Merge tag 'v4.5-rc4' into ras/core, to pick up fixes
[deliverable/linux.git] / arch / x86 / mm / fault.c
CommitLineData
1da177e4 1/*
1da177e4 2 * Copyright (C) 1995 Linus Torvalds
2d4a7167 3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
f8eeb2e6 4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
1da177e4 5 */
a2bcd473
IM
6#include <linux/sched.h> /* test_thread_flag(), ... */
7#include <linux/kdebug.h> /* oops_begin/end, ... */
8#include <linux/module.h> /* search_exception_table */
9#include <linux/bootmem.h> /* max_low_pfn */
9326638c 10#include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
a2bcd473 11#include <linux/mmiotrace.h> /* kmmio_handler, ... */
cdd6c482 12#include <linux/perf_event.h> /* perf_sw_event */
f672b49b 13#include <linux/hugetlb.h> /* hstate_index_to_shift */
268bb0ce 14#include <linux/prefetch.h> /* prefetchw */
56dd9470 15#include <linux/context_tracking.h> /* exception_enter(), ... */
70ffdb93 16#include <linux/uaccess.h> /* faulthandler_disabled() */
2d4a7167 17
a2bcd473
IM
18#include <asm/traps.h> /* dotraplinkage, ... */
19#include <asm/pgalloc.h> /* pgd_*(), ... */
f8561296 20#include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
f40c3300
AL
21#include <asm/fixmap.h> /* VSYSCALL_ADDR */
22#include <asm/vsyscall.h> /* emulate_vsyscall */
ba3e127e 23#include <asm/vm86.h> /* struct vm86 */
1da177e4 24
d34603b0
SA
25#define CREATE_TRACE_POINTS
26#include <asm/trace/exceptions.h>
27
33cb5243 28/*
2d4a7167
IM
29 * Page fault error code bits:
30 *
31 * bit 0 == 0: no page found 1: protection fault
32 * bit 1 == 0: read access 1: write access
33 * bit 2 == 0: kernel-mode access 1: user-mode access
34 * bit 3 == 1: use of reserved bit detected
35 * bit 4 == 1: fault was an instruction fetch
33cb5243 36 */
2d4a7167
IM
37enum x86_pf_error_code {
38
39 PF_PROT = 1 << 0,
40 PF_WRITE = 1 << 1,
41 PF_USER = 1 << 2,
42 PF_RSVD = 1 << 3,
43 PF_INSTR = 1 << 4,
44};
66c58156 45
b814d41f 46/*
b319eed0
IM
47 * Returns 0 if mmiotrace is disabled, or if the fault is not
48 * handled by mmiotrace:
b814d41f 49 */
9326638c 50static nokprobe_inline int
62c9295f 51kmmio_fault(struct pt_regs *regs, unsigned long addr)
86069782 52{
0fd0e3da
PP
53 if (unlikely(is_kmmio_active()))
54 if (kmmio_handler(regs, addr) == 1)
55 return -1;
0fd0e3da 56 return 0;
86069782
PP
57}
58
9326638c 59static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
1bd858a5 60{
74a0b576
CH
61 int ret = 0;
62
63 /* kprobe_running() needs smp_processor_id() */
f39b6f0e 64 if (kprobes_built_in() && !user_mode(regs)) {
74a0b576
CH
65 preempt_disable();
66 if (kprobe_running() && kprobe_fault_handler(regs, 14))
67 ret = 1;
68 preempt_enable();
69 }
1bd858a5 70
74a0b576 71 return ret;
33cb5243 72}
1bd858a5 73
1dc85be0 74/*
2d4a7167
IM
75 * Prefetch quirks:
76 *
77 * 32-bit mode:
78 *
79 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
80 * Check that here and ignore it.
1dc85be0 81 *
2d4a7167 82 * 64-bit mode:
1dc85be0 83 *
2d4a7167
IM
84 * Sometimes the CPU reports invalid exceptions on prefetch.
85 * Check that here and ignore it.
86 *
87 * Opcode checker based on code by Richard Brunner.
1dc85be0 88 */
107a0367
IM
89static inline int
90check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
91 unsigned char opcode, int *prefetch)
92{
93 unsigned char instr_hi = opcode & 0xf0;
94 unsigned char instr_lo = opcode & 0x0f;
95
96 switch (instr_hi) {
97 case 0x20:
98 case 0x30:
99 /*
100 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
101 * In X86_64 long mode, the CPU will signal invalid
102 * opcode if some of these prefixes are present so
103 * X86_64 will never get here anyway
104 */
105 return ((instr_lo & 7) == 0x6);
106#ifdef CONFIG_X86_64
107 case 0x40:
108 /*
109 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
110 * Need to figure out under what instruction mode the
111 * instruction was issued. Could check the LDT for lm,
112 * but for now it's good enough to assume that long
113 * mode only uses well known segments or kernel.
114 */
318f5a2a 115 return (!user_mode(regs) || user_64bit_mode(regs));
107a0367
IM
116#endif
117 case 0x60:
118 /* 0x64 thru 0x67 are valid prefixes in all modes. */
119 return (instr_lo & 0xC) == 0x4;
120 case 0xF0:
121 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
122 return !instr_lo || (instr_lo>>1) == 1;
123 case 0x00:
124 /* Prefetch instruction is 0x0F0D or 0x0F18 */
125 if (probe_kernel_address(instr, opcode))
126 return 0;
127
128 *prefetch = (instr_lo == 0xF) &&
129 (opcode == 0x0D || opcode == 0x18);
130 return 0;
131 default:
132 return 0;
133 }
134}
135
2d4a7167
IM
136static int
137is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
33cb5243 138{
2d4a7167 139 unsigned char *max_instr;
ab2bf0c1 140 unsigned char *instr;
33cb5243 141 int prefetch = 0;
1da177e4 142
3085354d
IM
143 /*
144 * If it was a exec (instruction fetch) fault on NX page, then
145 * do not ignore the fault:
146 */
66c58156 147 if (error_code & PF_INSTR)
1da177e4 148 return 0;
1dc85be0 149
107a0367 150 instr = (void *)convert_ip_to_linear(current, regs);
f1290ec9 151 max_instr = instr + 15;
1da177e4 152
d31bf07f 153 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
1da177e4
LT
154 return 0;
155
107a0367 156 while (instr < max_instr) {
2d4a7167 157 unsigned char opcode;
1da177e4 158
ab2bf0c1 159 if (probe_kernel_address(instr, opcode))
33cb5243 160 break;
1da177e4 161
1da177e4
LT
162 instr++;
163
107a0367 164 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
1da177e4 165 break;
1da177e4
LT
166 }
167 return prefetch;
168}
169
2d4a7167
IM
170static void
171force_sig_info_fault(int si_signo, int si_code, unsigned long address,
f672b49b 172 struct task_struct *tsk, int fault)
c4aba4a8 173{
f672b49b 174 unsigned lsb = 0;
c4aba4a8
HH
175 siginfo_t info;
176
2d4a7167
IM
177 info.si_signo = si_signo;
178 info.si_errno = 0;
179 info.si_code = si_code;
180 info.si_addr = (void __user *)address;
f672b49b
AK
181 if (fault & VM_FAULT_HWPOISON_LARGE)
182 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
183 if (fault & VM_FAULT_HWPOISON)
184 lsb = PAGE_SHIFT;
185 info.si_addr_lsb = lsb;
2d4a7167 186
c4aba4a8
HH
187 force_sig_info(si_signo, &info, tsk);
188}
189
f2f13a85
IM
190DEFINE_SPINLOCK(pgd_lock);
191LIST_HEAD(pgd_list);
192
193#ifdef CONFIG_X86_32
194static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
33cb5243 195{
f2f13a85
IM
196 unsigned index = pgd_index(address);
197 pgd_t *pgd_k;
198 pud_t *pud, *pud_k;
199 pmd_t *pmd, *pmd_k;
2d4a7167 200
f2f13a85
IM
201 pgd += index;
202 pgd_k = init_mm.pgd + index;
203
204 if (!pgd_present(*pgd_k))
205 return NULL;
206
207 /*
208 * set_pgd(pgd, *pgd_k); here would be useless on PAE
209 * and redundant with the set_pmd() on non-PAE. As would
210 * set_pud.
211 */
212 pud = pud_offset(pgd, address);
213 pud_k = pud_offset(pgd_k, address);
214 if (!pud_present(*pud_k))
215 return NULL;
216
217 pmd = pmd_offset(pud, address);
218 pmd_k = pmd_offset(pud_k, address);
219 if (!pmd_present(*pmd_k))
220 return NULL;
221
b8bcfe99 222 if (!pmd_present(*pmd))
f2f13a85 223 set_pmd(pmd, *pmd_k);
b8bcfe99 224 else
f2f13a85 225 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
f2f13a85
IM
226
227 return pmd_k;
228}
229
230void vmalloc_sync_all(void)
231{
232 unsigned long address;
233
234 if (SHARED_KERNEL_PMD)
235 return;
236
237 for (address = VMALLOC_START & PMD_MASK;
238 address >= TASK_SIZE && address < FIXADDR_TOP;
239 address += PMD_SIZE) {
f2f13a85
IM
240 struct page *page;
241
a79e53d8 242 spin_lock(&pgd_lock);
f2f13a85 243 list_for_each_entry(page, &pgd_list, lru) {
617d34d9 244 spinlock_t *pgt_lock;
f01f7c56 245 pmd_t *ret;
617d34d9 246
a79e53d8 247 /* the pgt_lock only for Xen */
617d34d9
JF
248 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
249
250 spin_lock(pgt_lock);
251 ret = vmalloc_sync_one(page_address(page), address);
252 spin_unlock(pgt_lock);
253
254 if (!ret)
f2f13a85
IM
255 break;
256 }
a79e53d8 257 spin_unlock(&pgd_lock);
f2f13a85
IM
258 }
259}
260
261/*
262 * 32-bit:
263 *
264 * Handle a fault on the vmalloc or module mapping area
265 */
9326638c 266static noinline int vmalloc_fault(unsigned long address)
f2f13a85
IM
267{
268 unsigned long pgd_paddr;
269 pmd_t *pmd_k;
270 pte_t *pte_k;
271
272 /* Make sure we are in vmalloc area: */
273 if (!(address >= VMALLOC_START && address < VMALLOC_END))
274 return -1;
275
ebc8827f
FW
276 WARN_ON_ONCE(in_nmi());
277
f2f13a85
IM
278 /*
279 * Synchronize this task's top level page-table
280 * with the 'reference' page table.
281 *
282 * Do _not_ use "current" here. We might be inside
283 * an interrupt in the middle of a task switch..
284 */
285 pgd_paddr = read_cr3();
286 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
287 if (!pmd_k)
288 return -1;
289
290 pte_k = pte_offset_kernel(pmd_k, address);
291 if (!pte_present(*pte_k))
292 return -1;
293
294 return 0;
295}
9326638c 296NOKPROBE_SYMBOL(vmalloc_fault);
f2f13a85
IM
297
298/*
299 * Did it hit the DOS screen memory VA from vm86 mode?
300 */
301static inline void
302check_v8086_mode(struct pt_regs *regs, unsigned long address,
303 struct task_struct *tsk)
304{
9fda6a06 305#ifdef CONFIG_VM86
f2f13a85
IM
306 unsigned long bit;
307
9fda6a06 308 if (!v8086_mode(regs) || !tsk->thread.vm86)
f2f13a85
IM
309 return;
310
311 bit = (address - 0xA0000) >> PAGE_SHIFT;
312 if (bit < 32)
9fda6a06
BG
313 tsk->thread.vm86->screen_bitmap |= 1 << bit;
314#endif
33cb5243 315}
1da177e4 316
087975b0 317static bool low_pfn(unsigned long pfn)
1da177e4 318{
087975b0
AM
319 return pfn < max_low_pfn;
320}
1156e098 321
087975b0
AM
322static void dump_pagetable(unsigned long address)
323{
324 pgd_t *base = __va(read_cr3());
325 pgd_t *pgd = &base[pgd_index(address)];
326 pmd_t *pmd;
327 pte_t *pte;
2d4a7167 328
1156e098 329#ifdef CONFIG_X86_PAE
087975b0
AM
330 printk("*pdpt = %016Lx ", pgd_val(*pgd));
331 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
332 goto out;
1156e098 333#endif
087975b0
AM
334 pmd = pmd_offset(pud_offset(pgd, address), address);
335 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
1156e098
HH
336
337 /*
338 * We must not directly access the pte in the highpte
339 * case if the page table is located in highmem.
340 * And let's rather not kmap-atomic the pte, just in case
2d4a7167 341 * it's allocated already:
1156e098 342 */
087975b0
AM
343 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
344 goto out;
1156e098 345
087975b0
AM
346 pte = pte_offset_kernel(pmd, address);
347 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
348out:
1156e098 349 printk("\n");
f2f13a85
IM
350}
351
352#else /* CONFIG_X86_64: */
353
354void vmalloc_sync_all(void)
355{
9661d5bc 356 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END, 0);
f2f13a85
IM
357}
358
359/*
360 * 64-bit:
361 *
362 * Handle a fault on the vmalloc area
363 *
364 * This assumes no large pages in there.
365 */
9326638c 366static noinline int vmalloc_fault(unsigned long address)
f2f13a85
IM
367{
368 pgd_t *pgd, *pgd_ref;
369 pud_t *pud, *pud_ref;
370 pmd_t *pmd, *pmd_ref;
371 pte_t *pte, *pte_ref;
372
373 /* Make sure we are in vmalloc area: */
374 if (!(address >= VMALLOC_START && address < VMALLOC_END))
375 return -1;
376
ebc8827f
FW
377 WARN_ON_ONCE(in_nmi());
378
f2f13a85
IM
379 /*
380 * Copy kernel mappings over when needed. This can also
381 * happen within a race in page table update. In the later
382 * case just flush:
383 */
384 pgd = pgd_offset(current->active_mm, address);
385 pgd_ref = pgd_offset_k(address);
386 if (pgd_none(*pgd_ref))
387 return -1;
388
1160c277 389 if (pgd_none(*pgd)) {
f2f13a85 390 set_pgd(pgd, *pgd_ref);
1160c277
SK
391 arch_flush_lazy_mmu_mode();
392 } else {
f2f13a85 393 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
1160c277 394 }
f2f13a85
IM
395
396 /*
397 * Below here mismatches are bugs because these lower tables
398 * are shared:
399 */
400
401 pud = pud_offset(pgd, address);
402 pud_ref = pud_offset(pgd_ref, address);
403 if (pud_none(*pud_ref))
404 return -1;
405
406 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
407 BUG();
408
409 pmd = pmd_offset(pud, address);
410 pmd_ref = pmd_offset(pud_ref, address);
411 if (pmd_none(*pmd_ref))
412 return -1;
413
414 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
415 BUG();
416
417 pte_ref = pte_offset_kernel(pmd_ref, address);
418 if (!pte_present(*pte_ref))
419 return -1;
420
421 pte = pte_offset_kernel(pmd, address);
422
423 /*
424 * Don't use pte_page here, because the mappings can point
425 * outside mem_map, and the NUMA hash lookup cannot handle
426 * that:
427 */
428 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
429 BUG();
430
431 return 0;
432}
9326638c 433NOKPROBE_SYMBOL(vmalloc_fault);
f2f13a85 434
e05139f2 435#ifdef CONFIG_CPU_SUP_AMD
f2f13a85 436static const char errata93_warning[] =
ad361c98
JP
437KERN_ERR
438"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
439"******* Working around it, but it may cause SEGVs or burn power.\n"
440"******* Please consider a BIOS update.\n"
441"******* Disabling USB legacy in the BIOS may also help.\n";
e05139f2 442#endif
f2f13a85
IM
443
444/*
445 * No vm86 mode in 64-bit mode:
446 */
447static inline void
448check_v8086_mode(struct pt_regs *regs, unsigned long address,
449 struct task_struct *tsk)
450{
451}
452
453static int bad_address(void *p)
454{
455 unsigned long dummy;
456
457 return probe_kernel_address((unsigned long *)p, dummy);
458}
459
460static void dump_pagetable(unsigned long address)
461{
087975b0
AM
462 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
463 pgd_t *pgd = base + pgd_index(address);
1da177e4
LT
464 pud_t *pud;
465 pmd_t *pmd;
466 pte_t *pte;
467
2d4a7167
IM
468 if (bad_address(pgd))
469 goto bad;
470
d646bce4 471 printk("PGD %lx ", pgd_val(*pgd));
2d4a7167
IM
472
473 if (!pgd_present(*pgd))
474 goto out;
1da177e4 475
d2ae5b5f 476 pud = pud_offset(pgd, address);
2d4a7167
IM
477 if (bad_address(pud))
478 goto bad;
479
1da177e4 480 printk("PUD %lx ", pud_val(*pud));
b5360222 481 if (!pud_present(*pud) || pud_large(*pud))
2d4a7167 482 goto out;
1da177e4
LT
483
484 pmd = pmd_offset(pud, address);
2d4a7167
IM
485 if (bad_address(pmd))
486 goto bad;
487
1da177e4 488 printk("PMD %lx ", pmd_val(*pmd));
2d4a7167
IM
489 if (!pmd_present(*pmd) || pmd_large(*pmd))
490 goto out;
1da177e4
LT
491
492 pte = pte_offset_kernel(pmd, address);
2d4a7167
IM
493 if (bad_address(pte))
494 goto bad;
495
33cb5243 496 printk("PTE %lx", pte_val(*pte));
2d4a7167 497out:
1da177e4
LT
498 printk("\n");
499 return;
500bad:
501 printk("BAD\n");
8c938f9f
IM
502}
503
f2f13a85 504#endif /* CONFIG_X86_64 */
1da177e4 505
2d4a7167
IM
506/*
507 * Workaround for K8 erratum #93 & buggy BIOS.
508 *
509 * BIOS SMM functions are required to use a specific workaround
510 * to avoid corruption of the 64bit RIP register on C stepping K8.
511 *
512 * A lot of BIOS that didn't get tested properly miss this.
513 *
514 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
515 * Try to work around it here.
516 *
517 * Note we only handle faults in kernel here.
518 * Does nothing on 32-bit.
fdfe8aa8 519 */
33cb5243 520static int is_errata93(struct pt_regs *regs, unsigned long address)
1da177e4 521{
e05139f2
JB
522#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
523 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
524 || boot_cpu_data.x86 != 0xf)
525 return 0;
526
65ea5b03 527 if (address != regs->ip)
1da177e4 528 return 0;
2d4a7167 529
33cb5243 530 if ((address >> 32) != 0)
1da177e4 531 return 0;
2d4a7167 532
1da177e4 533 address |= 0xffffffffUL << 32;
33cb5243
HH
534 if ((address >= (u64)_stext && address <= (u64)_etext) ||
535 (address >= MODULES_VADDR && address <= MODULES_END)) {
a454ab31 536 printk_once(errata93_warning);
65ea5b03 537 regs->ip = address;
1da177e4
LT
538 return 1;
539 }
fdfe8aa8 540#endif
1da177e4 541 return 0;
33cb5243 542}
1da177e4 543
35f3266f 544/*
2d4a7167
IM
545 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
546 * to illegal addresses >4GB.
547 *
548 * We catch this in the page fault handler because these addresses
549 * are not reachable. Just detect this case and return. Any code
35f3266f
HH
550 * segment in LDT is compatibility mode.
551 */
552static int is_errata100(struct pt_regs *regs, unsigned long address)
553{
554#ifdef CONFIG_X86_64
2d4a7167 555 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
35f3266f
HH
556 return 1;
557#endif
558 return 0;
559}
560
29caf2f9
HH
561static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
562{
563#ifdef CONFIG_X86_F00F_BUG
564 unsigned long nr;
2d4a7167 565
29caf2f9 566 /*
2d4a7167 567 * Pentium F0 0F C7 C8 bug workaround:
29caf2f9 568 */
e2604b49 569 if (boot_cpu_has_bug(X86_BUG_F00F)) {
29caf2f9
HH
570 nr = (address - idt_descr.address) >> 3;
571
572 if (nr == 6) {
573 do_invalid_op(regs, 0);
574 return 1;
575 }
576 }
577#endif
578 return 0;
579}
580
8f766149
IM
581static const char nx_warning[] = KERN_CRIT
582"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
eff50c34
JK
583static const char smep_warning[] = KERN_CRIT
584"unable to execute userspace code (SMEP?) (uid: %d)\n";
8f766149 585
2d4a7167
IM
586static void
587show_fault_oops(struct pt_regs *regs, unsigned long error_code,
588 unsigned long address)
b3279c7f 589{
1156e098
HH
590 if (!oops_may_print())
591 return;
592
1156e098 593 if (error_code & PF_INSTR) {
93809be8 594 unsigned int level;
426e34cc
MF
595 pgd_t *pgd;
596 pte_t *pte;
2d4a7167 597
426e34cc
MF
598 pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
599 pgd += pgd_index(address);
600
601 pte = lookup_address_in_pgd(pgd, address, &level);
1156e098 602
8f766149 603 if (pte && pte_present(*pte) && !pte_exec(*pte))
078de5f7 604 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
eff50c34
JK
605 if (pte && pte_present(*pte) && pte_exec(*pte) &&
606 (pgd_flags(*pgd) & _PAGE_USER) &&
1e02ce4c 607 (__read_cr4() & X86_CR4_SMEP))
eff50c34 608 printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
1156e098 609 }
1156e098 610
19f0dda9 611 printk(KERN_ALERT "BUG: unable to handle kernel ");
b3279c7f 612 if (address < PAGE_SIZE)
19f0dda9 613 printk(KERN_CONT "NULL pointer dereference");
b3279c7f 614 else
19f0dda9 615 printk(KERN_CONT "paging request");
2d4a7167 616
f294a8ce 617 printk(KERN_CONT " at %p\n", (void *) address);
19f0dda9 618 printk(KERN_ALERT "IP:");
5f01c988 619 printk_address(regs->ip);
2d4a7167 620
b3279c7f
HH
621 dump_pagetable(address);
622}
623
2d4a7167
IM
624static noinline void
625pgtable_bad(struct pt_regs *regs, unsigned long error_code,
626 unsigned long address)
1da177e4 627{
2d4a7167
IM
628 struct task_struct *tsk;
629 unsigned long flags;
630 int sig;
631
632 flags = oops_begin();
633 tsk = current;
634 sig = SIGKILL;
1209140c 635
1da177e4 636 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
92181f19 637 tsk->comm, address);
1da177e4 638 dump_pagetable(address);
2d4a7167
IM
639
640 tsk->thread.cr2 = address;
51e7dc70 641 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167
IM
642 tsk->thread.error_code = error_code;
643
22f5991c 644 if (__die("Bad pagetable", regs, error_code))
874d93d1 645 sig = 0;
2d4a7167 646
874d93d1 647 oops_end(flags, regs, sig);
1da177e4
LT
648}
649
2d4a7167
IM
650static noinline void
651no_context(struct pt_regs *regs, unsigned long error_code,
4fc34901 652 unsigned long address, int signal, int si_code)
92181f19
NP
653{
654 struct task_struct *tsk = current;
92181f19
NP
655 unsigned long flags;
656 int sig;
92181f19 657
2d4a7167 658 /* Are we prepared to handle this kernel fault? */
4fc34901 659 if (fixup_exception(regs)) {
c026b359
PZ
660 /*
661 * Any interrupt that takes a fault gets the fixup. This makes
662 * the below recursive fault logic only apply to a faults from
663 * task context.
664 */
665 if (in_interrupt())
666 return;
667
668 /*
669 * Per the above we're !in_interrupt(), aka. task context.
670 *
671 * In this case we need to make sure we're not recursively
672 * faulting through the emulate_vsyscall() logic.
673 */
4fc34901 674 if (current_thread_info()->sig_on_uaccess_error && signal) {
51e7dc70 675 tsk->thread.trap_nr = X86_TRAP_PF;
4fc34901
AL
676 tsk->thread.error_code = error_code | PF_USER;
677 tsk->thread.cr2 = address;
678
679 /* XXX: hwpoison faults will set the wrong code. */
680 force_sig_info_fault(signal, si_code, address, tsk, 0);
681 }
c026b359
PZ
682
683 /*
684 * Barring that, we can do the fixup and be happy.
685 */
92181f19 686 return;
4fc34901 687 }
92181f19
NP
688
689 /*
2d4a7167
IM
690 * 32-bit:
691 *
692 * Valid to do another page fault here, because if this fault
693 * had been triggered by is_prefetch fixup_exception would have
694 * handled it.
695 *
696 * 64-bit:
92181f19 697 *
2d4a7167 698 * Hall of shame of CPU/BIOS bugs.
92181f19
NP
699 */
700 if (is_prefetch(regs, error_code, address))
701 return;
702
703 if (is_errata93(regs, address))
704 return;
705
706 /*
707 * Oops. The kernel tried to access some bad page. We'll have to
2d4a7167 708 * terminate things with extreme prejudice:
92181f19 709 */
92181f19 710 flags = oops_begin();
92181f19
NP
711
712 show_fault_oops(regs, error_code, address);
713
a70857e4 714 if (task_stack_end_corrupted(tsk))
b0f4c4b3 715 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
19803078 716
1cc99544 717 tsk->thread.cr2 = address;
51e7dc70 718 tsk->thread.trap_nr = X86_TRAP_PF;
1cc99544 719 tsk->thread.error_code = error_code;
92181f19 720
92181f19
NP
721 sig = SIGKILL;
722 if (__die("Oops", regs, error_code))
723 sig = 0;
2d4a7167 724
92181f19 725 /* Executive summary in case the body of the oops scrolled away */
b0f4c4b3 726 printk(KERN_DEFAULT "CR2: %016lx\n", address);
2d4a7167 727
92181f19 728 oops_end(flags, regs, sig);
92181f19
NP
729}
730
2d4a7167
IM
731/*
732 * Print out info about fatal segfaults, if the show_unhandled_signals
733 * sysctl is set:
734 */
735static inline void
736show_signal_msg(struct pt_regs *regs, unsigned long error_code,
737 unsigned long address, struct task_struct *tsk)
738{
739 if (!unhandled_signal(tsk, SIGSEGV))
740 return;
741
742 if (!printk_ratelimit())
743 return;
744
a1a08d1c 745 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
2d4a7167
IM
746 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
747 tsk->comm, task_pid_nr(tsk), address,
748 (void *)regs->ip, (void *)regs->sp, error_code);
749
750 print_vma_addr(KERN_CONT " in ", regs->ip);
751
752 printk(KERN_CONT "\n");
753}
754
755static void
756__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
757 unsigned long address, int si_code)
92181f19
NP
758{
759 struct task_struct *tsk = current;
760
761 /* User mode accesses just cause a SIGSEGV */
762 if (error_code & PF_USER) {
763 /*
2d4a7167 764 * It's possible to have interrupts off here:
92181f19
NP
765 */
766 local_irq_enable();
767
768 /*
769 * Valid to do another page fault here because this one came
2d4a7167 770 * from user space:
92181f19
NP
771 */
772 if (is_prefetch(regs, error_code, address))
773 return;
774
775 if (is_errata100(regs, address))
776 return;
777
3ae36655
AL
778#ifdef CONFIG_X86_64
779 /*
780 * Instruction fetch faults in the vsyscall page might need
781 * emulation.
782 */
783 if (unlikely((error_code & PF_INSTR) &&
f40c3300 784 ((address & ~0xfff) == VSYSCALL_ADDR))) {
3ae36655
AL
785 if (emulate_vsyscall(regs, address))
786 return;
787 }
788#endif
e575a86f
KC
789 /* Kernel addresses are always protection faults: */
790 if (address >= TASK_SIZE)
791 error_code |= PF_PROT;
3ae36655 792
e575a86f 793 if (likely(show_unhandled_signals))
2d4a7167
IM
794 show_signal_msg(regs, error_code, address, tsk);
795
2d4a7167 796 tsk->thread.cr2 = address;
e575a86f 797 tsk->thread.error_code = error_code;
51e7dc70 798 tsk->thread.trap_nr = X86_TRAP_PF;
92181f19 799
f672b49b 800 force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
2d4a7167 801
92181f19
NP
802 return;
803 }
804
805 if (is_f00f_bug(regs, address))
806 return;
807
4fc34901 808 no_context(regs, error_code, address, SIGSEGV, si_code);
92181f19
NP
809}
810
2d4a7167
IM
811static noinline void
812bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
813 unsigned long address)
92181f19
NP
814{
815 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
816}
817
2d4a7167
IM
818static void
819__bad_area(struct pt_regs *regs, unsigned long error_code,
820 unsigned long address, int si_code)
92181f19
NP
821{
822 struct mm_struct *mm = current->mm;
823
824 /*
825 * Something tried to access memory that isn't in our memory map..
826 * Fix it, but check if it's kernel or user first..
827 */
828 up_read(&mm->mmap_sem);
829
830 __bad_area_nosemaphore(regs, error_code, address, si_code);
831}
832
2d4a7167
IM
833static noinline void
834bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
92181f19
NP
835{
836 __bad_area(regs, error_code, address, SEGV_MAPERR);
837}
838
2d4a7167
IM
839static noinline void
840bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
841 unsigned long address)
92181f19
NP
842{
843 __bad_area(regs, error_code, address, SEGV_ACCERR);
844}
845
2d4a7167 846static void
a6e04aa9
AK
847do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
848 unsigned int fault)
92181f19
NP
849{
850 struct task_struct *tsk = current;
a6e04aa9 851 int code = BUS_ADRERR;
92181f19 852
2d4a7167 853 /* Kernel mode? Handle exceptions or die: */
96054569 854 if (!(error_code & PF_USER)) {
4fc34901 855 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
96054569
LT
856 return;
857 }
2d4a7167 858
cd1b68f0 859 /* User-space => ok to do another page fault: */
92181f19
NP
860 if (is_prefetch(regs, error_code, address))
861 return;
2d4a7167
IM
862
863 tsk->thread.cr2 = address;
864 tsk->thread.error_code = error_code;
51e7dc70 865 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167 866
a6e04aa9 867#ifdef CONFIG_MEMORY_FAILURE
f672b49b 868 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
a6e04aa9
AK
869 printk(KERN_ERR
870 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
871 tsk->comm, tsk->pid, address);
872 code = BUS_MCEERR_AR;
873 }
874#endif
f672b49b 875 force_sig_info_fault(SIGBUS, code, address, tsk, fault);
92181f19
NP
876}
877
3a13c4d7 878static noinline void
2d4a7167
IM
879mm_fault_error(struct pt_regs *regs, unsigned long error_code,
880 unsigned long address, unsigned int fault)
92181f19 881{
3a13c4d7 882 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
3a13c4d7
JW
883 no_context(regs, error_code, address, 0, 0);
884 return;
b80ef10e 885 }
b80ef10e 886
2d4a7167 887 if (fault & VM_FAULT_OOM) {
f8626854
AV
888 /* Kernel mode? Handle exceptions or die: */
889 if (!(error_code & PF_USER)) {
4fc34901
AL
890 no_context(regs, error_code, address,
891 SIGSEGV, SEGV_MAPERR);
3a13c4d7 892 return;
f8626854
AV
893 }
894
c2d23f91
DR
895 /*
896 * We ran out of memory, call the OOM killer, and return the
897 * userspace (which will retry the fault, or kill us if we got
898 * oom-killed):
899 */
900 pagefault_out_of_memory();
2d4a7167 901 } else {
f672b49b
AK
902 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
903 VM_FAULT_HWPOISON_LARGE))
a6e04aa9 904 do_sigbus(regs, error_code, address, fault);
33692f27
LT
905 else if (fault & VM_FAULT_SIGSEGV)
906 bad_area_nosemaphore(regs, error_code, address);
2d4a7167
IM
907 else
908 BUG();
909 }
92181f19
NP
910}
911
d8b57bb7
TG
912static int spurious_fault_check(unsigned long error_code, pte_t *pte)
913{
914 if ((error_code & PF_WRITE) && !pte_write(*pte))
915 return 0;
2d4a7167 916
d8b57bb7
TG
917 if ((error_code & PF_INSTR) && !pte_exec(*pte))
918 return 0;
919
920 return 1;
921}
922
5b727a3b 923/*
2d4a7167
IM
924 * Handle a spurious fault caused by a stale TLB entry.
925 *
926 * This allows us to lazily refresh the TLB when increasing the
927 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
928 * eagerly is very expensive since that implies doing a full
929 * cross-processor TLB flush, even if no stale TLB entries exist
930 * on other processors.
931 *
31668511
DV
932 * Spurious faults may only occur if the TLB contains an entry with
933 * fewer permission than the page table entry. Non-present (P = 0)
934 * and reserved bit (R = 1) faults are never spurious.
935 *
5b727a3b
JF
936 * There are no security implications to leaving a stale TLB when
937 * increasing the permissions on a page.
31668511
DV
938 *
939 * Returns non-zero if a spurious fault was handled, zero otherwise.
940 *
941 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
942 * (Optional Invalidation).
5b727a3b 943 */
9326638c 944static noinline int
2d4a7167 945spurious_fault(unsigned long error_code, unsigned long address)
5b727a3b
JF
946{
947 pgd_t *pgd;
948 pud_t *pud;
949 pmd_t *pmd;
950 pte_t *pte;
3c3e5694 951 int ret;
5b727a3b 952
31668511
DV
953 /*
954 * Only writes to RO or instruction fetches from NX may cause
955 * spurious faults.
956 *
957 * These could be from user or supervisor accesses but the TLB
958 * is only lazily flushed after a kernel mapping protection
959 * change, so user accesses are not expected to cause spurious
960 * faults.
961 */
962 if (error_code != (PF_WRITE | PF_PROT)
963 && error_code != (PF_INSTR | PF_PROT))
5b727a3b
JF
964 return 0;
965
966 pgd = init_mm.pgd + pgd_index(address);
967 if (!pgd_present(*pgd))
968 return 0;
969
970 pud = pud_offset(pgd, address);
971 if (!pud_present(*pud))
972 return 0;
973
d8b57bb7
TG
974 if (pud_large(*pud))
975 return spurious_fault_check(error_code, (pte_t *) pud);
976
5b727a3b
JF
977 pmd = pmd_offset(pud, address);
978 if (!pmd_present(*pmd))
979 return 0;
980
d8b57bb7
TG
981 if (pmd_large(*pmd))
982 return spurious_fault_check(error_code, (pte_t *) pmd);
983
5b727a3b 984 pte = pte_offset_kernel(pmd, address);
954f8571 985 if (!pte_present(*pte))
5b727a3b
JF
986 return 0;
987
3c3e5694
SR
988 ret = spurious_fault_check(error_code, pte);
989 if (!ret)
990 return 0;
991
992 /*
2d4a7167
IM
993 * Make sure we have permissions in PMD.
994 * If not, then there's a bug in the page tables:
3c3e5694
SR
995 */
996 ret = spurious_fault_check(error_code, (pte_t *) pmd);
997 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
2d4a7167 998
3c3e5694 999 return ret;
5b727a3b 1000}
9326638c 1001NOKPROBE_SYMBOL(spurious_fault);
5b727a3b 1002
abd4f750 1003int show_unhandled_signals = 1;
1da177e4 1004
2d4a7167 1005static inline int
68da336a 1006access_error(unsigned long error_code, struct vm_area_struct *vma)
92181f19 1007{
68da336a 1008 if (error_code & PF_WRITE) {
2d4a7167 1009 /* write, present and write, not present: */
92181f19
NP
1010 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1011 return 1;
2d4a7167 1012 return 0;
92181f19
NP
1013 }
1014
2d4a7167
IM
1015 /* read, present: */
1016 if (unlikely(error_code & PF_PROT))
1017 return 1;
1018
1019 /* read, not present: */
1020 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1021 return 1;
1022
92181f19
NP
1023 return 0;
1024}
1025
0973a06c
HS
1026static int fault_in_kernel_space(unsigned long address)
1027{
d9517346 1028 return address >= TASK_SIZE_MAX;
0973a06c
HS
1029}
1030
40d3cd66
PA
1031static inline bool smap_violation(int error_code, struct pt_regs *regs)
1032{
4640c7ee
PA
1033 if (!IS_ENABLED(CONFIG_X86_SMAP))
1034 return false;
1035
1036 if (!static_cpu_has(X86_FEATURE_SMAP))
1037 return false;
1038
40d3cd66
PA
1039 if (error_code & PF_USER)
1040 return false;
1041
f39b6f0e 1042 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
40d3cd66
PA
1043 return false;
1044
1045 return true;
1046}
1047
1da177e4
LT
1048/*
1049 * This routine handles page faults. It determines the address,
1050 * and the problem, and then passes it off to one of the appropriate
1051 * routines.
d4078e23
PZ
1052 *
1053 * This function must have noinline because both callers
1054 * {,trace_}do_page_fault() have notrace on. Having this an actual function
1055 * guarantees there's a function trace entry.
1da177e4 1056 */
9326638c 1057static noinline void
0ac09f9f
JO
1058__do_page_fault(struct pt_regs *regs, unsigned long error_code,
1059 unsigned long address)
1da177e4 1060{
2d4a7167 1061 struct vm_area_struct *vma;
1da177e4
LT
1062 struct task_struct *tsk;
1063 struct mm_struct *mm;
26178ec1 1064 int fault, major = 0;
759496ba 1065 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1da177e4 1066
a9ba9a3b
AV
1067 tsk = current;
1068 mm = tsk->mm;
2d4a7167 1069
f8561296
VN
1070 /*
1071 * Detect and handle instructions that would cause a page fault for
1072 * both a tracked kernel page and a userspace page.
1073 */
1074 if (kmemcheck_active(regs))
1075 kmemcheck_hide(regs);
5dfaf90f 1076 prefetchw(&mm->mmap_sem);
f8561296 1077
0fd0e3da 1078 if (unlikely(kmmio_fault(regs, address)))
86069782 1079 return;
1da177e4
LT
1080
1081 /*
1082 * We fault-in kernel-space virtual memory on-demand. The
1083 * 'reference' page table is init_mm.pgd.
1084 *
1085 * NOTE! We MUST NOT take any locks for this case. We may
1086 * be in an interrupt or a critical region, and should
1087 * only copy the information from the master page table,
1088 * nothing more.
1089 *
1090 * This verifies that the fault happens in kernel space
1091 * (error_code & 4) == 0, and that the fault was not a
8b1bde93 1092 * protection error (error_code & 9) == 0.
1da177e4 1093 */
0973a06c 1094 if (unlikely(fault_in_kernel_space(address))) {
f8561296
VN
1095 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1096 if (vmalloc_fault(address) >= 0)
1097 return;
1098
1099 if (kmemcheck_fault(regs, address, error_code))
1100 return;
1101 }
5b727a3b 1102
2d4a7167 1103 /* Can handle a stale RO->RW TLB: */
92181f19 1104 if (spurious_fault(error_code, address))
5b727a3b
JF
1105 return;
1106
2d4a7167 1107 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1108 if (kprobes_fault(regs))
9be260a6 1109 return;
f8c2ee22
HH
1110 /*
1111 * Don't take the mm semaphore here. If we fixup a prefetch
2d4a7167 1112 * fault we could otherwise deadlock:
f8c2ee22 1113 */
92181f19 1114 bad_area_nosemaphore(regs, error_code, address);
2d4a7167 1115
92181f19 1116 return;
f8c2ee22
HH
1117 }
1118
2d4a7167 1119 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1120 if (unlikely(kprobes_fault(regs)))
9be260a6 1121 return;
8c914cb7 1122
66c58156 1123 if (unlikely(error_code & PF_RSVD))
92181f19 1124 pgtable_bad(regs, error_code, address);
1da177e4 1125
4640c7ee
PA
1126 if (unlikely(smap_violation(error_code, regs))) {
1127 bad_area_nosemaphore(regs, error_code, address);
1128 return;
40d3cd66
PA
1129 }
1130
1da177e4 1131 /*
2d4a7167 1132 * If we're in an interrupt, have no user context or are running
70ffdb93 1133 * in a region with pagefaults disabled then we must not take the fault
1da177e4 1134 */
70ffdb93 1135 if (unlikely(faulthandler_disabled() || !mm)) {
92181f19
NP
1136 bad_area_nosemaphore(regs, error_code, address);
1137 return;
1138 }
1da177e4 1139
e00b12e6
PZ
1140 /*
1141 * It's safe to allow irq's after cr2 has been saved and the
1142 * vmalloc fault has been handled.
1143 *
1144 * User-mode registers count as a user access even for any
1145 * potential system fault or CPU buglet:
1146 */
f39b6f0e 1147 if (user_mode(regs)) {
e00b12e6
PZ
1148 local_irq_enable();
1149 error_code |= PF_USER;
1150 flags |= FAULT_FLAG_USER;
1151 } else {
1152 if (regs->flags & X86_EFLAGS_IF)
1153 local_irq_enable();
1154 }
1155
1156 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1157
759496ba
JW
1158 if (error_code & PF_WRITE)
1159 flags |= FAULT_FLAG_WRITE;
1160
3a1dfe6e
IM
1161 /*
1162 * When running in the kernel we expect faults to occur only to
2d4a7167
IM
1163 * addresses in user space. All other faults represent errors in
1164 * the kernel and should generate an OOPS. Unfortunately, in the
1165 * case of an erroneous fault occurring in a code path which already
1166 * holds mmap_sem we will deadlock attempting to validate the fault
1167 * against the address space. Luckily the kernel only validly
1168 * references user space from well defined areas of code, which are
1169 * listed in the exceptions table.
1da177e4
LT
1170 *
1171 * As the vast majority of faults will be valid we will only perform
2d4a7167
IM
1172 * the source reference check when there is a possibility of a
1173 * deadlock. Attempt to lock the address space, if we cannot we then
1174 * validate the source. If this is invalid we can skip the address
1175 * space check, thus avoiding the deadlock:
1da177e4 1176 */
92181f19 1177 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
66c58156 1178 if ((error_code & PF_USER) == 0 &&
92181f19
NP
1179 !search_exception_tables(regs->ip)) {
1180 bad_area_nosemaphore(regs, error_code, address);
1181 return;
1182 }
d065bd81 1183retry:
1da177e4 1184 down_read(&mm->mmap_sem);
01006074
PZ
1185 } else {
1186 /*
2d4a7167
IM
1187 * The above down_read_trylock() might have succeeded in
1188 * which case we'll have missed the might_sleep() from
1189 * down_read():
01006074
PZ
1190 */
1191 might_sleep();
1da177e4
LT
1192 }
1193
1194 vma = find_vma(mm, address);
92181f19
NP
1195 if (unlikely(!vma)) {
1196 bad_area(regs, error_code, address);
1197 return;
1198 }
1199 if (likely(vma->vm_start <= address))
1da177e4 1200 goto good_area;
92181f19
NP
1201 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1202 bad_area(regs, error_code, address);
1203 return;
1204 }
33cb5243 1205 if (error_code & PF_USER) {
6f4d368e
HH
1206 /*
1207 * Accessing the stack below %sp is always a bug.
1208 * The large cushion allows instructions like enter
2d4a7167 1209 * and pusha to work. ("enter $65535, $31" pushes
6f4d368e 1210 * 32 pointers and then decrements %sp by 65535.)
03fdc2c2 1211 */
92181f19
NP
1212 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1213 bad_area(regs, error_code, address);
1214 return;
1215 }
1da177e4 1216 }
92181f19
NP
1217 if (unlikely(expand_stack(vma, address))) {
1218 bad_area(regs, error_code, address);
1219 return;
1220 }
1221
1222 /*
1223 * Ok, we have a good vm_area for this memory access, so
1224 * we can handle it..
1225 */
1da177e4 1226good_area:
68da336a 1227 if (unlikely(access_error(error_code, vma))) {
92181f19
NP
1228 bad_area_access_error(regs, error_code, address);
1229 return;
1da177e4
LT
1230 }
1231
1232 /*
1233 * If for any reason at all we couldn't handle the fault,
1234 * make sure we exit gracefully rather than endlessly redo
9a95f3cf
PC
1235 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1236 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1da177e4 1237 */
d065bd81 1238 fault = handle_mm_fault(mm, vma, address, flags);
26178ec1 1239 major |= fault & VM_FAULT_MAJOR;
2d4a7167 1240
3a13c4d7 1241 /*
26178ec1
LT
1242 * If we need to retry the mmap_sem has already been released,
1243 * and if there is a fatal signal pending there is no guarantee
1244 * that we made any progress. Handle this case first.
3a13c4d7 1245 */
26178ec1
LT
1246 if (unlikely(fault & VM_FAULT_RETRY)) {
1247 /* Retry at most once */
1248 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1249 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1250 flags |= FAULT_FLAG_TRIED;
1251 if (!fatal_signal_pending(tsk))
1252 goto retry;
1253 }
1254
1255 /* User mode? Just return to handle the fatal exception */
cf3c0a15 1256 if (flags & FAULT_FLAG_USER)
26178ec1
LT
1257 return;
1258
1259 /* Not returning to user mode? Handle exceptions or die: */
1260 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
3a13c4d7 1261 return;
26178ec1 1262 }
3a13c4d7 1263
26178ec1 1264 up_read(&mm->mmap_sem);
3a13c4d7
JW
1265 if (unlikely(fault & VM_FAULT_ERROR)) {
1266 mm_fault_error(regs, error_code, address, fault);
1267 return;
37b23e05
KM
1268 }
1269
d065bd81 1270 /*
26178ec1
LT
1271 * Major/minor page fault accounting. If any of the events
1272 * returned VM_FAULT_MAJOR, we account it as a major fault.
d065bd81 1273 */
26178ec1
LT
1274 if (major) {
1275 tsk->maj_flt++;
1276 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1277 } else {
1278 tsk->min_flt++;
1279 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
ac17dc8e 1280 }
d729ab35 1281
8c938f9f 1282 check_v8086_mode(regs, address, tsk);
1da177e4 1283}
9326638c 1284NOKPROBE_SYMBOL(__do_page_fault);
6ba3c97a 1285
9326638c 1286dotraplinkage void notrace
6ba3c97a
FW
1287do_page_fault(struct pt_regs *regs, unsigned long error_code)
1288{
d4078e23 1289 unsigned long address = read_cr2(); /* Get the faulting address */
6c1e0256 1290 enum ctx_state prev_state;
d4078e23
PZ
1291
1292 /*
1293 * We must have this function tagged with __kprobes, notrace and call
1294 * read_cr2() before calling anything else. To avoid calling any kind
1295 * of tracing machinery before we've observed the CR2 value.
1296 *
1297 * exception_{enter,exit}() contain all sorts of tracepoints.
1298 */
6c1e0256
FW
1299
1300 prev_state = exception_enter();
0ac09f9f 1301 __do_page_fault(regs, error_code, address);
6c1e0256 1302 exception_exit(prev_state);
6ba3c97a 1303}
9326638c 1304NOKPROBE_SYMBOL(do_page_fault);
25c74b10 1305
d4078e23 1306#ifdef CONFIG_TRACING
9326638c
MH
1307static nokprobe_inline void
1308trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1309 unsigned long error_code)
d34603b0
SA
1310{
1311 if (user_mode(regs))
d4078e23 1312 trace_page_fault_user(address, regs, error_code);
d34603b0 1313 else
d4078e23 1314 trace_page_fault_kernel(address, regs, error_code);
d34603b0
SA
1315}
1316
9326638c 1317dotraplinkage void notrace
25c74b10
SA
1318trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1319{
0ac09f9f
JO
1320 /*
1321 * The exception_enter and tracepoint processing could
1322 * trigger another page faults (user space callchain
1323 * reading) and destroy the original cr2 value, so read
1324 * the faulting address now.
1325 */
1326 unsigned long address = read_cr2();
d4078e23 1327 enum ctx_state prev_state;
25c74b10
SA
1328
1329 prev_state = exception_enter();
d4078e23 1330 trace_page_fault_entries(address, regs, error_code);
0ac09f9f 1331 __do_page_fault(regs, error_code, address);
25c74b10
SA
1332 exception_exit(prev_state);
1333}
9326638c 1334NOKPROBE_SYMBOL(trace_do_page_fault);
d4078e23 1335#endif /* CONFIG_TRACING */
This page took 0.85247 seconds and 5 git commands to generate.