mm, oom: remove redundant sleep in pagefault oom handler
[deliverable/linux.git] / arch / x86 / mm / fault.c
CommitLineData
1da177e4 1/*
1da177e4 2 * Copyright (C) 1995 Linus Torvalds
2d4a7167 3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
f8eeb2e6 4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
1da177e4 5 */
a2bcd473
IM
6#include <linux/magic.h> /* STACK_END_MAGIC */
7#include <linux/sched.h> /* test_thread_flag(), ... */
8#include <linux/kdebug.h> /* oops_begin/end, ... */
9#include <linux/module.h> /* search_exception_table */
10#include <linux/bootmem.h> /* max_low_pfn */
11#include <linux/kprobes.h> /* __kprobes, ... */
12#include <linux/mmiotrace.h> /* kmmio_handler, ... */
cdd6c482 13#include <linux/perf_event.h> /* perf_sw_event */
f672b49b 14#include <linux/hugetlb.h> /* hstate_index_to_shift */
268bb0ce 15#include <linux/prefetch.h> /* prefetchw */
2d4a7167 16
a2bcd473
IM
17#include <asm/traps.h> /* dotraplinkage, ... */
18#include <asm/pgalloc.h> /* pgd_*(), ... */
f8561296 19#include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
fab1167c 20#include <asm/fixmap.h> /* VSYSCALL_START */
91d1aa43 21#include <asm/context_tracking.h> /* exception_enter(), ... */
1da177e4 22
33cb5243 23/*
2d4a7167
IM
24 * Page fault error code bits:
25 *
26 * bit 0 == 0: no page found 1: protection fault
27 * bit 1 == 0: read access 1: write access
28 * bit 2 == 0: kernel-mode access 1: user-mode access
29 * bit 3 == 1: use of reserved bit detected
30 * bit 4 == 1: fault was an instruction fetch
33cb5243 31 */
2d4a7167
IM
32enum x86_pf_error_code {
33
34 PF_PROT = 1 << 0,
35 PF_WRITE = 1 << 1,
36 PF_USER = 1 << 2,
37 PF_RSVD = 1 << 3,
38 PF_INSTR = 1 << 4,
39};
66c58156 40
b814d41f 41/*
b319eed0
IM
42 * Returns 0 if mmiotrace is disabled, or if the fault is not
43 * handled by mmiotrace:
b814d41f 44 */
62c9295f
MH
45static inline int __kprobes
46kmmio_fault(struct pt_regs *regs, unsigned long addr)
86069782 47{
0fd0e3da
PP
48 if (unlikely(is_kmmio_active()))
49 if (kmmio_handler(regs, addr) == 1)
50 return -1;
0fd0e3da 51 return 0;
86069782
PP
52}
53
62c9295f 54static inline int __kprobes notify_page_fault(struct pt_regs *regs)
1bd858a5 55{
74a0b576
CH
56 int ret = 0;
57
58 /* kprobe_running() needs smp_processor_id() */
b1801812 59 if (kprobes_built_in() && !user_mode_vm(regs)) {
74a0b576
CH
60 preempt_disable();
61 if (kprobe_running() && kprobe_fault_handler(regs, 14))
62 ret = 1;
63 preempt_enable();
64 }
1bd858a5 65
74a0b576 66 return ret;
33cb5243 67}
1bd858a5 68
1dc85be0 69/*
2d4a7167
IM
70 * Prefetch quirks:
71 *
72 * 32-bit mode:
73 *
74 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
75 * Check that here and ignore it.
1dc85be0 76 *
2d4a7167 77 * 64-bit mode:
1dc85be0 78 *
2d4a7167
IM
79 * Sometimes the CPU reports invalid exceptions on prefetch.
80 * Check that here and ignore it.
81 *
82 * Opcode checker based on code by Richard Brunner.
1dc85be0 83 */
107a0367
IM
84static inline int
85check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
86 unsigned char opcode, int *prefetch)
87{
88 unsigned char instr_hi = opcode & 0xf0;
89 unsigned char instr_lo = opcode & 0x0f;
90
91 switch (instr_hi) {
92 case 0x20:
93 case 0x30:
94 /*
95 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
96 * In X86_64 long mode, the CPU will signal invalid
97 * opcode if some of these prefixes are present so
98 * X86_64 will never get here anyway
99 */
100 return ((instr_lo & 7) == 0x6);
101#ifdef CONFIG_X86_64
102 case 0x40:
103 /*
104 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
105 * Need to figure out under what instruction mode the
106 * instruction was issued. Could check the LDT for lm,
107 * but for now it's good enough to assume that long
108 * mode only uses well known segments or kernel.
109 */
318f5a2a 110 return (!user_mode(regs) || user_64bit_mode(regs));
107a0367
IM
111#endif
112 case 0x60:
113 /* 0x64 thru 0x67 are valid prefixes in all modes. */
114 return (instr_lo & 0xC) == 0x4;
115 case 0xF0:
116 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
117 return !instr_lo || (instr_lo>>1) == 1;
118 case 0x00:
119 /* Prefetch instruction is 0x0F0D or 0x0F18 */
120 if (probe_kernel_address(instr, opcode))
121 return 0;
122
123 *prefetch = (instr_lo == 0xF) &&
124 (opcode == 0x0D || opcode == 0x18);
125 return 0;
126 default:
127 return 0;
128 }
129}
130
2d4a7167
IM
131static int
132is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
33cb5243 133{
2d4a7167 134 unsigned char *max_instr;
ab2bf0c1 135 unsigned char *instr;
33cb5243 136 int prefetch = 0;
1da177e4 137
3085354d
IM
138 /*
139 * If it was a exec (instruction fetch) fault on NX page, then
140 * do not ignore the fault:
141 */
66c58156 142 if (error_code & PF_INSTR)
1da177e4 143 return 0;
1dc85be0 144
107a0367 145 instr = (void *)convert_ip_to_linear(current, regs);
f1290ec9 146 max_instr = instr + 15;
1da177e4 147
76381fee 148 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
1da177e4
LT
149 return 0;
150
107a0367 151 while (instr < max_instr) {
2d4a7167 152 unsigned char opcode;
1da177e4 153
ab2bf0c1 154 if (probe_kernel_address(instr, opcode))
33cb5243 155 break;
1da177e4 156
1da177e4
LT
157 instr++;
158
107a0367 159 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
1da177e4 160 break;
1da177e4
LT
161 }
162 return prefetch;
163}
164
2d4a7167
IM
165static void
166force_sig_info_fault(int si_signo, int si_code, unsigned long address,
f672b49b 167 struct task_struct *tsk, int fault)
c4aba4a8 168{
f672b49b 169 unsigned lsb = 0;
c4aba4a8
HH
170 siginfo_t info;
171
2d4a7167
IM
172 info.si_signo = si_signo;
173 info.si_errno = 0;
174 info.si_code = si_code;
175 info.si_addr = (void __user *)address;
f672b49b
AK
176 if (fault & VM_FAULT_HWPOISON_LARGE)
177 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
178 if (fault & VM_FAULT_HWPOISON)
179 lsb = PAGE_SHIFT;
180 info.si_addr_lsb = lsb;
2d4a7167 181
c4aba4a8
HH
182 force_sig_info(si_signo, &info, tsk);
183}
184
f2f13a85
IM
185DEFINE_SPINLOCK(pgd_lock);
186LIST_HEAD(pgd_list);
187
188#ifdef CONFIG_X86_32
189static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
33cb5243 190{
f2f13a85
IM
191 unsigned index = pgd_index(address);
192 pgd_t *pgd_k;
193 pud_t *pud, *pud_k;
194 pmd_t *pmd, *pmd_k;
2d4a7167 195
f2f13a85
IM
196 pgd += index;
197 pgd_k = init_mm.pgd + index;
198
199 if (!pgd_present(*pgd_k))
200 return NULL;
201
202 /*
203 * set_pgd(pgd, *pgd_k); here would be useless on PAE
204 * and redundant with the set_pmd() on non-PAE. As would
205 * set_pud.
206 */
207 pud = pud_offset(pgd, address);
208 pud_k = pud_offset(pgd_k, address);
209 if (!pud_present(*pud_k))
210 return NULL;
211
212 pmd = pmd_offset(pud, address);
213 pmd_k = pmd_offset(pud_k, address);
214 if (!pmd_present(*pmd_k))
215 return NULL;
216
b8bcfe99 217 if (!pmd_present(*pmd))
f2f13a85 218 set_pmd(pmd, *pmd_k);
b8bcfe99 219 else
f2f13a85 220 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
f2f13a85
IM
221
222 return pmd_k;
223}
224
225void vmalloc_sync_all(void)
226{
227 unsigned long address;
228
229 if (SHARED_KERNEL_PMD)
230 return;
231
232 for (address = VMALLOC_START & PMD_MASK;
233 address >= TASK_SIZE && address < FIXADDR_TOP;
234 address += PMD_SIZE) {
f2f13a85
IM
235 struct page *page;
236
a79e53d8 237 spin_lock(&pgd_lock);
f2f13a85 238 list_for_each_entry(page, &pgd_list, lru) {
617d34d9 239 spinlock_t *pgt_lock;
f01f7c56 240 pmd_t *ret;
617d34d9 241
a79e53d8 242 /* the pgt_lock only for Xen */
617d34d9
JF
243 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
244
245 spin_lock(pgt_lock);
246 ret = vmalloc_sync_one(page_address(page), address);
247 spin_unlock(pgt_lock);
248
249 if (!ret)
f2f13a85
IM
250 break;
251 }
a79e53d8 252 spin_unlock(&pgd_lock);
f2f13a85
IM
253 }
254}
255
256/*
257 * 32-bit:
258 *
259 * Handle a fault on the vmalloc or module mapping area
260 */
62c9295f 261static noinline __kprobes int vmalloc_fault(unsigned long address)
f2f13a85
IM
262{
263 unsigned long pgd_paddr;
264 pmd_t *pmd_k;
265 pte_t *pte_k;
266
267 /* Make sure we are in vmalloc area: */
268 if (!(address >= VMALLOC_START && address < VMALLOC_END))
269 return -1;
270
ebc8827f
FW
271 WARN_ON_ONCE(in_nmi());
272
f2f13a85
IM
273 /*
274 * Synchronize this task's top level page-table
275 * with the 'reference' page table.
276 *
277 * Do _not_ use "current" here. We might be inside
278 * an interrupt in the middle of a task switch..
279 */
280 pgd_paddr = read_cr3();
281 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
282 if (!pmd_k)
283 return -1;
284
285 pte_k = pte_offset_kernel(pmd_k, address);
286 if (!pte_present(*pte_k))
287 return -1;
288
289 return 0;
290}
291
292/*
293 * Did it hit the DOS screen memory VA from vm86 mode?
294 */
295static inline void
296check_v8086_mode(struct pt_regs *regs, unsigned long address,
297 struct task_struct *tsk)
298{
299 unsigned long bit;
300
301 if (!v8086_mode(regs))
302 return;
303
304 bit = (address - 0xA0000) >> PAGE_SHIFT;
305 if (bit < 32)
306 tsk->thread.screen_bitmap |= 1 << bit;
33cb5243 307}
1da177e4 308
087975b0 309static bool low_pfn(unsigned long pfn)
1da177e4 310{
087975b0
AM
311 return pfn < max_low_pfn;
312}
1156e098 313
087975b0
AM
314static void dump_pagetable(unsigned long address)
315{
316 pgd_t *base = __va(read_cr3());
317 pgd_t *pgd = &base[pgd_index(address)];
318 pmd_t *pmd;
319 pte_t *pte;
2d4a7167 320
1156e098 321#ifdef CONFIG_X86_PAE
087975b0
AM
322 printk("*pdpt = %016Lx ", pgd_val(*pgd));
323 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
324 goto out;
1156e098 325#endif
087975b0
AM
326 pmd = pmd_offset(pud_offset(pgd, address), address);
327 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
1156e098
HH
328
329 /*
330 * We must not directly access the pte in the highpte
331 * case if the page table is located in highmem.
332 * And let's rather not kmap-atomic the pte, just in case
2d4a7167 333 * it's allocated already:
1156e098 334 */
087975b0
AM
335 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
336 goto out;
1156e098 337
087975b0
AM
338 pte = pte_offset_kernel(pmd, address);
339 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
340out:
1156e098 341 printk("\n");
f2f13a85
IM
342}
343
344#else /* CONFIG_X86_64: */
345
346void vmalloc_sync_all(void)
347{
6afb5157 348 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
f2f13a85
IM
349}
350
351/*
352 * 64-bit:
353 *
354 * Handle a fault on the vmalloc area
355 *
356 * This assumes no large pages in there.
357 */
62c9295f 358static noinline __kprobes int vmalloc_fault(unsigned long address)
f2f13a85
IM
359{
360 pgd_t *pgd, *pgd_ref;
361 pud_t *pud, *pud_ref;
362 pmd_t *pmd, *pmd_ref;
363 pte_t *pte, *pte_ref;
364
365 /* Make sure we are in vmalloc area: */
366 if (!(address >= VMALLOC_START && address < VMALLOC_END))
367 return -1;
368
ebc8827f
FW
369 WARN_ON_ONCE(in_nmi());
370
f2f13a85
IM
371 /*
372 * Copy kernel mappings over when needed. This can also
373 * happen within a race in page table update. In the later
374 * case just flush:
375 */
376 pgd = pgd_offset(current->active_mm, address);
377 pgd_ref = pgd_offset_k(address);
378 if (pgd_none(*pgd_ref))
379 return -1;
380
381 if (pgd_none(*pgd))
382 set_pgd(pgd, *pgd_ref);
383 else
384 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
385
386 /*
387 * Below here mismatches are bugs because these lower tables
388 * are shared:
389 */
390
391 pud = pud_offset(pgd, address);
392 pud_ref = pud_offset(pgd_ref, address);
393 if (pud_none(*pud_ref))
394 return -1;
395
396 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
397 BUG();
398
399 pmd = pmd_offset(pud, address);
400 pmd_ref = pmd_offset(pud_ref, address);
401 if (pmd_none(*pmd_ref))
402 return -1;
403
404 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
405 BUG();
406
407 pte_ref = pte_offset_kernel(pmd_ref, address);
408 if (!pte_present(*pte_ref))
409 return -1;
410
411 pte = pte_offset_kernel(pmd, address);
412
413 /*
414 * Don't use pte_page here, because the mappings can point
415 * outside mem_map, and the NUMA hash lookup cannot handle
416 * that:
417 */
418 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
419 BUG();
420
421 return 0;
422}
423
e05139f2 424#ifdef CONFIG_CPU_SUP_AMD
f2f13a85 425static const char errata93_warning[] =
ad361c98
JP
426KERN_ERR
427"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
428"******* Working around it, but it may cause SEGVs or burn power.\n"
429"******* Please consider a BIOS update.\n"
430"******* Disabling USB legacy in the BIOS may also help.\n";
e05139f2 431#endif
f2f13a85
IM
432
433/*
434 * No vm86 mode in 64-bit mode:
435 */
436static inline void
437check_v8086_mode(struct pt_regs *regs, unsigned long address,
438 struct task_struct *tsk)
439{
440}
441
442static int bad_address(void *p)
443{
444 unsigned long dummy;
445
446 return probe_kernel_address((unsigned long *)p, dummy);
447}
448
449static void dump_pagetable(unsigned long address)
450{
087975b0
AM
451 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
452 pgd_t *pgd = base + pgd_index(address);
1da177e4
LT
453 pud_t *pud;
454 pmd_t *pmd;
455 pte_t *pte;
456
2d4a7167
IM
457 if (bad_address(pgd))
458 goto bad;
459
d646bce4 460 printk("PGD %lx ", pgd_val(*pgd));
2d4a7167
IM
461
462 if (!pgd_present(*pgd))
463 goto out;
1da177e4 464
d2ae5b5f 465 pud = pud_offset(pgd, address);
2d4a7167
IM
466 if (bad_address(pud))
467 goto bad;
468
1da177e4 469 printk("PUD %lx ", pud_val(*pud));
b5360222 470 if (!pud_present(*pud) || pud_large(*pud))
2d4a7167 471 goto out;
1da177e4
LT
472
473 pmd = pmd_offset(pud, address);
2d4a7167
IM
474 if (bad_address(pmd))
475 goto bad;
476
1da177e4 477 printk("PMD %lx ", pmd_val(*pmd));
2d4a7167
IM
478 if (!pmd_present(*pmd) || pmd_large(*pmd))
479 goto out;
1da177e4
LT
480
481 pte = pte_offset_kernel(pmd, address);
2d4a7167
IM
482 if (bad_address(pte))
483 goto bad;
484
33cb5243 485 printk("PTE %lx", pte_val(*pte));
2d4a7167 486out:
1da177e4
LT
487 printk("\n");
488 return;
489bad:
490 printk("BAD\n");
8c938f9f
IM
491}
492
f2f13a85 493#endif /* CONFIG_X86_64 */
1da177e4 494
2d4a7167
IM
495/*
496 * Workaround for K8 erratum #93 & buggy BIOS.
497 *
498 * BIOS SMM functions are required to use a specific workaround
499 * to avoid corruption of the 64bit RIP register on C stepping K8.
500 *
501 * A lot of BIOS that didn't get tested properly miss this.
502 *
503 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
504 * Try to work around it here.
505 *
506 * Note we only handle faults in kernel here.
507 * Does nothing on 32-bit.
fdfe8aa8 508 */
33cb5243 509static int is_errata93(struct pt_regs *regs, unsigned long address)
1da177e4 510{
e05139f2
JB
511#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
512 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
513 || boot_cpu_data.x86 != 0xf)
514 return 0;
515
65ea5b03 516 if (address != regs->ip)
1da177e4 517 return 0;
2d4a7167 518
33cb5243 519 if ((address >> 32) != 0)
1da177e4 520 return 0;
2d4a7167 521
1da177e4 522 address |= 0xffffffffUL << 32;
33cb5243
HH
523 if ((address >= (u64)_stext && address <= (u64)_etext) ||
524 (address >= MODULES_VADDR && address <= MODULES_END)) {
a454ab31 525 printk_once(errata93_warning);
65ea5b03 526 regs->ip = address;
1da177e4
LT
527 return 1;
528 }
fdfe8aa8 529#endif
1da177e4 530 return 0;
33cb5243 531}
1da177e4 532
35f3266f 533/*
2d4a7167
IM
534 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
535 * to illegal addresses >4GB.
536 *
537 * We catch this in the page fault handler because these addresses
538 * are not reachable. Just detect this case and return. Any code
35f3266f
HH
539 * segment in LDT is compatibility mode.
540 */
541static int is_errata100(struct pt_regs *regs, unsigned long address)
542{
543#ifdef CONFIG_X86_64
2d4a7167 544 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
35f3266f
HH
545 return 1;
546#endif
547 return 0;
548}
549
29caf2f9
HH
550static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
551{
552#ifdef CONFIG_X86_F00F_BUG
553 unsigned long nr;
2d4a7167 554
29caf2f9 555 /*
2d4a7167 556 * Pentium F0 0F C7 C8 bug workaround:
29caf2f9
HH
557 */
558 if (boot_cpu_data.f00f_bug) {
559 nr = (address - idt_descr.address) >> 3;
560
561 if (nr == 6) {
562 do_invalid_op(regs, 0);
563 return 1;
564 }
565 }
566#endif
567 return 0;
568}
569
8f766149
IM
570static const char nx_warning[] = KERN_CRIT
571"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
572
2d4a7167
IM
573static void
574show_fault_oops(struct pt_regs *regs, unsigned long error_code,
575 unsigned long address)
b3279c7f 576{
1156e098
HH
577 if (!oops_may_print())
578 return;
579
1156e098 580 if (error_code & PF_INSTR) {
93809be8 581 unsigned int level;
2d4a7167 582
1156e098
HH
583 pte_t *pte = lookup_address(address, &level);
584
8f766149 585 if (pte && pte_present(*pte) && !pte_exec(*pte))
078de5f7 586 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
1156e098 587 }
1156e098 588
19f0dda9 589 printk(KERN_ALERT "BUG: unable to handle kernel ");
b3279c7f 590 if (address < PAGE_SIZE)
19f0dda9 591 printk(KERN_CONT "NULL pointer dereference");
b3279c7f 592 else
19f0dda9 593 printk(KERN_CONT "paging request");
2d4a7167 594
f294a8ce 595 printk(KERN_CONT " at %p\n", (void *) address);
19f0dda9 596 printk(KERN_ALERT "IP:");
b3279c7f 597 printk_address(regs->ip, 1);
2d4a7167 598
b3279c7f
HH
599 dump_pagetable(address);
600}
601
2d4a7167
IM
602static noinline void
603pgtable_bad(struct pt_regs *regs, unsigned long error_code,
604 unsigned long address)
1da177e4 605{
2d4a7167
IM
606 struct task_struct *tsk;
607 unsigned long flags;
608 int sig;
609
610 flags = oops_begin();
611 tsk = current;
612 sig = SIGKILL;
1209140c 613
1da177e4 614 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
92181f19 615 tsk->comm, address);
1da177e4 616 dump_pagetable(address);
2d4a7167
IM
617
618 tsk->thread.cr2 = address;
51e7dc70 619 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167
IM
620 tsk->thread.error_code = error_code;
621
22f5991c 622 if (__die("Bad pagetable", regs, error_code))
874d93d1 623 sig = 0;
2d4a7167 624
874d93d1 625 oops_end(flags, regs, sig);
1da177e4
LT
626}
627
2d4a7167
IM
628static noinline void
629no_context(struct pt_regs *regs, unsigned long error_code,
4fc34901 630 unsigned long address, int signal, int si_code)
92181f19
NP
631{
632 struct task_struct *tsk = current;
19803078 633 unsigned long *stackend;
92181f19
NP
634 unsigned long flags;
635 int sig;
92181f19 636
2d4a7167 637 /* Are we prepared to handle this kernel fault? */
4fc34901
AL
638 if (fixup_exception(regs)) {
639 if (current_thread_info()->sig_on_uaccess_error && signal) {
51e7dc70 640 tsk->thread.trap_nr = X86_TRAP_PF;
4fc34901
AL
641 tsk->thread.error_code = error_code | PF_USER;
642 tsk->thread.cr2 = address;
643
644 /* XXX: hwpoison faults will set the wrong code. */
645 force_sig_info_fault(signal, si_code, address, tsk, 0);
646 }
92181f19 647 return;
4fc34901 648 }
92181f19
NP
649
650 /*
2d4a7167
IM
651 * 32-bit:
652 *
653 * Valid to do another page fault here, because if this fault
654 * had been triggered by is_prefetch fixup_exception would have
655 * handled it.
656 *
657 * 64-bit:
92181f19 658 *
2d4a7167 659 * Hall of shame of CPU/BIOS bugs.
92181f19
NP
660 */
661 if (is_prefetch(regs, error_code, address))
662 return;
663
664 if (is_errata93(regs, address))
665 return;
666
667 /*
668 * Oops. The kernel tried to access some bad page. We'll have to
2d4a7167 669 * terminate things with extreme prejudice:
92181f19 670 */
92181f19 671 flags = oops_begin();
92181f19
NP
672
673 show_fault_oops(regs, error_code, address);
674
2d4a7167 675 stackend = end_of_stack(tsk);
0e7810be 676 if (tsk != &init_task && *stackend != STACK_END_MAGIC)
b0f4c4b3 677 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
19803078 678
1cc99544 679 tsk->thread.cr2 = address;
51e7dc70 680 tsk->thread.trap_nr = X86_TRAP_PF;
1cc99544 681 tsk->thread.error_code = error_code;
92181f19 682
92181f19
NP
683 sig = SIGKILL;
684 if (__die("Oops", regs, error_code))
685 sig = 0;
2d4a7167 686
92181f19 687 /* Executive summary in case the body of the oops scrolled away */
b0f4c4b3 688 printk(KERN_DEFAULT "CR2: %016lx\n", address);
2d4a7167 689
92181f19 690 oops_end(flags, regs, sig);
92181f19
NP
691}
692
2d4a7167
IM
693/*
694 * Print out info about fatal segfaults, if the show_unhandled_signals
695 * sysctl is set:
696 */
697static inline void
698show_signal_msg(struct pt_regs *regs, unsigned long error_code,
699 unsigned long address, struct task_struct *tsk)
700{
701 if (!unhandled_signal(tsk, SIGSEGV))
702 return;
703
704 if (!printk_ratelimit())
705 return;
706
a1a08d1c 707 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
2d4a7167
IM
708 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
709 tsk->comm, task_pid_nr(tsk), address,
710 (void *)regs->ip, (void *)regs->sp, error_code);
711
712 print_vma_addr(KERN_CONT " in ", regs->ip);
713
714 printk(KERN_CONT "\n");
715}
716
717static void
718__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
719 unsigned long address, int si_code)
92181f19
NP
720{
721 struct task_struct *tsk = current;
722
723 /* User mode accesses just cause a SIGSEGV */
724 if (error_code & PF_USER) {
725 /*
2d4a7167 726 * It's possible to have interrupts off here:
92181f19
NP
727 */
728 local_irq_enable();
729
730 /*
731 * Valid to do another page fault here because this one came
2d4a7167 732 * from user space:
92181f19
NP
733 */
734 if (is_prefetch(regs, error_code, address))
735 return;
736
737 if (is_errata100(regs, address))
738 return;
739
3ae36655
AL
740#ifdef CONFIG_X86_64
741 /*
742 * Instruction fetch faults in the vsyscall page might need
743 * emulation.
744 */
745 if (unlikely((error_code & PF_INSTR) &&
746 ((address & ~0xfff) == VSYSCALL_START))) {
747 if (emulate_vsyscall(regs, address))
748 return;
749 }
750#endif
751
2d4a7167
IM
752 if (unlikely(show_unhandled_signals))
753 show_signal_msg(regs, error_code, address, tsk);
754
755 /* Kernel addresses are always protection faults: */
756 tsk->thread.cr2 = address;
757 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
51e7dc70 758 tsk->thread.trap_nr = X86_TRAP_PF;
92181f19 759
f672b49b 760 force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
2d4a7167 761
92181f19
NP
762 return;
763 }
764
765 if (is_f00f_bug(regs, address))
766 return;
767
4fc34901 768 no_context(regs, error_code, address, SIGSEGV, si_code);
92181f19
NP
769}
770
2d4a7167
IM
771static noinline void
772bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
773 unsigned long address)
92181f19
NP
774{
775 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
776}
777
2d4a7167
IM
778static void
779__bad_area(struct pt_regs *regs, unsigned long error_code,
780 unsigned long address, int si_code)
92181f19
NP
781{
782 struct mm_struct *mm = current->mm;
783
784 /*
785 * Something tried to access memory that isn't in our memory map..
786 * Fix it, but check if it's kernel or user first..
787 */
788 up_read(&mm->mmap_sem);
789
790 __bad_area_nosemaphore(regs, error_code, address, si_code);
791}
792
2d4a7167
IM
793static noinline void
794bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
92181f19
NP
795{
796 __bad_area(regs, error_code, address, SEGV_MAPERR);
797}
798
2d4a7167
IM
799static noinline void
800bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
801 unsigned long address)
92181f19
NP
802{
803 __bad_area(regs, error_code, address, SEGV_ACCERR);
804}
805
806/* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
2d4a7167
IM
807static void
808out_of_memory(struct pt_regs *regs, unsigned long error_code,
809 unsigned long address)
92181f19
NP
810{
811 /*
812 * We ran out of memory, call the OOM killer, and return the userspace
2d4a7167 813 * (which will retry the fault, or kill us if we got oom-killed):
92181f19
NP
814 */
815 up_read(&current->mm->mmap_sem);
2d4a7167 816
92181f19
NP
817 pagefault_out_of_memory();
818}
819
2d4a7167 820static void
a6e04aa9
AK
821do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
822 unsigned int fault)
92181f19
NP
823{
824 struct task_struct *tsk = current;
825 struct mm_struct *mm = tsk->mm;
a6e04aa9 826 int code = BUS_ADRERR;
92181f19
NP
827
828 up_read(&mm->mmap_sem);
829
2d4a7167 830 /* Kernel mode? Handle exceptions or die: */
96054569 831 if (!(error_code & PF_USER)) {
4fc34901 832 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
96054569
LT
833 return;
834 }
2d4a7167 835
cd1b68f0 836 /* User-space => ok to do another page fault: */
92181f19
NP
837 if (is_prefetch(regs, error_code, address))
838 return;
2d4a7167
IM
839
840 tsk->thread.cr2 = address;
841 tsk->thread.error_code = error_code;
51e7dc70 842 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167 843
a6e04aa9 844#ifdef CONFIG_MEMORY_FAILURE
f672b49b 845 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
a6e04aa9
AK
846 printk(KERN_ERR
847 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
848 tsk->comm, tsk->pid, address);
849 code = BUS_MCEERR_AR;
850 }
851#endif
f672b49b 852 force_sig_info_fault(SIGBUS, code, address, tsk, fault);
92181f19
NP
853}
854
b80ef10e 855static noinline int
2d4a7167
IM
856mm_fault_error(struct pt_regs *regs, unsigned long error_code,
857 unsigned long address, unsigned int fault)
92181f19 858{
b80ef10e
KM
859 /*
860 * Pagefault was interrupted by SIGKILL. We have no reason to
861 * continue pagefault.
862 */
863 if (fatal_signal_pending(current)) {
864 if (!(fault & VM_FAULT_RETRY))
865 up_read(&current->mm->mmap_sem);
866 if (!(error_code & PF_USER))
4fc34901 867 no_context(regs, error_code, address, 0, 0);
b80ef10e
KM
868 return 1;
869 }
870 if (!(fault & VM_FAULT_ERROR))
871 return 0;
872
2d4a7167 873 if (fault & VM_FAULT_OOM) {
f8626854
AV
874 /* Kernel mode? Handle exceptions or die: */
875 if (!(error_code & PF_USER)) {
876 up_read(&current->mm->mmap_sem);
4fc34901
AL
877 no_context(regs, error_code, address,
878 SIGSEGV, SEGV_MAPERR);
b80ef10e 879 return 1;
f8626854
AV
880 }
881
92181f19 882 out_of_memory(regs, error_code, address);
2d4a7167 883 } else {
f672b49b
AK
884 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
885 VM_FAULT_HWPOISON_LARGE))
a6e04aa9 886 do_sigbus(regs, error_code, address, fault);
2d4a7167
IM
887 else
888 BUG();
889 }
b80ef10e 890 return 1;
92181f19
NP
891}
892
d8b57bb7
TG
893static int spurious_fault_check(unsigned long error_code, pte_t *pte)
894{
895 if ((error_code & PF_WRITE) && !pte_write(*pte))
896 return 0;
2d4a7167 897
d8b57bb7
TG
898 if ((error_code & PF_INSTR) && !pte_exec(*pte))
899 return 0;
900
901 return 1;
902}
903
5b727a3b 904/*
2d4a7167
IM
905 * Handle a spurious fault caused by a stale TLB entry.
906 *
907 * This allows us to lazily refresh the TLB when increasing the
908 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
909 * eagerly is very expensive since that implies doing a full
910 * cross-processor TLB flush, even if no stale TLB entries exist
911 * on other processors.
912 *
5b727a3b
JF
913 * There are no security implications to leaving a stale TLB when
914 * increasing the permissions on a page.
915 */
62c9295f 916static noinline __kprobes int
2d4a7167 917spurious_fault(unsigned long error_code, unsigned long address)
5b727a3b
JF
918{
919 pgd_t *pgd;
920 pud_t *pud;
921 pmd_t *pmd;
922 pte_t *pte;
3c3e5694 923 int ret;
5b727a3b
JF
924
925 /* Reserved-bit violation or user access to kernel space? */
926 if (error_code & (PF_USER | PF_RSVD))
927 return 0;
928
929 pgd = init_mm.pgd + pgd_index(address);
930 if (!pgd_present(*pgd))
931 return 0;
932
933 pud = pud_offset(pgd, address);
934 if (!pud_present(*pud))
935 return 0;
936
d8b57bb7
TG
937 if (pud_large(*pud))
938 return spurious_fault_check(error_code, (pte_t *) pud);
939
5b727a3b
JF
940 pmd = pmd_offset(pud, address);
941 if (!pmd_present(*pmd))
942 return 0;
943
d8b57bb7
TG
944 if (pmd_large(*pmd))
945 return spurious_fault_check(error_code, (pte_t *) pmd);
946
660a293e
SL
947 /*
948 * Note: don't use pte_present() here, since it returns true
949 * if the _PAGE_PROTNONE bit is set. However, this aliases the
950 * _PAGE_GLOBAL bit, which for kernel pages give false positives
951 * when CONFIG_DEBUG_PAGEALLOC is used.
952 */
5b727a3b 953 pte = pte_offset_kernel(pmd, address);
660a293e 954 if (!(pte_flags(*pte) & _PAGE_PRESENT))
5b727a3b
JF
955 return 0;
956
3c3e5694
SR
957 ret = spurious_fault_check(error_code, pte);
958 if (!ret)
959 return 0;
960
961 /*
2d4a7167
IM
962 * Make sure we have permissions in PMD.
963 * If not, then there's a bug in the page tables:
3c3e5694
SR
964 */
965 ret = spurious_fault_check(error_code, (pte_t *) pmd);
966 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
2d4a7167 967
3c3e5694 968 return ret;
5b727a3b
JF
969}
970
abd4f750 971int show_unhandled_signals = 1;
1da177e4 972
2d4a7167 973static inline int
68da336a 974access_error(unsigned long error_code, struct vm_area_struct *vma)
92181f19 975{
68da336a 976 if (error_code & PF_WRITE) {
2d4a7167 977 /* write, present and write, not present: */
92181f19
NP
978 if (unlikely(!(vma->vm_flags & VM_WRITE)))
979 return 1;
2d4a7167 980 return 0;
92181f19
NP
981 }
982
2d4a7167
IM
983 /* read, present: */
984 if (unlikely(error_code & PF_PROT))
985 return 1;
986
987 /* read, not present: */
988 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
989 return 1;
990
92181f19
NP
991 return 0;
992}
993
0973a06c
HS
994static int fault_in_kernel_space(unsigned long address)
995{
d9517346 996 return address >= TASK_SIZE_MAX;
0973a06c
HS
997}
998
40d3cd66
PA
999static inline bool smap_violation(int error_code, struct pt_regs *regs)
1000{
1001 if (error_code & PF_USER)
1002 return false;
1003
1004 if (!user_mode_vm(regs) && (regs->flags & X86_EFLAGS_AC))
1005 return false;
1006
1007 return true;
1008}
1009
1da177e4
LT
1010/*
1011 * This routine handles page faults. It determines the address,
1012 * and the problem, and then passes it off to one of the appropriate
1013 * routines.
1da177e4 1014 */
6ba3c97a
FW
1015static void __kprobes
1016__do_page_fault(struct pt_regs *regs, unsigned long error_code)
1da177e4 1017{
2d4a7167 1018 struct vm_area_struct *vma;
1da177e4 1019 struct task_struct *tsk;
2d4a7167 1020 unsigned long address;
1da177e4 1021 struct mm_struct *mm;
f8c2ee22 1022 int fault;
d065bd81 1023 int write = error_code & PF_WRITE;
37b23e05 1024 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
d065bd81 1025 (write ? FAULT_FLAG_WRITE : 0);
1da177e4 1026
a9ba9a3b
AV
1027 tsk = current;
1028 mm = tsk->mm;
2d4a7167 1029
2d4a7167 1030 /* Get the faulting address: */
f51c9452 1031 address = read_cr2();
1da177e4 1032
f8561296
VN
1033 /*
1034 * Detect and handle instructions that would cause a page fault for
1035 * both a tracked kernel page and a userspace page.
1036 */
1037 if (kmemcheck_active(regs))
1038 kmemcheck_hide(regs);
5dfaf90f 1039 prefetchw(&mm->mmap_sem);
f8561296 1040
0fd0e3da 1041 if (unlikely(kmmio_fault(regs, address)))
86069782 1042 return;
1da177e4
LT
1043
1044 /*
1045 * We fault-in kernel-space virtual memory on-demand. The
1046 * 'reference' page table is init_mm.pgd.
1047 *
1048 * NOTE! We MUST NOT take any locks for this case. We may
1049 * be in an interrupt or a critical region, and should
1050 * only copy the information from the master page table,
1051 * nothing more.
1052 *
1053 * This verifies that the fault happens in kernel space
1054 * (error_code & 4) == 0, and that the fault was not a
8b1bde93 1055 * protection error (error_code & 9) == 0.
1da177e4 1056 */
0973a06c 1057 if (unlikely(fault_in_kernel_space(address))) {
f8561296
VN
1058 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1059 if (vmalloc_fault(address) >= 0)
1060 return;
1061
1062 if (kmemcheck_fault(regs, address, error_code))
1063 return;
1064 }
5b727a3b 1065
2d4a7167 1066 /* Can handle a stale RO->RW TLB: */
92181f19 1067 if (spurious_fault(error_code, address))
5b727a3b
JF
1068 return;
1069
2d4a7167 1070 /* kprobes don't want to hook the spurious faults: */
9be260a6
MH
1071 if (notify_page_fault(regs))
1072 return;
f8c2ee22
HH
1073 /*
1074 * Don't take the mm semaphore here. If we fixup a prefetch
2d4a7167 1075 * fault we could otherwise deadlock:
f8c2ee22 1076 */
92181f19 1077 bad_area_nosemaphore(regs, error_code, address);
2d4a7167 1078
92181f19 1079 return;
f8c2ee22
HH
1080 }
1081
2d4a7167 1082 /* kprobes don't want to hook the spurious faults: */
f8a6b2b9 1083 if (unlikely(notify_page_fault(regs)))
9be260a6 1084 return;
f8c2ee22 1085 /*
891cffbd
LT
1086 * It's safe to allow irq's after cr2 has been saved and the
1087 * vmalloc fault has been handled.
1088 *
1089 * User-mode registers count as a user access even for any
2d4a7167 1090 * potential system fault or CPU buglet:
f8c2ee22 1091 */
891cffbd
LT
1092 if (user_mode_vm(regs)) {
1093 local_irq_enable();
1094 error_code |= PF_USER;
2d4a7167
IM
1095 } else {
1096 if (regs->flags & X86_EFLAGS_IF)
1097 local_irq_enable();
1098 }
8c914cb7 1099
66c58156 1100 if (unlikely(error_code & PF_RSVD))
92181f19 1101 pgtable_bad(regs, error_code, address);
1da177e4 1102
40d3cd66
PA
1103 if (static_cpu_has(X86_FEATURE_SMAP)) {
1104 if (unlikely(smap_violation(error_code, regs))) {
1105 bad_area_nosemaphore(regs, error_code, address);
1106 return;
1107 }
1108 }
1109
a8b0ca17 1110 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
7dd1fcc2 1111
1da177e4 1112 /*
2d4a7167
IM
1113 * If we're in an interrupt, have no user context or are running
1114 * in an atomic region then we must not take the fault:
1da177e4 1115 */
92181f19
NP
1116 if (unlikely(in_atomic() || !mm)) {
1117 bad_area_nosemaphore(regs, error_code, address);
1118 return;
1119 }
1da177e4 1120
3a1dfe6e
IM
1121 /*
1122 * When running in the kernel we expect faults to occur only to
2d4a7167
IM
1123 * addresses in user space. All other faults represent errors in
1124 * the kernel and should generate an OOPS. Unfortunately, in the
1125 * case of an erroneous fault occurring in a code path which already
1126 * holds mmap_sem we will deadlock attempting to validate the fault
1127 * against the address space. Luckily the kernel only validly
1128 * references user space from well defined areas of code, which are
1129 * listed in the exceptions table.
1da177e4
LT
1130 *
1131 * As the vast majority of faults will be valid we will only perform
2d4a7167
IM
1132 * the source reference check when there is a possibility of a
1133 * deadlock. Attempt to lock the address space, if we cannot we then
1134 * validate the source. If this is invalid we can skip the address
1135 * space check, thus avoiding the deadlock:
1da177e4 1136 */
92181f19 1137 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
66c58156 1138 if ((error_code & PF_USER) == 0 &&
92181f19
NP
1139 !search_exception_tables(regs->ip)) {
1140 bad_area_nosemaphore(regs, error_code, address);
1141 return;
1142 }
d065bd81 1143retry:
1da177e4 1144 down_read(&mm->mmap_sem);
01006074
PZ
1145 } else {
1146 /*
2d4a7167
IM
1147 * The above down_read_trylock() might have succeeded in
1148 * which case we'll have missed the might_sleep() from
1149 * down_read():
01006074
PZ
1150 */
1151 might_sleep();
1da177e4
LT
1152 }
1153
1154 vma = find_vma(mm, address);
92181f19
NP
1155 if (unlikely(!vma)) {
1156 bad_area(regs, error_code, address);
1157 return;
1158 }
1159 if (likely(vma->vm_start <= address))
1da177e4 1160 goto good_area;
92181f19
NP
1161 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1162 bad_area(regs, error_code, address);
1163 return;
1164 }
33cb5243 1165 if (error_code & PF_USER) {
6f4d368e
HH
1166 /*
1167 * Accessing the stack below %sp is always a bug.
1168 * The large cushion allows instructions like enter
2d4a7167 1169 * and pusha to work. ("enter $65535, $31" pushes
6f4d368e 1170 * 32 pointers and then decrements %sp by 65535.)
03fdc2c2 1171 */
92181f19
NP
1172 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1173 bad_area(regs, error_code, address);
1174 return;
1175 }
1da177e4 1176 }
92181f19
NP
1177 if (unlikely(expand_stack(vma, address))) {
1178 bad_area(regs, error_code, address);
1179 return;
1180 }
1181
1182 /*
1183 * Ok, we have a good vm_area for this memory access, so
1184 * we can handle it..
1185 */
1da177e4 1186good_area:
68da336a 1187 if (unlikely(access_error(error_code, vma))) {
92181f19
NP
1188 bad_area_access_error(regs, error_code, address);
1189 return;
1da177e4
LT
1190 }
1191
1192 /*
1193 * If for any reason at all we couldn't handle the fault,
1194 * make sure we exit gracefully rather than endlessly redo
2d4a7167 1195 * the fault:
1da177e4 1196 */
d065bd81 1197 fault = handle_mm_fault(mm, vma, address, flags);
2d4a7167 1198
b80ef10e
KM
1199 if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
1200 if (mm_fault_error(regs, error_code, address, fault))
1201 return;
37b23e05
KM
1202 }
1203
d065bd81
ML
1204 /*
1205 * Major/minor page fault accounting is only done on the
1206 * initial attempt. If we go through a retry, it is extremely
1207 * likely that the page will be found in page cache at that point.
1208 */
1209 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1210 if (fault & VM_FAULT_MAJOR) {
1211 tsk->maj_flt++;
a8b0ca17 1212 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
d065bd81
ML
1213 regs, address);
1214 } else {
1215 tsk->min_flt++;
a8b0ca17 1216 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
d065bd81
ML
1217 regs, address);
1218 }
1219 if (fault & VM_FAULT_RETRY) {
1220 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
1221 * of starvation. */
1222 flags &= ~FAULT_FLAG_ALLOW_RETRY;
45cac65b 1223 flags |= FAULT_FLAG_TRIED;
d065bd81
ML
1224 goto retry;
1225 }
ac17dc8e 1226 }
d729ab35 1227
8c938f9f
IM
1228 check_v8086_mode(regs, address, tsk);
1229
1da177e4 1230 up_read(&mm->mmap_sem);
1da177e4 1231}
6ba3c97a
FW
1232
1233dotraplinkage void __kprobes
1234do_page_fault(struct pt_regs *regs, unsigned long error_code)
1235{
1236 exception_enter(regs);
1237 __do_page_fault(regs, error_code);
1238 exception_exit(regs);
1239}
This page took 1.076741 seconds and 5 git commands to generate.