Merge tag 'pci-v3.15-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[deliverable/linux.git] / arch / x86 / mm / fault.c
CommitLineData
1da177e4 1/*
1da177e4 2 * Copyright (C) 1995 Linus Torvalds
2d4a7167 3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
f8eeb2e6 4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
1da177e4 5 */
a2bcd473
IM
6#include <linux/magic.h> /* STACK_END_MAGIC */
7#include <linux/sched.h> /* test_thread_flag(), ... */
8#include <linux/kdebug.h> /* oops_begin/end, ... */
9#include <linux/module.h> /* search_exception_table */
10#include <linux/bootmem.h> /* max_low_pfn */
11#include <linux/kprobes.h> /* __kprobes, ... */
12#include <linux/mmiotrace.h> /* kmmio_handler, ... */
cdd6c482 13#include <linux/perf_event.h> /* perf_sw_event */
f672b49b 14#include <linux/hugetlb.h> /* hstate_index_to_shift */
268bb0ce 15#include <linux/prefetch.h> /* prefetchw */
56dd9470 16#include <linux/context_tracking.h> /* exception_enter(), ... */
2d4a7167 17
a2bcd473
IM
18#include <asm/traps.h> /* dotraplinkage, ... */
19#include <asm/pgalloc.h> /* pgd_*(), ... */
f8561296 20#include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
fab1167c 21#include <asm/fixmap.h> /* VSYSCALL_START */
1da177e4 22
d34603b0
SA
23#define CREATE_TRACE_POINTS
24#include <asm/trace/exceptions.h>
25
33cb5243 26/*
2d4a7167
IM
27 * Page fault error code bits:
28 *
29 * bit 0 == 0: no page found 1: protection fault
30 * bit 1 == 0: read access 1: write access
31 * bit 2 == 0: kernel-mode access 1: user-mode access
32 * bit 3 == 1: use of reserved bit detected
33 * bit 4 == 1: fault was an instruction fetch
33cb5243 34 */
2d4a7167
IM
35enum x86_pf_error_code {
36
37 PF_PROT = 1 << 0,
38 PF_WRITE = 1 << 1,
39 PF_USER = 1 << 2,
40 PF_RSVD = 1 << 3,
41 PF_INSTR = 1 << 4,
42};
66c58156 43
b814d41f 44/*
b319eed0
IM
45 * Returns 0 if mmiotrace is disabled, or if the fault is not
46 * handled by mmiotrace:
b814d41f 47 */
62c9295f
MH
48static inline int __kprobes
49kmmio_fault(struct pt_regs *regs, unsigned long addr)
86069782 50{
0fd0e3da
PP
51 if (unlikely(is_kmmio_active()))
52 if (kmmio_handler(regs, addr) == 1)
53 return -1;
0fd0e3da 54 return 0;
86069782
PP
55}
56
e00b12e6 57static inline int __kprobes kprobes_fault(struct pt_regs *regs)
1bd858a5 58{
74a0b576
CH
59 int ret = 0;
60
61 /* kprobe_running() needs smp_processor_id() */
b1801812 62 if (kprobes_built_in() && !user_mode_vm(regs)) {
74a0b576
CH
63 preempt_disable();
64 if (kprobe_running() && kprobe_fault_handler(regs, 14))
65 ret = 1;
66 preempt_enable();
67 }
1bd858a5 68
74a0b576 69 return ret;
33cb5243 70}
1bd858a5 71
1dc85be0 72/*
2d4a7167
IM
73 * Prefetch quirks:
74 *
75 * 32-bit mode:
76 *
77 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
78 * Check that here and ignore it.
1dc85be0 79 *
2d4a7167 80 * 64-bit mode:
1dc85be0 81 *
2d4a7167
IM
82 * Sometimes the CPU reports invalid exceptions on prefetch.
83 * Check that here and ignore it.
84 *
85 * Opcode checker based on code by Richard Brunner.
1dc85be0 86 */
107a0367
IM
87static inline int
88check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
89 unsigned char opcode, int *prefetch)
90{
91 unsigned char instr_hi = opcode & 0xf0;
92 unsigned char instr_lo = opcode & 0x0f;
93
94 switch (instr_hi) {
95 case 0x20:
96 case 0x30:
97 /*
98 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
99 * In X86_64 long mode, the CPU will signal invalid
100 * opcode if some of these prefixes are present so
101 * X86_64 will never get here anyway
102 */
103 return ((instr_lo & 7) == 0x6);
104#ifdef CONFIG_X86_64
105 case 0x40:
106 /*
107 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
108 * Need to figure out under what instruction mode the
109 * instruction was issued. Could check the LDT for lm,
110 * but for now it's good enough to assume that long
111 * mode only uses well known segments or kernel.
112 */
318f5a2a 113 return (!user_mode(regs) || user_64bit_mode(regs));
107a0367
IM
114#endif
115 case 0x60:
116 /* 0x64 thru 0x67 are valid prefixes in all modes. */
117 return (instr_lo & 0xC) == 0x4;
118 case 0xF0:
119 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
120 return !instr_lo || (instr_lo>>1) == 1;
121 case 0x00:
122 /* Prefetch instruction is 0x0F0D or 0x0F18 */
123 if (probe_kernel_address(instr, opcode))
124 return 0;
125
126 *prefetch = (instr_lo == 0xF) &&
127 (opcode == 0x0D || opcode == 0x18);
128 return 0;
129 default:
130 return 0;
131 }
132}
133
2d4a7167
IM
134static int
135is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
33cb5243 136{
2d4a7167 137 unsigned char *max_instr;
ab2bf0c1 138 unsigned char *instr;
33cb5243 139 int prefetch = 0;
1da177e4 140
3085354d
IM
141 /*
142 * If it was a exec (instruction fetch) fault on NX page, then
143 * do not ignore the fault:
144 */
66c58156 145 if (error_code & PF_INSTR)
1da177e4 146 return 0;
1dc85be0 147
107a0367 148 instr = (void *)convert_ip_to_linear(current, regs);
f1290ec9 149 max_instr = instr + 15;
1da177e4 150
76381fee 151 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
1da177e4
LT
152 return 0;
153
107a0367 154 while (instr < max_instr) {
2d4a7167 155 unsigned char opcode;
1da177e4 156
ab2bf0c1 157 if (probe_kernel_address(instr, opcode))
33cb5243 158 break;
1da177e4 159
1da177e4
LT
160 instr++;
161
107a0367 162 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
1da177e4 163 break;
1da177e4
LT
164 }
165 return prefetch;
166}
167
2d4a7167
IM
168static void
169force_sig_info_fault(int si_signo, int si_code, unsigned long address,
f672b49b 170 struct task_struct *tsk, int fault)
c4aba4a8 171{
f672b49b 172 unsigned lsb = 0;
c4aba4a8
HH
173 siginfo_t info;
174
2d4a7167
IM
175 info.si_signo = si_signo;
176 info.si_errno = 0;
177 info.si_code = si_code;
178 info.si_addr = (void __user *)address;
f672b49b
AK
179 if (fault & VM_FAULT_HWPOISON_LARGE)
180 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
181 if (fault & VM_FAULT_HWPOISON)
182 lsb = PAGE_SHIFT;
183 info.si_addr_lsb = lsb;
2d4a7167 184
c4aba4a8
HH
185 force_sig_info(si_signo, &info, tsk);
186}
187
f2f13a85
IM
188DEFINE_SPINLOCK(pgd_lock);
189LIST_HEAD(pgd_list);
190
191#ifdef CONFIG_X86_32
192static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
33cb5243 193{
f2f13a85
IM
194 unsigned index = pgd_index(address);
195 pgd_t *pgd_k;
196 pud_t *pud, *pud_k;
197 pmd_t *pmd, *pmd_k;
2d4a7167 198
f2f13a85
IM
199 pgd += index;
200 pgd_k = init_mm.pgd + index;
201
202 if (!pgd_present(*pgd_k))
203 return NULL;
204
205 /*
206 * set_pgd(pgd, *pgd_k); here would be useless on PAE
207 * and redundant with the set_pmd() on non-PAE. As would
208 * set_pud.
209 */
210 pud = pud_offset(pgd, address);
211 pud_k = pud_offset(pgd_k, address);
212 if (!pud_present(*pud_k))
213 return NULL;
214
215 pmd = pmd_offset(pud, address);
216 pmd_k = pmd_offset(pud_k, address);
217 if (!pmd_present(*pmd_k))
218 return NULL;
219
b8bcfe99 220 if (!pmd_present(*pmd))
f2f13a85 221 set_pmd(pmd, *pmd_k);
b8bcfe99 222 else
f2f13a85 223 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
f2f13a85
IM
224
225 return pmd_k;
226}
227
228void vmalloc_sync_all(void)
229{
230 unsigned long address;
231
232 if (SHARED_KERNEL_PMD)
233 return;
234
235 for (address = VMALLOC_START & PMD_MASK;
236 address >= TASK_SIZE && address < FIXADDR_TOP;
237 address += PMD_SIZE) {
f2f13a85
IM
238 struct page *page;
239
a79e53d8 240 spin_lock(&pgd_lock);
f2f13a85 241 list_for_each_entry(page, &pgd_list, lru) {
617d34d9 242 spinlock_t *pgt_lock;
f01f7c56 243 pmd_t *ret;
617d34d9 244
a79e53d8 245 /* the pgt_lock only for Xen */
617d34d9
JF
246 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
247
248 spin_lock(pgt_lock);
249 ret = vmalloc_sync_one(page_address(page), address);
250 spin_unlock(pgt_lock);
251
252 if (!ret)
f2f13a85
IM
253 break;
254 }
a79e53d8 255 spin_unlock(&pgd_lock);
f2f13a85
IM
256 }
257}
258
259/*
260 * 32-bit:
261 *
262 * Handle a fault on the vmalloc or module mapping area
263 */
62c9295f 264static noinline __kprobes int vmalloc_fault(unsigned long address)
f2f13a85
IM
265{
266 unsigned long pgd_paddr;
267 pmd_t *pmd_k;
268 pte_t *pte_k;
269
270 /* Make sure we are in vmalloc area: */
271 if (!(address >= VMALLOC_START && address < VMALLOC_END))
272 return -1;
273
ebc8827f
FW
274 WARN_ON_ONCE(in_nmi());
275
f2f13a85
IM
276 /*
277 * Synchronize this task's top level page-table
278 * with the 'reference' page table.
279 *
280 * Do _not_ use "current" here. We might be inside
281 * an interrupt in the middle of a task switch..
282 */
283 pgd_paddr = read_cr3();
284 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
285 if (!pmd_k)
286 return -1;
287
288 pte_k = pte_offset_kernel(pmd_k, address);
289 if (!pte_present(*pte_k))
290 return -1;
291
292 return 0;
293}
294
295/*
296 * Did it hit the DOS screen memory VA from vm86 mode?
297 */
298static inline void
299check_v8086_mode(struct pt_regs *regs, unsigned long address,
300 struct task_struct *tsk)
301{
302 unsigned long bit;
303
304 if (!v8086_mode(regs))
305 return;
306
307 bit = (address - 0xA0000) >> PAGE_SHIFT;
308 if (bit < 32)
309 tsk->thread.screen_bitmap |= 1 << bit;
33cb5243 310}
1da177e4 311
087975b0 312static bool low_pfn(unsigned long pfn)
1da177e4 313{
087975b0
AM
314 return pfn < max_low_pfn;
315}
1156e098 316
087975b0
AM
317static void dump_pagetable(unsigned long address)
318{
319 pgd_t *base = __va(read_cr3());
320 pgd_t *pgd = &base[pgd_index(address)];
321 pmd_t *pmd;
322 pte_t *pte;
2d4a7167 323
1156e098 324#ifdef CONFIG_X86_PAE
087975b0
AM
325 printk("*pdpt = %016Lx ", pgd_val(*pgd));
326 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
327 goto out;
1156e098 328#endif
087975b0
AM
329 pmd = pmd_offset(pud_offset(pgd, address), address);
330 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
1156e098
HH
331
332 /*
333 * We must not directly access the pte in the highpte
334 * case if the page table is located in highmem.
335 * And let's rather not kmap-atomic the pte, just in case
2d4a7167 336 * it's allocated already:
1156e098 337 */
087975b0
AM
338 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
339 goto out;
1156e098 340
087975b0
AM
341 pte = pte_offset_kernel(pmd, address);
342 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
343out:
1156e098 344 printk("\n");
f2f13a85
IM
345}
346
347#else /* CONFIG_X86_64: */
348
349void vmalloc_sync_all(void)
350{
6afb5157 351 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
f2f13a85
IM
352}
353
354/*
355 * 64-bit:
356 *
357 * Handle a fault on the vmalloc area
358 *
359 * This assumes no large pages in there.
360 */
62c9295f 361static noinline __kprobes int vmalloc_fault(unsigned long address)
f2f13a85
IM
362{
363 pgd_t *pgd, *pgd_ref;
364 pud_t *pud, *pud_ref;
365 pmd_t *pmd, *pmd_ref;
366 pte_t *pte, *pte_ref;
367
368 /* Make sure we are in vmalloc area: */
369 if (!(address >= VMALLOC_START && address < VMALLOC_END))
370 return -1;
371
ebc8827f
FW
372 WARN_ON_ONCE(in_nmi());
373
f2f13a85
IM
374 /*
375 * Copy kernel mappings over when needed. This can also
376 * happen within a race in page table update. In the later
377 * case just flush:
378 */
379 pgd = pgd_offset(current->active_mm, address);
380 pgd_ref = pgd_offset_k(address);
381 if (pgd_none(*pgd_ref))
382 return -1;
383
1160c277 384 if (pgd_none(*pgd)) {
f2f13a85 385 set_pgd(pgd, *pgd_ref);
1160c277
SK
386 arch_flush_lazy_mmu_mode();
387 } else {
f2f13a85 388 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
1160c277 389 }
f2f13a85
IM
390
391 /*
392 * Below here mismatches are bugs because these lower tables
393 * are shared:
394 */
395
396 pud = pud_offset(pgd, address);
397 pud_ref = pud_offset(pgd_ref, address);
398 if (pud_none(*pud_ref))
399 return -1;
400
401 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
402 BUG();
403
404 pmd = pmd_offset(pud, address);
405 pmd_ref = pmd_offset(pud_ref, address);
406 if (pmd_none(*pmd_ref))
407 return -1;
408
409 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
410 BUG();
411
412 pte_ref = pte_offset_kernel(pmd_ref, address);
413 if (!pte_present(*pte_ref))
414 return -1;
415
416 pte = pte_offset_kernel(pmd, address);
417
418 /*
419 * Don't use pte_page here, because the mappings can point
420 * outside mem_map, and the NUMA hash lookup cannot handle
421 * that:
422 */
423 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
424 BUG();
425
426 return 0;
427}
428
e05139f2 429#ifdef CONFIG_CPU_SUP_AMD
f2f13a85 430static const char errata93_warning[] =
ad361c98
JP
431KERN_ERR
432"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
433"******* Working around it, but it may cause SEGVs or burn power.\n"
434"******* Please consider a BIOS update.\n"
435"******* Disabling USB legacy in the BIOS may also help.\n";
e05139f2 436#endif
f2f13a85
IM
437
438/*
439 * No vm86 mode in 64-bit mode:
440 */
441static inline void
442check_v8086_mode(struct pt_regs *regs, unsigned long address,
443 struct task_struct *tsk)
444{
445}
446
447static int bad_address(void *p)
448{
449 unsigned long dummy;
450
451 return probe_kernel_address((unsigned long *)p, dummy);
452}
453
454static void dump_pagetable(unsigned long address)
455{
087975b0
AM
456 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
457 pgd_t *pgd = base + pgd_index(address);
1da177e4
LT
458 pud_t *pud;
459 pmd_t *pmd;
460 pte_t *pte;
461
2d4a7167
IM
462 if (bad_address(pgd))
463 goto bad;
464
d646bce4 465 printk("PGD %lx ", pgd_val(*pgd));
2d4a7167
IM
466
467 if (!pgd_present(*pgd))
468 goto out;
1da177e4 469
d2ae5b5f 470 pud = pud_offset(pgd, address);
2d4a7167
IM
471 if (bad_address(pud))
472 goto bad;
473
1da177e4 474 printk("PUD %lx ", pud_val(*pud));
b5360222 475 if (!pud_present(*pud) || pud_large(*pud))
2d4a7167 476 goto out;
1da177e4
LT
477
478 pmd = pmd_offset(pud, address);
2d4a7167
IM
479 if (bad_address(pmd))
480 goto bad;
481
1da177e4 482 printk("PMD %lx ", pmd_val(*pmd));
2d4a7167
IM
483 if (!pmd_present(*pmd) || pmd_large(*pmd))
484 goto out;
1da177e4
LT
485
486 pte = pte_offset_kernel(pmd, address);
2d4a7167
IM
487 if (bad_address(pte))
488 goto bad;
489
33cb5243 490 printk("PTE %lx", pte_val(*pte));
2d4a7167 491out:
1da177e4
LT
492 printk("\n");
493 return;
494bad:
495 printk("BAD\n");
8c938f9f
IM
496}
497
f2f13a85 498#endif /* CONFIG_X86_64 */
1da177e4 499
2d4a7167
IM
500/*
501 * Workaround for K8 erratum #93 & buggy BIOS.
502 *
503 * BIOS SMM functions are required to use a specific workaround
504 * to avoid corruption of the 64bit RIP register on C stepping K8.
505 *
506 * A lot of BIOS that didn't get tested properly miss this.
507 *
508 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
509 * Try to work around it here.
510 *
511 * Note we only handle faults in kernel here.
512 * Does nothing on 32-bit.
fdfe8aa8 513 */
33cb5243 514static int is_errata93(struct pt_regs *regs, unsigned long address)
1da177e4 515{
e05139f2
JB
516#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
517 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
518 || boot_cpu_data.x86 != 0xf)
519 return 0;
520
65ea5b03 521 if (address != regs->ip)
1da177e4 522 return 0;
2d4a7167 523
33cb5243 524 if ((address >> 32) != 0)
1da177e4 525 return 0;
2d4a7167 526
1da177e4 527 address |= 0xffffffffUL << 32;
33cb5243
HH
528 if ((address >= (u64)_stext && address <= (u64)_etext) ||
529 (address >= MODULES_VADDR && address <= MODULES_END)) {
a454ab31 530 printk_once(errata93_warning);
65ea5b03 531 regs->ip = address;
1da177e4
LT
532 return 1;
533 }
fdfe8aa8 534#endif
1da177e4 535 return 0;
33cb5243 536}
1da177e4 537
35f3266f 538/*
2d4a7167
IM
539 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
540 * to illegal addresses >4GB.
541 *
542 * We catch this in the page fault handler because these addresses
543 * are not reachable. Just detect this case and return. Any code
35f3266f
HH
544 * segment in LDT is compatibility mode.
545 */
546static int is_errata100(struct pt_regs *regs, unsigned long address)
547{
548#ifdef CONFIG_X86_64
2d4a7167 549 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
35f3266f
HH
550 return 1;
551#endif
552 return 0;
553}
554
29caf2f9
HH
555static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
556{
557#ifdef CONFIG_X86_F00F_BUG
558 unsigned long nr;
2d4a7167 559
29caf2f9 560 /*
2d4a7167 561 * Pentium F0 0F C7 C8 bug workaround:
29caf2f9 562 */
e2604b49 563 if (boot_cpu_has_bug(X86_BUG_F00F)) {
29caf2f9
HH
564 nr = (address - idt_descr.address) >> 3;
565
566 if (nr == 6) {
567 do_invalid_op(regs, 0);
568 return 1;
569 }
570 }
571#endif
572 return 0;
573}
574
8f766149
IM
575static const char nx_warning[] = KERN_CRIT
576"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
577
2d4a7167
IM
578static void
579show_fault_oops(struct pt_regs *regs, unsigned long error_code,
580 unsigned long address)
b3279c7f 581{
1156e098
HH
582 if (!oops_may_print())
583 return;
584
1156e098 585 if (error_code & PF_INSTR) {
93809be8 586 unsigned int level;
426e34cc
MF
587 pgd_t *pgd;
588 pte_t *pte;
2d4a7167 589
426e34cc
MF
590 pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
591 pgd += pgd_index(address);
592
593 pte = lookup_address_in_pgd(pgd, address, &level);
1156e098 594
8f766149 595 if (pte && pte_present(*pte) && !pte_exec(*pte))
078de5f7 596 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
1156e098 597 }
1156e098 598
19f0dda9 599 printk(KERN_ALERT "BUG: unable to handle kernel ");
b3279c7f 600 if (address < PAGE_SIZE)
19f0dda9 601 printk(KERN_CONT "NULL pointer dereference");
b3279c7f 602 else
19f0dda9 603 printk(KERN_CONT "paging request");
2d4a7167 604
f294a8ce 605 printk(KERN_CONT " at %p\n", (void *) address);
19f0dda9 606 printk(KERN_ALERT "IP:");
5f01c988 607 printk_address(regs->ip);
2d4a7167 608
b3279c7f
HH
609 dump_pagetable(address);
610}
611
2d4a7167
IM
612static noinline void
613pgtable_bad(struct pt_regs *regs, unsigned long error_code,
614 unsigned long address)
1da177e4 615{
2d4a7167
IM
616 struct task_struct *tsk;
617 unsigned long flags;
618 int sig;
619
620 flags = oops_begin();
621 tsk = current;
622 sig = SIGKILL;
1209140c 623
1da177e4 624 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
92181f19 625 tsk->comm, address);
1da177e4 626 dump_pagetable(address);
2d4a7167
IM
627
628 tsk->thread.cr2 = address;
51e7dc70 629 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167
IM
630 tsk->thread.error_code = error_code;
631
22f5991c 632 if (__die("Bad pagetable", regs, error_code))
874d93d1 633 sig = 0;
2d4a7167 634
874d93d1 635 oops_end(flags, regs, sig);
1da177e4
LT
636}
637
2d4a7167
IM
638static noinline void
639no_context(struct pt_regs *regs, unsigned long error_code,
4fc34901 640 unsigned long address, int signal, int si_code)
92181f19
NP
641{
642 struct task_struct *tsk = current;
19803078 643 unsigned long *stackend;
92181f19
NP
644 unsigned long flags;
645 int sig;
92181f19 646
2d4a7167 647 /* Are we prepared to handle this kernel fault? */
4fc34901 648 if (fixup_exception(regs)) {
c026b359
PZ
649 /*
650 * Any interrupt that takes a fault gets the fixup. This makes
651 * the below recursive fault logic only apply to a faults from
652 * task context.
653 */
654 if (in_interrupt())
655 return;
656
657 /*
658 * Per the above we're !in_interrupt(), aka. task context.
659 *
660 * In this case we need to make sure we're not recursively
661 * faulting through the emulate_vsyscall() logic.
662 */
4fc34901 663 if (current_thread_info()->sig_on_uaccess_error && signal) {
51e7dc70 664 tsk->thread.trap_nr = X86_TRAP_PF;
4fc34901
AL
665 tsk->thread.error_code = error_code | PF_USER;
666 tsk->thread.cr2 = address;
667
668 /* XXX: hwpoison faults will set the wrong code. */
669 force_sig_info_fault(signal, si_code, address, tsk, 0);
670 }
c026b359
PZ
671
672 /*
673 * Barring that, we can do the fixup and be happy.
674 */
92181f19 675 return;
4fc34901 676 }
92181f19
NP
677
678 /*
2d4a7167
IM
679 * 32-bit:
680 *
681 * Valid to do another page fault here, because if this fault
682 * had been triggered by is_prefetch fixup_exception would have
683 * handled it.
684 *
685 * 64-bit:
92181f19 686 *
2d4a7167 687 * Hall of shame of CPU/BIOS bugs.
92181f19
NP
688 */
689 if (is_prefetch(regs, error_code, address))
690 return;
691
692 if (is_errata93(regs, address))
693 return;
694
695 /*
696 * Oops. The kernel tried to access some bad page. We'll have to
2d4a7167 697 * terminate things with extreme prejudice:
92181f19 698 */
92181f19 699 flags = oops_begin();
92181f19
NP
700
701 show_fault_oops(regs, error_code, address);
702
2d4a7167 703 stackend = end_of_stack(tsk);
0e7810be 704 if (tsk != &init_task && *stackend != STACK_END_MAGIC)
b0f4c4b3 705 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
19803078 706
1cc99544 707 tsk->thread.cr2 = address;
51e7dc70 708 tsk->thread.trap_nr = X86_TRAP_PF;
1cc99544 709 tsk->thread.error_code = error_code;
92181f19 710
92181f19
NP
711 sig = SIGKILL;
712 if (__die("Oops", regs, error_code))
713 sig = 0;
2d4a7167 714
92181f19 715 /* Executive summary in case the body of the oops scrolled away */
b0f4c4b3 716 printk(KERN_DEFAULT "CR2: %016lx\n", address);
2d4a7167 717
92181f19 718 oops_end(flags, regs, sig);
92181f19
NP
719}
720
2d4a7167
IM
721/*
722 * Print out info about fatal segfaults, if the show_unhandled_signals
723 * sysctl is set:
724 */
725static inline void
726show_signal_msg(struct pt_regs *regs, unsigned long error_code,
727 unsigned long address, struct task_struct *tsk)
728{
729 if (!unhandled_signal(tsk, SIGSEGV))
730 return;
731
732 if (!printk_ratelimit())
733 return;
734
a1a08d1c 735 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
2d4a7167
IM
736 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
737 tsk->comm, task_pid_nr(tsk), address,
738 (void *)regs->ip, (void *)regs->sp, error_code);
739
740 print_vma_addr(KERN_CONT " in ", regs->ip);
741
742 printk(KERN_CONT "\n");
743}
744
745static void
746__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
747 unsigned long address, int si_code)
92181f19
NP
748{
749 struct task_struct *tsk = current;
750
751 /* User mode accesses just cause a SIGSEGV */
752 if (error_code & PF_USER) {
753 /*
2d4a7167 754 * It's possible to have interrupts off here:
92181f19
NP
755 */
756 local_irq_enable();
757
758 /*
759 * Valid to do another page fault here because this one came
2d4a7167 760 * from user space:
92181f19
NP
761 */
762 if (is_prefetch(regs, error_code, address))
763 return;
764
765 if (is_errata100(regs, address))
766 return;
767
3ae36655
AL
768#ifdef CONFIG_X86_64
769 /*
770 * Instruction fetch faults in the vsyscall page might need
771 * emulation.
772 */
773 if (unlikely((error_code & PF_INSTR) &&
774 ((address & ~0xfff) == VSYSCALL_START))) {
775 if (emulate_vsyscall(regs, address))
776 return;
777 }
778#endif
e575a86f
KC
779 /* Kernel addresses are always protection faults: */
780 if (address >= TASK_SIZE)
781 error_code |= PF_PROT;
3ae36655 782
e575a86f 783 if (likely(show_unhandled_signals))
2d4a7167
IM
784 show_signal_msg(regs, error_code, address, tsk);
785
2d4a7167 786 tsk->thread.cr2 = address;
e575a86f 787 tsk->thread.error_code = error_code;
51e7dc70 788 tsk->thread.trap_nr = X86_TRAP_PF;
92181f19 789
f672b49b 790 force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
2d4a7167 791
92181f19
NP
792 return;
793 }
794
795 if (is_f00f_bug(regs, address))
796 return;
797
4fc34901 798 no_context(regs, error_code, address, SIGSEGV, si_code);
92181f19
NP
799}
800
2d4a7167
IM
801static noinline void
802bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
803 unsigned long address)
92181f19
NP
804{
805 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
806}
807
2d4a7167
IM
808static void
809__bad_area(struct pt_regs *regs, unsigned long error_code,
810 unsigned long address, int si_code)
92181f19
NP
811{
812 struct mm_struct *mm = current->mm;
813
814 /*
815 * Something tried to access memory that isn't in our memory map..
816 * Fix it, but check if it's kernel or user first..
817 */
818 up_read(&mm->mmap_sem);
819
820 __bad_area_nosemaphore(regs, error_code, address, si_code);
821}
822
2d4a7167
IM
823static noinline void
824bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
92181f19
NP
825{
826 __bad_area(regs, error_code, address, SEGV_MAPERR);
827}
828
2d4a7167
IM
829static noinline void
830bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
831 unsigned long address)
92181f19
NP
832{
833 __bad_area(regs, error_code, address, SEGV_ACCERR);
834}
835
2d4a7167 836static void
a6e04aa9
AK
837do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
838 unsigned int fault)
92181f19
NP
839{
840 struct task_struct *tsk = current;
841 struct mm_struct *mm = tsk->mm;
a6e04aa9 842 int code = BUS_ADRERR;
92181f19
NP
843
844 up_read(&mm->mmap_sem);
845
2d4a7167 846 /* Kernel mode? Handle exceptions or die: */
96054569 847 if (!(error_code & PF_USER)) {
4fc34901 848 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
96054569
LT
849 return;
850 }
2d4a7167 851
cd1b68f0 852 /* User-space => ok to do another page fault: */
92181f19
NP
853 if (is_prefetch(regs, error_code, address))
854 return;
2d4a7167
IM
855
856 tsk->thread.cr2 = address;
857 tsk->thread.error_code = error_code;
51e7dc70 858 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167 859
a6e04aa9 860#ifdef CONFIG_MEMORY_FAILURE
f672b49b 861 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
a6e04aa9
AK
862 printk(KERN_ERR
863 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
864 tsk->comm, tsk->pid, address);
865 code = BUS_MCEERR_AR;
866 }
867#endif
f672b49b 868 force_sig_info_fault(SIGBUS, code, address, tsk, fault);
92181f19
NP
869}
870
3a13c4d7 871static noinline void
2d4a7167
IM
872mm_fault_error(struct pt_regs *regs, unsigned long error_code,
873 unsigned long address, unsigned int fault)
92181f19 874{
3a13c4d7
JW
875 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
876 up_read(&current->mm->mmap_sem);
877 no_context(regs, error_code, address, 0, 0);
878 return;
b80ef10e 879 }
b80ef10e 880
2d4a7167 881 if (fault & VM_FAULT_OOM) {
f8626854
AV
882 /* Kernel mode? Handle exceptions or die: */
883 if (!(error_code & PF_USER)) {
884 up_read(&current->mm->mmap_sem);
4fc34901
AL
885 no_context(regs, error_code, address,
886 SIGSEGV, SEGV_MAPERR);
3a13c4d7 887 return;
f8626854
AV
888 }
889
c2d23f91
DR
890 up_read(&current->mm->mmap_sem);
891
892 /*
893 * We ran out of memory, call the OOM killer, and return the
894 * userspace (which will retry the fault, or kill us if we got
895 * oom-killed):
896 */
897 pagefault_out_of_memory();
2d4a7167 898 } else {
f672b49b
AK
899 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
900 VM_FAULT_HWPOISON_LARGE))
a6e04aa9 901 do_sigbus(regs, error_code, address, fault);
2d4a7167
IM
902 else
903 BUG();
904 }
92181f19
NP
905}
906
d8b57bb7
TG
907static int spurious_fault_check(unsigned long error_code, pte_t *pte)
908{
909 if ((error_code & PF_WRITE) && !pte_write(*pte))
910 return 0;
2d4a7167 911
d8b57bb7
TG
912 if ((error_code & PF_INSTR) && !pte_exec(*pte))
913 return 0;
914
915 return 1;
916}
917
5b727a3b 918/*
2d4a7167
IM
919 * Handle a spurious fault caused by a stale TLB entry.
920 *
921 * This allows us to lazily refresh the TLB when increasing the
922 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
923 * eagerly is very expensive since that implies doing a full
924 * cross-processor TLB flush, even if no stale TLB entries exist
925 * on other processors.
926 *
5b727a3b
JF
927 * There are no security implications to leaving a stale TLB when
928 * increasing the permissions on a page.
929 */
62c9295f 930static noinline __kprobes int
2d4a7167 931spurious_fault(unsigned long error_code, unsigned long address)
5b727a3b
JF
932{
933 pgd_t *pgd;
934 pud_t *pud;
935 pmd_t *pmd;
936 pte_t *pte;
3c3e5694 937 int ret;
5b727a3b
JF
938
939 /* Reserved-bit violation or user access to kernel space? */
940 if (error_code & (PF_USER | PF_RSVD))
941 return 0;
942
943 pgd = init_mm.pgd + pgd_index(address);
944 if (!pgd_present(*pgd))
945 return 0;
946
947 pud = pud_offset(pgd, address);
948 if (!pud_present(*pud))
949 return 0;
950
d8b57bb7
TG
951 if (pud_large(*pud))
952 return spurious_fault_check(error_code, (pte_t *) pud);
953
5b727a3b
JF
954 pmd = pmd_offset(pud, address);
955 if (!pmd_present(*pmd))
956 return 0;
957
d8b57bb7
TG
958 if (pmd_large(*pmd))
959 return spurious_fault_check(error_code, (pte_t *) pmd);
960
5b727a3b 961 pte = pte_offset_kernel(pmd, address);
954f8571 962 if (!pte_present(*pte))
5b727a3b
JF
963 return 0;
964
3c3e5694
SR
965 ret = spurious_fault_check(error_code, pte);
966 if (!ret)
967 return 0;
968
969 /*
2d4a7167
IM
970 * Make sure we have permissions in PMD.
971 * If not, then there's a bug in the page tables:
3c3e5694
SR
972 */
973 ret = spurious_fault_check(error_code, (pte_t *) pmd);
974 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
2d4a7167 975
3c3e5694 976 return ret;
5b727a3b
JF
977}
978
abd4f750 979int show_unhandled_signals = 1;
1da177e4 980
2d4a7167 981static inline int
68da336a 982access_error(unsigned long error_code, struct vm_area_struct *vma)
92181f19 983{
68da336a 984 if (error_code & PF_WRITE) {
2d4a7167 985 /* write, present and write, not present: */
92181f19
NP
986 if (unlikely(!(vma->vm_flags & VM_WRITE)))
987 return 1;
2d4a7167 988 return 0;
92181f19
NP
989 }
990
2d4a7167
IM
991 /* read, present: */
992 if (unlikely(error_code & PF_PROT))
993 return 1;
994
995 /* read, not present: */
996 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
997 return 1;
998
92181f19
NP
999 return 0;
1000}
1001
0973a06c
HS
1002static int fault_in_kernel_space(unsigned long address)
1003{
d9517346 1004 return address >= TASK_SIZE_MAX;
0973a06c
HS
1005}
1006
40d3cd66
PA
1007static inline bool smap_violation(int error_code, struct pt_regs *regs)
1008{
4640c7ee
PA
1009 if (!IS_ENABLED(CONFIG_X86_SMAP))
1010 return false;
1011
1012 if (!static_cpu_has(X86_FEATURE_SMAP))
1013 return false;
1014
40d3cd66
PA
1015 if (error_code & PF_USER)
1016 return false;
1017
1018 if (!user_mode_vm(regs) && (regs->flags & X86_EFLAGS_AC))
1019 return false;
1020
1021 return true;
1022}
1023
1da177e4
LT
1024/*
1025 * This routine handles page faults. It determines the address,
1026 * and the problem, and then passes it off to one of the appropriate
1027 * routines.
d4078e23
PZ
1028 *
1029 * This function must have noinline because both callers
1030 * {,trace_}do_page_fault() have notrace on. Having this an actual function
1031 * guarantees there's a function trace entry.
1da177e4 1032 */
d4078e23 1033static void __kprobes noinline
0ac09f9f
JO
1034__do_page_fault(struct pt_regs *regs, unsigned long error_code,
1035 unsigned long address)
1da177e4 1036{
2d4a7167 1037 struct vm_area_struct *vma;
1da177e4
LT
1038 struct task_struct *tsk;
1039 struct mm_struct *mm;
f8c2ee22 1040 int fault;
759496ba 1041 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1da177e4 1042
a9ba9a3b
AV
1043 tsk = current;
1044 mm = tsk->mm;
2d4a7167 1045
f8561296
VN
1046 /*
1047 * Detect and handle instructions that would cause a page fault for
1048 * both a tracked kernel page and a userspace page.
1049 */
1050 if (kmemcheck_active(regs))
1051 kmemcheck_hide(regs);
5dfaf90f 1052 prefetchw(&mm->mmap_sem);
f8561296 1053
0fd0e3da 1054 if (unlikely(kmmio_fault(regs, address)))
86069782 1055 return;
1da177e4
LT
1056
1057 /*
1058 * We fault-in kernel-space virtual memory on-demand. The
1059 * 'reference' page table is init_mm.pgd.
1060 *
1061 * NOTE! We MUST NOT take any locks for this case. We may
1062 * be in an interrupt or a critical region, and should
1063 * only copy the information from the master page table,
1064 * nothing more.
1065 *
1066 * This verifies that the fault happens in kernel space
1067 * (error_code & 4) == 0, and that the fault was not a
8b1bde93 1068 * protection error (error_code & 9) == 0.
1da177e4 1069 */
0973a06c 1070 if (unlikely(fault_in_kernel_space(address))) {
f8561296
VN
1071 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1072 if (vmalloc_fault(address) >= 0)
1073 return;
1074
1075 if (kmemcheck_fault(regs, address, error_code))
1076 return;
1077 }
5b727a3b 1078
2d4a7167 1079 /* Can handle a stale RO->RW TLB: */
92181f19 1080 if (spurious_fault(error_code, address))
5b727a3b
JF
1081 return;
1082
2d4a7167 1083 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1084 if (kprobes_fault(regs))
9be260a6 1085 return;
f8c2ee22
HH
1086 /*
1087 * Don't take the mm semaphore here. If we fixup a prefetch
2d4a7167 1088 * fault we could otherwise deadlock:
f8c2ee22 1089 */
92181f19 1090 bad_area_nosemaphore(regs, error_code, address);
2d4a7167 1091
92181f19 1092 return;
f8c2ee22
HH
1093 }
1094
2d4a7167 1095 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1096 if (unlikely(kprobes_fault(regs)))
9be260a6 1097 return;
8c914cb7 1098
66c58156 1099 if (unlikely(error_code & PF_RSVD))
92181f19 1100 pgtable_bad(regs, error_code, address);
1da177e4 1101
4640c7ee
PA
1102 if (unlikely(smap_violation(error_code, regs))) {
1103 bad_area_nosemaphore(regs, error_code, address);
1104 return;
40d3cd66
PA
1105 }
1106
1da177e4 1107 /*
2d4a7167
IM
1108 * If we're in an interrupt, have no user context or are running
1109 * in an atomic region then we must not take the fault:
1da177e4 1110 */
92181f19
NP
1111 if (unlikely(in_atomic() || !mm)) {
1112 bad_area_nosemaphore(regs, error_code, address);
1113 return;
1114 }
1da177e4 1115
e00b12e6
PZ
1116 /*
1117 * It's safe to allow irq's after cr2 has been saved and the
1118 * vmalloc fault has been handled.
1119 *
1120 * User-mode registers count as a user access even for any
1121 * potential system fault or CPU buglet:
1122 */
1123 if (user_mode_vm(regs)) {
1124 local_irq_enable();
1125 error_code |= PF_USER;
1126 flags |= FAULT_FLAG_USER;
1127 } else {
1128 if (regs->flags & X86_EFLAGS_IF)
1129 local_irq_enable();
1130 }
1131
1132 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1133
759496ba
JW
1134 if (error_code & PF_WRITE)
1135 flags |= FAULT_FLAG_WRITE;
1136
3a1dfe6e
IM
1137 /*
1138 * When running in the kernel we expect faults to occur only to
2d4a7167
IM
1139 * addresses in user space. All other faults represent errors in
1140 * the kernel and should generate an OOPS. Unfortunately, in the
1141 * case of an erroneous fault occurring in a code path which already
1142 * holds mmap_sem we will deadlock attempting to validate the fault
1143 * against the address space. Luckily the kernel only validly
1144 * references user space from well defined areas of code, which are
1145 * listed in the exceptions table.
1da177e4
LT
1146 *
1147 * As the vast majority of faults will be valid we will only perform
2d4a7167
IM
1148 * the source reference check when there is a possibility of a
1149 * deadlock. Attempt to lock the address space, if we cannot we then
1150 * validate the source. If this is invalid we can skip the address
1151 * space check, thus avoiding the deadlock:
1da177e4 1152 */
92181f19 1153 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
66c58156 1154 if ((error_code & PF_USER) == 0 &&
92181f19
NP
1155 !search_exception_tables(regs->ip)) {
1156 bad_area_nosemaphore(regs, error_code, address);
1157 return;
1158 }
d065bd81 1159retry:
1da177e4 1160 down_read(&mm->mmap_sem);
01006074
PZ
1161 } else {
1162 /*
2d4a7167
IM
1163 * The above down_read_trylock() might have succeeded in
1164 * which case we'll have missed the might_sleep() from
1165 * down_read():
01006074
PZ
1166 */
1167 might_sleep();
1da177e4
LT
1168 }
1169
1170 vma = find_vma(mm, address);
92181f19
NP
1171 if (unlikely(!vma)) {
1172 bad_area(regs, error_code, address);
1173 return;
1174 }
1175 if (likely(vma->vm_start <= address))
1da177e4 1176 goto good_area;
92181f19
NP
1177 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1178 bad_area(regs, error_code, address);
1179 return;
1180 }
33cb5243 1181 if (error_code & PF_USER) {
6f4d368e
HH
1182 /*
1183 * Accessing the stack below %sp is always a bug.
1184 * The large cushion allows instructions like enter
2d4a7167 1185 * and pusha to work. ("enter $65535, $31" pushes
6f4d368e 1186 * 32 pointers and then decrements %sp by 65535.)
03fdc2c2 1187 */
92181f19
NP
1188 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1189 bad_area(regs, error_code, address);
1190 return;
1191 }
1da177e4 1192 }
92181f19
NP
1193 if (unlikely(expand_stack(vma, address))) {
1194 bad_area(regs, error_code, address);
1195 return;
1196 }
1197
1198 /*
1199 * Ok, we have a good vm_area for this memory access, so
1200 * we can handle it..
1201 */
1da177e4 1202good_area:
68da336a 1203 if (unlikely(access_error(error_code, vma))) {
92181f19
NP
1204 bad_area_access_error(regs, error_code, address);
1205 return;
1da177e4
LT
1206 }
1207
1208 /*
1209 * If for any reason at all we couldn't handle the fault,
1210 * make sure we exit gracefully rather than endlessly redo
2d4a7167 1211 * the fault:
1da177e4 1212 */
d065bd81 1213 fault = handle_mm_fault(mm, vma, address, flags);
2d4a7167 1214
3a13c4d7
JW
1215 /*
1216 * If we need to retry but a fatal signal is pending, handle the
1217 * signal first. We do not need to release the mmap_sem because it
1218 * would already be released in __lock_page_or_retry in mm/filemap.c.
1219 */
1220 if (unlikely((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)))
1221 return;
1222
1223 if (unlikely(fault & VM_FAULT_ERROR)) {
1224 mm_fault_error(regs, error_code, address, fault);
1225 return;
37b23e05
KM
1226 }
1227
d065bd81
ML
1228 /*
1229 * Major/minor page fault accounting is only done on the
1230 * initial attempt. If we go through a retry, it is extremely
1231 * likely that the page will be found in page cache at that point.
1232 */
1233 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1234 if (fault & VM_FAULT_MAJOR) {
1235 tsk->maj_flt++;
a8b0ca17 1236 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
d065bd81
ML
1237 regs, address);
1238 } else {
1239 tsk->min_flt++;
a8b0ca17 1240 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
d065bd81
ML
1241 regs, address);
1242 }
1243 if (fault & VM_FAULT_RETRY) {
1244 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
1245 * of starvation. */
1246 flags &= ~FAULT_FLAG_ALLOW_RETRY;
45cac65b 1247 flags |= FAULT_FLAG_TRIED;
d065bd81
ML
1248 goto retry;
1249 }
ac17dc8e 1250 }
d729ab35 1251
8c938f9f
IM
1252 check_v8086_mode(regs, address, tsk);
1253
1da177e4 1254 up_read(&mm->mmap_sem);
1da177e4 1255}
6ba3c97a 1256
d4078e23 1257dotraplinkage void __kprobes notrace
6ba3c97a
FW
1258do_page_fault(struct pt_regs *regs, unsigned long error_code)
1259{
d4078e23 1260 unsigned long address = read_cr2(); /* Get the faulting address */
6c1e0256 1261 enum ctx_state prev_state;
d4078e23
PZ
1262
1263 /*
1264 * We must have this function tagged with __kprobes, notrace and call
1265 * read_cr2() before calling anything else. To avoid calling any kind
1266 * of tracing machinery before we've observed the CR2 value.
1267 *
1268 * exception_{enter,exit}() contain all sorts of tracepoints.
1269 */
6c1e0256
FW
1270
1271 prev_state = exception_enter();
0ac09f9f 1272 __do_page_fault(regs, error_code, address);
6c1e0256 1273 exception_exit(prev_state);
6ba3c97a 1274}
25c74b10 1275
d4078e23
PZ
1276#ifdef CONFIG_TRACING
1277static void trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
d34603b0
SA
1278 unsigned long error_code)
1279{
1280 if (user_mode(regs))
d4078e23 1281 trace_page_fault_user(address, regs, error_code);
d34603b0 1282 else
d4078e23 1283 trace_page_fault_kernel(address, regs, error_code);
d34603b0
SA
1284}
1285
d4078e23 1286dotraplinkage void __kprobes notrace
25c74b10
SA
1287trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1288{
0ac09f9f
JO
1289 /*
1290 * The exception_enter and tracepoint processing could
1291 * trigger another page faults (user space callchain
1292 * reading) and destroy the original cr2 value, so read
1293 * the faulting address now.
1294 */
1295 unsigned long address = read_cr2();
d4078e23 1296 enum ctx_state prev_state;
25c74b10
SA
1297
1298 prev_state = exception_enter();
d4078e23 1299 trace_page_fault_entries(address, regs, error_code);
0ac09f9f 1300 __do_page_fault(regs, error_code, address);
25c74b10
SA
1301 exception_exit(prev_state);
1302}
d4078e23 1303#endif /* CONFIG_TRACING */
This page took 0.790181 seconds and 5 git commands to generate.