x86: Clean up cr4 manipulation
[deliverable/linux.git] / arch / x86 / mm / fault.c
CommitLineData
1da177e4 1/*
1da177e4 2 * Copyright (C) 1995 Linus Torvalds
2d4a7167 3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
f8eeb2e6 4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
1da177e4 5 */
a2bcd473
IM
6#include <linux/sched.h> /* test_thread_flag(), ... */
7#include <linux/kdebug.h> /* oops_begin/end, ... */
8#include <linux/module.h> /* search_exception_table */
9#include <linux/bootmem.h> /* max_low_pfn */
9326638c 10#include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
a2bcd473 11#include <linux/mmiotrace.h> /* kmmio_handler, ... */
cdd6c482 12#include <linux/perf_event.h> /* perf_sw_event */
f672b49b 13#include <linux/hugetlb.h> /* hstate_index_to_shift */
268bb0ce 14#include <linux/prefetch.h> /* prefetchw */
56dd9470 15#include <linux/context_tracking.h> /* exception_enter(), ... */
2d4a7167 16
a2bcd473
IM
17#include <asm/traps.h> /* dotraplinkage, ... */
18#include <asm/pgalloc.h> /* pgd_*(), ... */
f8561296 19#include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
f40c3300
AL
20#include <asm/fixmap.h> /* VSYSCALL_ADDR */
21#include <asm/vsyscall.h> /* emulate_vsyscall */
1da177e4 22
d34603b0
SA
23#define CREATE_TRACE_POINTS
24#include <asm/trace/exceptions.h>
25
33cb5243 26/*
2d4a7167
IM
27 * Page fault error code bits:
28 *
29 * bit 0 == 0: no page found 1: protection fault
30 * bit 1 == 0: read access 1: write access
31 * bit 2 == 0: kernel-mode access 1: user-mode access
32 * bit 3 == 1: use of reserved bit detected
33 * bit 4 == 1: fault was an instruction fetch
33cb5243 34 */
2d4a7167
IM
35enum x86_pf_error_code {
36
37 PF_PROT = 1 << 0,
38 PF_WRITE = 1 << 1,
39 PF_USER = 1 << 2,
40 PF_RSVD = 1 << 3,
41 PF_INSTR = 1 << 4,
42};
66c58156 43
b814d41f 44/*
b319eed0
IM
45 * Returns 0 if mmiotrace is disabled, or if the fault is not
46 * handled by mmiotrace:
b814d41f 47 */
9326638c 48static nokprobe_inline int
62c9295f 49kmmio_fault(struct pt_regs *regs, unsigned long addr)
86069782 50{
0fd0e3da
PP
51 if (unlikely(is_kmmio_active()))
52 if (kmmio_handler(regs, addr) == 1)
53 return -1;
0fd0e3da 54 return 0;
86069782
PP
55}
56
9326638c 57static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
1bd858a5 58{
74a0b576
CH
59 int ret = 0;
60
61 /* kprobe_running() needs smp_processor_id() */
b1801812 62 if (kprobes_built_in() && !user_mode_vm(regs)) {
74a0b576
CH
63 preempt_disable();
64 if (kprobe_running() && kprobe_fault_handler(regs, 14))
65 ret = 1;
66 preempt_enable();
67 }
1bd858a5 68
74a0b576 69 return ret;
33cb5243 70}
1bd858a5 71
1dc85be0 72/*
2d4a7167
IM
73 * Prefetch quirks:
74 *
75 * 32-bit mode:
76 *
77 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
78 * Check that here and ignore it.
1dc85be0 79 *
2d4a7167 80 * 64-bit mode:
1dc85be0 81 *
2d4a7167
IM
82 * Sometimes the CPU reports invalid exceptions on prefetch.
83 * Check that here and ignore it.
84 *
85 * Opcode checker based on code by Richard Brunner.
1dc85be0 86 */
107a0367
IM
87static inline int
88check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
89 unsigned char opcode, int *prefetch)
90{
91 unsigned char instr_hi = opcode & 0xf0;
92 unsigned char instr_lo = opcode & 0x0f;
93
94 switch (instr_hi) {
95 case 0x20:
96 case 0x30:
97 /*
98 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
99 * In X86_64 long mode, the CPU will signal invalid
100 * opcode if some of these prefixes are present so
101 * X86_64 will never get here anyway
102 */
103 return ((instr_lo & 7) == 0x6);
104#ifdef CONFIG_X86_64
105 case 0x40:
106 /*
107 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
108 * Need to figure out under what instruction mode the
109 * instruction was issued. Could check the LDT for lm,
110 * but for now it's good enough to assume that long
111 * mode only uses well known segments or kernel.
112 */
318f5a2a 113 return (!user_mode(regs) || user_64bit_mode(regs));
107a0367
IM
114#endif
115 case 0x60:
116 /* 0x64 thru 0x67 are valid prefixes in all modes. */
117 return (instr_lo & 0xC) == 0x4;
118 case 0xF0:
119 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
120 return !instr_lo || (instr_lo>>1) == 1;
121 case 0x00:
122 /* Prefetch instruction is 0x0F0D or 0x0F18 */
123 if (probe_kernel_address(instr, opcode))
124 return 0;
125
126 *prefetch = (instr_lo == 0xF) &&
127 (opcode == 0x0D || opcode == 0x18);
128 return 0;
129 default:
130 return 0;
131 }
132}
133
2d4a7167
IM
134static int
135is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
33cb5243 136{
2d4a7167 137 unsigned char *max_instr;
ab2bf0c1 138 unsigned char *instr;
33cb5243 139 int prefetch = 0;
1da177e4 140
3085354d
IM
141 /*
142 * If it was a exec (instruction fetch) fault on NX page, then
143 * do not ignore the fault:
144 */
66c58156 145 if (error_code & PF_INSTR)
1da177e4 146 return 0;
1dc85be0 147
107a0367 148 instr = (void *)convert_ip_to_linear(current, regs);
f1290ec9 149 max_instr = instr + 15;
1da177e4 150
76381fee 151 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
1da177e4
LT
152 return 0;
153
107a0367 154 while (instr < max_instr) {
2d4a7167 155 unsigned char opcode;
1da177e4 156
ab2bf0c1 157 if (probe_kernel_address(instr, opcode))
33cb5243 158 break;
1da177e4 159
1da177e4
LT
160 instr++;
161
107a0367 162 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
1da177e4 163 break;
1da177e4
LT
164 }
165 return prefetch;
166}
167
2d4a7167
IM
168static void
169force_sig_info_fault(int si_signo, int si_code, unsigned long address,
f672b49b 170 struct task_struct *tsk, int fault)
c4aba4a8 171{
f672b49b 172 unsigned lsb = 0;
c4aba4a8
HH
173 siginfo_t info;
174
2d4a7167
IM
175 info.si_signo = si_signo;
176 info.si_errno = 0;
177 info.si_code = si_code;
178 info.si_addr = (void __user *)address;
f672b49b
AK
179 if (fault & VM_FAULT_HWPOISON_LARGE)
180 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
181 if (fault & VM_FAULT_HWPOISON)
182 lsb = PAGE_SHIFT;
183 info.si_addr_lsb = lsb;
2d4a7167 184
c4aba4a8
HH
185 force_sig_info(si_signo, &info, tsk);
186}
187
f2f13a85
IM
188DEFINE_SPINLOCK(pgd_lock);
189LIST_HEAD(pgd_list);
190
191#ifdef CONFIG_X86_32
192static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
33cb5243 193{
f2f13a85
IM
194 unsigned index = pgd_index(address);
195 pgd_t *pgd_k;
196 pud_t *pud, *pud_k;
197 pmd_t *pmd, *pmd_k;
2d4a7167 198
f2f13a85
IM
199 pgd += index;
200 pgd_k = init_mm.pgd + index;
201
202 if (!pgd_present(*pgd_k))
203 return NULL;
204
205 /*
206 * set_pgd(pgd, *pgd_k); here would be useless on PAE
207 * and redundant with the set_pmd() on non-PAE. As would
208 * set_pud.
209 */
210 pud = pud_offset(pgd, address);
211 pud_k = pud_offset(pgd_k, address);
212 if (!pud_present(*pud_k))
213 return NULL;
214
215 pmd = pmd_offset(pud, address);
216 pmd_k = pmd_offset(pud_k, address);
217 if (!pmd_present(*pmd_k))
218 return NULL;
219
b8bcfe99 220 if (!pmd_present(*pmd))
f2f13a85 221 set_pmd(pmd, *pmd_k);
b8bcfe99 222 else
f2f13a85 223 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
f2f13a85
IM
224
225 return pmd_k;
226}
227
228void vmalloc_sync_all(void)
229{
230 unsigned long address;
231
232 if (SHARED_KERNEL_PMD)
233 return;
234
235 for (address = VMALLOC_START & PMD_MASK;
236 address >= TASK_SIZE && address < FIXADDR_TOP;
237 address += PMD_SIZE) {
f2f13a85
IM
238 struct page *page;
239
a79e53d8 240 spin_lock(&pgd_lock);
f2f13a85 241 list_for_each_entry(page, &pgd_list, lru) {
617d34d9 242 spinlock_t *pgt_lock;
f01f7c56 243 pmd_t *ret;
617d34d9 244
a79e53d8 245 /* the pgt_lock only for Xen */
617d34d9
JF
246 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
247
248 spin_lock(pgt_lock);
249 ret = vmalloc_sync_one(page_address(page), address);
250 spin_unlock(pgt_lock);
251
252 if (!ret)
f2f13a85
IM
253 break;
254 }
a79e53d8 255 spin_unlock(&pgd_lock);
f2f13a85
IM
256 }
257}
258
259/*
260 * 32-bit:
261 *
262 * Handle a fault on the vmalloc or module mapping area
263 */
9326638c 264static noinline int vmalloc_fault(unsigned long address)
f2f13a85
IM
265{
266 unsigned long pgd_paddr;
267 pmd_t *pmd_k;
268 pte_t *pte_k;
269
270 /* Make sure we are in vmalloc area: */
271 if (!(address >= VMALLOC_START && address < VMALLOC_END))
272 return -1;
273
ebc8827f
FW
274 WARN_ON_ONCE(in_nmi());
275
f2f13a85
IM
276 /*
277 * Synchronize this task's top level page-table
278 * with the 'reference' page table.
279 *
280 * Do _not_ use "current" here. We might be inside
281 * an interrupt in the middle of a task switch..
282 */
283 pgd_paddr = read_cr3();
284 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
285 if (!pmd_k)
286 return -1;
287
288 pte_k = pte_offset_kernel(pmd_k, address);
289 if (!pte_present(*pte_k))
290 return -1;
291
292 return 0;
293}
9326638c 294NOKPROBE_SYMBOL(vmalloc_fault);
f2f13a85
IM
295
296/*
297 * Did it hit the DOS screen memory VA from vm86 mode?
298 */
299static inline void
300check_v8086_mode(struct pt_regs *regs, unsigned long address,
301 struct task_struct *tsk)
302{
303 unsigned long bit;
304
305 if (!v8086_mode(regs))
306 return;
307
308 bit = (address - 0xA0000) >> PAGE_SHIFT;
309 if (bit < 32)
310 tsk->thread.screen_bitmap |= 1 << bit;
33cb5243 311}
1da177e4 312
087975b0 313static bool low_pfn(unsigned long pfn)
1da177e4 314{
087975b0
AM
315 return pfn < max_low_pfn;
316}
1156e098 317
087975b0
AM
318static void dump_pagetable(unsigned long address)
319{
320 pgd_t *base = __va(read_cr3());
321 pgd_t *pgd = &base[pgd_index(address)];
322 pmd_t *pmd;
323 pte_t *pte;
2d4a7167 324
1156e098 325#ifdef CONFIG_X86_PAE
087975b0
AM
326 printk("*pdpt = %016Lx ", pgd_val(*pgd));
327 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
328 goto out;
1156e098 329#endif
087975b0
AM
330 pmd = pmd_offset(pud_offset(pgd, address), address);
331 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
1156e098
HH
332
333 /*
334 * We must not directly access the pte in the highpte
335 * case if the page table is located in highmem.
336 * And let's rather not kmap-atomic the pte, just in case
2d4a7167 337 * it's allocated already:
1156e098 338 */
087975b0
AM
339 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
340 goto out;
1156e098 341
087975b0
AM
342 pte = pte_offset_kernel(pmd, address);
343 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
344out:
1156e098 345 printk("\n");
f2f13a85
IM
346}
347
348#else /* CONFIG_X86_64: */
349
350void vmalloc_sync_all(void)
351{
9661d5bc 352 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END, 0);
f2f13a85
IM
353}
354
355/*
356 * 64-bit:
357 *
358 * Handle a fault on the vmalloc area
359 *
360 * This assumes no large pages in there.
361 */
9326638c 362static noinline int vmalloc_fault(unsigned long address)
f2f13a85
IM
363{
364 pgd_t *pgd, *pgd_ref;
365 pud_t *pud, *pud_ref;
366 pmd_t *pmd, *pmd_ref;
367 pte_t *pte, *pte_ref;
368
369 /* Make sure we are in vmalloc area: */
370 if (!(address >= VMALLOC_START && address < VMALLOC_END))
371 return -1;
372
ebc8827f
FW
373 WARN_ON_ONCE(in_nmi());
374
f2f13a85
IM
375 /*
376 * Copy kernel mappings over when needed. This can also
377 * happen within a race in page table update. In the later
378 * case just flush:
379 */
380 pgd = pgd_offset(current->active_mm, address);
381 pgd_ref = pgd_offset_k(address);
382 if (pgd_none(*pgd_ref))
383 return -1;
384
1160c277 385 if (pgd_none(*pgd)) {
f2f13a85 386 set_pgd(pgd, *pgd_ref);
1160c277
SK
387 arch_flush_lazy_mmu_mode();
388 } else {
f2f13a85 389 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
1160c277 390 }
f2f13a85
IM
391
392 /*
393 * Below here mismatches are bugs because these lower tables
394 * are shared:
395 */
396
397 pud = pud_offset(pgd, address);
398 pud_ref = pud_offset(pgd_ref, address);
399 if (pud_none(*pud_ref))
400 return -1;
401
402 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
403 BUG();
404
405 pmd = pmd_offset(pud, address);
406 pmd_ref = pmd_offset(pud_ref, address);
407 if (pmd_none(*pmd_ref))
408 return -1;
409
410 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
411 BUG();
412
413 pte_ref = pte_offset_kernel(pmd_ref, address);
414 if (!pte_present(*pte_ref))
415 return -1;
416
417 pte = pte_offset_kernel(pmd, address);
418
419 /*
420 * Don't use pte_page here, because the mappings can point
421 * outside mem_map, and the NUMA hash lookup cannot handle
422 * that:
423 */
424 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
425 BUG();
426
427 return 0;
428}
9326638c 429NOKPROBE_SYMBOL(vmalloc_fault);
f2f13a85 430
e05139f2 431#ifdef CONFIG_CPU_SUP_AMD
f2f13a85 432static const char errata93_warning[] =
ad361c98
JP
433KERN_ERR
434"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
435"******* Working around it, but it may cause SEGVs or burn power.\n"
436"******* Please consider a BIOS update.\n"
437"******* Disabling USB legacy in the BIOS may also help.\n";
e05139f2 438#endif
f2f13a85
IM
439
440/*
441 * No vm86 mode in 64-bit mode:
442 */
443static inline void
444check_v8086_mode(struct pt_regs *regs, unsigned long address,
445 struct task_struct *tsk)
446{
447}
448
449static int bad_address(void *p)
450{
451 unsigned long dummy;
452
453 return probe_kernel_address((unsigned long *)p, dummy);
454}
455
456static void dump_pagetable(unsigned long address)
457{
087975b0
AM
458 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
459 pgd_t *pgd = base + pgd_index(address);
1da177e4
LT
460 pud_t *pud;
461 pmd_t *pmd;
462 pte_t *pte;
463
2d4a7167
IM
464 if (bad_address(pgd))
465 goto bad;
466
d646bce4 467 printk("PGD %lx ", pgd_val(*pgd));
2d4a7167
IM
468
469 if (!pgd_present(*pgd))
470 goto out;
1da177e4 471
d2ae5b5f 472 pud = pud_offset(pgd, address);
2d4a7167
IM
473 if (bad_address(pud))
474 goto bad;
475
1da177e4 476 printk("PUD %lx ", pud_val(*pud));
b5360222 477 if (!pud_present(*pud) || pud_large(*pud))
2d4a7167 478 goto out;
1da177e4
LT
479
480 pmd = pmd_offset(pud, address);
2d4a7167
IM
481 if (bad_address(pmd))
482 goto bad;
483
1da177e4 484 printk("PMD %lx ", pmd_val(*pmd));
2d4a7167
IM
485 if (!pmd_present(*pmd) || pmd_large(*pmd))
486 goto out;
1da177e4
LT
487
488 pte = pte_offset_kernel(pmd, address);
2d4a7167
IM
489 if (bad_address(pte))
490 goto bad;
491
33cb5243 492 printk("PTE %lx", pte_val(*pte));
2d4a7167 493out:
1da177e4
LT
494 printk("\n");
495 return;
496bad:
497 printk("BAD\n");
8c938f9f
IM
498}
499
f2f13a85 500#endif /* CONFIG_X86_64 */
1da177e4 501
2d4a7167
IM
502/*
503 * Workaround for K8 erratum #93 & buggy BIOS.
504 *
505 * BIOS SMM functions are required to use a specific workaround
506 * to avoid corruption of the 64bit RIP register on C stepping K8.
507 *
508 * A lot of BIOS that didn't get tested properly miss this.
509 *
510 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
511 * Try to work around it here.
512 *
513 * Note we only handle faults in kernel here.
514 * Does nothing on 32-bit.
fdfe8aa8 515 */
33cb5243 516static int is_errata93(struct pt_regs *regs, unsigned long address)
1da177e4 517{
e05139f2
JB
518#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
519 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
520 || boot_cpu_data.x86 != 0xf)
521 return 0;
522
65ea5b03 523 if (address != regs->ip)
1da177e4 524 return 0;
2d4a7167 525
33cb5243 526 if ((address >> 32) != 0)
1da177e4 527 return 0;
2d4a7167 528
1da177e4 529 address |= 0xffffffffUL << 32;
33cb5243
HH
530 if ((address >= (u64)_stext && address <= (u64)_etext) ||
531 (address >= MODULES_VADDR && address <= MODULES_END)) {
a454ab31 532 printk_once(errata93_warning);
65ea5b03 533 regs->ip = address;
1da177e4
LT
534 return 1;
535 }
fdfe8aa8 536#endif
1da177e4 537 return 0;
33cb5243 538}
1da177e4 539
35f3266f 540/*
2d4a7167
IM
541 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
542 * to illegal addresses >4GB.
543 *
544 * We catch this in the page fault handler because these addresses
545 * are not reachable. Just detect this case and return. Any code
35f3266f
HH
546 * segment in LDT is compatibility mode.
547 */
548static int is_errata100(struct pt_regs *regs, unsigned long address)
549{
550#ifdef CONFIG_X86_64
2d4a7167 551 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
35f3266f
HH
552 return 1;
553#endif
554 return 0;
555}
556
29caf2f9
HH
557static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
558{
559#ifdef CONFIG_X86_F00F_BUG
560 unsigned long nr;
2d4a7167 561
29caf2f9 562 /*
2d4a7167 563 * Pentium F0 0F C7 C8 bug workaround:
29caf2f9 564 */
e2604b49 565 if (boot_cpu_has_bug(X86_BUG_F00F)) {
29caf2f9
HH
566 nr = (address - idt_descr.address) >> 3;
567
568 if (nr == 6) {
569 do_invalid_op(regs, 0);
570 return 1;
571 }
572 }
573#endif
574 return 0;
575}
576
8f766149
IM
577static const char nx_warning[] = KERN_CRIT
578"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
eff50c34
JK
579static const char smep_warning[] = KERN_CRIT
580"unable to execute userspace code (SMEP?) (uid: %d)\n";
8f766149 581
2d4a7167
IM
582static void
583show_fault_oops(struct pt_regs *regs, unsigned long error_code,
584 unsigned long address)
b3279c7f 585{
1156e098
HH
586 if (!oops_may_print())
587 return;
588
1156e098 589 if (error_code & PF_INSTR) {
93809be8 590 unsigned int level;
426e34cc
MF
591 pgd_t *pgd;
592 pte_t *pte;
2d4a7167 593
426e34cc
MF
594 pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
595 pgd += pgd_index(address);
596
597 pte = lookup_address_in_pgd(pgd, address, &level);
1156e098 598
8f766149 599 if (pte && pte_present(*pte) && !pte_exec(*pte))
078de5f7 600 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
eff50c34
JK
601 if (pte && pte_present(*pte) && pte_exec(*pte) &&
602 (pgd_flags(*pgd) & _PAGE_USER) &&
603 (read_cr4() & X86_CR4_SMEP))
604 printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
1156e098 605 }
1156e098 606
19f0dda9 607 printk(KERN_ALERT "BUG: unable to handle kernel ");
b3279c7f 608 if (address < PAGE_SIZE)
19f0dda9 609 printk(KERN_CONT "NULL pointer dereference");
b3279c7f 610 else
19f0dda9 611 printk(KERN_CONT "paging request");
2d4a7167 612
f294a8ce 613 printk(KERN_CONT " at %p\n", (void *) address);
19f0dda9 614 printk(KERN_ALERT "IP:");
5f01c988 615 printk_address(regs->ip);
2d4a7167 616
b3279c7f
HH
617 dump_pagetable(address);
618}
619
2d4a7167
IM
620static noinline void
621pgtable_bad(struct pt_regs *regs, unsigned long error_code,
622 unsigned long address)
1da177e4 623{
2d4a7167
IM
624 struct task_struct *tsk;
625 unsigned long flags;
626 int sig;
627
628 flags = oops_begin();
629 tsk = current;
630 sig = SIGKILL;
1209140c 631
1da177e4 632 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
92181f19 633 tsk->comm, address);
1da177e4 634 dump_pagetable(address);
2d4a7167
IM
635
636 tsk->thread.cr2 = address;
51e7dc70 637 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167
IM
638 tsk->thread.error_code = error_code;
639
22f5991c 640 if (__die("Bad pagetable", regs, error_code))
874d93d1 641 sig = 0;
2d4a7167 642
874d93d1 643 oops_end(flags, regs, sig);
1da177e4
LT
644}
645
2d4a7167
IM
646static noinline void
647no_context(struct pt_regs *regs, unsigned long error_code,
4fc34901 648 unsigned long address, int signal, int si_code)
92181f19
NP
649{
650 struct task_struct *tsk = current;
92181f19
NP
651 unsigned long flags;
652 int sig;
92181f19 653
2d4a7167 654 /* Are we prepared to handle this kernel fault? */
4fc34901 655 if (fixup_exception(regs)) {
c026b359
PZ
656 /*
657 * Any interrupt that takes a fault gets the fixup. This makes
658 * the below recursive fault logic only apply to a faults from
659 * task context.
660 */
661 if (in_interrupt())
662 return;
663
664 /*
665 * Per the above we're !in_interrupt(), aka. task context.
666 *
667 * In this case we need to make sure we're not recursively
668 * faulting through the emulate_vsyscall() logic.
669 */
4fc34901 670 if (current_thread_info()->sig_on_uaccess_error && signal) {
51e7dc70 671 tsk->thread.trap_nr = X86_TRAP_PF;
4fc34901
AL
672 tsk->thread.error_code = error_code | PF_USER;
673 tsk->thread.cr2 = address;
674
675 /* XXX: hwpoison faults will set the wrong code. */
676 force_sig_info_fault(signal, si_code, address, tsk, 0);
677 }
c026b359
PZ
678
679 /*
680 * Barring that, we can do the fixup and be happy.
681 */
92181f19 682 return;
4fc34901 683 }
92181f19
NP
684
685 /*
2d4a7167
IM
686 * 32-bit:
687 *
688 * Valid to do another page fault here, because if this fault
689 * had been triggered by is_prefetch fixup_exception would have
690 * handled it.
691 *
692 * 64-bit:
92181f19 693 *
2d4a7167 694 * Hall of shame of CPU/BIOS bugs.
92181f19
NP
695 */
696 if (is_prefetch(regs, error_code, address))
697 return;
698
699 if (is_errata93(regs, address))
700 return;
701
702 /*
703 * Oops. The kernel tried to access some bad page. We'll have to
2d4a7167 704 * terminate things with extreme prejudice:
92181f19 705 */
92181f19 706 flags = oops_begin();
92181f19
NP
707
708 show_fault_oops(regs, error_code, address);
709
a70857e4 710 if (task_stack_end_corrupted(tsk))
b0f4c4b3 711 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
19803078 712
1cc99544 713 tsk->thread.cr2 = address;
51e7dc70 714 tsk->thread.trap_nr = X86_TRAP_PF;
1cc99544 715 tsk->thread.error_code = error_code;
92181f19 716
92181f19
NP
717 sig = SIGKILL;
718 if (__die("Oops", regs, error_code))
719 sig = 0;
2d4a7167 720
92181f19 721 /* Executive summary in case the body of the oops scrolled away */
b0f4c4b3 722 printk(KERN_DEFAULT "CR2: %016lx\n", address);
2d4a7167 723
92181f19 724 oops_end(flags, regs, sig);
92181f19
NP
725}
726
2d4a7167
IM
727/*
728 * Print out info about fatal segfaults, if the show_unhandled_signals
729 * sysctl is set:
730 */
731static inline void
732show_signal_msg(struct pt_regs *regs, unsigned long error_code,
733 unsigned long address, struct task_struct *tsk)
734{
735 if (!unhandled_signal(tsk, SIGSEGV))
736 return;
737
738 if (!printk_ratelimit())
739 return;
740
a1a08d1c 741 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
2d4a7167
IM
742 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
743 tsk->comm, task_pid_nr(tsk), address,
744 (void *)regs->ip, (void *)regs->sp, error_code);
745
746 print_vma_addr(KERN_CONT " in ", regs->ip);
747
748 printk(KERN_CONT "\n");
749}
750
751static void
752__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
753 unsigned long address, int si_code)
92181f19
NP
754{
755 struct task_struct *tsk = current;
756
757 /* User mode accesses just cause a SIGSEGV */
758 if (error_code & PF_USER) {
759 /*
2d4a7167 760 * It's possible to have interrupts off here:
92181f19
NP
761 */
762 local_irq_enable();
763
764 /*
765 * Valid to do another page fault here because this one came
2d4a7167 766 * from user space:
92181f19
NP
767 */
768 if (is_prefetch(regs, error_code, address))
769 return;
770
771 if (is_errata100(regs, address))
772 return;
773
3ae36655
AL
774#ifdef CONFIG_X86_64
775 /*
776 * Instruction fetch faults in the vsyscall page might need
777 * emulation.
778 */
779 if (unlikely((error_code & PF_INSTR) &&
f40c3300 780 ((address & ~0xfff) == VSYSCALL_ADDR))) {
3ae36655
AL
781 if (emulate_vsyscall(regs, address))
782 return;
783 }
784#endif
e575a86f
KC
785 /* Kernel addresses are always protection faults: */
786 if (address >= TASK_SIZE)
787 error_code |= PF_PROT;
3ae36655 788
e575a86f 789 if (likely(show_unhandled_signals))
2d4a7167
IM
790 show_signal_msg(regs, error_code, address, tsk);
791
2d4a7167 792 tsk->thread.cr2 = address;
e575a86f 793 tsk->thread.error_code = error_code;
51e7dc70 794 tsk->thread.trap_nr = X86_TRAP_PF;
92181f19 795
f672b49b 796 force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
2d4a7167 797
92181f19
NP
798 return;
799 }
800
801 if (is_f00f_bug(regs, address))
802 return;
803
4fc34901 804 no_context(regs, error_code, address, SIGSEGV, si_code);
92181f19
NP
805}
806
2d4a7167
IM
807static noinline void
808bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
809 unsigned long address)
92181f19
NP
810{
811 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
812}
813
2d4a7167
IM
814static void
815__bad_area(struct pt_regs *regs, unsigned long error_code,
816 unsigned long address, int si_code)
92181f19
NP
817{
818 struct mm_struct *mm = current->mm;
819
820 /*
821 * Something tried to access memory that isn't in our memory map..
822 * Fix it, but check if it's kernel or user first..
823 */
824 up_read(&mm->mmap_sem);
825
826 __bad_area_nosemaphore(regs, error_code, address, si_code);
827}
828
2d4a7167
IM
829static noinline void
830bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
92181f19
NP
831{
832 __bad_area(regs, error_code, address, SEGV_MAPERR);
833}
834
2d4a7167
IM
835static noinline void
836bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
837 unsigned long address)
92181f19
NP
838{
839 __bad_area(regs, error_code, address, SEGV_ACCERR);
840}
841
2d4a7167 842static void
a6e04aa9
AK
843do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
844 unsigned int fault)
92181f19
NP
845{
846 struct task_struct *tsk = current;
a6e04aa9 847 int code = BUS_ADRERR;
92181f19 848
2d4a7167 849 /* Kernel mode? Handle exceptions or die: */
96054569 850 if (!(error_code & PF_USER)) {
4fc34901 851 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
96054569
LT
852 return;
853 }
2d4a7167 854
cd1b68f0 855 /* User-space => ok to do another page fault: */
92181f19
NP
856 if (is_prefetch(regs, error_code, address))
857 return;
2d4a7167
IM
858
859 tsk->thread.cr2 = address;
860 tsk->thread.error_code = error_code;
51e7dc70 861 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167 862
a6e04aa9 863#ifdef CONFIG_MEMORY_FAILURE
f672b49b 864 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
a6e04aa9
AK
865 printk(KERN_ERR
866 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
867 tsk->comm, tsk->pid, address);
868 code = BUS_MCEERR_AR;
869 }
870#endif
f672b49b 871 force_sig_info_fault(SIGBUS, code, address, tsk, fault);
92181f19
NP
872}
873
3a13c4d7 874static noinline void
2d4a7167
IM
875mm_fault_error(struct pt_regs *regs, unsigned long error_code,
876 unsigned long address, unsigned int fault)
92181f19 877{
3a13c4d7 878 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
3a13c4d7
JW
879 no_context(regs, error_code, address, 0, 0);
880 return;
b80ef10e 881 }
b80ef10e 882
2d4a7167 883 if (fault & VM_FAULT_OOM) {
f8626854
AV
884 /* Kernel mode? Handle exceptions or die: */
885 if (!(error_code & PF_USER)) {
4fc34901
AL
886 no_context(regs, error_code, address,
887 SIGSEGV, SEGV_MAPERR);
3a13c4d7 888 return;
f8626854
AV
889 }
890
c2d23f91
DR
891 /*
892 * We ran out of memory, call the OOM killer, and return the
893 * userspace (which will retry the fault, or kill us if we got
894 * oom-killed):
895 */
896 pagefault_out_of_memory();
2d4a7167 897 } else {
f672b49b
AK
898 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
899 VM_FAULT_HWPOISON_LARGE))
a6e04aa9 900 do_sigbus(regs, error_code, address, fault);
33692f27
LT
901 else if (fault & VM_FAULT_SIGSEGV)
902 bad_area_nosemaphore(regs, error_code, address);
2d4a7167
IM
903 else
904 BUG();
905 }
92181f19
NP
906}
907
d8b57bb7
TG
908static int spurious_fault_check(unsigned long error_code, pte_t *pte)
909{
910 if ((error_code & PF_WRITE) && !pte_write(*pte))
911 return 0;
2d4a7167 912
d8b57bb7
TG
913 if ((error_code & PF_INSTR) && !pte_exec(*pte))
914 return 0;
915
916 return 1;
917}
918
5b727a3b 919/*
2d4a7167
IM
920 * Handle a spurious fault caused by a stale TLB entry.
921 *
922 * This allows us to lazily refresh the TLB when increasing the
923 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
924 * eagerly is very expensive since that implies doing a full
925 * cross-processor TLB flush, even if no stale TLB entries exist
926 * on other processors.
927 *
31668511
DV
928 * Spurious faults may only occur if the TLB contains an entry with
929 * fewer permission than the page table entry. Non-present (P = 0)
930 * and reserved bit (R = 1) faults are never spurious.
931 *
5b727a3b
JF
932 * There are no security implications to leaving a stale TLB when
933 * increasing the permissions on a page.
31668511
DV
934 *
935 * Returns non-zero if a spurious fault was handled, zero otherwise.
936 *
937 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
938 * (Optional Invalidation).
5b727a3b 939 */
9326638c 940static noinline int
2d4a7167 941spurious_fault(unsigned long error_code, unsigned long address)
5b727a3b
JF
942{
943 pgd_t *pgd;
944 pud_t *pud;
945 pmd_t *pmd;
946 pte_t *pte;
3c3e5694 947 int ret;
5b727a3b 948
31668511
DV
949 /*
950 * Only writes to RO or instruction fetches from NX may cause
951 * spurious faults.
952 *
953 * These could be from user or supervisor accesses but the TLB
954 * is only lazily flushed after a kernel mapping protection
955 * change, so user accesses are not expected to cause spurious
956 * faults.
957 */
958 if (error_code != (PF_WRITE | PF_PROT)
959 && error_code != (PF_INSTR | PF_PROT))
5b727a3b
JF
960 return 0;
961
962 pgd = init_mm.pgd + pgd_index(address);
963 if (!pgd_present(*pgd))
964 return 0;
965
966 pud = pud_offset(pgd, address);
967 if (!pud_present(*pud))
968 return 0;
969
d8b57bb7
TG
970 if (pud_large(*pud))
971 return spurious_fault_check(error_code, (pte_t *) pud);
972
5b727a3b
JF
973 pmd = pmd_offset(pud, address);
974 if (!pmd_present(*pmd))
975 return 0;
976
d8b57bb7
TG
977 if (pmd_large(*pmd))
978 return spurious_fault_check(error_code, (pte_t *) pmd);
979
5b727a3b 980 pte = pte_offset_kernel(pmd, address);
954f8571 981 if (!pte_present(*pte))
5b727a3b
JF
982 return 0;
983
3c3e5694
SR
984 ret = spurious_fault_check(error_code, pte);
985 if (!ret)
986 return 0;
987
988 /*
2d4a7167
IM
989 * Make sure we have permissions in PMD.
990 * If not, then there's a bug in the page tables:
3c3e5694
SR
991 */
992 ret = spurious_fault_check(error_code, (pte_t *) pmd);
993 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
2d4a7167 994
3c3e5694 995 return ret;
5b727a3b 996}
9326638c 997NOKPROBE_SYMBOL(spurious_fault);
5b727a3b 998
abd4f750 999int show_unhandled_signals = 1;
1da177e4 1000
2d4a7167 1001static inline int
68da336a 1002access_error(unsigned long error_code, struct vm_area_struct *vma)
92181f19 1003{
68da336a 1004 if (error_code & PF_WRITE) {
2d4a7167 1005 /* write, present and write, not present: */
92181f19
NP
1006 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1007 return 1;
2d4a7167 1008 return 0;
92181f19
NP
1009 }
1010
2d4a7167
IM
1011 /* read, present: */
1012 if (unlikely(error_code & PF_PROT))
1013 return 1;
1014
1015 /* read, not present: */
1016 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1017 return 1;
1018
92181f19
NP
1019 return 0;
1020}
1021
0973a06c
HS
1022static int fault_in_kernel_space(unsigned long address)
1023{
d9517346 1024 return address >= TASK_SIZE_MAX;
0973a06c
HS
1025}
1026
40d3cd66
PA
1027static inline bool smap_violation(int error_code, struct pt_regs *regs)
1028{
4640c7ee
PA
1029 if (!IS_ENABLED(CONFIG_X86_SMAP))
1030 return false;
1031
1032 if (!static_cpu_has(X86_FEATURE_SMAP))
1033 return false;
1034
40d3cd66
PA
1035 if (error_code & PF_USER)
1036 return false;
1037
1038 if (!user_mode_vm(regs) && (regs->flags & X86_EFLAGS_AC))
1039 return false;
1040
1041 return true;
1042}
1043
1da177e4
LT
1044/*
1045 * This routine handles page faults. It determines the address,
1046 * and the problem, and then passes it off to one of the appropriate
1047 * routines.
d4078e23
PZ
1048 *
1049 * This function must have noinline because both callers
1050 * {,trace_}do_page_fault() have notrace on. Having this an actual function
1051 * guarantees there's a function trace entry.
1da177e4 1052 */
9326638c 1053static noinline void
0ac09f9f
JO
1054__do_page_fault(struct pt_regs *regs, unsigned long error_code,
1055 unsigned long address)
1da177e4 1056{
2d4a7167 1057 struct vm_area_struct *vma;
1da177e4
LT
1058 struct task_struct *tsk;
1059 struct mm_struct *mm;
26178ec1 1060 int fault, major = 0;
759496ba 1061 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1da177e4 1062
a9ba9a3b
AV
1063 tsk = current;
1064 mm = tsk->mm;
2d4a7167 1065
f8561296
VN
1066 /*
1067 * Detect and handle instructions that would cause a page fault for
1068 * both a tracked kernel page and a userspace page.
1069 */
1070 if (kmemcheck_active(regs))
1071 kmemcheck_hide(regs);
5dfaf90f 1072 prefetchw(&mm->mmap_sem);
f8561296 1073
0fd0e3da 1074 if (unlikely(kmmio_fault(regs, address)))
86069782 1075 return;
1da177e4
LT
1076
1077 /*
1078 * We fault-in kernel-space virtual memory on-demand. The
1079 * 'reference' page table is init_mm.pgd.
1080 *
1081 * NOTE! We MUST NOT take any locks for this case. We may
1082 * be in an interrupt or a critical region, and should
1083 * only copy the information from the master page table,
1084 * nothing more.
1085 *
1086 * This verifies that the fault happens in kernel space
1087 * (error_code & 4) == 0, and that the fault was not a
8b1bde93 1088 * protection error (error_code & 9) == 0.
1da177e4 1089 */
0973a06c 1090 if (unlikely(fault_in_kernel_space(address))) {
f8561296
VN
1091 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1092 if (vmalloc_fault(address) >= 0)
1093 return;
1094
1095 if (kmemcheck_fault(regs, address, error_code))
1096 return;
1097 }
5b727a3b 1098
2d4a7167 1099 /* Can handle a stale RO->RW TLB: */
92181f19 1100 if (spurious_fault(error_code, address))
5b727a3b
JF
1101 return;
1102
2d4a7167 1103 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1104 if (kprobes_fault(regs))
9be260a6 1105 return;
f8c2ee22
HH
1106 /*
1107 * Don't take the mm semaphore here. If we fixup a prefetch
2d4a7167 1108 * fault we could otherwise deadlock:
f8c2ee22 1109 */
92181f19 1110 bad_area_nosemaphore(regs, error_code, address);
2d4a7167 1111
92181f19 1112 return;
f8c2ee22
HH
1113 }
1114
2d4a7167 1115 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1116 if (unlikely(kprobes_fault(regs)))
9be260a6 1117 return;
8c914cb7 1118
66c58156 1119 if (unlikely(error_code & PF_RSVD))
92181f19 1120 pgtable_bad(regs, error_code, address);
1da177e4 1121
4640c7ee
PA
1122 if (unlikely(smap_violation(error_code, regs))) {
1123 bad_area_nosemaphore(regs, error_code, address);
1124 return;
40d3cd66
PA
1125 }
1126
1da177e4 1127 /*
2d4a7167
IM
1128 * If we're in an interrupt, have no user context or are running
1129 * in an atomic region then we must not take the fault:
1da177e4 1130 */
92181f19
NP
1131 if (unlikely(in_atomic() || !mm)) {
1132 bad_area_nosemaphore(regs, error_code, address);
1133 return;
1134 }
1da177e4 1135
e00b12e6
PZ
1136 /*
1137 * It's safe to allow irq's after cr2 has been saved and the
1138 * vmalloc fault has been handled.
1139 *
1140 * User-mode registers count as a user access even for any
1141 * potential system fault or CPU buglet:
1142 */
1143 if (user_mode_vm(regs)) {
1144 local_irq_enable();
1145 error_code |= PF_USER;
1146 flags |= FAULT_FLAG_USER;
1147 } else {
1148 if (regs->flags & X86_EFLAGS_IF)
1149 local_irq_enable();
1150 }
1151
1152 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1153
759496ba
JW
1154 if (error_code & PF_WRITE)
1155 flags |= FAULT_FLAG_WRITE;
1156
3a1dfe6e
IM
1157 /*
1158 * When running in the kernel we expect faults to occur only to
2d4a7167
IM
1159 * addresses in user space. All other faults represent errors in
1160 * the kernel and should generate an OOPS. Unfortunately, in the
1161 * case of an erroneous fault occurring in a code path which already
1162 * holds mmap_sem we will deadlock attempting to validate the fault
1163 * against the address space. Luckily the kernel only validly
1164 * references user space from well defined areas of code, which are
1165 * listed in the exceptions table.
1da177e4
LT
1166 *
1167 * As the vast majority of faults will be valid we will only perform
2d4a7167
IM
1168 * the source reference check when there is a possibility of a
1169 * deadlock. Attempt to lock the address space, if we cannot we then
1170 * validate the source. If this is invalid we can skip the address
1171 * space check, thus avoiding the deadlock:
1da177e4 1172 */
92181f19 1173 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
66c58156 1174 if ((error_code & PF_USER) == 0 &&
92181f19
NP
1175 !search_exception_tables(regs->ip)) {
1176 bad_area_nosemaphore(regs, error_code, address);
1177 return;
1178 }
d065bd81 1179retry:
1da177e4 1180 down_read(&mm->mmap_sem);
01006074
PZ
1181 } else {
1182 /*
2d4a7167
IM
1183 * The above down_read_trylock() might have succeeded in
1184 * which case we'll have missed the might_sleep() from
1185 * down_read():
01006074
PZ
1186 */
1187 might_sleep();
1da177e4
LT
1188 }
1189
1190 vma = find_vma(mm, address);
92181f19
NP
1191 if (unlikely(!vma)) {
1192 bad_area(regs, error_code, address);
1193 return;
1194 }
1195 if (likely(vma->vm_start <= address))
1da177e4 1196 goto good_area;
92181f19
NP
1197 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1198 bad_area(regs, error_code, address);
1199 return;
1200 }
33cb5243 1201 if (error_code & PF_USER) {
6f4d368e
HH
1202 /*
1203 * Accessing the stack below %sp is always a bug.
1204 * The large cushion allows instructions like enter
2d4a7167 1205 * and pusha to work. ("enter $65535, $31" pushes
6f4d368e 1206 * 32 pointers and then decrements %sp by 65535.)
03fdc2c2 1207 */
92181f19
NP
1208 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1209 bad_area(regs, error_code, address);
1210 return;
1211 }
1da177e4 1212 }
92181f19
NP
1213 if (unlikely(expand_stack(vma, address))) {
1214 bad_area(regs, error_code, address);
1215 return;
1216 }
1217
1218 /*
1219 * Ok, we have a good vm_area for this memory access, so
1220 * we can handle it..
1221 */
1da177e4 1222good_area:
68da336a 1223 if (unlikely(access_error(error_code, vma))) {
92181f19
NP
1224 bad_area_access_error(regs, error_code, address);
1225 return;
1da177e4
LT
1226 }
1227
1228 /*
1229 * If for any reason at all we couldn't handle the fault,
1230 * make sure we exit gracefully rather than endlessly redo
9a95f3cf
PC
1231 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1232 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1da177e4 1233 */
d065bd81 1234 fault = handle_mm_fault(mm, vma, address, flags);
26178ec1 1235 major |= fault & VM_FAULT_MAJOR;
2d4a7167 1236
3a13c4d7 1237 /*
26178ec1
LT
1238 * If we need to retry the mmap_sem has already been released,
1239 * and if there is a fatal signal pending there is no guarantee
1240 * that we made any progress. Handle this case first.
3a13c4d7 1241 */
26178ec1
LT
1242 if (unlikely(fault & VM_FAULT_RETRY)) {
1243 /* Retry at most once */
1244 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1245 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1246 flags |= FAULT_FLAG_TRIED;
1247 if (!fatal_signal_pending(tsk))
1248 goto retry;
1249 }
1250
1251 /* User mode? Just return to handle the fatal exception */
cf3c0a15 1252 if (flags & FAULT_FLAG_USER)
26178ec1
LT
1253 return;
1254
1255 /* Not returning to user mode? Handle exceptions or die: */
1256 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
3a13c4d7 1257 return;
26178ec1 1258 }
3a13c4d7 1259
26178ec1 1260 up_read(&mm->mmap_sem);
3a13c4d7
JW
1261 if (unlikely(fault & VM_FAULT_ERROR)) {
1262 mm_fault_error(regs, error_code, address, fault);
1263 return;
37b23e05
KM
1264 }
1265
d065bd81 1266 /*
26178ec1
LT
1267 * Major/minor page fault accounting. If any of the events
1268 * returned VM_FAULT_MAJOR, we account it as a major fault.
d065bd81 1269 */
26178ec1
LT
1270 if (major) {
1271 tsk->maj_flt++;
1272 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1273 } else {
1274 tsk->min_flt++;
1275 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
ac17dc8e 1276 }
d729ab35 1277
8c938f9f 1278 check_v8086_mode(regs, address, tsk);
1da177e4 1279}
9326638c 1280NOKPROBE_SYMBOL(__do_page_fault);
6ba3c97a 1281
9326638c 1282dotraplinkage void notrace
6ba3c97a
FW
1283do_page_fault(struct pt_regs *regs, unsigned long error_code)
1284{
d4078e23 1285 unsigned long address = read_cr2(); /* Get the faulting address */
6c1e0256 1286 enum ctx_state prev_state;
d4078e23
PZ
1287
1288 /*
1289 * We must have this function tagged with __kprobes, notrace and call
1290 * read_cr2() before calling anything else. To avoid calling any kind
1291 * of tracing machinery before we've observed the CR2 value.
1292 *
1293 * exception_{enter,exit}() contain all sorts of tracepoints.
1294 */
6c1e0256
FW
1295
1296 prev_state = exception_enter();
0ac09f9f 1297 __do_page_fault(regs, error_code, address);
6c1e0256 1298 exception_exit(prev_state);
6ba3c97a 1299}
9326638c 1300NOKPROBE_SYMBOL(do_page_fault);
25c74b10 1301
d4078e23 1302#ifdef CONFIG_TRACING
9326638c
MH
1303static nokprobe_inline void
1304trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1305 unsigned long error_code)
d34603b0
SA
1306{
1307 if (user_mode(regs))
d4078e23 1308 trace_page_fault_user(address, regs, error_code);
d34603b0 1309 else
d4078e23 1310 trace_page_fault_kernel(address, regs, error_code);
d34603b0
SA
1311}
1312
9326638c 1313dotraplinkage void notrace
25c74b10
SA
1314trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1315{
0ac09f9f
JO
1316 /*
1317 * The exception_enter and tracepoint processing could
1318 * trigger another page faults (user space callchain
1319 * reading) and destroy the original cr2 value, so read
1320 * the faulting address now.
1321 */
1322 unsigned long address = read_cr2();
d4078e23 1323 enum ctx_state prev_state;
25c74b10
SA
1324
1325 prev_state = exception_enter();
d4078e23 1326 trace_page_fault_entries(address, regs, error_code);
0ac09f9f 1327 __do_page_fault(regs, error_code, address);
25c74b10
SA
1328 exception_exit(prev_state);
1329}
9326638c 1330NOKPROBE_SYMBOL(trace_do_page_fault);
d4078e23 1331#endif /* CONFIG_TRACING */
This page took 0.822819 seconds and 5 git commands to generate.