732 3184
d99e4152
GN
3185 vmcs_write16(sf->selector, var.selector);
3186 vmcs_write32(sf->base, var.base);
3187 vmcs_write32(sf->limit, var.limit);
3188 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
6aa8b732
AK
3189}
3190
3191static void enter_rmode(struct kvm_vcpu *vcpu)
3192{
3193 unsigned long flags;
a89a8fb9 3194 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3195
f5f7b2fe
AK
3196 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3197 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3198 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3199 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3200 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
c6ad1153
GN
3201 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3202 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
f5f7b2fe 3203
7ffd92c5 3204 vmx->rmode.vm86_active = 1;
6aa8b732 3205
776e58ea
GN
3206 /*
3207 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4918c6ca 3208 * vcpu. Warn the user that an update is overdue.
776e58ea 3209 */
4918c6ca 3210 if (!vcpu->kvm->arch.tss_addr)
776e58ea
GN
3211 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3212 "called before entering vcpu\n");
776e58ea 3213
2fb92db1
AK
3214 vmx_segment_cache_clear(vmx);
3215
4918c6ca 3216 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
6aa8b732 3217 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
6aa8b732
AK
3218 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3219
3220 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 3221 vmx->rmode.save_rflags = flags;
6aa8b732 3222
053de044 3223 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
3224
3225 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 3226 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
3227 update_exception_bitmap(vcpu);
3228
d99e4152
GN
3229 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3230 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3231 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3232 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3233 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3234 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
b246dd5d 3235
8668a3c4 3236 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
3237}
3238
401d10de
AS
3239static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3240{
3241 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
3242 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3243
3244 if (!msr)
3245 return;
401d10de 3246
44ea2b17
AK
3247 /*
3248 * Force kernel_gs_base reloading before EFER changes, as control
3249 * of this msr depends on is_long_mode().
3250 */
3251 vmx_load_host_state(to_vmx(vcpu));
f6801dff 3252 vcpu->arch.efer = efer;
401d10de 3253 if (efer & EFER_LMA) {
2961e876 3254 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
3255 msr->data = efer;
3256 } else {
2961e876 3257 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
3258
3259 msr->data = efer & ~EFER_LME;
3260 }
3261 setup_msrs(vmx);
3262}
3263
05b3e0c2 3264#ifdef CONFIG_X86_64
6aa8b732
AK
3265
3266static void enter_lmode(struct kvm_vcpu *vcpu)
3267{
3268 u32 guest_tr_ar;
3269
2fb92db1
AK
3270 vmx_segment_cache_clear(to_vmx(vcpu));
3271
6aa8b732
AK
3272 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3273 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
3274 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3275 __func__);
6aa8b732
AK
3276 vmcs_write32(GUEST_TR_AR_BYTES,
3277 (guest_tr_ar & ~AR_TYPE_MASK)
3278 | AR_TYPE_BUSY_64_TSS);
3279 }
da38f438 3280 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
3281}
3282
3283static void exit_lmode(struct kvm_vcpu *vcpu)
3284{
2961e876 3285 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
da38f438 3286 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
3287}
3288
3289#endif
3290
2384d2b3
SY
3291static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3292{
b9d762fa 3293 vpid_sync_context(to_vmx(vcpu));
dd180b3e
XG
3294 if (enable_ept) {
3295 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3296 return;
4e1096d2 3297 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
dd180b3e 3298 }
2384d2b3
SY
3299}
3300
e8467fda
AK
3301static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3302{
3303 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3304
3305 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3306 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3307}
3308
aff48baa
AK
3309static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3310{
3311 if (enable_ept && is_paging(vcpu))
3312 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3313 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3314}
3315
25c4c276 3316static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 3317{
fc78f519
AK
3318 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3319
3320 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3321 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
3322}
3323
1439442c
SY
3324static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3325{
d0d538b9
GN
3326 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3327
6de4f3ad
AK
3328 if (!test_bit(VCPU_EXREG_PDPTR,
3329 (unsigned long *)&vcpu->arch.regs_dirty))
3330 return;
3331
1439442c 3332 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
3333 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3334 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3335 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3336 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
1439442c
SY
3337 }
3338}
3339
8f5d549f
AK
3340static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3341{
d0d538b9
GN
3342 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3343
8f5d549f 3344 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
3345 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3346 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3347 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3348 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 3349 }
6de4f3ad
AK
3350
3351 __set_bit(VCPU_EXREG_PDPTR,
3352 (unsigned long *)&vcpu->arch.regs_avail);
3353 __set_bit(VCPU_EXREG_PDPTR,
3354 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
3355}
3356
5e1746d6 3357static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
3358
3359static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3360 unsigned long cr0,
3361 struct kvm_vcpu *vcpu)
3362{
5233dd51
MT
3363 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3364 vmx_decache_cr3(vcpu);
1439442c
SY
3365 if (!(cr0 & X86_CR0_PG)) {
3366 /* From paging/starting to nonpaging */
3367 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 3368 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
3369 (CPU_BASED_CR3_LOAD_EXITING |
3370 CPU_BASED_CR3_STORE_EXITING));
3371 vcpu->arch.cr0 = cr0;
fc78f519 3372 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
3373 } else if (!is_paging(vcpu)) {
3374 /* From nonpaging to paging */
3375 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 3376 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
3377 ~(CPU_BASED_CR3_LOAD_EXITING |
3378 CPU_BASED_CR3_STORE_EXITING));
3379 vcpu->arch.cr0 = cr0;
fc78f519 3380 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 3381 }
95eb84a7
SY
3382
3383 if (!(cr0 & X86_CR0_WP))
3384 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
3385}
3386
6aa8b732
AK
3387static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3388{
7ffd92c5 3389 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
3390 unsigned long hw_cr0;
3391
5037878e 3392 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3a624e29 3393 if (enable_unrestricted_guest)
5037878e 3394 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
218e763f 3395 else {
5037878e 3396 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
1439442c 3397
218e763f
GN
3398 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3399 enter_pmode(vcpu);
6aa8b732 3400
218e763f
GN
3401 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3402 enter_rmode(vcpu);
3403 }
6aa8b732 3404
05b3e0c2 3405#ifdef CONFIG_X86_64
f6801dff 3406 if (vcpu->arch.efer & EFER_LME) {
707d92fa 3407 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 3408 enter_lmode(vcpu);
707d92fa 3409 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
3410 exit_lmode(vcpu);
3411 }
3412#endif
3413
089d034e 3414 if (enable_ept)
1439442c
SY
3415 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3416
02daab21 3417 if (!vcpu->fpu_active)
81231c69 3418 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
02daab21 3419
6aa8b732 3420 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 3421 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 3422 vcpu->arch.cr0 = cr0;
14168786
GN
3423
3424 /* depends on vcpu->arch.cr0 to be set to a new value */
3425 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
3426}
3427
1439442c
SY
3428static u64 construct_eptp(unsigned long root_hpa)
3429{
3430 u64 eptp;
3431
3432 /* TODO write the value reading from MSR */
3433 eptp = VMX_EPT_DEFAULT_MT |
3434 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
b38f9934
XH
3435 if (enable_ept_ad_bits)
3436 eptp |= VMX_EPT_AD_ENABLE_BIT;
1439442c
SY
3437 eptp |= (root_hpa & PAGE_MASK);
3438
3439 return eptp;
3440}
3441
6aa8b732
AK
3442static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3443{
1439442c
SY
3444 unsigned long guest_cr3;
3445 u64 eptp;
3446
3447 guest_cr3 = cr3;
089d034e 3448 if (enable_ept) {
1439442c
SY
3449 eptp = construct_eptp(cr3);
3450 vmcs_write64(EPT_POINTER, eptp);
59ab5a8f
JK
3451 if (is_paging(vcpu) || is_guest_mode(vcpu))
3452 guest_cr3 = kvm_read_cr3(vcpu);
3453 else
3454 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 3455 ept_load_pdptrs(vcpu);
1439442c
SY
3456 }
3457
2384d2b3 3458 vmx_flush_tlb(vcpu);
1439442c 3459 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
3460}
3461
5e1746d6 3462static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 3463{
7ffd92c5 3464 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1439442c
SY
3465 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3466
5e1746d6
NHE
3467 if (cr4 & X86_CR4_VMXE) {
3468 /*
3469 * To use VMXON (and later other VMX instructions), a guest
3470 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3471 * So basically the check on whether to allow nested VMX
3472 * is here.
3473 */
3474 if (!nested_vmx_allowed(vcpu))
3475 return 1;
1a0d74e6
JK
3476 }
3477 if (to_vmx(vcpu)->nested.vmxon &&
3478 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
5e1746d6
NHE
3479 return 1;
3480
ad312c7c 3481 vcpu->arch.cr4 = cr4;
bc23008b
AK
3482 if (enable_ept) {
3483 if (!is_paging(vcpu)) {
3484 hw_cr4 &= ~X86_CR4_PAE;
3485 hw_cr4 |= X86_CR4_PSE;
c08800a5 3486 /*
e1e746b3
FW
3487 * SMEP/SMAP is disabled if CPU is in non-paging mode
3488 * in hardware. However KVM always uses paging mode to
c08800a5 3489 * emulate guest non-paging mode with TDP.
e1e746b3
FW
3490 * To emulate this behavior, SMEP/SMAP needs to be
3491 * manually disabled when guest switches to non-paging
3492 * mode.
c08800a5 3493 */
e1e746b3 3494 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
bc23008b
AK
3495 } else if (!(cr4 & X86_CR4_PAE)) {
3496 hw_cr4 &= ~X86_CR4_PAE;
3497 }
3498 }
1439442c
SY
3499
3500 vmcs_writel(CR4_READ_SHADOW, cr4);
3501 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 3502 return 0;
6aa8b732
AK
3503}
3504
6aa8b732
AK
3505static void vmx_get_segment(struct kvm_vcpu *vcpu,
3506 struct kvm_segment *var, int seg)
3507{
a9179499 3508 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732
AK
3509 u32 ar;
3510
c6ad1153 3511 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
f5f7b2fe 3512 *var = vmx->rmode.segs[seg];
a9179499 3513 if (seg == VCPU_SREG_TR
2fb92db1 3514 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
f5f7b2fe 3515 return;
1390a28b
AK
3516 var->base = vmx_read_guest_seg_base(vmx, seg);
3517 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3518 return;
a9179499 3519 }
2fb92db1
AK
3520 var->base = vmx_read_guest_seg_base(vmx, seg);
3521 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3522 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3523 ar = vmx_read_guest_seg_ar(vmx, seg);
03617c18 3524 var->unusable = (ar >> 16) & 1;
6aa8b732
AK
3525 var->type = ar & 15;
3526 var->s = (ar >> 4) & 1;
3527 var->dpl = (ar >> 5) & 3;
03617c18
GN
3528 /*
3529 * Some userspaces do not preserve unusable property. Since usable
3530 * segment has to be present according to VMX spec we can use present
3531 * property to amend userspace bug by making unusable segment always
3532 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3533 * segment as unusable.
3534 */
3535 var->present = !var->unusable;
6aa8b732
AK
3536 var->avl = (ar >> 12) & 1;
3537 var->l = (ar >> 13) & 1;
3538 var->db = (ar >> 14) & 1;
3539 var->g = (ar >> 15) & 1;
6aa8b732
AK
3540}
3541
a9179499
AK
3542static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3543{
a9179499
AK
3544 struct kvm_segment s;
3545
3546 if (to_vmx(vcpu)->rmode.vm86_active) {
3547 vmx_get_segment(vcpu, &s, seg);
3548 return s.base;
3549 }
2fb92db1 3550 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
3551}
3552
b09408d0 3553static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 3554{
b09408d0
MT
3555 struct vcpu_vmx *vmx = to_vmx(vcpu);
3556
3eeb3288 3557 if (!is_protmode(vcpu))
2e4d2653
IE
3558 return 0;
3559
f4c63e5d
AK
3560 if (!is_long_mode(vcpu)
3561 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
2e4d2653
IE
3562 return 3;
3563
69c73028
AK
3564 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3565 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
b09408d0 3566 vmx->cpl = vmx_read_guest_seg_selector(vmx, VCPU_SREG_CS) & 3;
69c73028 3567 }
d881e6f6
AK
3568
3569 return vmx->cpl;
69c73028
AK
3570}
3571
3572
653e3108 3573static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 3574{
6aa8b732
AK
3575 u32 ar;
3576
f0495f9b 3577 if (var->unusable || !var->present)
6aa8b732
AK
3578 ar = 1 << 16;
3579 else {
3580 ar = var->type & 15;
3581 ar |= (var->s & 1) << 4;
3582 ar |= (var->dpl & 3) << 5;
3583 ar |= (var->present & 1) << 7;
3584 ar |= (var->avl & 1) << 12;
3585 ar |= (var->l & 1) << 13;
3586 ar |= (var->db & 1) << 14;
3587 ar |= (var->g & 1) << 15;
3588 }
653e3108
AK
3589
3590 return ar;
3591}
3592
3593static void vmx_set_segment(struct kvm_vcpu *vcpu,
3594 struct kvm_segment *var, int seg)
3595{
7ffd92c5 3596 struct vcpu_vmx *vmx = to_vmx(vcpu);
772e0318 3597 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
653e3108 3598
2fb92db1 3599 vmx_segment_cache_clear(vmx);
2f143240
GN
3600 if (seg == VCPU_SREG_CS)
3601 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2fb92db1 3602
1ecd50a9
GN
3603 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3604 vmx->rmode.segs[seg] = *var;
3605 if (seg == VCPU_SREG_TR)
3606 vmcs_write16(sf->selector, var->selector);
3607 else if (var->s)
3608 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
d99e4152 3609 goto out;
653e3108 3610 }
1ecd50a9 3611
653e3108
AK
3612 vmcs_writel(sf->base, var->base);
3613 vmcs_write32(sf->limit, var->limit);
3614 vmcs_write16(sf->selector, var->selector);
3a624e29
NK
3615
3616 /*
3617 * Fix the "Accessed" bit in AR field of segment registers for older
3618 * qemu binaries.
3619 * IA32 arch specifies that at the time of processor reset the
3620 * "Accessed" bit in the AR field of segment registers is 1. And qemu
0fa06071 3621 * is setting it to 0 in the userland code. This causes invalid guest
3a624e29
NK
3622 * state vmexit when "unrestricted guest" mode is turned on.
3623 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3624 * tree. Newer qemu binaries with that qemu fix would not need this
3625 * kvm hack.
3626 */
3627 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
f924d66d 3628 var->type |= 0x1; /* Accessed */
3a624e29 3629
f924d66d 3630 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
d99e4152
GN
3631
3632out:
14168786 3633 vmx->emulation_required |= emulation_required(vcpu);
6aa8b732
AK
3634}
3635
6aa8b732
AK
3636static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3637{
2fb92db1 3638 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
3639
3640 *db = (ar >> 14) & 1;
3641 *l = (ar >> 13) & 1;
3642}
3643
89a27f4d 3644static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3645{
89a27f4d
GN
3646 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3647 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
3648}
3649
89a27f4d 3650static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3651{
89a27f4d
GN
3652 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3653 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
3654}
3655
89a27f4d 3656static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3657{
89a27f4d
GN
3658 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3659 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
3660}
3661
89a27f4d 3662static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3663{
89a27f4d
GN
3664 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3665 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
3666}
3667
648dfaa7
MG
3668static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3669{
3670 struct kvm_segment var;
3671 u32 ar;
3672
3673 vmx_get_segment(vcpu, &var, seg);
07f42f5f 3674 var.dpl = 0x3;
0647f4aa
GN
3675 if (seg == VCPU_SREG_CS)
3676 var.type = 0x3;
648dfaa7
MG
3677 ar = vmx_segment_access_rights(&var);
3678
3679 if (var.base != (var.selector << 4))
3680 return false;
89efbed0 3681 if (var.limit != 0xffff)
648dfaa7 3682 return false;
07f42f5f 3683 if (ar != 0xf3)
648dfaa7
MG
3684 return false;
3685
3686 return true;
3687}
3688
3689static bool code_segment_valid(struct kvm_vcpu *vcpu)
3690{
3691 struct kvm_segment cs;
3692 unsigned int cs_rpl;
3693
3694 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3695 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3696
1872a3f4
AK
3697 if (cs.unusable)
3698 return false;
648dfaa7
MG
3699 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3700 return false;
3701 if (!cs.s)
3702 return false;
1872a3f4 3703 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
3704 if (cs.dpl > cs_rpl)
3705 return false;
1872a3f4 3706 } else {
648dfaa7
MG
3707 if (cs.dpl != cs_rpl)
3708 return false;
3709 }
3710 if (!cs.present)
3711 return false;
3712
3713 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3714 return true;
3715}
3716
3717static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3718{
3719 struct kvm_segment ss;
3720 unsigned int ss_rpl;
3721
3722 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3723 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3724
1872a3f4
AK
3725 if (ss.unusable)
3726 return true;
3727 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
3728 return false;
3729 if (!ss.s)
3730 return false;
3731 if (ss.dpl != ss_rpl) /* DPL != RPL */
3732 return false;
3733 if (!ss.present)
3734 return false;
3735
3736 return true;
3737}
3738
3739static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3740{
3741 struct kvm_segment var;
3742 unsigned int rpl;
3743
3744 vmx_get_segment(vcpu, &var, seg);
3745 rpl = var.selector & SELECTOR_RPL_MASK;
3746
1872a3f4
AK
3747 if (var.unusable)
3748 return true;
648dfaa7
MG
3749 if (!var.s)
3750 return false;
3751 if (!var.present)
3752 return false;
3753 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3754 if (var.dpl < rpl) /* DPL < RPL */
3755 return false;
3756 }
3757
3758 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3759 * rights flags
3760 */
3761 return true;
3762}
3763
3764static bool tr_valid(struct kvm_vcpu *vcpu)
3765{
3766 struct kvm_segment tr;
3767
3768 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3769
1872a3f4
AK
3770 if (tr.unusable)
3771 return false;
648dfaa7
MG
3772 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3773 return false;
1872a3f4 3774 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
3775 return false;
3776 if (!tr.present)
3777 return false;
3778
3779 return true;
3780}
3781
3782static bool ldtr_valid(struct kvm_vcpu *vcpu)
3783{
3784 struct kvm_segment ldtr;
3785
3786 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3787
1872a3f4
AK
3788 if (ldtr.unusable)
3789 return true;
648dfaa7
MG
3790 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3791 return false;
3792 if (ldtr.type != 2)
3793 return false;
3794 if (!ldtr.present)
3795 return false;
3796
3797 return true;
3798}
3799
3800static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3801{
3802 struct kvm_segment cs, ss;
3803
3804 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3805 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3806
3807 return ((cs.selector & SELECTOR_RPL_MASK) ==
3808 (ss.selector & SELECTOR_RPL_MASK));
3809}
3810
3811/*
3812 * Check if guest state is valid. Returns true if valid, false if
3813 * not.
3814 * We assume that registers are always usable
3815 */
3816static bool guest_state_valid(struct kvm_vcpu *vcpu)
3817{
c5e97c80
GN
3818 if (enable_unrestricted_guest)
3819 return true;
3820
648dfaa7 3821 /* real mode guest state checks */
f13882d8 3822 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
648dfaa7
MG
3823 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3824 return false;
3825 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3826 return false;
3827 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3828 return false;
3829 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3830 return false;
3831 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3832 return false;
3833 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3834 return false;
3835 } else {
3836 /* protected mode guest state checks */
3837 if (!cs_ss_rpl_check(vcpu))
3838 return false;
3839 if (!code_segment_valid(vcpu))
3840 return false;
3841 if (!stack_segment_valid(vcpu))
3842 return false;
3843 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3844 return false;
3845 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3846 return false;
3847 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3848 return false;
3849 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3850 return false;
3851 if (!tr_valid(vcpu))
3852 return false;
3853 if (!ldtr_valid(vcpu))
3854 return false;
3855 }
3856 /* TODO:
3857 * - Add checks on RIP
3858 * - Add checks on RFLAGS
3859 */
3860
3861 return true;
3862}
3863
d77c26fc 3864static int init_rmode_tss(struct kvm *kvm)
6aa8b732 3865{
40dcaa9f 3866 gfn_t fn;
195aefde 3867 u16 data = 0;
40dcaa9f 3868 int r, idx, ret = 0;
6aa8b732 3869
40dcaa9f 3870 idx = srcu_read_lock(&kvm->srcu);
4918c6ca 3871 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
195aefde
IE
3872 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3873 if (r < 0)
10589a46 3874 goto out;
195aefde 3875 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
3876 r = kvm_write_guest_page(kvm, fn++, &data,
3877 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 3878 if (r < 0)
10589a46 3879 goto out;
195aefde
IE
3880 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3881 if (r < 0)
10589a46 3882 goto out;
195aefde
IE
3883 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3884 if (r < 0)
10589a46 3885 goto out;
195aefde 3886 data = ~0;
10589a46
MT
3887 r = kvm_write_guest_page(kvm, fn, &data,
3888 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3889 sizeof(u8));
195aefde 3890 if (r < 0)
10589a46
MT
3891 goto out;
3892
3893 ret = 1;
3894out:
40dcaa9f 3895 srcu_read_unlock(&kvm->srcu, idx);
10589a46 3896 return ret;
6aa8b732
AK
3897}
3898
b7ebfb05
SY
3899static int init_rmode_identity_map(struct kvm *kvm)
3900{
40dcaa9f 3901 int i, idx, r, ret;
b7ebfb05
SY
3902 pfn_t identity_map_pfn;
3903 u32 tmp;
3904
089d034e 3905 if (!enable_ept)
b7ebfb05
SY
3906 return 1;
3907 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3908 printk(KERN_ERR "EPT: identity-mapping pagetable "
3909 "haven't been allocated!\n");
3910 return 0;
3911 }
3912 if (likely(kvm->arch.ept_identity_pagetable_done))
3913 return 1;
3914 ret = 0;
b927a3ce 3915 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
40dcaa9f 3916 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
3917 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3918 if (r < 0)
3919 goto out;
3920 /* Set up identity-mapping pagetable for EPT in real mode */
3921 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3922 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3923 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3924 r = kvm_write_guest_page(kvm, identity_map_pfn,
3925 &tmp, i * sizeof(tmp), sizeof(tmp));
3926 if (r < 0)
3927 goto out;
3928 }
3929 kvm->arch.ept_identity_pagetable_done = true;
3930 ret = 1;
3931out:
40dcaa9f 3932 srcu_read_unlock(&kvm->srcu, idx);
b7ebfb05
SY
3933 return ret;
3934}
3935
6aa8b732
AK
3936static void seg_setup(int seg)
3937{
772e0318 3938 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 3939 unsigned int ar;
6aa8b732
AK
3940
3941 vmcs_write16(sf->selector, 0);
3942 vmcs_writel(sf->base, 0);
3943 vmcs_write32(sf->limit, 0xffff);
d54d07b2
GN
3944 ar = 0x93;
3945 if (seg == VCPU_SREG_CS)
3946 ar |= 0x08; /* code segment */
3a624e29
NK
3947
3948 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
3949}
3950
f78e0e2e
SY
3951static int alloc_apic_access_page(struct kvm *kvm)
3952{
4484141a 3953 struct page *page;
f78e0e2e
SY
3954 struct kvm_userspace_memory_region kvm_userspace_mem;
3955 int r = 0;
3956
79fac95e 3957 mutex_lock(&kvm->slots_lock);
bfc6d222 3958 if (kvm->arch.apic_access_page)
f78e0e2e
SY
3959 goto out;
3960 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3961 kvm_userspace_mem.flags = 0;
3962 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3963 kvm_userspace_mem.memory_size = PAGE_SIZE;
47ae31e2 3964 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
f78e0e2e
SY
3965 if (r)
3966 goto out;
72dc67a6 3967
4484141a
XG
3968 page = gfn_to_page(kvm, 0xfee00);
3969 if (is_error_page(page)) {
3970 r = -EFAULT;
3971 goto out;
3972 }
3973
3974 kvm->arch.apic_access_page = page;
f78e0e2e 3975out:
79fac95e 3976 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
3977 return r;
3978}
3979
b7ebfb05
SY
3980static int alloc_identity_pagetable(struct kvm *kvm)
3981{
4484141a 3982 struct page *page;
b7ebfb05
SY
3983 struct kvm_userspace_memory_region kvm_userspace_mem;
3984 int r = 0;
3985
79fac95e 3986 mutex_lock(&kvm->slots_lock);
b7ebfb05
SY
3987 if (kvm->arch.ept_identity_pagetable)
3988 goto out;
3989 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3990 kvm_userspace_mem.flags = 0;
b927a3ce
SY
3991 kvm_userspace_mem.guest_phys_addr =
3992 kvm->arch.ept_identity_map_addr;
b7ebfb05 3993 kvm_userspace_mem.memory_size = PAGE_SIZE;
47ae31e2 3994 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
b7ebfb05
SY
3995 if (r)
3996 goto out;
3997
4484141a
XG
3998 page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3999 if (is_error_page(page)) {
4000 r = -EFAULT;
4001 goto out;
4002 }
4003
4004 kvm->arch.ept_identity_pagetable = page;
b7ebfb05 4005out:
79fac95e 4006 mutex_unlock(&kvm->slots_lock);
b7ebfb05
SY
4007 return r;
4008}
4009
2384d2b3
SY
4010static void allocate_vpid(struct vcpu_vmx *vmx)
4011{
4012 int vpid;
4013
4014 vmx->vpid = 0;
919818ab 4015 if (!enable_vpid)
2384d2b3
SY
4016 return;
4017 spin_lock(&vmx_vpid_lock);
4018 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4019 if (vpid < VMX_NR_VPIDS) {
4020 vmx->vpid = vpid;
4021 __set_bit(vpid, vmx_vpid_bitmap);
4022 }
4023 spin_unlock(&vmx_vpid_lock);
4024}
4025
cdbecfc3
LJ
4026static void free_vpid(struct vcpu_vmx *vmx)
4027{
4028 if (!enable_vpid)
4029 return;
4030 spin_lock(&vmx_vpid_lock);
4031 if (vmx->vpid != 0)
4032 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
4033 spin_unlock(&vmx_vpid_lock);
4034}
4035
8d14695f
YZ
4036#define MSR_TYPE_R 1
4037#define MSR_TYPE_W 2
4038static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4039 u32 msr, int type)
25c5f225 4040{
3e7c73e9 4041 int f = sizeof(unsigned long);
25c5f225
SY
4042
4043 if (!cpu_has_vmx_msr_bitmap())
4044 return;
4045
4046 /*
4047 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4048 * have the write-low and read-high bitmap offsets the wrong way round.
4049 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4050 */
25c5f225 4051 if (msr <= 0x1fff) {
8d14695f
YZ
4052 if (type & MSR_TYPE_R)
4053 /* read-low */
4054 __clear_bit(msr, msr_bitmap + 0x000 / f);
4055
4056 if (type & MSR_TYPE_W)
4057 /* write-low */
4058 __clear_bit(msr, msr_bitmap + 0x800 / f);
4059
25c5f225
SY
4060 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4061 msr &= 0x1fff;
8d14695f
YZ
4062 if (type & MSR_TYPE_R)
4063 /* read-high */
4064 __clear_bit(msr, msr_bitmap + 0x400 / f);
4065
4066 if (type & MSR_TYPE_W)
4067 /* write-high */
4068 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4069
4070 }
4071}
4072
4073static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4074 u32 msr, int type)
4075{
4076 int f = sizeof(unsigned long);
4077
4078 if (!cpu_has_vmx_msr_bitmap())
4079 return;
4080
4081 /*
4082 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4083 * have the write-low and read-high bitmap offsets the wrong way round.
4084 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4085 */
4086 if (msr <= 0x1fff) {
4087 if (type & MSR_TYPE_R)
4088 /* read-low */
4089 __set_bit(msr, msr_bitmap + 0x000 / f);
4090
4091 if (type & MSR_TYPE_W)
4092 /* write-low */
4093 __set_bit(msr, msr_bitmap + 0x800 / f);
4094
4095 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4096 msr &= 0x1fff;
4097 if (type & MSR_TYPE_R)
4098 /* read-high */
4099 __set_bit(msr, msr_bitmap + 0x400 / f);
4100
4101 if (type & MSR_TYPE_W)
4102 /* write-high */
4103 __set_bit(msr, msr_bitmap + 0xc00 / f);
4104
25c5f225 4105 }
25c5f225
SY
4106}
4107
5897297b
AK
4108static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4109{
4110 if (!longmode_only)
8d14695f
YZ
4111 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4112 msr, MSR_TYPE_R | MSR_TYPE_W);
4113 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4114 msr, MSR_TYPE_R | MSR_TYPE_W);
4115}
4116
4117static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4118{
4119 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4120 msr, MSR_TYPE_R);
4121 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4122 msr, MSR_TYPE_R);
4123}
4124
4125static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4126{
4127 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4128 msr, MSR_TYPE_R);
4129 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4130 msr, MSR_TYPE_R);
4131}
4132
4133static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4134{
4135 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4136 msr, MSR_TYPE_W);
4137 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4138 msr, MSR_TYPE_W);
5897297b
AK
4139}
4140
01e439be
YZ
4141static int vmx_vm_has_apicv(struct kvm *kvm)
4142{
4143 return enable_apicv && irqchip_in_kernel(kvm);
4144}
4145
a20ed54d
YZ
4146/*
4147 * Send interrupt to vcpu via posted interrupt way.
4148 * 1. If target vcpu is running(non-root mode), send posted interrupt
4149 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4150 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4151 * interrupt from PIR in next vmentry.
4152 */
4153static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4154{
4155 struct vcpu_vmx *vmx = to_vmx(vcpu);
4156 int r;
4157
4158 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4159 return;
4160
4161 r = pi_test_and_set_on(&vmx->pi_desc);
4162 kvm_make_request(KVM_REQ_EVENT, vcpu);
6ffbbbba 4163#ifdef CONFIG_SMP
a20ed54d
YZ
4164 if (!r && (vcpu->mode == IN_GUEST_MODE))
4165 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4166 POSTED_INTR_VECTOR);
4167 else
6ffbbbba 4168#endif
a20ed54d
YZ
4169 kvm_vcpu_kick(vcpu);
4170}
4171
4172static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4173{
4174 struct vcpu_vmx *vmx = to_vmx(vcpu);
4175
4176 if (!pi_test_and_clear_on(&vmx->pi_desc))
4177 return;
4178
4179 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4180}
4181
4182static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4183{
4184 return;
4185}
4186
a3a8ff8e
NHE
4187/*
4188 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4189 * will not change in the lifetime of the guest.
4190 * Note that host-state that does change is set elsewhere. E.g., host-state
4191 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4192 */
a547c6db 4193static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
a3a8ff8e
NHE
4194{
4195 u32 low32, high32;
4196 unsigned long tmpl;
4197 struct desc_ptr dt;
4198
b1a74bf8 4199 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
a3a8ff8e
NHE
4200 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
4201 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4202
4203 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
b2da15ac
AK
4204#ifdef CONFIG_X86_64
4205 /*
4206 * Load null selectors, so we can avoid reloading them in
4207 * __vmx_load_host_state(), in case userspace uses the null selectors
4208 * too (the expected case).
4209 */
4210 vmcs_write16(HOST_DS_SELECTOR, 0);
4211 vmcs_write16(HOST_ES_SELECTOR, 0);
4212#else
a3a8ff8e
NHE
4213 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4214 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
b2da15ac 4215#endif
a3a8ff8e
NHE
4216 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4217 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4218
4219 native_store_idt(&dt);
4220 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
a547c6db 4221 vmx->host_idt_base = dt.address;
a3a8ff8e 4222
83287ea4 4223 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
a3a8ff8e
NHE
4224
4225 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4226 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4227 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4228 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4229
4230 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4231 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4232 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4233 }
4234}
4235
bf8179a0
NHE
4236static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4237{
4238 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4239 if (enable_ept)
4240 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
4241 if (is_guest_mode(&vmx->vcpu))
4242 vmx->vcpu.arch.cr4_guest_owned_bits &=
4243 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
4244 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4245}
4246
01e439be
YZ
4247static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4248{
4249 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4250
4251 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4252 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4253 return pin_based_exec_ctrl;
4254}
4255
bf8179a0
NHE
4256static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4257{
4258 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
d16c293e
PB
4259
4260 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4261 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4262
bf8179a0
NHE
4263 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4264 exec_control &= ~CPU_BASED_TPR_SHADOW;
4265#ifdef CONFIG_X86_64
4266 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4267 CPU_BASED_CR8_LOAD_EXITING;
4268#endif
4269 }
4270 if (!enable_ept)
4271 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4272 CPU_BASED_CR3_LOAD_EXITING |
4273 CPU_BASED_INVLPG_EXITING;
4274 return exec_control;
4275}
4276
4277static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4278{
4279 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4280 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4281 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4282 if (vmx->vpid == 0)
4283 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4284 if (!enable_ept) {
4285 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4286 enable_unrestricted_guest = 0;
ad756a16
MJ
4287 /* Enable INVPCID for non-ept guests may cause performance regression. */
4288 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
bf8179a0
NHE
4289 }
4290 if (!enable_unrestricted_guest)
4291 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4292 if (!ple_gap)
4293 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
c7c9c56c
YZ
4294 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4295 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4296 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
8d14695f 4297 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
abc4fc58
AG
4298 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4299 (handle_vmptrld).
4300 We can NOT enable shadow_vmcs here because we don't have yet
4301 a current VMCS12
4302 */
4303 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
bf8179a0
NHE
4304 return exec_control;
4305}
4306
ce88decf
XG
4307static void ept_set_mmio_spte_mask(void)
4308{
4309 /*
4310 * EPT Misconfigurations can be generated if the value of bits 2:0
4311 * of an EPT paging-structure entry is 110b (write/execute).
885032b9 4312 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
ce88decf
XG
4313 * spte.
4314 */
885032b9 4315 kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
ce88decf
XG
4316}
4317
6aa8b732
AK
4318/*
4319 * Sets up the vmcs for emulated real mode.
4320 */
8b9cf98c 4321static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 4322{
2e4ce7f5 4323#ifdef CONFIG_X86_64
6aa8b732 4324 unsigned long a;
2e4ce7f5 4325#endif
6aa8b732 4326 int i;
6aa8b732 4327
6aa8b732 4328 /* I/O */
3e7c73e9
AK
4329 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4330 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 4331
4607c2d7
AG
4332 if (enable_shadow_vmcs) {
4333 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4334 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4335 }
25c5f225 4336 if (cpu_has_vmx_msr_bitmap())
5897297b 4337 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 4338
6aa8b732
AK
4339 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4340
6aa8b732 4341 /* Control */
01e439be 4342 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
6e5d865c 4343
bf8179a0 4344 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 4345
83ff3b9d 4346 if (cpu_has_secondary_exec_ctrls()) {
bf8179a0
NHE
4347 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4348 vmx_secondary_exec_control(vmx));
83ff3b9d 4349 }
f78e0e2e 4350
01e439be 4351 if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
c7c9c56c
YZ
4352 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4353 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4354 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4355 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4356
4357 vmcs_write16(GUEST_INTR_STATUS, 0);
01e439be
YZ
4358
4359 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4360 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
c7c9c56c
YZ
4361 }
4362
4b8d54f9
ZE
4363 if (ple_gap) {
4364 vmcs_write32(PLE_GAP, ple_gap);
4365 vmcs_write32(PLE_WINDOW, ple_window);
4366 }
4367
c3707958
XG
4368 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4369 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
4370 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4371
9581d442
AK
4372 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4373 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a547c6db 4374 vmx_set_constant_host_state(vmx);
05b3e0c2 4375#ifdef CONFIG_X86_64
6aa8b732
AK
4376 rdmsrl(MSR_FS_BASE, a);
4377 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4378 rdmsrl(MSR_GS_BASE, a);
4379 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4380#else
4381 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4382 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4383#endif
4384
2cc51560
ED
4385 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4386 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 4387 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 4388 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 4389 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 4390
468d472f 4391 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
a3a8ff8e
NHE
4392 u32 msr_low, msr_high;
4393 u64 host_pat;
468d472f
SY
4394 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4395 host_pat = msr_low | ((u64) msr_high << 32);
4396 /* Write the default value follow host pat */
4397 vmcs_write64(GUEST_IA32_PAT, host_pat);
4398 /* Keep arch.pat sync with GUEST_IA32_PAT */
4399 vmx->vcpu.arch.pat = host_pat;
4400 }
4401
6aa8b732
AK
4402 for (i = 0; i < NR_VMX_MSR; ++i) {
4403 u32 index = vmx_msr_index[i];
4404 u32 data_low, data_high;
a2fa3e9f 4405 int j = vmx->nmsrs;
6aa8b732
AK
4406
4407 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4408 continue;
432bd6cb
AK
4409 if (wrmsr_safe(index, data_low, data_high) < 0)
4410 continue;
26bb0981
AK
4411 vmx->guest_msrs[j].index = i;
4412 vmx->guest_msrs[j].data = 0;
d5696725 4413 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 4414 ++vmx->nmsrs;
6aa8b732 4415 }
6aa8b732 4416
2961e876
GN
4417
4418 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
6aa8b732
AK
4419
4420 /* 22.2.1, 20.8.1 */
2961e876 4421 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
1c3d14fe 4422
e00c8cf2 4423 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
bf8179a0 4424 set_cr4_guest_host_mask(vmx);
e00c8cf2
AK
4425
4426 return 0;
4427}
4428
57f252f2 4429static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
e00c8cf2
AK
4430{
4431 struct vcpu_vmx *vmx = to_vmx(vcpu);
58cb628d 4432 struct msr_data apic_base_msr;
e00c8cf2 4433
7ffd92c5 4434 vmx->rmode.vm86_active = 0;
e00c8cf2 4435
3b86cd99
JK
4436 vmx->soft_vnmi_blocked = 0;
4437
ad312c7c 4438 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2d3ad1f4 4439 kvm_set_cr8(&vmx->vcpu, 0);
58cb628d 4440 apic_base_msr.data = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
c5af89b6 4441 if (kvm_vcpu_is_bsp(&vmx->vcpu))
58cb628d
JK
4442 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4443 apic_base_msr.host_initiated = true;
4444 kvm_set_apic_base(&vmx->vcpu, &apic_base_msr);
e00c8cf2 4445
2fb92db1
AK
4446 vmx_segment_cache_clear(vmx);
4447
5706be0d 4448 seg_setup(VCPU_SREG_CS);
66450a21 4449 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
04b66839 4450 vmcs_write32(GUEST_CS_BASE, 0xffff0000);
e00c8cf2
AK
4451
4452 seg_setup(VCPU_SREG_DS);
4453 seg_setup(VCPU_SREG_ES);
4454 seg_setup(VCPU_SREG_FS);
4455 seg_setup(VCPU_SREG_GS);
4456 seg_setup(VCPU_SREG_SS);
4457
4458 vmcs_write16(GUEST_TR_SELECTOR, 0);
4459 vmcs_writel(GUEST_TR_BASE, 0);
4460 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4461 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4462
4463 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4464 vmcs_writel(GUEST_LDTR_BASE, 0);
4465 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4466 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4467
4468 vmcs_write32(GUEST_SYSENTER_CS, 0);
4469 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4470 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4471
4472 vmcs_writel(GUEST_RFLAGS, 0x02);
66450a21 4473 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 4474
e00c8cf2
AK
4475 vmcs_writel(GUEST_GDTR_BASE, 0);
4476 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4477
4478 vmcs_writel(GUEST_IDTR_BASE, 0);
4479 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4480
443381a8 4481 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2
AK
4482 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4483 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4484
e00c8cf2
AK
4485 /* Special registers */
4486 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4487
4488 setup_msrs(vmx);
4489
6aa8b732
AK
4490 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4491
f78e0e2e
SY
4492 if (cpu_has_vmx_tpr_shadow()) {
4493 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4494 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4495 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
afc20184 4496 __pa(vmx->vcpu.arch.apic->regs));
f78e0e2e
SY
4497 vmcs_write32(TPR_THRESHOLD, 0);
4498 }
4499
4500 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4501 vmcs_write64(APIC_ACCESS_ADDR,
bfc6d222 4502 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
6aa8b732 4503
01e439be
YZ
4504 if (vmx_vm_has_apicv(vcpu->kvm))
4505 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4506
2384d2b3
SY
4507 if (vmx->vpid != 0)
4508 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4509
fa40052c 4510 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4d4ec087 4511 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
8b9cf98c 4512 vmx_set_cr4(&vmx->vcpu, 0);
8b9cf98c 4513 vmx_set_efer(&vmx->vcpu, 0);
8b9cf98c
RR
4514 vmx_fpu_activate(&vmx->vcpu);
4515 update_exception_bitmap(&vmx->vcpu);
6aa8b732 4516
b9d762fa 4517 vpid_sync_context(vmx);
6aa8b732
AK
4518}
4519
b6f1250e
NHE
4520/*
4521 * In nested virtualization, check if L1 asked to exit on external interrupts.
4522 * For most existing hypervisors, this will always return true.
4523 */
4524static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4525{
4526 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4527 PIN_BASED_EXT_INTR_MASK;
4528}
4529
ea8ceb83
JK
4530static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4531{
4532 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4533 PIN_BASED_NMI_EXITING;
4534}
4535
c9a7953f 4536static void enable_irq_window(struct kvm_vcpu *vcpu)
3b86cd99
JK
4537{
4538 u32 cpu_based_vm_exec_control;
730dca42 4539
3b86cd99
JK
4540 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4541 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4542 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4543}
4544
c9a7953f 4545static void enable_nmi_window(struct kvm_vcpu *vcpu)
3b86cd99
JK
4546{
4547 u32 cpu_based_vm_exec_control;
4548
c9a7953f
JK
4549 if (!cpu_has_virtual_nmis() ||
4550 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4551 enable_irq_window(vcpu);
4552 return;
4553 }
3b86cd99
JK
4554
4555 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4556 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4557 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4558}
4559
66fd3f7f 4560static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 4561{
9c8cba37 4562 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
4563 uint32_t intr;
4564 int irq = vcpu->arch.interrupt.nr;
9c8cba37 4565
229456fc 4566 trace_kvm_inj_virq(irq);
2714d1d3 4567
fa89a817 4568 ++vcpu->stat.irq_injections;
7ffd92c5 4569 if (vmx->rmode.vm86_active) {
71f9833b
SH
4570 int inc_eip = 0;
4571 if (vcpu->arch.interrupt.soft)
4572 inc_eip = vcpu->arch.event_exit_inst_len;
4573 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 4574 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
4575 return;
4576 }
66fd3f7f
GN
4577 intr = irq | INTR_INFO_VALID_MASK;
4578 if (vcpu->arch.interrupt.soft) {
4579 intr |= INTR_TYPE_SOFT_INTR;
4580 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4581 vmx->vcpu.arch.event_exit_inst_len);
4582 } else
4583 intr |= INTR_TYPE_EXT_INTR;
4584 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
4585}
4586
f08864b4
SY
4587static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4588{
66a5a347
JK
4589 struct vcpu_vmx *vmx = to_vmx(vcpu);
4590
0b6ac343
NHE
4591 if (is_guest_mode(vcpu))
4592 return;
4593
3b86cd99
JK
4594 if (!cpu_has_virtual_nmis()) {
4595 /*
4596 * Tracking the NMI-blocked state in software is built upon
4597 * finding the next open IRQ window. This, in turn, depends on
4598 * well-behaving guests: They have to keep IRQs disabled at
4599 * least as long as the NMI handler runs. Otherwise we may
4600 * cause NMI nesting, maybe breaking the guest. But as this is
4601 * highly unlikely, we can live with the residual risk.
4602 */
4603 vmx->soft_vnmi_blocked = 1;
4604 vmx->vnmi_blocked_time = 0;
4605 }
4606
487b391d 4607 ++vcpu->stat.nmi_injections;
9d58b931 4608 vmx->nmi_known_unmasked = false;
7ffd92c5 4609 if (vmx->rmode.vm86_active) {
71f9833b 4610 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 4611 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
4612 return;
4613 }
f08864b4
SY
4614 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4615 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
4616}
4617
3cfc3092
JK
4618static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4619{
4620 if (!cpu_has_virtual_nmis())
4621 return to_vmx(vcpu)->soft_vnmi_blocked;
9d58b931
AK
4622 if (to_vmx(vcpu)->nmi_known_unmasked)
4623 return false;
c332c83a 4624 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3cfc3092
JK
4625}
4626
4627static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4628{
4629 struct vcpu_vmx *vmx = to_vmx(vcpu);
4630
4631 if (!cpu_has_virtual_nmis()) {
4632 if (vmx->soft_vnmi_blocked != masked) {
4633 vmx->soft_vnmi_blocked = masked;
4634 vmx->vnmi_blocked_time = 0;
4635 }
4636 } else {
9d58b931 4637 vmx->nmi_known_unmasked = !masked;
3cfc3092
JK
4638 if (masked)
4639 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4640 GUEST_INTR_STATE_NMI);
4641 else
4642 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4643 GUEST_INTR_STATE_NMI);
4644 }
4645}
4646
2505dc9f
JK
4647static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4648{
b6b8a145
JK
4649 if (to_vmx(vcpu)->nested.nested_run_pending)
4650 return 0;
ea8ceb83 4651
2505dc9f
JK
4652 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4653 return 0;
4654
4655 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4656 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4657 | GUEST_INTR_STATE_NMI));
4658}
4659
78646121
GN
4660static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4661{
b6b8a145
JK
4662 return (!to_vmx(vcpu)->nested.nested_run_pending &&
4663 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
c4282df9
GN
4664 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4665 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
4666}
4667
cbc94022
IE
4668static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4669{
4670 int ret;
4671 struct kvm_userspace_memory_region tss_mem = {
6fe63979 4672 .slot = TSS_PRIVATE_MEMSLOT,
cbc94022
IE
4673 .guest_phys_addr = addr,
4674 .memory_size = PAGE_SIZE * 3,
4675 .flags = 0,
4676 };
4677
47ae31e2 4678 ret = kvm_set_memory_region(kvm, &tss_mem);
cbc94022
IE
4679 if (ret)
4680 return ret;
bfc6d222 4681 kvm->arch.tss_addr = addr;
93ea5388
GN
4682 if (!init_rmode_tss(kvm))
4683 return -ENOMEM;
4684
cbc94022
IE
4685 return 0;
4686}
4687
0ca1b4f4 4688static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6aa8b732 4689{
77ab6db0 4690 switch (vec) {
77ab6db0 4691 case BP_VECTOR:
c573cd22
JK
4692 /*
4693 * Update instruction length as we may reinject the exception
4694 * from user space while in guest debugging mode.
4695 */
4696 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4697 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940 4698 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
0ca1b4f4
GN
4699 return false;
4700 /* fall through */
4701 case DB_VECTOR:
4702 if (vcpu->guest_debug &
4703 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4704 return false;
d0bfb940
JK
4705 /* fall through */
4706 case DE_VECTOR:
77ab6db0
JK
4707 case OF_VECTOR:
4708 case BR_VECTOR:
4709 case UD_VECTOR:
4710 case DF_VECTOR:
4711 case SS_VECTOR:
4712 case GP_VECTOR:
4713 case MF_VECTOR:
0ca1b4f4
GN
4714 return true;
4715 break;
77ab6db0 4716 }
0ca1b4f4
GN
4717 return false;
4718}
4719
4720static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4721 int vec, u32 err_code)
4722{
4723 /*
4724 * Instruction with address size override prefix opcode 0x67
4725 * Cause the #SS fault with 0 error code in VM86 mode.
4726 */
4727 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4728 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4729 if (vcpu->arch.halt_request) {
4730 vcpu->arch.halt_request = 0;
4731 return kvm_emulate_halt(vcpu);
4732 }
4733 return 1;
4734 }
4735 return 0;
4736 }
4737
4738 /*
4739 * Forward all other exceptions that are valid in real mode.
4740 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4741 * the required debugging infrastructure rework.
4742 */
4743 kvm_queue_exception(vcpu, vec);
4744 return 1;
6aa8b732
AK
4745}
4746
a0861c02
AK
4747/*
4748 * Trigger machine check on the host. We assume all the MSRs are already set up
4749 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4750 * We pass a fake environment to the machine check handler because we want
4751 * the guest to be always treated like user space, no matter what context
4752 * it used internally.
4753 */
4754static void kvm_machine_check(void)
4755{
4756#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4757 struct pt_regs regs = {
4758 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4759 .flags = X86_EFLAGS_IF,
4760 };
4761
4762 do_machine_check(&regs, 0);
4763#endif
4764}
4765
851ba692 4766static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
4767{
4768 /* already handled by vcpu_run */
4769 return 1;
4770}
4771
851ba692 4772static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 4773{
1155f76a 4774 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 4775 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 4776 u32 intr_info, ex_no, error_code;
42dbaa5a 4777 unsigned long cr2, rip, dr6;
6aa8b732
AK
4778 u32 vect_info;
4779 enum emulation_result er;
4780
1155f76a 4781 vect_info = vmx->idt_vectoring_info;
88786475 4782 intr_info = vmx->exit_intr_info;
6aa8b732 4783
a0861c02 4784 if (is_machine_check(intr_info))
851ba692 4785 return handle_machine_check(vcpu);
a0861c02 4786
e4a41889 4787 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
1b6269db 4788 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc
AL
4789
4790 if (is_no_device(intr_info)) {
5fd86fcf 4791 vmx_fpu_activate(vcpu);
2ab455cc
AL
4792 return 1;
4793 }
4794
7aa81cc0 4795 if (is_invalid_opcode(intr_info)) {
51d8b661 4796 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 4797 if (er != EMULATE_DONE)
7ee5d940 4798 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
4799 return 1;
4800 }
4801
6aa8b732 4802 error_code = 0;
2e11384c 4803 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732 4804 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
bf4ca23e
XG
4805
4806 /*
4807 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4808 * MMIO, it is better to report an internal error.
4809 * See the comments in vmx_handle_exit.
4810 */
4811 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4812 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4813 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4814 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4815 vcpu->run->internal.ndata = 2;
4816 vcpu->run->internal.data[0] = vect_info;
4817 vcpu->run->internal.data[1] = intr_info;
4818 return 0;
4819 }
4820
6aa8b732 4821 if (is_page_fault(intr_info)) {
1439442c 4822 /* EPT won't cause page fault directly */
cf3ace79 4823 BUG_ON(enable_ept);
6aa8b732 4824 cr2 = vmcs_readl(EXIT_QUALIFICATION);
229456fc
MT
4825 trace_kvm_page_fault(cr2, error_code);
4826
3298b75c 4827 if (kvm_event_needs_reinjection(vcpu))
577bdc49 4828 kvm_mmu_unprotect_page_virt(vcpu, cr2);
dc25e89e 4829 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
6aa8b732
AK
4830 }
4831
d0bfb940 4832 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
0ca1b4f4
GN
4833
4834 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4835 return handle_rmode_exception(vcpu, ex_no, error_code);
4836
42dbaa5a
JK
4837 switch (ex_no) {
4838 case DB_VECTOR:
4839 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4840 if (!(vcpu->guest_debug &
4841 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
8246bf52
JK
4842 vcpu->arch.dr6 &= ~15;
4843 vcpu->arch.dr6 |= dr6;
42dbaa5a
JK
4844 kvm_queue_exception(vcpu, DB_VECTOR);
4845 return 1;
4846 }
4847 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4848 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4849 /* fall through */
4850 case BP_VECTOR:
c573cd22
JK
4851 /*
4852 * Update instruction length as we may reinject #BP from
4853 * user space while in guest debugging mode. Reading it for
4854 * #DB as well causes no harm, it is not used in that case.
4855 */
4856 vmx->vcpu.arch.event_exit_inst_len =
4857 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 4858 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 4859 rip = kvm_rip_read(vcpu);
d0bfb940
JK
4860 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4861 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
4862 break;
4863 default:
d0bfb940
JK
4864 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4865 kvm_run->ex.exception = ex_no;
4866 kvm_run->ex.error_code = error_code;
42dbaa5a 4867 break;
6aa8b732 4868 }
6aa8b732
AK
4869 return 0;
4870}
4871
851ba692 4872static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 4873{
1165f5fe 4874 ++vcpu->stat.irq_exits;
6aa8b732
AK
4875 return 1;
4876}
4877
851ba692 4878static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 4879{
851ba692 4880 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
988ad74f
AK
4881 return 0;
4882}
6aa8b732 4883
851ba692 4884static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 4885{
bfdaab09 4886 unsigned long exit_qualification;
34c33d16 4887 int size, in, string;
039576c0 4888 unsigned port;
6aa8b732 4889
bfdaab09 4890 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 4891 string = (exit_qualification & 16) != 0;
cf8f70bf 4892 in = (exit_qualification & 8) != 0;
e70669ab 4893
cf8f70bf 4894 ++vcpu->stat.io_exits;
e70669ab 4895
cf8f70bf 4896 if (string || in)
51d8b661 4897 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 4898
cf8f70bf
GN
4899 port = exit_qualification >> 16;
4900 size = (exit_qualification & 7) + 1;
e93f36bc 4901 skip_emulated_instruction(vcpu);
cf8f70bf
GN
4902
4903 return kvm_fast_pio_out(vcpu, size, port);
6aa8b732
AK
4904}
4905
102d8325
IM
4906static void
4907vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4908{
4909 /*
4910 * Patch in the VMCALL instruction:
4911 */
4912 hypercall[0] = 0x0f;
4913 hypercall[1] = 0x01;
4914 hypercall[2] = 0xc1;
102d8325
IM
4915}
4916
92fbc7b1
JK
4917static bool nested_cr0_valid(struct vmcs12 *vmcs12, unsigned long val)
4918{
4919 unsigned long always_on = VMXON_CR0_ALWAYSON;
4920
4921 if (nested_vmx_secondary_ctls_high &
4922 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4923 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4924 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
4925 return (val & always_on) == always_on;
4926}
4927
0fa06071 4928/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
eeadf9e7
NHE
4929static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4930{
eeadf9e7 4931 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
4932 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4933 unsigned long orig_val = val;
4934
eeadf9e7
NHE
4935 /*
4936 * We get here when L2 changed cr0 in a way that did not change
4937 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
1a0d74e6
JK
4938 * but did change L0 shadowed bits. So we first calculate the
4939 * effective cr0 value that L1 would like to write into the
4940 * hardware. It consists of the L2-owned bits from the new
4941 * value combined with the L1-owned bits from L1's guest_cr0.
eeadf9e7 4942 */
1a0d74e6
JK
4943 val = (val & ~vmcs12->cr0_guest_host_mask) |
4944 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4945
92fbc7b1 4946 if (!nested_cr0_valid(vmcs12, val))
eeadf9e7 4947 return 1;
1a0d74e6
JK
4948
4949 if (kvm_set_cr0(vcpu, val))
4950 return 1;
4951 vmcs_writel(CR0_READ_SHADOW, orig_val);
eeadf9e7 4952 return 0;
1a0d74e6
JK
4953 } else {
4954 if (to_vmx(vcpu)->nested.vmxon &&
4955 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4956 return 1;
eeadf9e7 4957 return kvm_set_cr0(vcpu, val);
1a0d74e6 4958 }
eeadf9e7
NHE
4959}
4960
4961static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4962{
4963 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
4964 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4965 unsigned long orig_val = val;
4966
4967 /* analogously to handle_set_cr0 */
4968 val = (val & ~vmcs12->cr4_guest_host_mask) |
4969 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4970 if (kvm_set_cr4(vcpu, val))
eeadf9e7 4971 return 1;
1a0d74e6 4972 vmcs_writel(CR4_READ_SHADOW, orig_val);
eeadf9e7
NHE
4973 return 0;
4974 } else
4975 return kvm_set_cr4(vcpu, val);
4976}
4977
4978/* called to set cr0 as approriate for clts instruction exit. */
4979static void handle_clts(struct kvm_vcpu *vcpu)
4980{
4981 if (is_guest_mode(vcpu)) {
4982 /*
4983 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4984 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4985 * just pretend it's off (also in arch.cr0 for fpu_activate).
4986 */
4987 vmcs_writel(CR0_READ_SHADOW,
4988 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4989 vcpu->arch.cr0 &= ~X86_CR0_TS;
4990 } else
4991 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4992}
4993
851ba692 4994static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 4995{
229456fc 4996 unsigned long exit_qualification, val;
6aa8b732
AK
4997 int cr;
4998 int reg;
49a9b07e 4999 int err;
6aa8b732 5000
bfdaab09 5001 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
5002 cr = exit_qualification & 15;
5003 reg = (exit_qualification >> 8) & 15;
5004 switch ((exit_qualification >> 4) & 3) {
5005 case 0: /* mov to cr */
229456fc
MT
5006 val = kvm_register_read(vcpu, reg);
5007 trace_kvm_cr_write(cr, val);
6aa8b732
AK
5008 switch (cr) {
5009 case 0:
eeadf9e7 5010 err = handle_set_cr0(vcpu, val);
db8fcefa 5011 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
5012 return 1;
5013 case 3:
2390218b 5014 err = kvm_set_cr3(vcpu, val);
db8fcefa 5015 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
5016 return 1;
5017 case 4:
eeadf9e7 5018 err = handle_set_cr4(vcpu, val);
db8fcefa 5019 kvm_complete_insn_gp(vcpu, err);
6aa8b732 5020 return 1;
0a5fff19
GN
5021 case 8: {
5022 u8 cr8_prev = kvm_get_cr8(vcpu);
5023 u8 cr8 = kvm_register_read(vcpu, reg);
eea1cff9 5024 err = kvm_set_cr8(vcpu, cr8);
db8fcefa 5025 kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
5026 if (irqchip_in_kernel(vcpu->kvm))
5027 return 1;
5028 if (cr8_prev <= cr8)
5029 return 1;
851ba692 5030 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
5031 return 0;
5032 }
4b8073e4 5033 }
6aa8b732 5034 break;
25c4c276 5035 case 2: /* clts */
eeadf9e7 5036 handle_clts(vcpu);
4d4ec087 5037 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
25c4c276 5038 skip_emulated_instruction(vcpu);
6b52d186 5039 vmx_fpu_activate(vcpu);
25c4c276 5040 return 1;
6aa8b732
AK
5041 case 1: /*mov from cr*/
5042 switch (cr) {
5043 case 3:
9f8fe504
AK
5044 val = kvm_read_cr3(vcpu);
5045 kvm_register_write(vcpu, reg, val);
5046 trace_kvm_cr_read(cr, val);
6aa8b732
AK
5047 skip_emulated_instruction(vcpu);
5048 return 1;
5049 case 8:
229456fc
MT
5050 val = kvm_get_cr8(vcpu);
5051 kvm_register_write(vcpu, reg, val);
5052 trace_kvm_cr_read(cr, val);
6aa8b732
AK
5053 skip_emulated_instruction(vcpu);
5054 return 1;
5055 }
5056 break;
5057 case 3: /* lmsw */
a1f83a74 5058 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 5059 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 5060 kvm_lmsw(vcpu, val);
6aa8b732
AK
5061
5062 skip_emulated_instruction(vcpu);
5063 return 1;
5064 default:
5065 break;
5066 }
851ba692 5067 vcpu->run->exit_reason = 0;
a737f256 5068 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
5069 (int)(exit_qualification >> 4) & 3, cr);
5070 return 0;
5071}
5072
851ba692 5073static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 5074{
bfdaab09 5075 unsigned long exit_qualification;
6aa8b732
AK
5076 int dr, reg;
5077
f2483415 5078 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
5079 if (!kvm_require_cpl(vcpu, 0))
5080 return 1;
42dbaa5a
JK
5081 dr = vmcs_readl(GUEST_DR7);
5082 if (dr & DR7_GD) {
5083 /*
5084 * As the vm-exit takes precedence over the debug trap, we
5085 * need to emulate the latter, either for the host or the
5086 * guest debugging itself.
5087 */
5088 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692
AK
5089 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5090 vcpu->run->debug.arch.dr7 = dr;
5091 vcpu->run->debug.arch.pc =
42dbaa5a
JK
5092 vmcs_readl(GUEST_CS_BASE) +
5093 vmcs_readl(GUEST_RIP);
851ba692
AK
5094 vcpu->run->debug.arch.exception = DB_VECTOR;
5095 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
5096 return 0;
5097 } else {
5098 vcpu->arch.dr7 &= ~DR7_GD;
5099 vcpu->arch.dr6 |= DR6_BD;
5100 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
5101 kvm_queue_exception(vcpu, DB_VECTOR);
5102 return 1;
5103 }
5104 }
5105
81908bf4
PB
5106 if (vcpu->guest_debug == 0) {
5107 u32 cpu_based_vm_exec_control;
5108
5109 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5110 cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5111 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5112
5113 /*
5114 * No more DR vmexits; force a reload of the debug registers
5115 * and reenter on this instruction. The next vmexit will
5116 * retrieve the full state of the debug registers.
5117 */
5118 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5119 return 1;
5120 }
5121
bfdaab09 5122 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
42dbaa5a
JK
5123 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5124 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5125 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079 5126 unsigned long val;
4c4d563b
JK
5127
5128 if (kvm_get_dr(vcpu, dr, &val))
5129 return 1;
5130 kvm_register_write(vcpu, reg, val);
020df079 5131 } else
4c4d563b
JK
5132 if (kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]))
5133 return 1;
5134
6aa8b732
AK
5135 skip_emulated_instruction(vcpu);
5136 return 1;
5137}
5138
73aaf249
JK
5139static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5140{
5141 return vcpu->arch.dr6;
5142}
5143
5144static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5145{
5146}
5147
81908bf4
PB
5148static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5149{
5150 u32 cpu_based_vm_exec_control;
5151
5152 get_debugreg(vcpu->arch.db[0], 0);
5153 get_debugreg(vcpu->arch.db[1], 1);
5154 get_debugreg(vcpu->arch.db[2], 2);
5155 get_debugreg(vcpu->arch.db[3], 3);
5156 get_debugreg(vcpu->arch.dr6, 6);
5157 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5158
5159 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5160
5161 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5162 cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5163 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5164}
5165
020df079
GN
5166static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5167{
5168 vmcs_writel(GUEST_DR7, val);
5169}
5170
851ba692 5171static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 5172{
06465c5a
AK
5173 kvm_emulate_cpuid(vcpu);
5174 return 1;
6aa8b732
AK
5175}
5176
851ba692 5177static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 5178{
ad312c7c 5179 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6aa8b732
AK
5180 u64 data;
5181
5182 if (vmx_get_msr(vcpu, ecx, &data)) {
59200273 5183 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 5184 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
5185 return 1;
5186 }
5187
229456fc 5188 trace_kvm_msr_read(ecx, data);
2714d1d3 5189
6aa8b732 5190 /* FIXME: handling of bits 32:63 of rax, rdx */
ad312c7c
ZX
5191 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5192 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
6aa8b732
AK
5193 skip_emulated_instruction(vcpu);
5194 return 1;
5195}
5196
851ba692 5197static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 5198{
8fe8ab46 5199 struct msr_data msr;
ad312c7c
ZX
5200 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5201 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5202 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732 5203
8fe8ab46
WA
5204 msr.data = data;
5205 msr.index = ecx;
5206 msr.host_initiated = false;
5207 if (vmx_set_msr(vcpu, &msr) != 0) {
59200273 5208 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 5209 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
5210 return 1;
5211 }
5212
59200273 5213 trace_kvm_msr_write(ecx, data);
6aa8b732
AK
5214 skip_emulated_instruction(vcpu);
5215 return 1;
5216}
5217
851ba692 5218static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 5219{
3842d135 5220 kvm_make_request(KVM_REQ_EVENT, vcpu);
6e5d865c
YS
5221 return 1;
5222}
5223
851ba692 5224static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 5225{
85f455f7
ED
5226 u32 cpu_based_vm_exec_control;
5227
5228 /* clear pending irq */
5229 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5230 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5231 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2714d1d3 5232
3842d135
AK
5233 kvm_make_request(KVM_REQ_EVENT, vcpu);
5234
a26bf12a 5235 ++vcpu->stat.irq_window_exits;
2714d1d3 5236
c1150d8c
DL
5237 /*
5238 * If the user space waits to inject interrupts, exit as soon as
5239 * possible
5240 */
8061823a 5241 if (!irqchip_in_kernel(vcpu->kvm) &&
851ba692 5242 vcpu->run->request_interrupt_window &&
8061823a 5243 !kvm_cpu_has_interrupt(vcpu)) {
851ba692 5244 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
c1150d8c
DL
5245 return 0;
5246 }
6aa8b732
AK
5247 return 1;
5248}
5249
851ba692 5250static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732
AK
5251{
5252 skip_emulated_instruction(vcpu);
d3bef15f 5253 return kvm_emulate_halt(vcpu);
6aa8b732
AK
5254}
5255
851ba692 5256static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 5257{
510043da 5258 skip_emulated_instruction(vcpu);
7aa81cc0
AL
5259 kvm_emulate_hypercall(vcpu);
5260 return 1;
c21415e8
IM
5261}
5262
ec25d5e6
GN
5263static int handle_invd(struct kvm_vcpu *vcpu)
5264{
51d8b661 5265 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
5266}
5267
851ba692 5268static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 5269{
f9c617f6 5270 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
5271
5272 kvm_mmu_invlpg(vcpu, exit_qualification);
5273 skip_emulated_instruction(vcpu);
5274 return 1;
5275}
5276
fee84b07
AK
5277static int handle_rdpmc(struct kvm_vcpu *vcpu)
5278{
5279 int err;
5280
5281 err = kvm_rdpmc(vcpu);
5282 kvm_complete_insn_gp(vcpu, err);
5283
5284 return 1;
5285}
5286
851ba692 5287static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01
ED
5288{
5289 skip_emulated_instruction(vcpu);
f5f48ee1 5290 kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
5291 return 1;
5292}
5293
2acf923e
DC
5294static int handle_xsetbv(struct kvm_vcpu *vcpu)
5295{
5296 u64 new_bv = kvm_read_edx_eax(vcpu);
5297 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5298
5299 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5300 skip_emulated_instruction(vcpu);
5301 return 1;
5302}
5303
851ba692 5304static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 5305{
58fbbf26
KT
5306 if (likely(fasteoi)) {
5307 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5308 int access_type, offset;
5309
5310 access_type = exit_qualification & APIC_ACCESS_TYPE;
5311 offset = exit_qualification & APIC_ACCESS_OFFSET;
5312 /*
5313 * Sane guest uses MOV to write EOI, with written value
5314 * not cared. So make a short-circuit here by avoiding
5315 * heavy instruction emulation.
5316 */
5317 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5318 (offset == APIC_EOI)) {
5319 kvm_lapic_set_eoi(vcpu);
5320 skip_emulated_instruction(vcpu);
5321 return 1;
5322 }
5323 }
51d8b661 5324 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
5325}
5326
c7c9c56c
YZ
5327static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5328{
5329 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5330 int vector = exit_qualification & 0xff;
5331
5332 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5333 kvm_apic_set_eoi_accelerated(vcpu, vector);
5334 return 1;
5335}
5336
83d4c286
YZ
5337static int handle_apic_write(struct kvm_vcpu *vcpu)
5338{
5339 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5340 u32 offset = exit_qualification & 0xfff;
5341
5342 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5343 kvm_apic_write_nodecode(vcpu, offset);
5344 return 1;
5345}
5346
851ba692 5347static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 5348{
60637aac 5349 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 5350 unsigned long exit_qualification;
e269fb21
JK
5351 bool has_error_code = false;
5352 u32 error_code = 0;
37817f29 5353 u16 tss_selector;
7f3d35fd 5354 int reason, type, idt_v, idt_index;
64a7ec06
GN
5355
5356 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 5357 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 5358 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
5359
5360 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5361
5362 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
5363 if (reason == TASK_SWITCH_GATE && idt_v) {
5364 switch (type) {
5365 case INTR_TYPE_NMI_INTR:
5366 vcpu->arch.nmi_injected = false;
654f06fc 5367 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
5368 break;
5369 case INTR_TYPE_EXT_INTR:
66fd3f7f 5370 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
5371 kvm_clear_interrupt_queue(vcpu);
5372 break;
5373 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
5374 if (vmx->idt_vectoring_info &
5375 VECTORING_INFO_DELIVER_CODE_MASK) {
5376 has_error_code = true;
5377 error_code =
5378 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5379 }
5380 /* fall through */
64a7ec06
GN
5381 case INTR_TYPE_SOFT_EXCEPTION:
5382 kvm_clear_exception_queue(vcpu);
5383 break;
5384 default:
5385 break;
5386 }
60637aac 5387 }
37817f29
IE
5388 tss_selector = exit_qualification;
5389
64a7ec06
GN
5390 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5391 type != INTR_TYPE_EXT_INTR &&
5392 type != INTR_TYPE_NMI_INTR))
5393 skip_emulated_instruction(vcpu);
5394
7f3d35fd
KW
5395 if (kvm_task_switch(vcpu, tss_selector,
5396 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5397 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
5398 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5399 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5400 vcpu->run->internal.ndata = 0;
42dbaa5a 5401 return 0;
acb54517 5402 }
42dbaa5a
JK
5403
5404 /* clear all local breakpoint enable flags */
5405 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
5406
5407 /*
5408 * TODO: What about debug traps on tss switch?
5409 * Are we supposed to inject them and update dr6?
5410 */
5411
5412 return 1;
37817f29
IE
5413}
5414
851ba692 5415static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 5416{
f9c617f6 5417 unsigned long exit_qualification;
1439442c 5418 gpa_t gpa;
4f5982a5 5419 u32 error_code;
1439442c 5420 int gla_validity;
1439442c 5421
f9c617f6 5422 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c 5423
1439442c
SY
5424 gla_validity = (exit_qualification >> 7) & 0x3;
5425 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5426 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5427 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5428 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
f9c617f6 5429 vmcs_readl(GUEST_LINEAR_ADDRESS));
1439442c
SY
5430 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5431 (long unsigned int)exit_qualification);
851ba692
AK
5432 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5433 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
596ae895 5434 return 0;
1439442c
SY
5435 }
5436
0be9c7a8
GN
5437 /*
5438 * EPT violation happened while executing iret from NMI,
5439 * "blocked by NMI" bit has to be set before next VM entry.
5440 * There are errata that may cause this bit to not be set:
5441 * AAK134, BY25.
5442 */
bcd1c294
GN
5443 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5444 cpu_has_virtual_nmis() &&
5445 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
0be9c7a8
GN
5446 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5447
1439442c 5448 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 5449 trace_kvm_page_fault(gpa, exit_qualification);
4f5982a5
XG
5450
5451 /* It is a write fault? */
5452 error_code = exit_qualification & (1U << 1);
25d92081
YZ
5453 /* It is a fetch fault? */
5454 error_code |= (exit_qualification & (1U << 2)) << 2;
4f5982a5
XG
5455 /* ept page table is present? */
5456 error_code |= (exit_qualification >> 3) & 0x1;
5457
25d92081
YZ
5458 vcpu->arch.exit_qualification = exit_qualification;
5459
4f5982a5 5460 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
1439442c
SY
5461}
5462
68f89400
MT
5463static u64 ept_rsvd_mask(u64 spte, int level)
5464{
5465 int i;
5466 u64 mask = 0;
5467
5468 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5469 mask |= (1ULL << i);
5470
5471 if (level > 2)
5472 /* bits 7:3 reserved */
5473 mask |= 0xf8;
5474 else if (level == 2) {
5475 if (spte & (1ULL << 7))
5476 /* 2MB ref, bits 20:12 reserved */
5477 mask |= 0x1ff000;
5478 else
5479 /* bits 6:3 reserved */
5480 mask |= 0x78;
5481 }
5482
5483 return mask;
5484}
5485
5486static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5487 int level)
5488{
5489 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5490
5491 /* 010b (write-only) */
5492 WARN_ON((spte & 0x7) == 0x2);
5493
5494 /* 110b (write/execute) */
5495 WARN_ON((spte & 0x7) == 0x6);
5496
5497 /* 100b (execute-only) and value not supported by logical processor */
5498 if (!cpu_has_vmx_ept_execute_only())
5499 WARN_ON((spte & 0x7) == 0x4);
5500
5501 /* not 000b */
5502 if ((spte & 0x7)) {
5503 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5504
5505 if (rsvd_bits != 0) {
5506 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5507 __func__, rsvd_bits);
5508 WARN_ON(1);
5509 }
5510
5511 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
5512 u64 ept_mem_type = (spte & 0x38) >> 3;
5513
5514 if (ept_mem_type == 2 || ept_mem_type == 3 ||
5515 ept_mem_type == 7) {
5516 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5517 __func__, ept_mem_type);
5518 WARN_ON(1);
5519 }
5520 }
5521 }
5522}
5523
851ba692 5524static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400
MT
5525{
5526 u64 sptes[4];
ce88decf 5527 int nr_sptes, i, ret;
68f89400
MT
5528 gpa_t gpa;
5529
5530 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5531
ce88decf 5532 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
b37fbea6 5533 if (likely(ret == RET_MMIO_PF_EMULATE))
ce88decf
XG
5534 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5535 EMULATE_DONE;
f8f55942
XG
5536
5537 if (unlikely(ret == RET_MMIO_PF_INVALID))
5538 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5539
b37fbea6 5540 if (unlikely(ret == RET_MMIO_PF_RETRY))
ce88decf
XG
5541 return 1;
5542
5543 /* It is the real ept misconfig */
68f89400
MT
5544 printk(KERN_ERR "EPT: Misconfiguration.\n");
5545 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5546
5547 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5548
5549 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5550 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5551
851ba692
AK
5552 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5553 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
5554
5555 return 0;
5556}
5557
851ba692 5558static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4
SY
5559{
5560 u32 cpu_based_vm_exec_control;
5561
5562 /* clear pending NMI */
5563 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5564 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5565 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5566 ++vcpu->stat.nmi_window_exits;
3842d135 5567 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
5568
5569 return 1;
5570}
5571
80ced186 5572static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 5573{
8b3079a5
AK
5574 struct vcpu_vmx *vmx = to_vmx(vcpu);
5575 enum emulation_result err = EMULATE_DONE;
80ced186 5576 int ret = 1;
49e9d557
AK
5577 u32 cpu_exec_ctrl;
5578 bool intr_window_requested;
b8405c18 5579 unsigned count = 130;
49e9d557
AK
5580
5581 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5582 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0 5583
b8405c18 5584 while (!guest_state_valid(vcpu) && count-- != 0) {
bdea48e3 5585 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
49e9d557
AK
5586 return handle_interrupt_window(&vmx->vcpu);
5587
de87dcdd
AK
5588 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5589 return 1;
5590
991eebf9 5591 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
ea953ef0 5592
ac0a48c3 5593 if (err == EMULATE_USER_EXIT) {
94452b9e 5594 ++vcpu->stat.mmio_exits;
80ced186
MG
5595 ret = 0;
5596 goto out;
5597 }
1d5a4d9b 5598
de5f70e0
AK
5599 if (err != EMULATE_DONE) {
5600 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5601 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5602 vcpu->run->internal.ndata = 0;
6d77dbfc 5603 return 0;
de5f70e0 5604 }
ea953ef0 5605
8d76c49e
GN
5606 if (vcpu->arch.halt_request) {
5607 vcpu->arch.halt_request = 0;
5608 ret = kvm_emulate_halt(vcpu);
5609 goto out;
5610 }
5611
ea953ef0 5612 if (signal_pending(current))
80ced186 5613 goto out;
ea953ef0
MG
5614 if (need_resched())
5615 schedule();
5616 }
5617
14168786 5618 vmx->emulation_required = emulation_required(vcpu);
80ced186
MG
5619out:
5620 return ret;
ea953ef0
MG
5621}
5622
4b8d54f9
ZE
5623/*
5624 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5625 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5626 */
9fb41ba8 5627static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9
ZE
5628{
5629 skip_emulated_instruction(vcpu);
5630 kvm_vcpu_on_spin(vcpu);
5631
5632 return 1;
5633}
5634
59708670
SY
5635static int handle_invalid_op(struct kvm_vcpu *vcpu)
5636{
5637 kvm_queue_exception(vcpu, UD_VECTOR);
5638 return 1;
5639}
5640
ff2f6fe9
NHE
5641/*
5642 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5643 * We could reuse a single VMCS for all the L2 guests, but we also want the
5644 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5645 * allows keeping them loaded on the processor, and in the future will allow
5646 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5647 * every entry if they never change.
5648 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5649 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5650 *
5651 * The following functions allocate and free a vmcs02 in this pool.
5652 */
5653
5654/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5655static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5656{
5657 struct vmcs02_list *item;
5658 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5659 if (item->vmptr == vmx->nested.current_vmptr) {
5660 list_move(&item->list, &vmx->nested.vmcs02_pool);
5661 return &item->vmcs02;
5662 }
5663
5664 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5665 /* Recycle the least recently used VMCS. */
5666 item = list_entry(vmx->nested.vmcs02_pool.prev,
5667 struct vmcs02_list, list);
5668 item->vmptr = vmx->nested.current_vmptr;
5669 list_move(&item->list, &vmx->nested.vmcs02_pool);
5670 return &item->vmcs02;
5671 }
5672
5673 /* Create a new VMCS */
0fa24ce3 5674 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
ff2f6fe9
NHE
5675 if (!item)
5676 return NULL;
5677 item->vmcs02.vmcs = alloc_vmcs();
5678 if (!item->vmcs02.vmcs) {
5679 kfree(item);
5680 return NULL;
5681 }
5682 loaded_vmcs_init(&item->vmcs02);
5683 item->vmptr = vmx->nested.current_vmptr;
5684 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5685 vmx->nested.vmcs02_num++;
5686 return &item->vmcs02;
5687}
5688
5689/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5690static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5691{
5692 struct vmcs02_list *item;
5693 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5694 if (item->vmptr == vmptr) {
5695 free_loaded_vmcs(&item->vmcs02);
5696 list_del(&item->list);
5697 kfree(item);
5698 vmx->nested.vmcs02_num--;
5699 return;
5700 }
5701}
5702
5703/*
5704 * Free all VMCSs saved for this vcpu, except the one pointed by
5705 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
5706 * currently used, if running L2), and vmcs01 when running L2.
5707 */
5708static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5709{
5710 struct vmcs02_list *item, *n;
5711 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5712 if (vmx->loaded_vmcs != &item->vmcs02)
5713 free_loaded_vmcs(&item->vmcs02);
5714 list_del(&item->list);
5715 kfree(item);
5716 }
5717 vmx->nested.vmcs02_num = 0;
5718
5719 if (vmx->loaded_vmcs != &vmx->vmcs01)
5720 free_loaded_vmcs(&vmx->vmcs01);
5721}
5722
0658fbaa
ACL
5723/*
5724 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5725 * set the success or error code of an emulated VMX instruction, as specified
5726 * by Vol 2B, VMX Instruction Reference, "Conventions".
5727 */
5728static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5729{
5730 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5731 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5732 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5733}
5734
5735static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5736{
5737 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5738 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5739 X86_EFLAGS_SF | X86_EFLAGS_OF))
5740 | X86_EFLAGS_CF);
5741}
5742
145c28dd 5743static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
0658fbaa
ACL
5744 u32 vm_instruction_error)
5745{
5746 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5747 /*
5748 * failValid writes the error number to the current VMCS, which
5749 * can't be done there isn't a current VMCS.
5750 */
5751 nested_vmx_failInvalid(vcpu);
5752 return;
5753 }
5754 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5755 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5756 X86_EFLAGS_SF | X86_EFLAGS_OF))
5757 | X86_EFLAGS_ZF);
5758 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5759 /*
5760 * We don't need to force a shadow sync because
5761 * VM_INSTRUCTION_ERROR is not shadowed
5762 */
5763}
145c28dd 5764
f4124500
JK
5765static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
5766{
5767 struct vcpu_vmx *vmx =
5768 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
5769
5770 vmx->nested.preemption_timer_expired = true;
5771 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
5772 kvm_vcpu_kick(&vmx->vcpu);
5773
5774 return HRTIMER_NORESTART;
5775}
5776
ec378aee
NHE
5777/*
5778 * Emulate the VMXON instruction.
5779 * Currently, we just remember that VMX is active, and do not save or even
5780 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5781 * do not currently need to store anything in that guest-allocated memory
5782 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5783 * argument is different from the VMXON pointer (which the spec says they do).
5784 */
5785static int handle_vmon(struct kvm_vcpu *vcpu)
5786{
5787 struct kvm_segment cs;
5788 struct vcpu_vmx *vmx = to_vmx(vcpu);
8de48833 5789 struct vmcs *shadow_vmcs;
b3897a49
NHE
5790 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
5791 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
ec378aee
NHE
5792
5793 /* The Intel VMX Instruction Reference lists a bunch of bits that
5794 * are prerequisite to running VMXON, most notably cr4.VMXE must be
5795 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5796 * Otherwise, we should fail with #UD. We test these now:
5797 */
5798 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5799 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5800 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5801 kvm_queue_exception(vcpu, UD_VECTOR);
5802 return 1;
5803 }
5804
5805 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5806 if (is_long_mode(vcpu) && !cs.l) {
5807 kvm_queue_exception(vcpu, UD_VECTOR);
5808 return 1;
5809 }
5810
5811 if (vmx_get_cpl(vcpu)) {
5812 kvm_inject_gp(vcpu, 0);
5813 return 1;
5814 }
145c28dd
AG
5815 if (vmx->nested.vmxon) {
5816 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5817 skip_emulated_instruction(vcpu);
5818 return 1;
5819 }
b3897a49
NHE
5820
5821 if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5822 != VMXON_NEEDED_FEATURES) {
5823 kvm_inject_gp(vcpu, 0);
5824 return 1;
5825 }
5826
8de48833
AG
5827 if (enable_shadow_vmcs) {
5828 shadow_vmcs = alloc_vmcs();
5829 if (!shadow_vmcs)
5830 return -ENOMEM;
5831 /* mark vmcs as shadow */
5832 shadow_vmcs->revision_id |= (1u << 31);
5833 /* init shadow vmcs */
5834 vmcs_clear(shadow_vmcs);
5835 vmx->nested.current_shadow_vmcs = shadow_vmcs;
5836 }
ec378aee 5837
ff2f6fe9
NHE
5838 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5839 vmx->nested.vmcs02_num = 0;
5840
f4124500
JK
5841 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
5842 HRTIMER_MODE_REL);
5843 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
5844
ec378aee
NHE
5845 vmx->nested.vmxon = true;
5846
5847 skip_emulated_instruction(vcpu);
a25eb114 5848 nested_vmx_succeed(vcpu);
ec378aee
NHE
5849 return 1;
5850}
5851
5852/*
5853 * Intel's VMX Instruction Reference specifies a common set of prerequisites
5854 * for running VMX instructions (except VMXON, whose prerequisites are
5855 * slightly different). It also specifies what exception to inject otherwise.
5856 */
5857static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5858{
5859 struct kvm_segment cs;
5860 struct vcpu_vmx *vmx = to_vmx(vcpu);
5861
5862 if (!vmx->nested.vmxon) {
5863 kvm_queue_exception(vcpu, UD_VECTOR);
5864 return 0;
5865 }
5866
5867 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5868 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5869 (is_long_mode(vcpu) && !cs.l)) {
5870 kvm_queue_exception(vcpu, UD_VECTOR);
5871 return 0;
5872 }
5873
5874 if (vmx_get_cpl(vcpu)) {
5875 kvm_inject_gp(vcpu, 0);
5876 return 0;
5877 }
5878
5879 return 1;
5880}
5881
e7953d7f
AG
5882static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
5883{
8a1b9dd0 5884 u32 exec_control;
012f83cb
AG
5885 if (enable_shadow_vmcs) {
5886 if (vmx->nested.current_vmcs12 != NULL) {
5887 /* copy to memory all shadowed fields in case
5888 they were modified */
5889 copy_shadow_to_vmcs12(vmx);
5890 vmx->nested.sync_shadow_vmcs = false;
8a1b9dd0
AG
5891 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5892 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5893 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
5894 vmcs_write64(VMCS_LINK_POINTER, -1ull);
012f83cb
AG
5895 }
5896 }
e7953d7f
AG
5897 kunmap(vmx->nested.current_vmcs12_page);
5898 nested_release_page(vmx->nested.current_vmcs12_page);
5899}
5900
ec378aee
NHE
5901/*
5902 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5903 * just stops using VMX.
5904 */
5905static void free_nested(struct vcpu_vmx *vmx)
5906{
5907 if (!vmx->nested.vmxon)
5908 return;
5909 vmx->nested.vmxon = false;
a9d30f33 5910 if (vmx->nested.current_vmptr != -1ull) {
e7953d7f 5911 nested_release_vmcs12(vmx);
a9d30f33
NHE
5912 vmx->nested.current_vmptr = -1ull;
5913 vmx->nested.current_vmcs12 = NULL;
5914 }
e7953d7f
AG
5915 if (enable_shadow_vmcs)
5916 free_vmcs(vmx->nested.current_shadow_vmcs);
fe3ef05c
NHE
5917 /* Unpin physical memory we referred to in current vmcs02 */
5918 if (vmx->nested.apic_access_page) {
5919 nested_release_page(vmx->nested.apic_access_page);
5920 vmx->nested.apic_access_page = 0;
5921 }
ff2f6fe9
NHE
5922
5923 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
5924}
5925
5926/* Emulate the VMXOFF instruction */
5927static int handle_vmoff(struct kvm_vcpu *vcpu)
5928{
5929 if (!nested_vmx_check_permission(vcpu))
5930 return 1;
5931 free_nested(to_vmx(vcpu));
5932 skip_emulated_instruction(vcpu);
a25eb114 5933 nested_vmx_succeed(vcpu);
ec378aee
NHE
5934 return 1;
5935}
5936
064aea77
NHE
5937/*
5938 * Decode the memory-address operand of a vmx instruction, as recorded on an
5939 * exit caused by such an instruction (run by a guest hypervisor).
5940 * On success, returns 0. When the operand is invalid, returns 1 and throws
5941 * #UD or #GP.
5942 */
5943static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5944 unsigned long exit_qualification,
5945 u32 vmx_instruction_info, gva_t *ret)
5946{
5947 /*
5948 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5949 * Execution", on an exit, vmx_instruction_info holds most of the
5950 * addressing components of the operand. Only the displacement part
5951 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5952 * For how an actual address is calculated from all these components,
5953 * refer to Vol. 1, "Operand Addressing".
5954 */
5955 int scaling = vmx_instruction_info & 3;
5956 int addr_size = (vmx_instruction_info >> 7) & 7;
5957 bool is_reg = vmx_instruction_info & (1u << 10);
5958 int seg_reg = (vmx_instruction_info >> 15) & 7;
5959 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5960 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5961 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5962 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5963
5964 if (is_reg) {
5965 kvm_queue_exception(vcpu, UD_VECTOR);
5966 return 1;
5967 }
5968
5969 /* Addr = segment_base + offset */
5970 /* offset = base + [index * scale] + displacement */
5971 *ret = vmx_get_segment_base(vcpu, seg_reg);
5972 if (base_is_valid)
5973 *ret += kvm_register_read(vcpu, base_reg);
5974 if (index_is_valid)
5975 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5976 *ret += exit_qualification; /* holds the displacement */
5977
5978 if (addr_size == 1) /* 32 bit */
5979 *ret &= 0xffffffff;
5980
5981 /*
5982 * TODO: throw #GP (and return 1) in various cases that the VM*
5983 * instructions require it - e.g., offset beyond segment limit,
5984 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5985 * address, and so on. Currently these are not checked.
5986 */
5987 return 0;
5988}
5989
27d6c865
NHE
5990/* Emulate the VMCLEAR instruction */
5991static int handle_vmclear(struct kvm_vcpu *vcpu)
5992{
5993 struct vcpu_vmx *vmx = to_vmx(vcpu);
5994 gva_t gva;
5995 gpa_t vmptr;
5996 struct vmcs12 *vmcs12;
5997 struct page *page;
5998 struct x86_exception e;
5999
6000 if (!nested_vmx_check_permission(vcpu))
6001 return 1;
6002
6003 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6004 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6005 return 1;
6006
6007 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6008 sizeof(vmptr), &e)) {
6009 kvm_inject_page_fault(vcpu, &e);
6010 return 1;
6011 }
6012
6013 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
6014 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
6015 skip_emulated_instruction(vcpu);
6016 return 1;
6017 }
6018
6019 if (vmptr == vmx->nested.current_vmptr) {
e7953d7f 6020 nested_release_vmcs12(vmx);
27d6c865
NHE
6021 vmx->nested.current_vmptr = -1ull;
6022 vmx->nested.current_vmcs12 = NULL;
6023 }
6024
6025 page = nested_get_page(vcpu, vmptr);
6026 if (page == NULL) {
6027 /*
6028 * For accurate processor emulation, VMCLEAR beyond available
6029 * physical memory should do nothing at all. However, it is
6030 * possible that a nested vmx bug, not a guest hypervisor bug,
6031 * resulted in this case, so let's shut down before doing any
6032 * more damage:
6033 */
6034 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6035 return 1;
6036 }
6037 vmcs12 = kmap(page);
6038 vmcs12->launch_state = 0;
6039 kunmap(page);
6040 nested_release_page(page);
6041
6042 nested_free_vmcs02(vmx, vmptr);
6043
6044 skip_emulated_instruction(vcpu);
6045 nested_vmx_succeed(vcpu);
6046 return 1;
6047}
6048
cd232ad0
NHE
6049static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6050
6051/* Emulate the VMLAUNCH instruction */
6052static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6053{
6054 return nested_vmx_run(vcpu, true);
6055}
6056
6057/* Emulate the VMRESUME instruction */
6058static int handle_vmresume(struct kvm_vcpu *vcpu)
6059{
6060
6061 return nested_vmx_run(vcpu, false);
6062}
6063
49f705c5
NHE
6064enum vmcs_field_type {
6065 VMCS_FIELD_TYPE_U16 = 0,
6066 VMCS_FIELD_TYPE_U64 = 1,
6067 VMCS_FIELD_TYPE_U32 = 2,
6068 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6069};
6070
6071static inline int vmcs_field_type(unsigned long field)
6072{
6073 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
6074 return VMCS_FIELD_TYPE_U32;
6075 return (field >> 13) & 0x3 ;
6076}
6077
6078static inline int vmcs_field_readonly(unsigned long field)
6079{
6080 return (((field >> 10) & 0x3) == 1);
6081}
6082
6083/*
6084 * Read a vmcs12 field. Since these can have varying lengths and we return
6085 * one type, we chose the biggest type (u64) and zero-extend the return value
6086 * to that size. Note that the caller, handle_vmread, might need to use only
6087 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6088 * 64-bit fields are to be returned).
6089 */
6090static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
6091 unsigned long field, u64 *ret)
6092{
6093 short offset = vmcs_field_to_offset(field);
6094 char *p;
6095
6096 if (offset < 0)
6097 return 0;
6098
6099 p = ((char *)(get_vmcs12(vcpu))) + offset;
6100
6101 switch (vmcs_field_type(field)) {
6102 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6103 *ret = *((natural_width *)p);
6104 return 1;
6105 case VMCS_FIELD_TYPE_U16:
6106 *ret = *((u16 *)p);
6107 return 1;
6108 case VMCS_FIELD_TYPE_U32:
6109 *ret = *((u32 *)p);
6110 return 1;
6111 case VMCS_FIELD_TYPE_U64:
6112 *ret = *((u64 *)p);
6113 return 1;
6114 default:
6115 return 0; /* can never happen. */
6116 }
6117}
6118
20b97fea
AG
6119
6120static inline bool vmcs12_write_any(struct kvm_vcpu *vcpu,
6121 unsigned long field, u64 field_value){
6122 short offset = vmcs_field_to_offset(field);
6123 char *p = ((char *) get_vmcs12(vcpu)) + offset;
6124 if (offset < 0)
6125 return false;
6126
6127 switch (vmcs_field_type(field)) {
6128 case VMCS_FIELD_TYPE_U16:
6129 *(u16 *)p = field_value;
6130 return true;
6131 case VMCS_FIELD_TYPE_U32:
6132 *(u32 *)p = field_value;
6133 return true;
6134 case VMCS_FIELD_TYPE_U64:
6135 *(u64 *)p = field_value;
6136 return true;
6137 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6138 *(natural_width *)p = field_value;
6139 return true;
6140 default:
6141 return false; /* can never happen. */
6142 }
6143
6144}
6145
16f5b903
AG
6146static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6147{
6148 int i;
6149 unsigned long field;
6150 u64 field_value;
6151 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
c2bae893
MK
6152 const unsigned long *fields = shadow_read_write_fields;
6153 const int num_fields = max_shadow_read_write_fields;
16f5b903
AG
6154
6155 vmcs_load(shadow_vmcs);
6156
6157 for (i = 0; i < num_fields; i++) {
6158 field = fields[i];
6159 switch (vmcs_field_type(field)) {
6160 case VMCS_FIELD_TYPE_U16:
6161 field_value = vmcs_read16(field);
6162 break;
6163 case VMCS_FIELD_TYPE_U32:
6164 field_value = vmcs_read32(field);
6165 break;
6166 case VMCS_FIELD_TYPE_U64:
6167 field_value = vmcs_read64(field);
6168 break;
6169 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6170 field_value = vmcs_readl(field);
6171 break;
6172 }
6173 vmcs12_write_any(&vmx->vcpu, field, field_value);
6174 }
6175
6176 vmcs_clear(shadow_vmcs);
6177 vmcs_load(vmx->loaded_vmcs->vmcs);
6178}
6179
c3114420
AG
6180static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6181{
c2bae893
MK
6182 const unsigned long *fields[] = {
6183 shadow_read_write_fields,
6184 shadow_read_only_fields
c3114420 6185 };
c2bae893 6186 const int max_fields[] = {
c3114420
AG
6187 max_shadow_read_write_fields,
6188 max_shadow_read_only_fields
6189 };
6190 int i, q;
6191 unsigned long field;
6192 u64 field_value = 0;
6193 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6194
6195 vmcs_load(shadow_vmcs);
6196
c2bae893 6197 for (q = 0; q < ARRAY_SIZE(fields); q++) {
c3114420
AG
6198 for (i = 0; i < max_fields[q]; i++) {
6199 field = fields[q][i];
6200 vmcs12_read_any(&vmx->vcpu, field, &field_value);
6201
6202 switch (vmcs_field_type(field)) {
6203 case VMCS_FIELD_TYPE_U16:
6204 vmcs_write16(field, (u16)field_value);
6205 break;
6206 case VMCS_FIELD_TYPE_U32:
6207 vmcs_write32(field, (u32)field_value);
6208 break;
6209 case VMCS_FIELD_TYPE_U64:
6210 vmcs_write64(field, (u64)field_value);
6211 break;
6212 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6213 vmcs_writel(field, (long)field_value);
6214 break;
6215 }
6216 }
6217 }
6218
6219 vmcs_clear(shadow_vmcs);
6220 vmcs_load(vmx->loaded_vmcs->vmcs);
6221}
6222
49f705c5
NHE
6223/*
6224 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6225 * used before) all generate the same failure when it is missing.
6226 */
6227static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6228{
6229 struct vcpu_vmx *vmx = to_vmx(vcpu);
6230 if (vmx->nested.current_vmptr == -1ull) {
6231 nested_vmx_failInvalid(vcpu);
6232 skip_emulated_instruction(vcpu);
6233 return 0;
6234 }
6235 return 1;
6236}
6237
6238static int handle_vmread(struct kvm_vcpu *vcpu)
6239{
6240 unsigned long field;
6241 u64 field_value;
6242 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6243 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6244 gva_t gva = 0;
6245
6246 if (!nested_vmx_check_permission(vcpu) ||
6247 !nested_vmx_check_vmcs12(vcpu))
6248 return 1;
6249
6250 /* Decode instruction info and find the field to read */
6251 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6252 /* Read the field, zero-extended to a u64 field_value */
6253 if (!vmcs12_read_any(vcpu, field, &field_value)) {
6254 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6255 skip_emulated_instruction(vcpu);
6256 return 1;
6257 }
6258 /*
6259 * Now copy part of this value to register or memory, as requested.
6260 * Note that the number of bits actually copied is 32 or 64 depending
6261 * on the guest's mode (32 or 64 bit), not on the given field's length.
6262 */
6263 if (vmx_instruction_info & (1u << 10)) {
6264 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6265 field_value);
6266 } else {
6267 if (get_vmx_mem_address(vcpu, exit_qualification,
6268 vmx_instruction_info, &gva))
6269 return 1;
6270 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6271 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6272 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6273 }
6274
6275 nested_vmx_succeed(vcpu);
6276 skip_emulated_instruction(vcpu);
6277 return 1;
6278}
6279
6280
6281static int handle_vmwrite(struct kvm_vcpu *vcpu)
6282{
6283 unsigned long field;
6284 gva_t gva;
6285 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6286 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
49f705c5
NHE
6287 /* The value to write might be 32 or 64 bits, depending on L1's long
6288 * mode, and eventually we need to write that into a field of several
6289 * possible lengths. The code below first zero-extends the value to 64
6290 * bit (field_value), and then copies only the approriate number of
6291 * bits into the vmcs12 field.
6292 */
6293 u64 field_value = 0;
6294 struct x86_exception e;
6295
6296 if (!nested_vmx_check_permission(vcpu) ||
6297 !nested_vmx_check_vmcs12(vcpu))
6298 return 1;
6299
6300 if (vmx_instruction_info & (1u << 10))
6301 field_value = kvm_register_read(vcpu,
6302 (((vmx_instruction_info) >> 3) & 0xf));
6303 else {
6304 if (get_vmx_mem_address(vcpu, exit_qualification,
6305 vmx_instruction_info, &gva))
6306 return 1;
6307 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
6308 &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
6309 kvm_inject_page_fault(vcpu, &e);
6310 return 1;
6311 }
6312 }
6313
6314
6315 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6316 if (vmcs_field_readonly(field)) {
6317 nested_vmx_failValid(vcpu,
6318 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6319 skip_emulated_instruction(vcpu);
6320 return 1;
6321 }
6322
20b97fea 6323 if (!vmcs12_write_any(vcpu, field, field_value)) {
49f705c5
NHE
6324 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6325 skip_emulated_instruction(vcpu);
6326 return 1;
6327 }
6328
6329 nested_vmx_succeed(vcpu);
6330 skip_emulated_instruction(vcpu);
6331 return 1;
6332}
6333
63846663
NHE
6334/* Emulate the VMPTRLD instruction */
6335static int handle_vmptrld(struct kvm_vcpu *vcpu)
6336{
6337 struct vcpu_vmx *vmx = to_vmx(vcpu);
6338 gva_t gva;
6339 gpa_t vmptr;
6340 struct x86_exception e;
8a1b9dd0 6341 u32 exec_control;
63846663
NHE
6342
6343 if (!nested_vmx_check_permission(vcpu))
6344 return 1;
6345
6346 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6347 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6348 return 1;
6349
6350 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6351 sizeof(vmptr), &e)) {
6352 kvm_inject_page_fault(vcpu, &e);
6353 return 1;
6354 }
6355
6356 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
6357 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
6358 skip_emulated_instruction(vcpu);
6359 return 1;
6360 }
6361
6362 if (vmx->nested.current_vmptr != vmptr) {
6363 struct vmcs12 *new_vmcs12;
6364 struct page *page;
6365 page = nested_get_page(vcpu, vmptr);
6366 if (page == NULL) {
6367 nested_vmx_failInvalid(vcpu);
6368 skip_emulated_instruction(vcpu);
6369 return 1;
6370 }
6371 new_vmcs12 = kmap(page);
6372 if (new_vmcs12->revision_id != VMCS12_REVISION) {
6373 kunmap(page);
6374 nested_release_page_clean(page);
6375 nested_vmx_failValid(vcpu,
6376 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6377 skip_emulated_instruction(vcpu);
6378 return 1;
6379 }
e7953d7f
AG
6380 if (vmx->nested.current_vmptr != -1ull)
6381 nested_release_vmcs12(vmx);
63846663
NHE
6382
6383 vmx->nested.current_vmptr = vmptr;
6384 vmx->nested.current_vmcs12 = new_vmcs12;
6385 vmx->nested.current_vmcs12_page = page;
012f83cb 6386 if (enable_shadow_vmcs) {
8a1b9dd0
AG
6387 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6388 exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
6389 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6390 vmcs_write64(VMCS_LINK_POINTER,
6391 __pa(vmx->nested.current_shadow_vmcs));
012f83cb
AG
6392 vmx->nested.sync_shadow_vmcs = true;
6393 }
63846663
NHE
6394 }
6395
6396 nested_vmx_succeed(vcpu);
6397 skip_emulated_instruction(vcpu);
6398 return 1;
6399}
6400
6a4d7550
NHE
6401/* Emulate the VMPTRST instruction */
6402static int handle_vmptrst(struct kvm_vcpu *vcpu)
6403{
6404 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6405 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6406 gva_t vmcs_gva;
6407 struct x86_exception e;
6408
6409 if (!nested_vmx_check_permission(vcpu))
6410 return 1;
6411
6412 if (get_vmx_mem_address(vcpu, exit_qualification,
6413 vmx_instruction_info, &vmcs_gva))
6414 return 1;
6415 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6416 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
6417 (void *)&to_vmx(vcpu)->nested.current_vmptr,
6418 sizeof(u64), &e)) {
6419 kvm_inject_page_fault(vcpu, &e);
6420 return 1;
6421 }
6422 nested_vmx_succeed(vcpu);
6423 skip_emulated_instruction(vcpu);
6424 return 1;
6425}
6426
bfd0a56b
NHE
6427/* Emulate the INVEPT instruction */
6428static int handle_invept(struct kvm_vcpu *vcpu)
6429{
6430 u32 vmx_instruction_info, types;
6431 unsigned long type;
6432 gva_t gva;
6433 struct x86_exception e;
6434 struct {
6435 u64 eptp, gpa;
6436 } operand;
6437 u64 eptp_mask = ((1ull << 51) - 1) & PAGE_MASK;
6438
6439 if (!(nested_vmx_secondary_ctls_high & SECONDARY_EXEC_ENABLE_EPT) ||
6440 !(nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
6441 kvm_queue_exception(vcpu, UD_VECTOR);
6442 return 1;
6443 }
6444
6445 if (!nested_vmx_check_permission(vcpu))
6446 return 1;
6447
6448 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
6449 kvm_queue_exception(vcpu, UD_VECTOR);
6450 return 1;
6451 }
6452
6453 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6454 type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
6455
6456 types = (nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
6457
6458 if (!(types & (1UL << type))) {
6459 nested_vmx_failValid(vcpu,
6460 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6461 return 1;
6462 }
6463
6464 /* According to the Intel VMX instruction reference, the memory
6465 * operand is read even if it isn't needed (e.g., for type==global)
6466 */
6467 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6468 vmx_instruction_info, &gva))
6469 return 1;
6470 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
6471 sizeof(operand), &e)) {
6472 kvm_inject_page_fault(vcpu, &e);
6473 return 1;
6474 }
6475
6476 switch (type) {
6477 case VMX_EPT_EXTENT_CONTEXT:
6478 if ((operand.eptp & eptp_mask) !=
6479 (nested_ept_get_cr3(vcpu) & eptp_mask))
6480 break;
6481 case VMX_EPT_EXTENT_GLOBAL:
6482 kvm_mmu_sync_roots(vcpu);
6483 kvm_mmu_flush_tlb(vcpu);
6484 nested_vmx_succeed(vcpu);
6485 break;
6486 default:
6487 BUG_ON(1);
6488 break;
6489 }
6490
6491 skip_emulated_instruction(vcpu);
6492 return 1;
6493}
6494
6aa8b732
AK
6495/*
6496 * The exit handlers return 1 if the exit was handled fully and guest execution
6497 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
6498 * to be done to userspace and return 0.
6499 */
772e0318 6500static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
6501 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
6502 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 6503 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 6504 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 6505 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
6506 [EXIT_REASON_CR_ACCESS] = handle_cr,
6507 [EXIT_REASON_DR_ACCESS] = handle_dr,
6508 [EXIT_REASON_CPUID] = handle_cpuid,
6509 [EXIT_REASON_MSR_READ] = handle_rdmsr,
6510 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
6511 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
6512 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 6513 [EXIT_REASON_INVD] = handle_invd,
a7052897 6514 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 6515 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 6516 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 6517 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 6518 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 6519 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 6520 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 6521 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 6522 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 6523 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
6524 [EXIT_REASON_VMOFF] = handle_vmoff,
6525 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
6526 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
6527 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
83d4c286 6528 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
c7c9c56c 6529 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
e5edaa01 6530 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 6531 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 6532 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 6533 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
6534 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
6535 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 6536 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
59708670
SY
6537 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
6538 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
bfd0a56b 6539 [EXIT_REASON_INVEPT] = handle_invept,
6aa8b732
AK
6540};
6541
6542static const int kvm_vmx_max_exit_handlers =
50a3485c 6543 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 6544
908a7bdd
JK
6545static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6546 struct vmcs12 *vmcs12)
6547{
6548 unsigned long exit_qualification;
6549 gpa_t bitmap, last_bitmap;
6550 unsigned int port;
6551 int size;
6552 u8 b;
6553
908a7bdd 6554 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
2f0a6397 6555 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
908a7bdd
JK
6556
6557 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6558
6559 port = exit_qualification >> 16;
6560 size = (exit_qualification & 7) + 1;
6561
6562 last_bitmap = (gpa_t)-1;
6563 b = -1;
6564
6565 while (size > 0) {
6566 if (port < 0x8000)
6567 bitmap = vmcs12->io_bitmap_a;
6568 else if (port < 0x10000)
6569 bitmap = vmcs12->io_bitmap_b;
6570 else
6571 return 1;
6572 bitmap += (port & 0x7fff) / 8;
6573
6574 if (last_bitmap != bitmap)
6575 if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
6576 return 1;
6577 if (b & (1 << (port & 7)))
6578 return 1;
6579
6580 port++;
6581 size--;
6582 last_bitmap = bitmap;
6583 }
6584
6585 return 0;
6586}
6587
644d711a
NHE
6588/*
6589 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
6590 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6591 * disinterest in the current event (read or write a specific MSR) by using an
6592 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6593 */
6594static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6595 struct vmcs12 *vmcs12, u32 exit_reason)
6596{
6597 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
6598 gpa_t bitmap;
6599
cbd29cb6 6600 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
644d711a
NHE
6601 return 1;
6602
6603 /*
6604 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6605 * for the four combinations of read/write and low/high MSR numbers.
6606 * First we need to figure out which of the four to use:
6607 */
6608 bitmap = vmcs12->msr_bitmap;
6609 if (exit_reason == EXIT_REASON_MSR_WRITE)
6610 bitmap += 2048;
6611 if (msr_index >= 0xc0000000) {
6612 msr_index -= 0xc0000000;
6613 bitmap += 1024;
6614 }
6615
6616 /* Then read the msr_index'th bit from this bitmap: */
6617 if (msr_index < 1024*8) {
6618 unsigned char b;
bd31a7f5
JK
6619 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
6620 return 1;
644d711a
NHE
6621 return 1 & (b >> (msr_index & 7));
6622 } else
6623 return 1; /* let L1 handle the wrong parameter */
6624}
6625
6626/*
6627 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6628 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6629 * intercept (via guest_host_mask etc.) the current event.
6630 */
6631static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6632 struct vmcs12 *vmcs12)
6633{
6634 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6635 int cr = exit_qualification & 15;
6636 int reg = (exit_qualification >> 8) & 15;
6637 unsigned long val = kvm_register_read(vcpu, reg);
6638
6639 switch ((exit_qualification >> 4) & 3) {
6640 case 0: /* mov to cr */
6641 switch (cr) {
6642 case 0:
6643 if (vmcs12->cr0_guest_host_mask &
6644 (val ^ vmcs12->cr0_read_shadow))
6645 return 1;
6646 break;
6647 case 3:
6648 if ((vmcs12->cr3_target_count >= 1 &&
6649 vmcs12->cr3_target_value0 == val) ||
6650 (vmcs12->cr3_target_count >= 2 &&
6651 vmcs12->cr3_target_value1 == val) ||
6652 (vmcs12->cr3_target_count >= 3 &&
6653 vmcs12->cr3_target_value2 == val) ||
6654 (vmcs12->cr3_target_count >= 4 &&
6655 vmcs12->cr3_target_value3 == val))
6656 return 0;
6657 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6658 return 1;
6659 break;
6660 case 4:
6661 if (vmcs12->cr4_guest_host_mask &
6662 (vmcs12->cr4_read_shadow ^ val))
6663 return 1;
6664 break;
6665 case 8:
6666 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6667 return 1;
6668 break;
6669 }
6670 break;
6671 case 2: /* clts */
6672 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6673 (vmcs12->cr0_read_shadow & X86_CR0_TS))
6674 return 1;
6675 break;
6676 case 1: /* mov from cr */
6677 switch (cr) {
6678 case 3:
6679 if (vmcs12->cpu_based_vm_exec_control &
6680 CPU_BASED_CR3_STORE_EXITING)
6681 return 1;
6682 break;
6683 case 8:
6684 if (vmcs12->cpu_based_vm_exec_control &
6685 CPU_BASED_CR8_STORE_EXITING)
6686 return 1;
6687 break;
6688 }
6689 break;
6690 case 3: /* lmsw */
6691 /*
6692 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6693 * cr0. Other attempted changes are ignored, with no exit.
6694 */
6695 if (vmcs12->cr0_guest_host_mask & 0xe &
6696 (val ^ vmcs12->cr0_read_shadow))
6697 return 1;
6698 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6699 !(vmcs12->cr0_read_shadow & 0x1) &&
6700 (val & 0x1))
6701 return 1;
6702 break;
6703 }
6704 return 0;
6705}
6706
6707/*
6708 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
6709 * should handle it ourselves in L0 (and then continue L2). Only call this
6710 * when in is_guest_mode (L2).
6711 */
6712static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
6713{
644d711a
NHE
6714 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6715 struct vcpu_vmx *vmx = to_vmx(vcpu);
6716 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
957c897e 6717 u32 exit_reason = vmx->exit_reason;
644d711a 6718
542060ea
JK
6719 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
6720 vmcs_readl(EXIT_QUALIFICATION),
6721 vmx->idt_vectoring_info,
6722 intr_info,
6723 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6724 KVM_ISA_VMX);
6725
644d711a
NHE
6726 if (vmx->nested.nested_run_pending)
6727 return 0;
6728
6729 if (unlikely(vmx->fail)) {
bd80158a
JK
6730 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
6731 vmcs_read32(VM_INSTRUCTION_ERROR));
644d711a
NHE
6732 return 1;
6733 }
6734
6735 switch (exit_reason) {
6736 case EXIT_REASON_EXCEPTION_NMI:
6737 if (!is_exception(intr_info))
6738 return 0;
6739 else if (is_page_fault(intr_info))
6740 return enable_ept;
e504c909 6741 else if (is_no_device(intr_info) &&
ccf9844e 6742 !(vmcs12->guest_cr0 & X86_CR0_TS))
e504c909 6743 return 0;
644d711a
NHE
6744 return vmcs12->exception_bitmap &
6745 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6746 case EXIT_REASON_EXTERNAL_INTERRUPT:
6747 return 0;
6748 case EXIT_REASON_TRIPLE_FAULT:
6749 return 1;
6750 case EXIT_REASON_PENDING_INTERRUPT:
3b656cf7 6751 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
644d711a 6752 case EXIT_REASON_NMI_WINDOW:
3b656cf7 6753 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
644d711a
NHE
6754 case EXIT_REASON_TASK_SWITCH:
6755 return 1;
6756 case EXIT_REASON_CPUID:
6757 return 1;
6758 case EXIT_REASON_HLT:
6759 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6760 case EXIT_REASON_INVD:
6761 return 1;
6762 case EXIT_REASON_INVLPG:
6763 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6764 case EXIT_REASON_RDPMC:
6765 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6766 case EXIT_REASON_RDTSC:
6767 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6768 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6769 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6770 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
6771 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
6772 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
bfd0a56b 6773 case EXIT_REASON_INVEPT:
644d711a
NHE
6774 /*
6775 * VMX instructions trap unconditionally. This allows L1 to
6776 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6777 */
6778 return 1;
6779 case EXIT_REASON_CR_ACCESS:
6780 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6781 case EXIT_REASON_DR_ACCESS:
6782 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6783 case EXIT_REASON_IO_INSTRUCTION:
908a7bdd 6784 return nested_vmx_exit_handled_io(vcpu, vmcs12);
644d711a
NHE
6785 case EXIT_REASON_MSR_READ:
6786 case EXIT_REASON_MSR_WRITE:
6787 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6788 case EXIT_REASON_INVALID_STATE:
6789 return 1;
6790 case EXIT_REASON_MWAIT_INSTRUCTION:
6791 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6792 case EXIT_REASON_MONITOR_INSTRUCTION:
6793 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6794 case EXIT_REASON_PAUSE_INSTRUCTION:
6795 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6796 nested_cpu_has2(vmcs12,
6797 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6798 case EXIT_REASON_MCE_DURING_VMENTRY:
6799 return 0;
6800 case EXIT_REASON_TPR_BELOW_THRESHOLD:
6801 return 1;
6802 case EXIT_REASON_APIC_ACCESS:
6803 return nested_cpu_has2(vmcs12,
6804 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
6805 case EXIT_REASON_EPT_VIOLATION:
2b1be677
NHE
6806 /*
6807 * L0 always deals with the EPT violation. If nested EPT is
6808 * used, and the nested mmu code discovers that the address is
6809 * missing in the guest EPT table (EPT12), the EPT violation
6810 * will be injected with nested_ept_inject_page_fault()
6811 */
6812 return 0;
644d711a 6813 case EXIT_REASON_EPT_MISCONFIG:
2b1be677
NHE
6814 /*
6815 * L2 never uses directly L1's EPT, but rather L0's own EPT
6816 * table (shadow on EPT) or a merged EPT table that L0 built
6817 * (EPT on EPT). So any problems with the structure of the
6818 * table is L0's fault.
6819 */
644d711a
NHE
6820 return 0;
6821 case EXIT_REASON_WBINVD:
6822 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6823 case EXIT_REASON_XSETBV:
6824 return 1;
6825 default:
6826 return 1;
6827 }
6828}
6829
586f9607
AK
6830static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
6831{
6832 *info1 = vmcs_readl(EXIT_QUALIFICATION);
6833 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
6834}
6835
6aa8b732
AK
6836/*
6837 * The guest has exited. See if we can fix it or if we need userspace
6838 * assistance.
6839 */
851ba692 6840static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 6841{
29bd8a78 6842 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 6843 u32 exit_reason = vmx->exit_reason;
1155f76a 6844 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 6845
80ced186 6846 /* If guest state is invalid, start emulating */
14168786 6847 if (vmx->emulation_required)
80ced186 6848 return handle_invalid_guest_state(vcpu);
1d5a4d9b 6849
644d711a 6850 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
533558bc
JK
6851 nested_vmx_vmexit(vcpu, exit_reason,
6852 vmcs_read32(VM_EXIT_INTR_INFO),
6853 vmcs_readl(EXIT_QUALIFICATION));
644d711a
NHE
6854 return 1;
6855 }
6856
5120702e
MG
6857 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
6858 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6859 vcpu->run->fail_entry.hardware_entry_failure_reason
6860 = exit_reason;
6861 return 0;
6862 }
6863
29bd8a78 6864 if (unlikely(vmx->fail)) {
851ba692
AK
6865 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6866 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
6867 = vmcs_read32(VM_INSTRUCTION_ERROR);
6868 return 0;
6869 }
6aa8b732 6870
b9bf6882
XG
6871 /*
6872 * Note:
6873 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6874 * delivery event since it indicates guest is accessing MMIO.
6875 * The vm-exit can be triggered again after return to guest that
6876 * will cause infinite loop.
6877 */
d77c26fc 6878 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 6879 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac 6880 exit_reason != EXIT_REASON_EPT_VIOLATION &&
b9bf6882
XG
6881 exit_reason != EXIT_REASON_TASK_SWITCH)) {
6882 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6883 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6884 vcpu->run->internal.ndata = 2;
6885 vcpu->run->internal.data[0] = vectoring_info;
6886 vcpu->run->internal.data[1] = exit_reason;
6887 return 0;
6888 }
3b86cd99 6889
644d711a
NHE
6890 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
6891 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
f5c4368f 6892 get_vmcs12(vcpu))))) {
c4282df9 6893 if (vmx_interrupt_allowed(vcpu)) {
3b86cd99 6894 vmx->soft_vnmi_blocked = 0;
3b86cd99 6895 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
4531220b 6896 vcpu->arch.nmi_pending) {
3b86cd99
JK
6897 /*
6898 * This CPU don't support us in finding the end of an
6899 * NMI-blocked window if the guest runs with IRQs
6900 * disabled. So we pull the trigger after 1 s of
6901 * futile waiting, but inform the user about this.
6902 */
6903 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6904 "state on VCPU %d after 1 s timeout\n",
6905 __func__, vcpu->vcpu_id);
6906 vmx->soft_vnmi_blocked = 0;
3b86cd99 6907 }
3b86cd99
JK
6908 }
6909
6aa8b732
AK
6910 if (exit_reason < kvm_vmx_max_exit_handlers
6911 && kvm_vmx_exit_handlers[exit_reason])
851ba692 6912 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 6913 else {
851ba692
AK
6914 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6915 vcpu->run->hw.hardware_exit_reason = exit_reason;
6aa8b732
AK
6916 }
6917 return 0;
6918}
6919
95ba8273 6920static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 6921{
95ba8273 6922 if (irr == -1 || tpr < irr) {
6e5d865c
YS
6923 vmcs_write32(TPR_THRESHOLD, 0);
6924 return;
6925 }
6926
95ba8273 6927 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
6928}
6929
8d14695f
YZ
6930static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
6931{
6932 u32 sec_exec_control;
6933
6934 /*
6935 * There is not point to enable virtualize x2apic without enable
6936 * apicv
6937 */
c7c9c56c
YZ
6938 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
6939 !vmx_vm_has_apicv(vcpu->kvm))
8d14695f
YZ
6940 return;
6941
6942 if (!vm_need_tpr_shadow(vcpu->kvm))
6943 return;
6944
6945 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6946
6947 if (set) {
6948 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6949 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6950 } else {
6951 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6952 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6953 }
6954 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
6955
6956 vmx_set_msr_bitmap(vcpu);
6957}
6958
c7c9c56c
YZ
6959static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
6960{
6961 u16 status;
6962 u8 old;
6963
6964 if (!vmx_vm_has_apicv(kvm))
6965 return;
6966
6967 if (isr == -1)
6968 isr = 0;
6969
6970 status = vmcs_read16(GUEST_INTR_STATUS);
6971 old = status >> 8;
6972 if (isr != old) {
6973 status &= 0xff;
6974 status |= isr << 8;
6975 vmcs_write16(GUEST_INTR_STATUS, status);
6976 }
6977}
6978
6979static void vmx_set_rvi(int vector)
6980{
6981 u16 status;
6982 u8 old;
6983
6984 status = vmcs_read16(GUEST_INTR_STATUS);
6985 old = (u8)status & 0xff;
6986 if ((u8)vector != old) {
6987 status &= ~0xff;
6988 status |= (u8)vector;
6989 vmcs_write16(GUEST_INTR_STATUS, status);
6990 }
6991}
6992
6993static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6994{
6995 if (max_irr == -1)
6996 return;
6997
6998 vmx_set_rvi(max_irr);
6999}
7000
7001static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
7002{
3d81bc7e
YZ
7003 if (!vmx_vm_has_apicv(vcpu->kvm))
7004 return;
7005
c7c9c56c
YZ
7006 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
7007 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
7008 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
7009 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
7010}
7011
51aa01d1 7012static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 7013{
00eba012
AK
7014 u32 exit_intr_info;
7015
7016 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
7017 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
7018 return;
7019
c5ca8e57 7020 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
00eba012 7021 exit_intr_info = vmx->exit_intr_info;
a0861c02
AK
7022
7023 /* Handle machine checks before interrupts are enabled */
00eba012 7024 if (is_machine_check(exit_intr_info))
a0861c02
AK
7025 kvm_machine_check();
7026
20f65983 7027 /* We need to handle NMIs before interrupts are enabled */
00eba012 7028 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
ff9d07a0
ZY
7029 (exit_intr_info & INTR_INFO_VALID_MASK)) {
7030 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 7031 asm("int $2");
ff9d07a0
ZY
7032 kvm_after_handle_nmi(&vmx->vcpu);
7033 }
51aa01d1 7034}
20f65983 7035
a547c6db
YZ
7036static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
7037{
7038 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7039
7040 /*
7041 * If external interrupt exists, IF bit is set in rflags/eflags on the
7042 * interrupt stack frame, and interrupt will be enabled on a return
7043 * from interrupt handler.
7044 */
7045 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
7046 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
7047 unsigned int vector;
7048 unsigned long entry;
7049 gate_desc *desc;
7050 struct vcpu_vmx *vmx = to_vmx(vcpu);
7051#ifdef CONFIG_X86_64
7052 unsigned long tmp;
7053#endif
7054
7055 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7056 desc = (gate_desc *)vmx->host_idt_base + vector;
7057 entry = gate_offset(*desc);
7058 asm volatile(
7059#ifdef CONFIG_X86_64
7060 "mov %%" _ASM_SP ", %[sp]\n\t"
7061 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
7062 "push $%c[ss]\n\t"
7063 "push %[sp]\n\t"
7064#endif
7065 "pushf\n\t"
7066 "orl $0x200, (%%" _ASM_SP ")\n\t"
7067 __ASM_SIZE(push) " $%c[cs]\n\t"
7068 "call *%[entry]\n\t"
7069 :
7070#ifdef CONFIG_X86_64
7071 [sp]"=&r"(tmp)
7072#endif
7073 :
7074 [entry]"r"(entry),
7075 [ss]"i"(__KERNEL_DS),
7076 [cs]"i"(__KERNEL_CS)
7077 );
7078 } else
7079 local_irq_enable();
7080}
7081
da8999d3
LJ
7082static bool vmx_mpx_supported(void)
7083{
7084 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
7085 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
7086}
7087
51aa01d1
AK
7088static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7089{
c5ca8e57 7090 u32 exit_intr_info;
51aa01d1
AK
7091 bool unblock_nmi;
7092 u8 vector;
7093 bool idtv_info_valid;
7094
7095 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 7096
cf393f75 7097 if (cpu_has_virtual_nmis()) {
9d58b931
AK
7098 if (vmx->nmi_known_unmasked)
7099 return;
c5ca8e57
AK
7100 /*
7101 * Can't use vmx->exit_intr_info since we're not sure what
7102 * the exit reason is.
7103 */
7104 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
cf393f75
AK
7105 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7106 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7107 /*
7b4a25cb 7108 * SDM 3: 27.7.1.2 (September 2008)
cf393f75
AK
7109 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7110 * a guest IRET fault.
7b4a25cb
GN
7111 * SDM 3: 23.2.2 (September 2008)
7112 * Bit 12 is undefined in any of the following cases:
7113 * If the VM exit sets the valid bit in the IDT-vectoring
7114 * information field.
7115 * If the VM exit is due to a double fault.
cf393f75 7116 */
7b4a25cb
GN
7117 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7118 vector != DF_VECTOR && !idtv_info_valid)
cf393f75
AK
7119 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7120 GUEST_INTR_STATE_NMI);
9d58b931
AK
7121 else
7122 vmx->nmi_known_unmasked =
7123 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7124 & GUEST_INTR_STATE_NMI);
3b86cd99
JK
7125 } else if (unlikely(vmx->soft_vnmi_blocked))
7126 vmx->vnmi_blocked_time +=
7127 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
51aa01d1
AK
7128}
7129
3ab66e8a 7130static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
83422e17
AK
7131 u32 idt_vectoring_info,
7132 int instr_len_field,
7133 int error_code_field)
51aa01d1 7134{
51aa01d1
AK
7135 u8 vector;
7136 int type;
7137 bool idtv_info_valid;
7138
7139 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 7140
3ab66e8a
JK
7141 vcpu->arch.nmi_injected = false;
7142 kvm_clear_exception_queue(vcpu);
7143 kvm_clear_interrupt_queue(vcpu);
37b96e98
GN
7144
7145 if (!idtv_info_valid)
7146 return;
7147
3ab66e8a 7148 kvm_make_request(KVM_REQ_EVENT, vcpu);
3842d135 7149
668f612f
AK
7150 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7151 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 7152
64a7ec06 7153 switch (type) {
37b96e98 7154 case INTR_TYPE_NMI_INTR:
3ab66e8a 7155 vcpu->arch.nmi_injected = true;
668f612f 7156 /*
7b4a25cb 7157 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
7158 * Clear bit "block by NMI" before VM entry if a NMI
7159 * delivery faulted.
668f612f 7160 */
3ab66e8a 7161 vmx_set_nmi_mask(vcpu, false);
37b96e98 7162 break;
37b96e98 7163 case INTR_TYPE_SOFT_EXCEPTION:
3ab66e8a 7164 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f
GN
7165 /* fall through */
7166 case INTR_TYPE_HARD_EXCEPTION:
35920a35 7167 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 7168 u32 err = vmcs_read32(error_code_field);
851eb667 7169 kvm_requeue_exception_e(vcpu, vector, err);
35920a35 7170 } else
851eb667 7171 kvm_requeue_exception(vcpu, vector);
37b96e98 7172 break;
66fd3f7f 7173 case INTR_TYPE_SOFT_INTR:
3ab66e8a 7174 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f 7175 /* fall through */
37b96e98 7176 case INTR_TYPE_EXT_INTR:
3ab66e8a 7177 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
7178 break;
7179 default:
7180 break;
f7d9238f 7181 }
cf393f75
AK
7182}
7183
83422e17
AK
7184static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7185{
3ab66e8a 7186 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
83422e17
AK
7187 VM_EXIT_INSTRUCTION_LEN,
7188 IDT_VECTORING_ERROR_CODE);
7189}
7190
b463a6f7
AK
7191static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7192{
3ab66e8a 7193 __vmx_complete_interrupts(vcpu,
b463a6f7
AK
7194 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7195 VM_ENTRY_INSTRUCTION_LEN,
7196 VM_ENTRY_EXCEPTION_ERROR_CODE);
7197
7198 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7199}
7200
d7cd9796
GN
7201static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7202{
7203 int i, nr_msrs;
7204 struct perf_guest_switch_msr *msrs;
7205
7206 msrs = perf_guest_get_msrs(&nr_msrs);
7207
7208 if (!msrs)
7209 return;
7210
7211 for (i = 0; i < nr_msrs; i++)
7212 if (msrs[i].host == msrs[i].guest)
7213 clear_atomic_switch_msr(vmx, msrs[i].msr);
7214 else
7215 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7216 msrs[i].host);
7217}
7218
a3b5ba49 7219static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 7220{
a2fa3e9f 7221 struct vcpu_vmx *vmx = to_vmx(vcpu);
2a7921b7 7222 unsigned long debugctlmsr;
104f226b
AK
7223
7224 /* Record the guest's net vcpu time for enforced NMI injections. */
7225 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
7226 vmx->entry_time = ktime_get();
7227
7228 /* Don't enter VMX if guest state is invalid, let the exit handler
7229 start emulation until we arrive back to a valid state */
14168786 7230 if (vmx->emulation_required)
104f226b
AK
7231 return;
7232
012f83cb
AG
7233 if (vmx->nested.sync_shadow_vmcs) {
7234 copy_vmcs12_to_shadow(vmx);
7235 vmx->nested.sync_shadow_vmcs = false;
7236 }
7237
104f226b
AK
7238 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
7239 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7240 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
7241 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7242
7243 /* When single-stepping over STI and MOV SS, we must clear the
7244 * corresponding interruptibility bits in the guest state. Otherwise
7245 * vmentry fails as it then expects bit 14 (BS) in pending debug
7246 * exceptions being set, but that's not correct for the guest debugging
7247 * case. */
7248 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7249 vmx_set_interrupt_shadow(vcpu, 0);
7250
d7cd9796 7251 atomic_switch_perf_msrs(vmx);
2a7921b7 7252 debugctlmsr = get_debugctlmsr();
d7cd9796 7253
d462b819 7254 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 7255 asm(
6aa8b732 7256 /* Store host registers */
b188c81f
AK
7257 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
7258 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
7259 "push %%" _ASM_CX " \n\t"
7260 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
313dbd49 7261 "je 1f \n\t"
b188c81f 7262 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
4ecac3fd 7263 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 7264 "1: \n\t"
d3edefc0 7265 /* Reload cr2 if changed */
b188c81f
AK
7266 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
7267 "mov %%cr2, %%" _ASM_DX " \n\t"
7268 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
d3edefc0 7269 "je 2f \n\t"
b188c81f 7270 "mov %%" _ASM_AX", %%cr2 \n\t"
d3edefc0 7271 "2: \n\t"
6aa8b732 7272 /* Check if vmlaunch of vmresume is needed */
e08aa78a 7273 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 7274 /* Load guest registers. Don't clobber flags. */
b188c81f
AK
7275 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
7276 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
7277 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
7278 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
7279 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
7280 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
05b3e0c2 7281#ifdef CONFIG_X86_64
e08aa78a
AK
7282 "mov %c[r8](%0), %%r8 \n\t"
7283 "mov %c[r9](%0), %%r9 \n\t"
7284 "mov %c[r10](%0), %%r10 \n\t"
7285 "mov %c[r11](%0), %%r11 \n\t"
7286 "mov %c[r12](%0), %%r12 \n\t"
7287 "mov %c[r13](%0), %%r13 \n\t"
7288 "mov %c[r14](%0), %%r14 \n\t"
7289 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 7290#endif
b188c81f 7291 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
c801949d 7292
6aa8b732 7293 /* Enter guest mode */
83287ea4 7294 "jne 1f \n\t"
4ecac3fd 7295 __ex(ASM_VMX_VMLAUNCH) "\n\t"
83287ea4
AK
7296 "jmp 2f \n\t"
7297 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
7298 "2: "
6aa8b732 7299 /* Save guest registers, load host registers, keep flags */
b188c81f 7300 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
40712fae 7301 "pop %0 \n\t"
b188c81f
AK
7302 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
7303 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
7304 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
7305 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
7306 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
7307 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
7308 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
05b3e0c2 7309#ifdef CONFIG_X86_64
e08aa78a
AK
7310 "mov %%r8, %c[r8](%0) \n\t"
7311 "mov %%r9, %c[r9](%0) \n\t"
7312 "mov %%r10, %c[r10](%0) \n\t"
7313 "mov %%r11, %c[r11](%0) \n\t"
7314 "mov %%r12, %c[r12](%0) \n\t"
7315 "mov %%r13, %c[r13](%0) \n\t"
7316 "mov %%r14, %c[r14](%0) \n\t"
7317 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 7318#endif
b188c81f
AK
7319 "mov %%cr2, %%" _ASM_AX " \n\t"
7320 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
c801949d 7321
b188c81f 7322 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
e08aa78a 7323 "setbe %c[fail](%0) \n\t"
83287ea4
AK
7324 ".pushsection .rodata \n\t"
7325 ".global vmx_return \n\t"
7326 "vmx_return: " _ASM_PTR " 2b \n\t"
7327 ".popsection"
e08aa78a 7328 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 7329 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 7330 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 7331 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
7332 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
7333 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
7334 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
7335 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
7336 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
7337 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
7338 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 7339#ifdef CONFIG_X86_64
ad312c7c
ZX
7340 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
7341 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
7342 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
7343 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
7344 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
7345 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
7346 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
7347 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 7348#endif
40712fae
AK
7349 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
7350 [wordsize]"i"(sizeof(ulong))
c2036300
LV
7351 : "cc", "memory"
7352#ifdef CONFIG_X86_64
b188c81f 7353 , "rax", "rbx", "rdi", "rsi"
c2036300 7354 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
b188c81f
AK
7355#else
7356 , "eax", "ebx", "edi", "esi"
c2036300
LV
7357#endif
7358 );
6aa8b732 7359
2a7921b7
GN
7360 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7361 if (debugctlmsr)
7362 update_debugctlmsr(debugctlmsr);
7363
aa67f609
AK
7364#ifndef CONFIG_X86_64
7365 /*
7366 * The sysexit path does not restore ds/es, so we must set them to
7367 * a reasonable value ourselves.
7368 *
7369 * We can't defer this to vmx_load_host_state() since that function
7370 * may be executed in interrupt context, which saves and restore segments
7371 * around it, nullifying its effect.
7372 */
7373 loadsegment(ds, __USER_DS);
7374 loadsegment(es, __USER_DS);
7375#endif
7376
6de4f3ad 7377 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 7378 | (1 << VCPU_EXREG_RFLAGS)
69c73028 7379 | (1 << VCPU_EXREG_CPL)
aff48baa 7380 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 7381 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 7382 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
7383 vcpu->arch.regs_dirty = 0;
7384
1155f76a
AK
7385 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7386
d462b819 7387 vmx->loaded_vmcs->launched = 1;
1b6269db 7388
51aa01d1 7389 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
1e2b1dd7 7390 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
51aa01d1 7391
e0b890d3
GN
7392 /*
7393 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
7394 * we did not inject a still-pending event to L1 now because of
7395 * nested_run_pending, we need to re-enable this bit.
7396 */
7397 if (vmx->nested.nested_run_pending)
7398 kvm_make_request(KVM_REQ_EVENT, vcpu);
7399
7400 vmx->nested.nested_run_pending = 0;
7401
51aa01d1
AK
7402 vmx_complete_atomic_exit(vmx);
7403 vmx_recover_nmi_blocking(vmx);
cf393f75 7404 vmx_complete_interrupts(vmx);
6aa8b732
AK
7405}
7406
6aa8b732
AK
7407static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
7408{
fb3f0f51
RR
7409 struct vcpu_vmx *vmx = to_vmx(vcpu);
7410
cdbecfc3 7411 free_vpid(vmx);
d462b819 7412 free_loaded_vmcs(vmx->loaded_vmcs);
26a865f4 7413 free_nested(vmx);
fb3f0f51
RR
7414 kfree(vmx->guest_msrs);
7415 kvm_vcpu_uninit(vcpu);
a4770347 7416 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
7417}
7418
fb3f0f51 7419static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 7420{
fb3f0f51 7421 int err;
c16f862d 7422 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 7423 int cpu;
6aa8b732 7424
a2fa3e9f 7425 if (!vmx)
fb3f0f51
RR
7426 return ERR_PTR(-ENOMEM);
7427
2384d2b3
SY
7428 allocate_vpid(vmx);
7429
fb3f0f51
RR
7430 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
7431 if (err)
7432 goto free_vcpu;
965b58a5 7433
a2fa3e9f 7434 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
be6d05cf 7435 err = -ENOMEM;
fb3f0f51 7436 if (!vmx->guest_msrs) {
fb3f0f51
RR
7437 goto uninit_vcpu;
7438 }
965b58a5 7439
d462b819
NHE
7440 vmx->loaded_vmcs = &vmx->vmcs01;
7441 vmx->loaded_vmcs->vmcs = alloc_vmcs();
7442 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 7443 goto free_msrs;
d462b819
NHE
7444 if (!vmm_exclusive)
7445 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
7446 loaded_vmcs_init(vmx->loaded_vmcs);
7447 if (!vmm_exclusive)
7448 kvm_cpu_vmxoff();
a2fa3e9f 7449
15ad7146
AK
7450 cpu = get_cpu();
7451 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 7452 vmx->vcpu.cpu = cpu;
8b9cf98c 7453 err = vmx_vcpu_setup(vmx);
fb3f0f51 7454 vmx_vcpu_put(&vmx->vcpu);
15ad7146 7455 put_cpu();
fb3f0f51
RR
7456 if (err)
7457 goto free_vmcs;
a63cb560 7458 if (vm_need_virtualize_apic_accesses(kvm)) {
be6d05cf
JK
7459 err = alloc_apic_access_page(kvm);
7460 if (err)
5e4a0b3c 7461 goto free_vmcs;
a63cb560 7462 }
fb3f0f51 7463
b927a3ce
SY
7464 if (enable_ept) {
7465 if (!kvm->arch.ept_identity_map_addr)
7466 kvm->arch.ept_identity_map_addr =
7467 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
93ea5388 7468 err = -ENOMEM;
b7ebfb05
SY
7469 if (alloc_identity_pagetable(kvm) != 0)
7470 goto free_vmcs;
93ea5388
GN
7471 if (!init_rmode_identity_map(kvm))
7472 goto free_vmcs;
b927a3ce 7473 }
b7ebfb05 7474
a9d30f33
NHE
7475 vmx->nested.current_vmptr = -1ull;
7476 vmx->nested.current_vmcs12 = NULL;
7477
fb3f0f51
RR
7478 return &vmx->vcpu;
7479
7480free_vmcs:
5f3fbc34 7481 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51 7482free_msrs:
fb3f0f51
RR
7483 kfree(vmx->guest_msrs);
7484uninit_vcpu:
7485 kvm_vcpu_uninit(&vmx->vcpu);
7486free_vcpu:
cdbecfc3 7487 free_vpid(vmx);
a4770347 7488 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 7489 return ERR_PTR(err);
6aa8b732
AK
7490}
7491
002c7f7c
YS
7492static void __init vmx_check_processor_compat(void *rtn)
7493{
7494 struct vmcs_config vmcs_conf;
7495
7496 *(int *)rtn = 0;
7497 if (setup_vmcs_config(&vmcs_conf) < 0)
7498 *(int *)rtn = -EIO;
7499 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7500 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7501 smp_processor_id());
7502 *(int *)rtn = -EIO;
7503 }
7504}
7505
67253af5
SY
7506static int get_ept_level(void)
7507{
7508 return VMX_EPT_DEFAULT_GAW + 1;
7509}
7510
4b12f0de 7511static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 7512{
4b12f0de
SY
7513 u64 ret;
7514
522c68c4
SY
7515 /* For VT-d and EPT combination
7516 * 1. MMIO: always map as UC
7517 * 2. EPT with VT-d:
7518 * a. VT-d without snooping control feature: can't guarantee the
7519 * result, try to trust guest.
7520 * b. VT-d with snooping control feature: snooping control feature of
7521 * VT-d engine can guarantee the cache correctness. Just set it
7522 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 7523 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
7524 * consistent with host MTRR
7525 */
4b12f0de
SY
7526 if (is_mmio)
7527 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
e0f0bbc5 7528 else if (kvm_arch_has_noncoherent_dma(vcpu->kvm))
522c68c4
SY
7529 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
7530 VMX_EPT_MT_EPTE_SHIFT;
4b12f0de 7531 else
522c68c4 7532 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
a19a6d11 7533 | VMX_EPT_IPAT_BIT;
4b12f0de
SY
7534
7535 return ret;
64d4d521
SY
7536}
7537
17cc3935 7538static int vmx_get_lpage_level(void)
344f414f 7539{
878403b7
SY
7540 if (enable_ept && !cpu_has_vmx_ept_1g_page())
7541 return PT_DIRECTORY_LEVEL;
7542 else
7543 /* For shadow and EPT supported 1GB page */
7544 return PT_PDPE_LEVEL;
344f414f
JR
7545}
7546
0e851880
SY
7547static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7548{
4e47c7a6
SY
7549 struct kvm_cpuid_entry2 *best;
7550 struct vcpu_vmx *vmx = to_vmx(vcpu);
7551 u32 exec_control;
7552
7553 vmx->rdtscp_enabled = false;
7554 if (vmx_rdtscp_supported()) {
7555 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7556 if (exec_control & SECONDARY_EXEC_RDTSCP) {
7557 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
7558 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
7559 vmx->rdtscp_enabled = true;
7560 else {
7561 exec_control &= ~SECONDARY_EXEC_RDTSCP;
7562 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7563 exec_control);
7564 }
7565 }
7566 }
ad756a16 7567
ad756a16
MJ
7568 /* Exposing INVPCID only when PCID is exposed */
7569 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7570 if (vmx_invpcid_supported() &&
4f977045 7571 best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
ad756a16 7572 guest_cpuid_has_pcid(vcpu)) {
29282fde 7573 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
ad756a16
MJ
7574 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
7575 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7576 exec_control);
7577 } else {
29282fde
TI
7578 if (cpu_has_secondary_exec_ctrls()) {
7579 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7580 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
7581 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7582 exec_control);
7583 }
ad756a16 7584 if (best)
4f977045 7585 best->ebx &= ~bit(X86_FEATURE_INVPCID);
ad756a16 7586 }
0e851880
SY
7587}
7588
d4330ef2
JR
7589static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7590{
7b8050f5
NHE
7591 if (func == 1 && nested)
7592 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
7593}
7594
25d92081
YZ
7595static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
7596 struct x86_exception *fault)
7597{
533558bc
JK
7598 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7599 u32 exit_reason;
25d92081
YZ
7600
7601 if (fault->error_code & PFERR_RSVD_MASK)
533558bc 7602 exit_reason = EXIT_REASON_EPT_MISCONFIG;
25d92081 7603 else
533558bc
JK
7604 exit_reason = EXIT_REASON_EPT_VIOLATION;
7605 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
25d92081
YZ
7606 vmcs12->guest_physical_address = fault->address;
7607}
7608
155a97a3
NHE
7609/* Callbacks for nested_ept_init_mmu_context: */
7610
7611static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
7612{
7613 /* return the page table to be shadowed - in our case, EPT12 */
7614 return get_vmcs12(vcpu)->ept_pointer;
7615}
7616
8a3c1a33 7617static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
155a97a3 7618{
8a3c1a33 7619 kvm_init_shadow_ept_mmu(vcpu, &vcpu->arch.mmu,
155a97a3
NHE
7620 nested_vmx_ept_caps & VMX_EPT_EXECUTE_ONLY_BIT);
7621
7622 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
7623 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
7624 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
7625
7626 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
155a97a3
NHE
7627}
7628
7629static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
7630{
7631 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
7632}
7633
feaf0c7d
GN
7634static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
7635 struct x86_exception *fault)
7636{
7637 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7638
7639 WARN_ON(!is_guest_mode(vcpu));
7640
7641 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
7642 if (vmcs12->exception_bitmap & (1u << PF_VECTOR))
533558bc
JK
7643 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
7644 vmcs_read32(VM_EXIT_INTR_INFO),
7645 vmcs_readl(EXIT_QUALIFICATION));
feaf0c7d
GN
7646 else
7647 kvm_inject_page_fault(vcpu, fault);
7648}
7649
f4124500
JK
7650static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
7651{
7652 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
7653 struct vcpu_vmx *vmx = to_vmx(vcpu);
7654
7655 if (vcpu->arch.virtual_tsc_khz == 0)
7656 return;
7657
7658 /* Make sure short timeouts reliably trigger an immediate vmexit.
7659 * hrtimer_start does not guarantee this. */
7660 if (preemption_timeout <= 1) {
7661 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
7662 return;
7663 }
7664
7665 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
7666 preemption_timeout *= 1000000;
7667 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
7668 hrtimer_start(&vmx->nested.preemption_timer,
7669 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
7670}
7671
fe3ef05c
NHE
7672/*
7673 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
7674 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
7675 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
7676 * guest in a way that will both be appropriate to L1's requests, and our
7677 * needs. In addition to modifying the active vmcs (which is vmcs02), this
7678 * function also has additional necessary side-effects, like setting various
7679 * vcpu->arch fields.
7680 */
7681static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7682{
7683 struct vcpu_vmx *vmx = to_vmx(vcpu);
7684 u32 exec_control;
7685
7686 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
7687 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
7688 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
7689 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
7690 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
7691 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
7692 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
7693 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
7694 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
7695 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
7696 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
7697 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
7698 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
7699 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
7700 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
7701 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
7702 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
7703 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
7704 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
7705 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
7706 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
7707 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
7708 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
7709 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
7710 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
7711 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
7712 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
7713 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
7714 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
7715 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
7716 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
7717 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
7718 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
7719 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
7720 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
7721 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
7722
7723 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
7724 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
7725 vmcs12->vm_entry_intr_info_field);
7726 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
7727 vmcs12->vm_entry_exception_error_code);
7728 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
7729 vmcs12->vm_entry_instruction_len);
7730 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
7731 vmcs12->guest_interruptibility_info);
fe3ef05c 7732 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
503cd0c5 7733 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
63fbf59f 7734 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
fe3ef05c
NHE
7735 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
7736 vmcs12->guest_pending_dbg_exceptions);
7737 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
7738 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
7739
7740 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7741
f4124500
JK
7742 exec_control = vmcs12->pin_based_vm_exec_control;
7743 exec_control |= vmcs_config.pin_based_exec_ctrl;
7744 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
7745 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
fe3ef05c 7746
f4124500
JK
7747 vmx->nested.preemption_timer_expired = false;
7748 if (nested_cpu_has_preemption_timer(vmcs12))
7749 vmx_start_preemption_timer(vcpu);
0238ea91 7750
fe3ef05c
NHE
7751 /*
7752 * Whether page-faults are trapped is determined by a combination of
7753 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
7754 * If enable_ept, L0 doesn't care about page faults and we should
7755 * set all of these to L1's desires. However, if !enable_ept, L0 does
7756 * care about (at least some) page faults, and because it is not easy
7757 * (if at all possible?) to merge L0 and L1's desires, we simply ask
7758 * to exit on each and every L2 page fault. This is done by setting
7759 * MASK=MATCH=0 and (see below) EB.PF=1.
7760 * Note that below we don't need special code to set EB.PF beyond the
7761 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
7762 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
7763 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
7764 *
7765 * A problem with this approach (when !enable_ept) is that L1 may be
7766 * injected with more page faults than it asked for. This could have
7767 * caused problems, but in practice existing hypervisors don't care.
7768 * To fix this, we will need to emulate the PFEC checking (on the L1
7769 * page tables), using walk_addr(), when injecting PFs to L1.
7770 */
7771 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
7772 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
7773 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
7774 enable_ept ? vmcs12->page_fault_error_code_match : 0);
7775
7776 if (cpu_has_secondary_exec_ctrls()) {
f4124500 7777 exec_control = vmx_secondary_exec_control(vmx);
fe3ef05c
NHE
7778 if (!vmx->rdtscp_enabled)
7779 exec_control &= ~SECONDARY_EXEC_RDTSCP;
7780 /* Take the following fields only from vmcs12 */
7781 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7782 if (nested_cpu_has(vmcs12,
7783 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
7784 exec_control |= vmcs12->secondary_vm_exec_control;
7785
7786 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
7787 /*
7788 * Translate L1 physical address to host physical
7789 * address for vmcs02. Keep the page pinned, so this
7790 * physical address remains valid. We keep a reference
7791 * to it so we can release it later.
7792 */
7793 if (vmx->nested.apic_access_page) /* shouldn't happen */
7794 nested_release_page(vmx->nested.apic_access_page);
7795 vmx->nested.apic_access_page =
7796 nested_get_page(vcpu, vmcs12->apic_access_addr);
7797 /*
7798 * If translation failed, no matter: This feature asks
7799 * to exit when accessing the given address, and if it
7800 * can never be accessed, this feature won't do
7801 * anything anyway.
7802 */
7803 if (!vmx->nested.apic_access_page)
7804 exec_control &=
7805 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7806 else
7807 vmcs_write64(APIC_ACCESS_ADDR,
7808 page_to_phys(vmx->nested.apic_access_page));
ca3f257a
JK
7809 } else if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm)) {
7810 exec_control |=
7811 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7812 vmcs_write64(APIC_ACCESS_ADDR,
7813 page_to_phys(vcpu->kvm->arch.apic_access_page));
fe3ef05c
NHE
7814 }
7815
7816 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7817 }
7818
7819
7820 /*
7821 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
7822 * Some constant fields are set here by vmx_set_constant_host_state().
7823 * Other fields are different per CPU, and will be set later when
7824 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
7825 */
a547c6db 7826 vmx_set_constant_host_state(vmx);
fe3ef05c
NHE
7827
7828 /*
7829 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
7830 * entry, but only if the current (host) sp changed from the value
7831 * we wrote last (vmx->host_rsp). This cache is no longer relevant
7832 * if we switch vmcs, and rather than hold a separate cache per vmcs,
7833 * here we just force the write to happen on entry.
7834 */
7835 vmx->host_rsp = 0;
7836
7837 exec_control = vmx_exec_control(vmx); /* L0's desires */
7838 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
7839 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
7840 exec_control &= ~CPU_BASED_TPR_SHADOW;
7841 exec_control |= vmcs12->cpu_based_vm_exec_control;
7842 /*
7843 * Merging of IO and MSR bitmaps not currently supported.
7844 * Rather, exit every time.
7845 */
7846 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
7847 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
7848 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
7849
7850 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
7851
7852 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
7853 * bitwise-or of what L1 wants to trap for L2, and what we want to
7854 * trap. Note that CR0.TS also needs updating - we do this later.
7855 */
7856 update_exception_bitmap(vcpu);
7857 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
7858 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7859
8049d651
NHE
7860 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
7861 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
7862 * bits are further modified by vmx_set_efer() below.
7863 */
f4124500 7864 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8049d651
NHE
7865
7866 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
7867 * emulated by vmx_set_efer(), below.
7868 */
2961e876 7869 vm_entry_controls_init(vmx,
8049d651
NHE
7870 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
7871 ~VM_ENTRY_IA32E_MODE) |
fe3ef05c
NHE
7872 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
7873
44811c02 7874 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
fe3ef05c 7875 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
44811c02
JK
7876 vcpu->arch.pat = vmcs12->guest_ia32_pat;
7877 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
fe3ef05c
NHE
7878 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
7879
7880
7881 set_cr4_guest_host_mask(vmx);
7882
36be0b9d
PB
7883 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
7884 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
7885
27fc51b2
NHE
7886 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
7887 vmcs_write64(TSC_OFFSET,
7888 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
7889 else
7890 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
fe3ef05c
NHE
7891
7892 if (enable_vpid) {
7893 /*
7894 * Trivially support vpid by letting L2s share their parent
7895 * L1's vpid. TODO: move to a more elaborate solution, giving
7896 * each L2 its own vpid and exposing the vpid feature to L1.
7897 */
7898 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
7899 vmx_flush_tlb(vcpu);
7900 }
7901
155a97a3
NHE
7902 if (nested_cpu_has_ept(vmcs12)) {
7903 kvm_mmu_unload(vcpu);
7904 nested_ept_init_mmu_context(vcpu);
7905 }
7906
fe3ef05c
NHE
7907 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
7908 vcpu->arch.efer = vmcs12->guest_ia32_efer;
d1fa0352 7909 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
fe3ef05c
NHE
7910 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7911 else
7912 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7913 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
7914 vmx_set_efer(vcpu, vcpu->arch.efer);
7915
7916 /*
7917 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
7918 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
7919 * The CR0_READ_SHADOW is what L2 should have expected to read given
7920 * the specifications by L1; It's not enough to take
7921 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
7922 * have more bits than L1 expected.
7923 */
7924 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
7925 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
7926
7927 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
7928 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
7929
7930 /* shadow page tables on either EPT or shadow page tables */
7931 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
7932 kvm_mmu_reset_context(vcpu);
7933
feaf0c7d
GN
7934 if (!enable_ept)
7935 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
7936
3633cfc3
NHE
7937 /*
7938 * L1 may access the L2's PDPTR, so save them to construct vmcs12
7939 */
7940 if (enable_ept) {
7941 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
7942 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
7943 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
7944 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
7945 }
7946
fe3ef05c
NHE
7947 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
7948 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
7949}
7950
cd232ad0
NHE
7951/*
7952 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
7953 * for running an L2 nested guest.
7954 */
7955static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
7956{
7957 struct vmcs12 *vmcs12;
7958 struct vcpu_vmx *vmx = to_vmx(vcpu);
7959 int cpu;
7960 struct loaded_vmcs *vmcs02;
384bb783 7961 bool ia32e;
cd232ad0
NHE
7962
7963 if (!nested_vmx_check_permission(vcpu) ||
7964 !nested_vmx_check_vmcs12(vcpu))
7965 return 1;
7966
7967 skip_emulated_instruction(vcpu);
7968 vmcs12 = get_vmcs12(vcpu);
7969
012f83cb
AG
7970 if (enable_shadow_vmcs)
7971 copy_shadow_to_vmcs12(vmx);
7972
7c177938
NHE
7973 /*
7974 * The nested entry process starts with enforcing various prerequisites
7975 * on vmcs12 as required by the Intel SDM, and act appropriately when
7976 * they fail: As the SDM explains, some conditions should cause the
7977 * instruction to fail, while others will cause the instruction to seem
7978 * to succeed, but return an EXIT_REASON_INVALID_STATE.
7979 * To speed up the normal (success) code path, we should avoid checking
7980 * for misconfigurations which will anyway be caught by the processor
7981 * when using the merged vmcs02.
7982 */
7983 if (vmcs12->launch_state == launch) {
7984 nested_vmx_failValid(vcpu,
7985 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
7986 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
7987 return 1;
7988 }
7989
6dfacadd
JK
7990 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
7991 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
26539bd0
PB
7992 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7993 return 1;
7994 }
7995
7c177938
NHE
7996 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
7997 !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
7998 /*TODO: Also verify bits beyond physical address width are 0*/
7999 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8000 return 1;
8001 }
8002
8003 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
8004 !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
8005 /*TODO: Also verify bits beyond physical address width are 0*/
8006 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8007 return 1;
8008 }
8009
8010 if (vmcs12->vm_entry_msr_load_count > 0 ||
8011 vmcs12->vm_exit_msr_load_count > 0 ||
8012 vmcs12->vm_exit_msr_store_count > 0) {
bd80158a
JK
8013 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
8014 __func__);
7c177938
NHE
8015 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8016 return 1;
8017 }
8018
8019 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
8020 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
8021 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
8022 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
8023 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
8024 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
8025 !vmx_control_verify(vmcs12->vm_exit_controls,
8026 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
8027 !vmx_control_verify(vmcs12->vm_entry_controls,
8028 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
8029 {
8030 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8031 return 1;
8032 }
8033
8034 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
8035 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8036 nested_vmx_failValid(vcpu,
8037 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
8038 return 1;
8039 }
8040
92fbc7b1 8041 if (!nested_cr0_valid(vmcs12, vmcs12->guest_cr0) ||
7c177938
NHE
8042 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8043 nested_vmx_entry_failure(vcpu, vmcs12,
8044 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8045 return 1;
8046 }
8047 if (vmcs12->vmcs_link_pointer != -1ull) {
8048 nested_vmx_entry_failure(vcpu, vmcs12,
8049 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
8050 return 1;
8051 }
8052
384bb783 8053 /*
cb0c8cda 8054 * If the load IA32_EFER VM-entry control is 1, the following checks
384bb783
JK
8055 * are performed on the field for the IA32_EFER MSR:
8056 * - Bits reserved in the IA32_EFER MSR must be 0.
8057 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
8058 * the IA-32e mode guest VM-exit control. It must also be identical
8059 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
8060 * CR0.PG) is 1.
8061 */
8062 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
8063 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
8064 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
8065 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
8066 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
8067 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
8068 nested_vmx_entry_failure(vcpu, vmcs12,
8069 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8070 return 1;
8071 }
8072 }
8073
8074 /*
8075 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
8076 * IA32_EFER MSR must be 0 in the field for that register. In addition,
8077 * the values of the LMA and LME bits in the field must each be that of
8078 * the host address-space size VM-exit control.
8079 */
8080 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
8081 ia32e = (vmcs12->vm_exit_controls &
8082 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
8083 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
8084 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
8085 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
8086 nested_vmx_entry_failure(vcpu, vmcs12,
8087 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8088 return 1;
8089 }
8090 }
8091
7c177938
NHE
8092 /*
8093 * We're finally done with prerequisite checking, and can start with
8094 * the nested entry.
8095 */
8096
cd232ad0
NHE
8097 vmcs02 = nested_get_current_vmcs02(vmx);
8098 if (!vmcs02)
8099 return -ENOMEM;
8100
8101 enter_guest_mode(vcpu);
8102
8103 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
8104
8105 cpu = get_cpu();
8106 vmx->loaded_vmcs = vmcs02;
8107 vmx_vcpu_put(vcpu);
8108 vmx_vcpu_load(vcpu, cpu);
8109 vcpu->cpu = cpu;
8110 put_cpu();
8111
36c3cc42
JK
8112 vmx_segment_cache_clear(vmx);
8113
cd232ad0
NHE
8114 vmcs12->launch_state = 1;
8115
8116 prepare_vmcs02(vcpu, vmcs12);
8117
6dfacadd
JK
8118 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
8119 return kvm_emulate_halt(vcpu);
8120
7af40ad3
JK
8121 vmx->nested.nested_run_pending = 1;
8122
cd232ad0
NHE
8123 /*
8124 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
8125 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
8126 * returned as far as L1 is concerned. It will only return (and set
8127 * the success flag) when L2 exits (see nested_vmx_vmexit()).
8128 */
8129 return 1;
8130}
8131
4704d0be
NHE
8132/*
8133 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
8134 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
8135 * This function returns the new value we should put in vmcs12.guest_cr0.
8136 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
8137 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
8138 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
8139 * didn't trap the bit, because if L1 did, so would L0).
8140 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
8141 * been modified by L2, and L1 knows it. So just leave the old value of
8142 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
8143 * isn't relevant, because if L0 traps this bit it can set it to anything.
8144 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
8145 * changed these bits, and therefore they need to be updated, but L0
8146 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
8147 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
8148 */
8149static inline unsigned long
8150vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8151{
8152 return
8153 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
8154 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
8155 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
8156 vcpu->arch.cr0_guest_owned_bits));
8157}
8158
8159static inline unsigned long
8160vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8161{
8162 return
8163 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
8164 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
8165 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
8166 vcpu->arch.cr4_guest_owned_bits));
8167}
8168
5f3d5799
JK
8169static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
8170 struct vmcs12 *vmcs12)
8171{
8172 u32 idt_vectoring;
8173 unsigned int nr;
8174
851eb667 8175 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
5f3d5799
JK
8176 nr = vcpu->arch.exception.nr;
8177 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8178
8179 if (kvm_exception_is_soft(nr)) {
8180 vmcs12->vm_exit_instruction_len =
8181 vcpu->arch.event_exit_inst_len;
8182 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
8183 } else
8184 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
8185
8186 if (vcpu->arch.exception.has_error_code) {
8187 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
8188 vmcs12->idt_vectoring_error_code =
8189 vcpu->arch.exception.error_code;
8190 }
8191
8192 vmcs12->idt_vectoring_info_field = idt_vectoring;
cd2633c5 8193 } else if (vcpu->arch.nmi_injected) {
5f3d5799
JK
8194 vmcs12->idt_vectoring_info_field =
8195 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
8196 } else if (vcpu->arch.interrupt.pending) {
8197 nr = vcpu->arch.interrupt.nr;
8198 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8199
8200 if (vcpu->arch.interrupt.soft) {
8201 idt_vectoring |= INTR_TYPE_SOFT_INTR;
8202 vmcs12->vm_entry_instruction_len =
8203 vcpu->arch.event_exit_inst_len;
8204 } else
8205 idt_vectoring |= INTR_TYPE_EXT_INTR;
8206
8207 vmcs12->idt_vectoring_info_field = idt_vectoring;
8208 }
8209}
8210
b6b8a145
JK
8211static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
8212{
8213 struct vcpu_vmx *vmx = to_vmx(vcpu);
8214
f4124500
JK
8215 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
8216 vmx->nested.preemption_timer_expired) {
8217 if (vmx->nested.nested_run_pending)
8218 return -EBUSY;
8219 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
8220 return 0;
8221 }
8222
b6b8a145 8223 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
220c5672
JK
8224 if (vmx->nested.nested_run_pending ||
8225 vcpu->arch.interrupt.pending)
b6b8a145
JK
8226 return -EBUSY;
8227 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
8228 NMI_VECTOR | INTR_TYPE_NMI_INTR |
8229 INTR_INFO_VALID_MASK, 0);
8230 /*
8231 * The NMI-triggered VM exit counts as injection:
8232 * clear this one and block further NMIs.
8233 */
8234 vcpu->arch.nmi_pending = 0;
8235 vmx_set_nmi_mask(vcpu, true);
8236 return 0;
8237 }
8238
8239 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
8240 nested_exit_on_intr(vcpu)) {
8241 if (vmx->nested.nested_run_pending)
8242 return -EBUSY;
8243 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
8244 }
8245
8246 return 0;
8247}
8248
f4124500
JK
8249static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
8250{
8251 ktime_t remaining =
8252 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
8253 u64 value;
8254
8255 if (ktime_to_ns(remaining) <= 0)
8256 return 0;
8257
8258 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
8259 do_div(value, 1000000);
8260 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8261}
8262
4704d0be
NHE
8263/*
8264 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
8265 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
8266 * and this function updates it to reflect the changes to the guest state while
8267 * L2 was running (and perhaps made some exits which were handled directly by L0
8268 * without going back to L1), and to reflect the exit reason.
8269 * Note that we do not have to copy here all VMCS fields, just those that
8270 * could have changed by the L2 guest or the exit - i.e., the guest-state and
8271 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
8272 * which already writes to vmcs12 directly.
8273 */
533558bc
JK
8274static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
8275 u32 exit_reason, u32 exit_intr_info,
8276 unsigned long exit_qualification)
4704d0be
NHE
8277{
8278 /* update guest state fields: */
8279 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
8280 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
8281
8282 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
8283 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8284 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
8285 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
8286
8287 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
8288 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
8289 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
8290 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
8291 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
8292 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
8293 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
8294 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
8295 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
8296 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
8297 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
8298 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
8299 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
8300 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
8301 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
8302 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
8303 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
8304 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
8305 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
8306 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
8307 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
8308 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
8309 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
8310 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
8311 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
8312 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
8313 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
8314 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
8315 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
8316 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
8317 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
8318 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
8319 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
8320 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
8321 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
8322 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
8323
4704d0be
NHE
8324 vmcs12->guest_interruptibility_info =
8325 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
8326 vmcs12->guest_pending_dbg_exceptions =
8327 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3edf1e69
JK
8328 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
8329 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
8330 else
8331 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4704d0be 8332
f4124500
JK
8333 if (nested_cpu_has_preemption_timer(vmcs12)) {
8334 if (vmcs12->vm_exit_controls &
8335 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
8336 vmcs12->vmx_preemption_timer_value =
8337 vmx_get_preemption_timer_value(vcpu);
8338 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
8339 }
7854cbca 8340
3633cfc3
NHE
8341 /*
8342 * In some cases (usually, nested EPT), L2 is allowed to change its
8343 * own CR3 without exiting. If it has changed it, we must keep it.
8344 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
8345 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
8346 *
8347 * Additionally, restore L2's PDPTR to vmcs12.
8348 */
8349 if (enable_ept) {
8350 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
8351 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
8352 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
8353 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
8354 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
8355 }
8356
c18911a2
JK
8357 vmcs12->vm_entry_controls =
8358 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
2961e876 8359 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
c18911a2 8360
4704d0be
NHE
8361 /* TODO: These cannot have changed unless we have MSR bitmaps and
8362 * the relevant bit asks not to trap the change */
8363 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
b8c07d55 8364 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
4704d0be 8365 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10ba54a5
JK
8366 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
8367 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4704d0be
NHE
8368 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
8369 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
8370 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
36be0b9d
PB
8371 if (vmx_mpx_supported())
8372 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
4704d0be
NHE
8373
8374 /* update exit information fields: */
8375
533558bc
JK
8376 vmcs12->vm_exit_reason = exit_reason;
8377 vmcs12->exit_qualification = exit_qualification;
4704d0be 8378
533558bc 8379 vmcs12->vm_exit_intr_info = exit_intr_info;
c0d1c770
JK
8380 if ((vmcs12->vm_exit_intr_info &
8381 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8382 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
8383 vmcs12->vm_exit_intr_error_code =
8384 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5f3d5799 8385 vmcs12->idt_vectoring_info_field = 0;
4704d0be
NHE
8386 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
8387 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8388
5f3d5799
JK
8389 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
8390 /* vm_entry_intr_info_field is cleared on exit. Emulate this
8391 * instead of reading the real value. */
4704d0be 8392 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
5f3d5799
JK
8393
8394 /*
8395 * Transfer the event that L0 or L1 may wanted to inject into
8396 * L2 to IDT_VECTORING_INFO_FIELD.
8397 */
8398 vmcs12_save_pending_event(vcpu, vmcs12);
8399 }
8400
8401 /*
8402 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
8403 * preserved above and would only end up incorrectly in L1.
8404 */
8405 vcpu->arch.nmi_injected = false;
8406 kvm_clear_exception_queue(vcpu);
8407 kvm_clear_interrupt_queue(vcpu);
4704d0be
NHE
8408}
8409
8410/*
8411 * A part of what we need to when the nested L2 guest exits and we want to
8412 * run its L1 parent, is to reset L1's guest state to the host state specified
8413 * in vmcs12.
8414 * This function is to be called not only on normal nested exit, but also on
8415 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
8416 * Failures During or After Loading Guest State").
8417 * This function should be called when the active VMCS is L1's (vmcs01).
8418 */
733568f9
JK
8419static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
8420 struct vmcs12 *vmcs12)
4704d0be 8421{
21feb4eb
ACL
8422 struct kvm_segment seg;
8423
4704d0be
NHE
8424 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
8425 vcpu->arch.efer = vmcs12->host_ia32_efer;
d1fa0352 8426 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4704d0be
NHE
8427 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8428 else
8429 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8430 vmx_set_efer(vcpu, vcpu->arch.efer);
8431
8432 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
8433 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
1adfa76a 8434 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4704d0be
NHE
8435 /*
8436 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
8437 * actually changed, because it depends on the current state of
8438 * fpu_active (which may have changed).
8439 * Note that vmx_set_cr0 refers to efer set above.
8440 */
9e3e4dbf 8441 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4704d0be
NHE
8442 /*
8443 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
8444 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
8445 * but we also need to update cr0_guest_host_mask and exception_bitmap.
8446 */
8447 update_exception_bitmap(vcpu);
8448 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
8449 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8450
8451 /*
8452 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
8453 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
8454 */
8455 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
8456 kvm_set_cr4(vcpu, vmcs12->host_cr4);
8457
29bf08f1 8458 nested_ept_uninit_mmu_context(vcpu);
155a97a3 8459
4704d0be
NHE
8460 kvm_set_cr3(vcpu, vmcs12->host_cr3);
8461 kvm_mmu_reset_context(vcpu);
8462
feaf0c7d
GN
8463 if (!enable_ept)
8464 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
8465
4704d0be
NHE
8466 if (enable_vpid) {
8467 /*
8468 * Trivially support vpid by letting L2s share their parent
8469 * L1's vpid. TODO: move to a more elaborate solution, giving
8470 * each L2 its own vpid and exposing the vpid feature to L1.
8471 */
8472 vmx_flush_tlb(vcpu);
8473 }
8474
8475
8476 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
8477 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
8478 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
8479 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
8480 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4704d0be 8481
36be0b9d
PB
8482 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
8483 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
8484 vmcs_write64(GUEST_BNDCFGS, 0);
8485
44811c02 8486 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4704d0be 8487 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
44811c02
JK
8488 vcpu->arch.pat = vmcs12->host_ia32_pat;
8489 }
4704d0be
NHE
8490 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8491 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
8492 vmcs12->host_ia32_perf_global_ctrl);
503cd0c5 8493
21feb4eb
ACL
8494 /* Set L1 segment info according to Intel SDM
8495 27.5.2 Loading Host Segment and Descriptor-Table Registers */
8496 seg = (struct kvm_segment) {
8497 .base = 0,
8498 .limit = 0xFFFFFFFF,
8499 .selector = vmcs12->host_cs_selector,
8500 .type = 11,
8501 .present = 1,
8502 .s = 1,
8503 .g = 1
8504 };
8505 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8506 seg.l = 1;
8507 else
8508 seg.db = 1;
8509 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
8510 seg = (struct kvm_segment) {
8511 .base = 0,
8512 .limit = 0xFFFFFFFF,
8513 .type = 3,
8514 .present = 1,
8515 .s = 1,
8516 .db = 1,
8517 .g = 1
8518 };
8519 seg.selector = vmcs12->host_ds_selector;
8520 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
8521 seg.selector = vmcs12->host_es_selector;
8522 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
8523 seg.selector = vmcs12->host_ss_selector;
8524 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
8525 seg.selector = vmcs12->host_fs_selector;
8526 seg.base = vmcs12->host_fs_base;
8527 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
8528 seg.selector = vmcs12->host_gs_selector;
8529 seg.base = vmcs12->host_gs_base;
8530 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
8531 seg = (struct kvm_segment) {
205befd9 8532 .base = vmcs12->host_tr_base,
21feb4eb
ACL
8533 .limit = 0x67,
8534 .selector = vmcs12->host_tr_selector,
8535 .type = 11,
8536 .present = 1
8537 };
8538 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
8539
503cd0c5
JK
8540 kvm_set_dr(vcpu, 7, 0x400);
8541 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4704d0be
NHE
8542}
8543
8544/*
8545 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
8546 * and modify vmcs12 to make it see what it would expect to see there if
8547 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
8548 */
533558bc
JK
8549static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
8550 u32 exit_intr_info,
8551 unsigned long exit_qualification)
4704d0be
NHE
8552{
8553 struct vcpu_vmx *vmx = to_vmx(vcpu);
8554 int cpu;
8555 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8556
5f3d5799
JK
8557 /* trying to cancel vmlaunch/vmresume is a bug */
8558 WARN_ON_ONCE(vmx->nested.nested_run_pending);
8559
4704d0be 8560 leave_guest_mode(vcpu);
533558bc
JK
8561 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
8562 exit_qualification);
4704d0be 8563
542060ea
JK
8564 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
8565 vmcs12->exit_qualification,
8566 vmcs12->idt_vectoring_info_field,
8567 vmcs12->vm_exit_intr_info,
8568 vmcs12->vm_exit_intr_error_code,
8569 KVM_ISA_VMX);
4704d0be
NHE
8570
8571 cpu = get_cpu();
8572 vmx->loaded_vmcs = &vmx->vmcs01;
8573 vmx_vcpu_put(vcpu);
8574 vmx_vcpu_load(vcpu, cpu);
8575 vcpu->cpu = cpu;
8576 put_cpu();
8577
2961e876
GN
8578 vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
8579 vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
36c3cc42
JK
8580 vmx_segment_cache_clear(vmx);
8581
4704d0be
NHE
8582 /* if no vmcs02 cache requested, remove the one we used */
8583 if (VMCS02_POOL_SIZE == 0)
8584 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
8585
8586 load_vmcs12_host_state(vcpu, vmcs12);
8587
27fc51b2 8588 /* Update TSC_OFFSET if TSC was changed while L2 ran */
4704d0be
NHE
8589 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8590
8591 /* This is needed for same reason as it was needed in prepare_vmcs02 */
8592 vmx->host_rsp = 0;
8593
8594 /* Unpin physical memory we referred to in vmcs02 */
8595 if (vmx->nested.apic_access_page) {
8596 nested_release_page(vmx->nested.apic_access_page);
8597 vmx->nested.apic_access_page = 0;
8598 }
8599
8600 /*
8601 * Exiting from L2 to L1, we're now back to L1 which thinks it just
8602 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
8603 * success or failure flag accordingly.
8604 */
8605 if (unlikely(vmx->fail)) {
8606 vmx->fail = 0;
8607 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
8608 } else
8609 nested_vmx_succeed(vcpu);
012f83cb
AG
8610 if (enable_shadow_vmcs)
8611 vmx->nested.sync_shadow_vmcs = true;
b6b8a145
JK
8612
8613 /* in case we halted in L2 */
8614 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4704d0be
NHE
8615}
8616
42124925
JK
8617/*
8618 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
8619 */
8620static void vmx_leave_nested(struct kvm_vcpu *vcpu)
8621{
8622 if (is_guest_mode(vcpu))
533558bc 8623 nested_vmx_vmexit(vcpu, -1, 0, 0);
42124925
JK
8624 free_nested(to_vmx(vcpu));
8625}
8626
7c177938
NHE
8627/*
8628 * L1's failure to enter L2 is a subset of a normal exit, as explained in
8629 * 23.7 "VM-entry failures during or after loading guest state" (this also
8630 * lists the acceptable exit-reason and exit-qualification parameters).
8631 * It should only be called before L2 actually succeeded to run, and when
8632 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
8633 */
8634static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
8635 struct vmcs12 *vmcs12,
8636 u32 reason, unsigned long qualification)
8637{
8638 load_vmcs12_host_state(vcpu, vmcs12);
8639 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
8640 vmcs12->exit_qualification = qualification;
8641 nested_vmx_succeed(vcpu);
012f83cb
AG
8642 if (enable_shadow_vmcs)
8643 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
7c177938
NHE
8644}
8645
8a76d7f2
JR
8646static int vmx_check_intercept(struct kvm_vcpu *vcpu,
8647 struct x86_instruction_info *info,
8648 enum x86_intercept_stage stage)
8649{
8650 return X86EMUL_CONTINUE;
8651}
8652
cbdd1bea 8653static struct kvm_x86_ops vmx_x86_ops = {
6aa8b732
AK
8654 .cpu_has_kvm_support = cpu_has_kvm_support,
8655 .disabled_by_bios = vmx_disabled_by_bios,
8656 .hardware_setup = hardware_setup,
8657 .hardware_unsetup = hardware_unsetup,
002c7f7c 8658 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
8659 .hardware_enable = hardware_enable,
8660 .hardware_disable = hardware_disable,
04547156 8661 .cpu_has_accelerated_tpr = report_flexpriority,
6aa8b732
AK
8662
8663 .vcpu_create = vmx_create_vcpu,
8664 .vcpu_free = vmx_free_vcpu,
04d2cc77 8665 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 8666
04d2cc77 8667 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
8668 .vcpu_load = vmx_vcpu_load,
8669 .vcpu_put = vmx_vcpu_put,
8670
c8639010 8671 .update_db_bp_intercept = update_exception_bitmap,
6aa8b732
AK
8672 .get_msr = vmx_get_msr,
8673 .set_msr = vmx_set_msr,
8674 .get_segment_base = vmx_get_segment_base,
8675 .get_segment = vmx_get_segment,
8676 .set_segment = vmx_set_segment,
2e4d2653 8677 .get_cpl = vmx_get_cpl,
6aa8b732 8678 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 8679 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 8680 .decache_cr3 = vmx_decache_cr3,
25c4c276 8681 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 8682 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
8683 .set_cr3 = vmx_set_cr3,
8684 .set_cr4 = vmx_set_cr4,
6aa8b732 8685 .set_efer = vmx_set_efer,
6aa8b732
AK
8686 .get_idt = vmx_get_idt,
8687 .set_idt = vmx_set_idt,
8688 .get_gdt = vmx_get_gdt,
8689 .set_gdt = vmx_set_gdt,
73aaf249
JK
8690 .get_dr6 = vmx_get_dr6,
8691 .set_dr6 = vmx_set_dr6,
020df079 8692 .set_dr7 = vmx_set_dr7,
81908bf4 8693 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
5fdbf976 8694 .cache_reg = vmx_cache_reg,
6aa8b732
AK
8695 .get_rflags = vmx_get_rflags,
8696 .set_rflags = vmx_set_rflags,
ebcbab4c 8697 .fpu_activate = vmx_fpu_activate,
02daab21 8698 .fpu_deactivate = vmx_fpu_deactivate,
6aa8b732
AK
8699
8700 .tlb_flush = vmx_flush_tlb,
6aa8b732 8701
6aa8b732 8702 .run = vmx_vcpu_run,
6062d012 8703 .handle_exit = vmx_handle_exit,
6aa8b732 8704 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
8705 .set_interrupt_shadow = vmx_set_interrupt_shadow,
8706 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 8707 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 8708 .set_irq = vmx_inject_irq,
95ba8273 8709 .set_nmi = vmx_inject_nmi,
298101da 8710 .queue_exception = vmx_queue_exception,
b463a6f7 8711 .cancel_injection = vmx_cancel_injection,
78646121 8712 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 8713 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
8714 .get_nmi_mask = vmx_get_nmi_mask,
8715 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
8716 .enable_nmi_window = enable_nmi_window,
8717 .enable_irq_window = enable_irq_window,
8718 .update_cr8_intercept = update_cr8_intercept,
8d14695f 8719 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
c7c9c56c
YZ
8720 .vm_has_apicv = vmx_vm_has_apicv,
8721 .load_eoi_exitmap = vmx_load_eoi_exitmap,
8722 .hwapic_irr_update = vmx_hwapic_irr_update,
8723 .hwapic_isr_update = vmx_hwapic_isr_update,
a20ed54d
YZ
8724 .sync_pir_to_irr = vmx_sync_pir_to_irr,
8725 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
95ba8273 8726
cbc94022 8727 .set_tss_addr = vmx_set_tss_addr,
67253af5 8728 .get_tdp_level = get_ept_level,
4b12f0de 8729 .get_mt_mask = vmx_get_mt_mask,
229456fc 8730
586f9607 8731 .get_exit_info = vmx_get_exit_info,
586f9607 8732
17cc3935 8733 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
8734
8735 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
8736
8737 .rdtscp_supported = vmx_rdtscp_supported,
ad756a16 8738 .invpcid_supported = vmx_invpcid_supported,
d4330ef2
JR
8739
8740 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
8741
8742 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a 8743
4051b188 8744 .set_tsc_khz = vmx_set_tsc_khz,
ba904635 8745 .read_tsc_offset = vmx_read_tsc_offset,
99e3e30a 8746 .write_tsc_offset = vmx_write_tsc_offset,
e48672fa 8747 .adjust_tsc_offset = vmx_adjust_tsc_offset,
857e4099 8748 .compute_tsc_offset = vmx_compute_tsc_offset,
d5c1785d 8749 .read_l1_tsc = vmx_read_l1_tsc,
1c97f0a0
JR
8750
8751 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
8752
8753 .check_intercept = vmx_check_intercept,
a547c6db 8754 .handle_external_intr = vmx_handle_external_intr,
da8999d3 8755 .mpx_supported = vmx_mpx_supported,
b6b8a145
JK
8756
8757 .check_nested_events = vmx_check_nested_events,
6aa8b732
AK
8758};
8759
8760static int __init vmx_init(void)
8761{
8d14695f 8762 int r, i, msr;
26bb0981
AK
8763
8764 rdmsrl_safe(MSR_EFER, &host_efer);
8765
8766 for (i = 0; i < NR_VMX_MSR; ++i)
8767 kvm_define_shared_msr(i, vmx_msr_index[i]);
fdef3ad1 8768
3e7c73e9 8769 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
fdef3ad1
HQ
8770 if (!vmx_io_bitmap_a)
8771 return -ENOMEM;
8772
2106a548
GC
8773 r = -ENOMEM;
8774
3e7c73e9 8775 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
2106a548 8776 if (!vmx_io_bitmap_b)
fdef3ad1 8777 goto out;
fdef3ad1 8778
5897297b 8779 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
2106a548 8780 if (!vmx_msr_bitmap_legacy)
25c5f225 8781 goto out1;
2106a548 8782
8d14695f
YZ
8783 vmx_msr_bitmap_legacy_x2apic =
8784 (unsigned long *)__get_free_page(GFP_KERNEL);
8785 if (!vmx_msr_bitmap_legacy_x2apic)
8786 goto out2;
25c5f225 8787
5897297b 8788 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
2106a548 8789 if (!vmx_msr_bitmap_longmode)
8d14695f 8790 goto out3;
2106a548 8791
8d14695f
YZ
8792 vmx_msr_bitmap_longmode_x2apic =
8793 (unsigned long *)__get_free_page(GFP_KERNEL);
8794 if (!vmx_msr_bitmap_longmode_x2apic)
8795 goto out4;
4607c2d7
AG
8796 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8797 if (!vmx_vmread_bitmap)
8798 goto out5;
8799
8800 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8801 if (!vmx_vmwrite_bitmap)
8802 goto out6;
8803
8804 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
8805 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
8806 /* shadowed read/write fields */
8807 for (i = 0; i < max_shadow_read_write_fields; i++) {
8808 clear_bit(shadow_read_write_fields[i], vmx_vmwrite_bitmap);
8809 clear_bit(shadow_read_write_fields[i], vmx_vmread_bitmap);
8810 }
8811 /* shadowed read only fields */
8812 for (i = 0; i < max_shadow_read_only_fields; i++)
8813 clear_bit(shadow_read_only_fields[i], vmx_vmread_bitmap);
5897297b 8814
fdef3ad1
HQ
8815 /*
8816 * Allow direct access to the PC debug port (it is often used for I/O
8817 * delays, but the vmexits simply slow things down).
8818 */
3e7c73e9
AK
8819 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
8820 clear_bit(0x80, vmx_io_bitmap_a);
fdef3ad1 8821
3e7c73e9 8822 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
fdef3ad1 8823
5897297b
AK
8824 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
8825 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
25c5f225 8826
2384d2b3
SY
8827 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8828
0ee75bea
AK
8829 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
8830 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 8831 if (r)
4607c2d7 8832 goto out7;
25c5f225 8833
8f536b76
ZY
8834#ifdef CONFIG_KEXEC
8835 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8836 crash_vmclear_local_loaded_vmcss);
8837#endif
8838
5897297b
AK
8839 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
8840 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
8841 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
8842 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
8843 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
8844 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
da8999d3
LJ
8845 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
8846
8d14695f
YZ
8847 memcpy(vmx_msr_bitmap_legacy_x2apic,
8848 vmx_msr_bitmap_legacy, PAGE_SIZE);
8849 memcpy(vmx_msr_bitmap_longmode_x2apic,
8850 vmx_msr_bitmap_longmode, PAGE_SIZE);
8851
01e439be 8852 if (enable_apicv) {
8d14695f
YZ
8853 for (msr = 0x800; msr <= 0x8ff; msr++)
8854 vmx_disable_intercept_msr_read_x2apic(msr);
8855
8856 /* According SDM, in x2apic mode, the whole id reg is used.
8857 * But in KVM, it only use the highest eight bits. Need to
8858 * intercept it */
8859 vmx_enable_intercept_msr_read_x2apic(0x802);
8860 /* TMCCT */
8861 vmx_enable_intercept_msr_read_x2apic(0x839);
8862 /* TPR */
8863 vmx_disable_intercept_msr_write_x2apic(0x808);
c7c9c56c
YZ
8864 /* EOI */
8865 vmx_disable_intercept_msr_write_x2apic(0x80b);
8866 /* SELF-IPI */
8867 vmx_disable_intercept_msr_write_x2apic(0x83f);
8d14695f 8868 }
fdef3ad1 8869
089d034e 8870 if (enable_ept) {
3f6d8c8a
XH
8871 kvm_mmu_set_mask_ptes(0ull,
8872 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
8873 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
8874 0ull, VMX_EPT_EXECUTABLE_MASK);
ce88decf 8875 ept_set_mmio_spte_mask();
5fdbcb9d
SY
8876 kvm_enable_tdp();
8877 } else
8878 kvm_disable_tdp();
1439442c 8879
fdef3ad1
HQ
8880 return 0;
8881
4607c2d7
AG
8882out7:
8883 free_page((unsigned long)vmx_vmwrite_bitmap);
8884out6:
8885 free_page((unsigned long)vmx_vmread_bitmap);
458f212e
YZ
8886out5:
8887 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
8d14695f 8888out4:
5897297b 8889 free_page((unsigned long)vmx_msr_bitmap_longmode);
8d14695f
YZ
8890out3:
8891 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
25c5f225 8892out2:
5897297b 8893 free_page((unsigned long)vmx_msr_bitmap_legacy);
fdef3ad1 8894out1:
3e7c73e9 8895 free_page((unsigned long)vmx_io_bitmap_b);
fdef3ad1 8896out:
3e7c73e9 8897 free_page((unsigned long)vmx_io_bitmap_a);
fdef3ad1 8898 return r;
6aa8b732
AK
8899}
8900
8901static void __exit vmx_exit(void)
8902{
8d14695f
YZ
8903 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
8904 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
5897297b
AK
8905 free_page((unsigned long)vmx_msr_bitmap_legacy);
8906 free_page((unsigned long)vmx_msr_bitmap_longmode);
3e7c73e9
AK
8907 free_page((unsigned long)vmx_io_bitmap_b);
8908 free_page((unsigned long)vmx_io_bitmap_a);
4607c2d7
AG
8909 free_page((unsigned long)vmx_vmwrite_bitmap);
8910 free_page((unsigned long)vmx_vmread_bitmap);
fdef3ad1 8911
8f536b76
ZY
8912#ifdef CONFIG_KEXEC
8913 rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
8914 synchronize_rcu();
8915#endif
8916
cb498ea2 8917 kvm_exit();
6aa8b732
AK
8918}
8919
8920module_init(vmx_init)
8921module_exit(vmx_exit)
This page took 2.266028 seconds and 5 git commands to generate.