x86/vm86: Move the vm86 IRQ definitions to vm86.h
[deliverable/linux.git] / arch / x86 / mm / fault.c
CommitLineData
1da177e4 1/*
1da177e4 2 * Copyright (C) 1995 Linus Torvalds
2d4a7167 3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
f8eeb2e6 4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
1da177e4 5 */
a2bcd473
IM
6#include <linux/sched.h> /* test_thread_flag(), ... */
7#include <linux/kdebug.h> /* oops_begin/end, ... */
8#include <linux/module.h> /* search_exception_table */
9#include <linux/bootmem.h> /* max_low_pfn */
9326638c 10#include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
a2bcd473 11#include <linux/mmiotrace.h> /* kmmio_handler, ... */
cdd6c482 12#include <linux/perf_event.h> /* perf_sw_event */
f672b49b 13#include <linux/hugetlb.h> /* hstate_index_to_shift */
268bb0ce 14#include <linux/prefetch.h> /* prefetchw */
56dd9470 15#include <linux/context_tracking.h> /* exception_enter(), ... */
70ffdb93 16#include <linux/uaccess.h> /* faulthandler_disabled() */
2d4a7167 17
a2bcd473
IM
18#include <asm/traps.h> /* dotraplinkage, ... */
19#include <asm/pgalloc.h> /* pgd_*(), ... */
f8561296 20#include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
f40c3300
AL
21#include <asm/fixmap.h> /* VSYSCALL_ADDR */
22#include <asm/vsyscall.h> /* emulate_vsyscall */
1da177e4 23
d34603b0
SA
24#define CREATE_TRACE_POINTS
25#include <asm/trace/exceptions.h>
26
33cb5243 27/*
2d4a7167
IM
28 * Page fault error code bits:
29 *
30 * bit 0 == 0: no page found 1: protection fault
31 * bit 1 == 0: read access 1: write access
32 * bit 2 == 0: kernel-mode access 1: user-mode access
33 * bit 3 == 1: use of reserved bit detected
34 * bit 4 == 1: fault was an instruction fetch
33cb5243 35 */
2d4a7167
IM
36enum x86_pf_error_code {
37
38 PF_PROT = 1 << 0,
39 PF_WRITE = 1 << 1,
40 PF_USER = 1 << 2,
41 PF_RSVD = 1 << 3,
42 PF_INSTR = 1 << 4,
43};
66c58156 44
b814d41f 45/*
b319eed0
IM
46 * Returns 0 if mmiotrace is disabled, or if the fault is not
47 * handled by mmiotrace:
b814d41f 48 */
9326638c 49static nokprobe_inline int
62c9295f 50kmmio_fault(struct pt_regs *regs, unsigned long addr)
86069782 51{
0fd0e3da
PP
52 if (unlikely(is_kmmio_active()))
53 if (kmmio_handler(regs, addr) == 1)
54 return -1;
0fd0e3da 55 return 0;
86069782
PP
56}
57
9326638c 58static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
1bd858a5 59{
74a0b576
CH
60 int ret = 0;
61
62 /* kprobe_running() needs smp_processor_id() */
f39b6f0e 63 if (kprobes_built_in() && !user_mode(regs)) {
74a0b576
CH
64 preempt_disable();
65 if (kprobe_running() && kprobe_fault_handler(regs, 14))
66 ret = 1;
67 preempt_enable();
68 }
1bd858a5 69
74a0b576 70 return ret;
33cb5243 71}
1bd858a5 72
1dc85be0 73/*
2d4a7167
IM
74 * Prefetch quirks:
75 *
76 * 32-bit mode:
77 *
78 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
79 * Check that here and ignore it.
1dc85be0 80 *
2d4a7167 81 * 64-bit mode:
1dc85be0 82 *
2d4a7167
IM
83 * Sometimes the CPU reports invalid exceptions on prefetch.
84 * Check that here and ignore it.
85 *
86 * Opcode checker based on code by Richard Brunner.
1dc85be0 87 */
107a0367
IM
88static inline int
89check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
90 unsigned char opcode, int *prefetch)
91{
92 unsigned char instr_hi = opcode & 0xf0;
93 unsigned char instr_lo = opcode & 0x0f;
94
95 switch (instr_hi) {
96 case 0x20:
97 case 0x30:
98 /*
99 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
100 * In X86_64 long mode, the CPU will signal invalid
101 * opcode if some of these prefixes are present so
102 * X86_64 will never get here anyway
103 */
104 return ((instr_lo & 7) == 0x6);
105#ifdef CONFIG_X86_64
106 case 0x40:
107 /*
108 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
109 * Need to figure out under what instruction mode the
110 * instruction was issued. Could check the LDT for lm,
111 * but for now it's good enough to assume that long
112 * mode only uses well known segments or kernel.
113 */
318f5a2a 114 return (!user_mode(regs) || user_64bit_mode(regs));
107a0367
IM
115#endif
116 case 0x60:
117 /* 0x64 thru 0x67 are valid prefixes in all modes. */
118 return (instr_lo & 0xC) == 0x4;
119 case 0xF0:
120 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
121 return !instr_lo || (instr_lo>>1) == 1;
122 case 0x00:
123 /* Prefetch instruction is 0x0F0D or 0x0F18 */
124 if (probe_kernel_address(instr, opcode))
125 return 0;
126
127 *prefetch = (instr_lo == 0xF) &&
128 (opcode == 0x0D || opcode == 0x18);
129 return 0;
130 default:
131 return 0;
132 }
133}
134
2d4a7167
IM
135static int
136is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
33cb5243 137{
2d4a7167 138 unsigned char *max_instr;
ab2bf0c1 139 unsigned char *instr;
33cb5243 140 int prefetch = 0;
1da177e4 141
3085354d
IM
142 /*
143 * If it was a exec (instruction fetch) fault on NX page, then
144 * do not ignore the fault:
145 */
66c58156 146 if (error_code & PF_INSTR)
1da177e4 147 return 0;
1dc85be0 148
107a0367 149 instr = (void *)convert_ip_to_linear(current, regs);
f1290ec9 150 max_instr = instr + 15;
1da177e4 151
d31bf07f 152 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
1da177e4
LT
153 return 0;
154
107a0367 155 while (instr < max_instr) {
2d4a7167 156 unsigned char opcode;
1da177e4 157
ab2bf0c1 158 if (probe_kernel_address(instr, opcode))
33cb5243 159 break;
1da177e4 160
1da177e4
LT
161 instr++;
162
107a0367 163 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
1da177e4 164 break;
1da177e4
LT
165 }
166 return prefetch;
167}
168
2d4a7167
IM
169static void
170force_sig_info_fault(int si_signo, int si_code, unsigned long address,
f672b49b 171 struct task_struct *tsk, int fault)
c4aba4a8 172{
f672b49b 173 unsigned lsb = 0;
c4aba4a8
HH
174 siginfo_t info;
175
2d4a7167
IM
176 info.si_signo = si_signo;
177 info.si_errno = 0;
178 info.si_code = si_code;
179 info.si_addr = (void __user *)address;
f672b49b
AK
180 if (fault & VM_FAULT_HWPOISON_LARGE)
181 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
182 if (fault & VM_FAULT_HWPOISON)
183 lsb = PAGE_SHIFT;
184 info.si_addr_lsb = lsb;
2d4a7167 185
c4aba4a8
HH
186 force_sig_info(si_signo, &info, tsk);
187}
188
f2f13a85
IM
189DEFINE_SPINLOCK(pgd_lock);
190LIST_HEAD(pgd_list);
191
192#ifdef CONFIG_X86_32
193static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
33cb5243 194{
f2f13a85
IM
195 unsigned index = pgd_index(address);
196 pgd_t *pgd_k;
197 pud_t *pud, *pud_k;
198 pmd_t *pmd, *pmd_k;
2d4a7167 199
f2f13a85
IM
200 pgd += index;
201 pgd_k = init_mm.pgd + index;
202
203 if (!pgd_present(*pgd_k))
204 return NULL;
205
206 /*
207 * set_pgd(pgd, *pgd_k); here would be useless on PAE
208 * and redundant with the set_pmd() on non-PAE. As would
209 * set_pud.
210 */
211 pud = pud_offset(pgd, address);
212 pud_k = pud_offset(pgd_k, address);
213 if (!pud_present(*pud_k))
214 return NULL;
215
216 pmd = pmd_offset(pud, address);
217 pmd_k = pmd_offset(pud_k, address);
218 if (!pmd_present(*pmd_k))
219 return NULL;
220
b8bcfe99 221 if (!pmd_present(*pmd))
f2f13a85 222 set_pmd(pmd, *pmd_k);
b8bcfe99 223 else
f2f13a85 224 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
f2f13a85
IM
225
226 return pmd_k;
227}
228
229void vmalloc_sync_all(void)
230{
231 unsigned long address;
232
233 if (SHARED_KERNEL_PMD)
234 return;
235
236 for (address = VMALLOC_START & PMD_MASK;
237 address >= TASK_SIZE && address < FIXADDR_TOP;
238 address += PMD_SIZE) {
f2f13a85
IM
239 struct page *page;
240
a79e53d8 241 spin_lock(&pgd_lock);
f2f13a85 242 list_for_each_entry(page, &pgd_list, lru) {
617d34d9 243 spinlock_t *pgt_lock;
f01f7c56 244 pmd_t *ret;
617d34d9 245
a79e53d8 246 /* the pgt_lock only for Xen */
617d34d9
JF
247 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
248
249 spin_lock(pgt_lock);
250 ret = vmalloc_sync_one(page_address(page), address);
251 spin_unlock(pgt_lock);
252
253 if (!ret)
f2f13a85
IM
254 break;
255 }
a79e53d8 256 spin_unlock(&pgd_lock);
f2f13a85
IM
257 }
258}
259
260/*
261 * 32-bit:
262 *
263 * Handle a fault on the vmalloc or module mapping area
264 */
9326638c 265static noinline int vmalloc_fault(unsigned long address)
f2f13a85
IM
266{
267 unsigned long pgd_paddr;
268 pmd_t *pmd_k;
269 pte_t *pte_k;
270
271 /* Make sure we are in vmalloc area: */
272 if (!(address >= VMALLOC_START && address < VMALLOC_END))
273 return -1;
274
ebc8827f
FW
275 WARN_ON_ONCE(in_nmi());
276
f2f13a85
IM
277 /*
278 * Synchronize this task's top level page-table
279 * with the 'reference' page table.
280 *
281 * Do _not_ use "current" here. We might be inside
282 * an interrupt in the middle of a task switch..
283 */
284 pgd_paddr = read_cr3();
285 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
286 if (!pmd_k)
287 return -1;
288
289 pte_k = pte_offset_kernel(pmd_k, address);
290 if (!pte_present(*pte_k))
291 return -1;
292
293 return 0;
294}
9326638c 295NOKPROBE_SYMBOL(vmalloc_fault);
f2f13a85
IM
296
297/*
298 * Did it hit the DOS screen memory VA from vm86 mode?
299 */
300static inline void
301check_v8086_mode(struct pt_regs *regs, unsigned long address,
302 struct task_struct *tsk)
303{
9fda6a06 304#ifdef CONFIG_VM86
f2f13a85
IM
305 unsigned long bit;
306
9fda6a06 307 if (!v8086_mode(regs) || !tsk->thread.vm86)
f2f13a85
IM
308 return;
309
310 bit = (address - 0xA0000) >> PAGE_SHIFT;
311 if (bit < 32)
9fda6a06
BG
312 tsk->thread.vm86->screen_bitmap |= 1 << bit;
313#endif
33cb5243 314}
1da177e4 315
087975b0 316static bool low_pfn(unsigned long pfn)
1da177e4 317{
087975b0
AM
318 return pfn < max_low_pfn;
319}
1156e098 320
087975b0
AM
321static void dump_pagetable(unsigned long address)
322{
323 pgd_t *base = __va(read_cr3());
324 pgd_t *pgd = &base[pgd_index(address)];
325 pmd_t *pmd;
326 pte_t *pte;
2d4a7167 327
1156e098 328#ifdef CONFIG_X86_PAE
087975b0
AM
329 printk("*pdpt = %016Lx ", pgd_val(*pgd));
330 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
331 goto out;
1156e098 332#endif
087975b0
AM
333 pmd = pmd_offset(pud_offset(pgd, address), address);
334 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
1156e098
HH
335
336 /*
337 * We must not directly access the pte in the highpte
338 * case if the page table is located in highmem.
339 * And let's rather not kmap-atomic the pte, just in case
2d4a7167 340 * it's allocated already:
1156e098 341 */
087975b0
AM
342 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
343 goto out;
1156e098 344
087975b0
AM
345 pte = pte_offset_kernel(pmd, address);
346 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
347out:
1156e098 348 printk("\n");
f2f13a85
IM
349}
350
351#else /* CONFIG_X86_64: */
352
353void vmalloc_sync_all(void)
354{
9661d5bc 355 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END, 0);
f2f13a85
IM
356}
357
358/*
359 * 64-bit:
360 *
361 * Handle a fault on the vmalloc area
362 *
363 * This assumes no large pages in there.
364 */
9326638c 365static noinline int vmalloc_fault(unsigned long address)
f2f13a85
IM
366{
367 pgd_t *pgd, *pgd_ref;
368 pud_t *pud, *pud_ref;
369 pmd_t *pmd, *pmd_ref;
370 pte_t *pte, *pte_ref;
371
372 /* Make sure we are in vmalloc area: */
373 if (!(address >= VMALLOC_START && address < VMALLOC_END))
374 return -1;
375
ebc8827f
FW
376 WARN_ON_ONCE(in_nmi());
377
f2f13a85
IM
378 /*
379 * Copy kernel mappings over when needed. This can also
380 * happen within a race in page table update. In the later
381 * case just flush:
382 */
383 pgd = pgd_offset(current->active_mm, address);
384 pgd_ref = pgd_offset_k(address);
385 if (pgd_none(*pgd_ref))
386 return -1;
387
1160c277 388 if (pgd_none(*pgd)) {
f2f13a85 389 set_pgd(pgd, *pgd_ref);
1160c277
SK
390 arch_flush_lazy_mmu_mode();
391 } else {
f2f13a85 392 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
1160c277 393 }
f2f13a85
IM
394
395 /*
396 * Below here mismatches are bugs because these lower tables
397 * are shared:
398 */
399
400 pud = pud_offset(pgd, address);
401 pud_ref = pud_offset(pgd_ref, address);
402 if (pud_none(*pud_ref))
403 return -1;
404
405 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
406 BUG();
407
408 pmd = pmd_offset(pud, address);
409 pmd_ref = pmd_offset(pud_ref, address);
410 if (pmd_none(*pmd_ref))
411 return -1;
412
413 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
414 BUG();
415
416 pte_ref = pte_offset_kernel(pmd_ref, address);
417 if (!pte_present(*pte_ref))
418 return -1;
419
420 pte = pte_offset_kernel(pmd, address);
421
422 /*
423 * Don't use pte_page here, because the mappings can point
424 * outside mem_map, and the NUMA hash lookup cannot handle
425 * that:
426 */
427 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
428 BUG();
429
430 return 0;
431}
9326638c 432NOKPROBE_SYMBOL(vmalloc_fault);
f2f13a85 433
e05139f2 434#ifdef CONFIG_CPU_SUP_AMD
f2f13a85 435static const char errata93_warning[] =
ad361c98
JP
436KERN_ERR
437"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
438"******* Working around it, but it may cause SEGVs or burn power.\n"
439"******* Please consider a BIOS update.\n"
440"******* Disabling USB legacy in the BIOS may also help.\n";
e05139f2 441#endif
f2f13a85
IM
442
443/*
444 * No vm86 mode in 64-bit mode:
445 */
446static inline void
447check_v8086_mode(struct pt_regs *regs, unsigned long address,
448 struct task_struct *tsk)
449{
450}
451
452static int bad_address(void *p)
453{
454 unsigned long dummy;
455
456 return probe_kernel_address((unsigned long *)p, dummy);
457}
458
459static void dump_pagetable(unsigned long address)
460{
087975b0
AM
461 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
462 pgd_t *pgd = base + pgd_index(address);
1da177e4
LT
463 pud_t *pud;
464 pmd_t *pmd;
465 pte_t *pte;
466
2d4a7167
IM
467 if (bad_address(pgd))
468 goto bad;
469
d646bce4 470 printk("PGD %lx ", pgd_val(*pgd));
2d4a7167
IM
471
472 if (!pgd_present(*pgd))
473 goto out;
1da177e4 474
d2ae5b5f 475 pud = pud_offset(pgd, address);
2d4a7167
IM
476 if (bad_address(pud))
477 goto bad;
478
1da177e4 479 printk("PUD %lx ", pud_val(*pud));
b5360222 480 if (!pud_present(*pud) || pud_large(*pud))
2d4a7167 481 goto out;
1da177e4
LT
482
483 pmd = pmd_offset(pud, address);
2d4a7167
IM
484 if (bad_address(pmd))
485 goto bad;
486
1da177e4 487 printk("PMD %lx ", pmd_val(*pmd));
2d4a7167
IM
488 if (!pmd_present(*pmd) || pmd_large(*pmd))
489 goto out;
1da177e4
LT
490
491 pte = pte_offset_kernel(pmd, address);
2d4a7167
IM
492 if (bad_address(pte))
493 goto bad;
494
33cb5243 495 printk("PTE %lx", pte_val(*pte));
2d4a7167 496out:
1da177e4
LT
497 printk("\n");
498 return;
499bad:
500 printk("BAD\n");
8c938f9f
IM
501}
502
f2f13a85 503#endif /* CONFIG_X86_64 */
1da177e4 504
2d4a7167
IM
505/*
506 * Workaround for K8 erratum #93 & buggy BIOS.
507 *
508 * BIOS SMM functions are required to use a specific workaround
509 * to avoid corruption of the 64bit RIP register on C stepping K8.
510 *
511 * A lot of BIOS that didn't get tested properly miss this.
512 *
513 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
514 * Try to work around it here.
515 *
516 * Note we only handle faults in kernel here.
517 * Does nothing on 32-bit.
fdfe8aa8 518 */
33cb5243 519static int is_errata93(struct pt_regs *regs, unsigned long address)
1da177e4 520{
e05139f2
JB
521#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
522 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
523 || boot_cpu_data.x86 != 0xf)
524 return 0;
525
65ea5b03 526 if (address != regs->ip)
1da177e4 527 return 0;
2d4a7167 528
33cb5243 529 if ((address >> 32) != 0)
1da177e4 530 return 0;
2d4a7167 531
1da177e4 532 address |= 0xffffffffUL << 32;
33cb5243
HH
533 if ((address >= (u64)_stext && address <= (u64)_etext) ||
534 (address >= MODULES_VADDR && address <= MODULES_END)) {
a454ab31 535 printk_once(errata93_warning);
65ea5b03 536 regs->ip = address;
1da177e4
LT
537 return 1;
538 }
fdfe8aa8 539#endif
1da177e4 540 return 0;
33cb5243 541}
1da177e4 542
35f3266f 543/*
2d4a7167
IM
544 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
545 * to illegal addresses >4GB.
546 *
547 * We catch this in the page fault handler because these addresses
548 * are not reachable. Just detect this case and return. Any code
35f3266f
HH
549 * segment in LDT is compatibility mode.
550 */
551static int is_errata100(struct pt_regs *regs, unsigned long address)
552{
553#ifdef CONFIG_X86_64
2d4a7167 554 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
35f3266f
HH
555 return 1;
556#endif
557 return 0;
558}
559
29caf2f9
HH
560static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
561{
562#ifdef CONFIG_X86_F00F_BUG
563 unsigned long nr;
2d4a7167 564
29caf2f9 565 /*
2d4a7167 566 * Pentium F0 0F C7 C8 bug workaround:
29caf2f9 567 */
e2604b49 568 if (boot_cpu_has_bug(X86_BUG_F00F)) {
29caf2f9
HH
569 nr = (address - idt_descr.address) >> 3;
570
571 if (nr == 6) {
572 do_invalid_op(regs, 0);
573 return 1;
574 }
575 }
576#endif
577 return 0;
578}
579
8f766149
IM
580static const char nx_warning[] = KERN_CRIT
581"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
eff50c34
JK
582static const char smep_warning[] = KERN_CRIT
583"unable to execute userspace code (SMEP?) (uid: %d)\n";
8f766149 584
2d4a7167
IM
585static void
586show_fault_oops(struct pt_regs *regs, unsigned long error_code,
587 unsigned long address)
b3279c7f 588{
1156e098
HH
589 if (!oops_may_print())
590 return;
591
1156e098 592 if (error_code & PF_INSTR) {
93809be8 593 unsigned int level;
426e34cc
MF
594 pgd_t *pgd;
595 pte_t *pte;
2d4a7167 596
426e34cc
MF
597 pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
598 pgd += pgd_index(address);
599
600 pte = lookup_address_in_pgd(pgd, address, &level);
1156e098 601
8f766149 602 if (pte && pte_present(*pte) && !pte_exec(*pte))
078de5f7 603 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
eff50c34
JK
604 if (pte && pte_present(*pte) && pte_exec(*pte) &&
605 (pgd_flags(*pgd) & _PAGE_USER) &&
1e02ce4c 606 (__read_cr4() & X86_CR4_SMEP))
eff50c34 607 printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
1156e098 608 }
1156e098 609
19f0dda9 610 printk(KERN_ALERT "BUG: unable to handle kernel ");
b3279c7f 611 if (address < PAGE_SIZE)
19f0dda9 612 printk(KERN_CONT "NULL pointer dereference");
b3279c7f 613 else
19f0dda9 614 printk(KERN_CONT "paging request");
2d4a7167 615
f294a8ce 616 printk(KERN_CONT " at %p\n", (void *) address);
19f0dda9 617 printk(KERN_ALERT "IP:");
5f01c988 618 printk_address(regs->ip);
2d4a7167 619
b3279c7f
HH
620 dump_pagetable(address);
621}
622
2d4a7167
IM
623static noinline void
624pgtable_bad(struct pt_regs *regs, unsigned long error_code,
625 unsigned long address)
1da177e4 626{
2d4a7167
IM
627 struct task_struct *tsk;
628 unsigned long flags;
629 int sig;
630
631 flags = oops_begin();
632 tsk = current;
633 sig = SIGKILL;
1209140c 634
1da177e4 635 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
92181f19 636 tsk->comm, address);
1da177e4 637 dump_pagetable(address);
2d4a7167
IM
638
639 tsk->thread.cr2 = address;
51e7dc70 640 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167
IM
641 tsk->thread.error_code = error_code;
642
22f5991c 643 if (__die("Bad pagetable", regs, error_code))
874d93d1 644 sig = 0;
2d4a7167 645
874d93d1 646 oops_end(flags, regs, sig);
1da177e4
LT
647}
648
2d4a7167
IM
649static noinline void
650no_context(struct pt_regs *regs, unsigned long error_code,
4fc34901 651 unsigned long address, int signal, int si_code)
92181f19
NP
652{
653 struct task_struct *tsk = current;
92181f19
NP
654 unsigned long flags;
655 int sig;
92181f19 656
2d4a7167 657 /* Are we prepared to handle this kernel fault? */
4fc34901 658 if (fixup_exception(regs)) {
c026b359
PZ
659 /*
660 * Any interrupt that takes a fault gets the fixup. This makes
661 * the below recursive fault logic only apply to a faults from
662 * task context.
663 */
664 if (in_interrupt())
665 return;
666
667 /*
668 * Per the above we're !in_interrupt(), aka. task context.
669 *
670 * In this case we need to make sure we're not recursively
671 * faulting through the emulate_vsyscall() logic.
672 */
4fc34901 673 if (current_thread_info()->sig_on_uaccess_error && signal) {
51e7dc70 674 tsk->thread.trap_nr = X86_TRAP_PF;
4fc34901
AL
675 tsk->thread.error_code = error_code | PF_USER;
676 tsk->thread.cr2 = address;
677
678 /* XXX: hwpoison faults will set the wrong code. */
679 force_sig_info_fault(signal, si_code, address, tsk, 0);
680 }
c026b359
PZ
681
682 /*
683 * Barring that, we can do the fixup and be happy.
684 */
92181f19 685 return;
4fc34901 686 }
92181f19
NP
687
688 /*
2d4a7167
IM
689 * 32-bit:
690 *
691 * Valid to do another page fault here, because if this fault
692 * had been triggered by is_prefetch fixup_exception would have
693 * handled it.
694 *
695 * 64-bit:
92181f19 696 *
2d4a7167 697 * Hall of shame of CPU/BIOS bugs.
92181f19
NP
698 */
699 if (is_prefetch(regs, error_code, address))
700 return;
701
702 if (is_errata93(regs, address))
703 return;
704
705 /*
706 * Oops. The kernel tried to access some bad page. We'll have to
2d4a7167 707 * terminate things with extreme prejudice:
92181f19 708 */
92181f19 709 flags = oops_begin();
92181f19
NP
710
711 show_fault_oops(regs, error_code, address);
712
a70857e4 713 if (task_stack_end_corrupted(tsk))
b0f4c4b3 714 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
19803078 715
1cc99544 716 tsk->thread.cr2 = address;
51e7dc70 717 tsk->thread.trap_nr = X86_TRAP_PF;
1cc99544 718 tsk->thread.error_code = error_code;
92181f19 719
92181f19
NP
720 sig = SIGKILL;
721 if (__die("Oops", regs, error_code))
722 sig = 0;
2d4a7167 723
92181f19 724 /* Executive summary in case the body of the oops scrolled away */
b0f4c4b3 725 printk(KERN_DEFAULT "CR2: %016lx\n", address);
2d4a7167 726
92181f19 727 oops_end(flags, regs, sig);
92181f19
NP
728}
729
2d4a7167
IM
730/*
731 * Print out info about fatal segfaults, if the show_unhandled_signals
732 * sysctl is set:
733 */
734static inline void
735show_signal_msg(struct pt_regs *regs, unsigned long error_code,
736 unsigned long address, struct task_struct *tsk)
737{
738 if (!unhandled_signal(tsk, SIGSEGV))
739 return;
740
741 if (!printk_ratelimit())
742 return;
743
a1a08d1c 744 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
2d4a7167
IM
745 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
746 tsk->comm, task_pid_nr(tsk), address,
747 (void *)regs->ip, (void *)regs->sp, error_code);
748
749 print_vma_addr(KERN_CONT " in ", regs->ip);
750
751 printk(KERN_CONT "\n");
752}
753
754static void
755__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
756 unsigned long address, int si_code)
92181f19
NP
757{
758 struct task_struct *tsk = current;
759
760 /* User mode accesses just cause a SIGSEGV */
761 if (error_code & PF_USER) {
762 /*
2d4a7167 763 * It's possible to have interrupts off here:
92181f19
NP
764 */
765 local_irq_enable();
766
767 /*
768 * Valid to do another page fault here because this one came
2d4a7167 769 * from user space:
92181f19
NP
770 */
771 if (is_prefetch(regs, error_code, address))
772 return;
773
774 if (is_errata100(regs, address))
775 return;
776
3ae36655
AL
777#ifdef CONFIG_X86_64
778 /*
779 * Instruction fetch faults in the vsyscall page might need
780 * emulation.
781 */
782 if (unlikely((error_code & PF_INSTR) &&
f40c3300 783 ((address & ~0xfff) == VSYSCALL_ADDR))) {
3ae36655
AL
784 if (emulate_vsyscall(regs, address))
785 return;
786 }
787#endif
e575a86f
KC
788 /* Kernel addresses are always protection faults: */
789 if (address >= TASK_SIZE)
790 error_code |= PF_PROT;
3ae36655 791
e575a86f 792 if (likely(show_unhandled_signals))
2d4a7167
IM
793 show_signal_msg(regs, error_code, address, tsk);
794
2d4a7167 795 tsk->thread.cr2 = address;
e575a86f 796 tsk->thread.error_code = error_code;
51e7dc70 797 tsk->thread.trap_nr = X86_TRAP_PF;
92181f19 798
f672b49b 799 force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
2d4a7167 800
92181f19
NP
801 return;
802 }
803
804 if (is_f00f_bug(regs, address))
805 return;
806
4fc34901 807 no_context(regs, error_code, address, SIGSEGV, si_code);
92181f19
NP
808}
809
2d4a7167
IM
810static noinline void
811bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
812 unsigned long address)
92181f19
NP
813{
814 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
815}
816
2d4a7167
IM
817static void
818__bad_area(struct pt_regs *regs, unsigned long error_code,
819 unsigned long address, int si_code)
92181f19
NP
820{
821 struct mm_struct *mm = current->mm;
822
823 /*
824 * Something tried to access memory that isn't in our memory map..
825 * Fix it, but check if it's kernel or user first..
826 */
827 up_read(&mm->mmap_sem);
828
829 __bad_area_nosemaphore(regs, error_code, address, si_code);
830}
831
2d4a7167
IM
832static noinline void
833bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
92181f19
NP
834{
835 __bad_area(regs, error_code, address, SEGV_MAPERR);
836}
837
2d4a7167
IM
838static noinline void
839bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
840 unsigned long address)
92181f19
NP
841{
842 __bad_area(regs, error_code, address, SEGV_ACCERR);
843}
844
2d4a7167 845static void
a6e04aa9
AK
846do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
847 unsigned int fault)
92181f19
NP
848{
849 struct task_struct *tsk = current;
a6e04aa9 850 int code = BUS_ADRERR;
92181f19 851
2d4a7167 852 /* Kernel mode? Handle exceptions or die: */
96054569 853 if (!(error_code & PF_USER)) {
4fc34901 854 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
96054569
LT
855 return;
856 }
2d4a7167 857
cd1b68f0 858 /* User-space => ok to do another page fault: */
92181f19
NP
859 if (is_prefetch(regs, error_code, address))
860 return;
2d4a7167
IM
861
862 tsk->thread.cr2 = address;
863 tsk->thread.error_code = error_code;
51e7dc70 864 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167 865
a6e04aa9 866#ifdef CONFIG_MEMORY_FAILURE
f672b49b 867 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
a6e04aa9
AK
868 printk(KERN_ERR
869 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
870 tsk->comm, tsk->pid, address);
871 code = BUS_MCEERR_AR;
872 }
873#endif
f672b49b 874 force_sig_info_fault(SIGBUS, code, address, tsk, fault);
92181f19
NP
875}
876
3a13c4d7 877static noinline void
2d4a7167
IM
878mm_fault_error(struct pt_regs *regs, unsigned long error_code,
879 unsigned long address, unsigned int fault)
92181f19 880{
3a13c4d7 881 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
3a13c4d7
JW
882 no_context(regs, error_code, address, 0, 0);
883 return;
b80ef10e 884 }
b80ef10e 885
2d4a7167 886 if (fault & VM_FAULT_OOM) {
f8626854
AV
887 /* Kernel mode? Handle exceptions or die: */
888 if (!(error_code & PF_USER)) {
4fc34901
AL
889 no_context(regs, error_code, address,
890 SIGSEGV, SEGV_MAPERR);
3a13c4d7 891 return;
f8626854
AV
892 }
893
c2d23f91
DR
894 /*
895 * We ran out of memory, call the OOM killer, and return the
896 * userspace (which will retry the fault, or kill us if we got
897 * oom-killed):
898 */
899 pagefault_out_of_memory();
2d4a7167 900 } else {
f672b49b
AK
901 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
902 VM_FAULT_HWPOISON_LARGE))
a6e04aa9 903 do_sigbus(regs, error_code, address, fault);
33692f27
LT
904 else if (fault & VM_FAULT_SIGSEGV)
905 bad_area_nosemaphore(regs, error_code, address);
2d4a7167
IM
906 else
907 BUG();
908 }
92181f19
NP
909}
910
d8b57bb7
TG
911static int spurious_fault_check(unsigned long error_code, pte_t *pte)
912{
913 if ((error_code & PF_WRITE) && !pte_write(*pte))
914 return 0;
2d4a7167 915
d8b57bb7
TG
916 if ((error_code & PF_INSTR) && !pte_exec(*pte))
917 return 0;
918
919 return 1;
920}
921
5b727a3b 922/*
2d4a7167
IM
923 * Handle a spurious fault caused by a stale TLB entry.
924 *
925 * This allows us to lazily refresh the TLB when increasing the
926 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
927 * eagerly is very expensive since that implies doing a full
928 * cross-processor TLB flush, even if no stale TLB entries exist
929 * on other processors.
930 *
31668511
DV
931 * Spurious faults may only occur if the TLB contains an entry with
932 * fewer permission than the page table entry. Non-present (P = 0)
933 * and reserved bit (R = 1) faults are never spurious.
934 *
5b727a3b
JF
935 * There are no security implications to leaving a stale TLB when
936 * increasing the permissions on a page.
31668511
DV
937 *
938 * Returns non-zero if a spurious fault was handled, zero otherwise.
939 *
940 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
941 * (Optional Invalidation).
5b727a3b 942 */
9326638c 943static noinline int
2d4a7167 944spurious_fault(unsigned long error_code, unsigned long address)
5b727a3b
JF
945{
946 pgd_t *pgd;
947 pud_t *pud;
948 pmd_t *pmd;
949 pte_t *pte;
3c3e5694 950 int ret;
5b727a3b 951
31668511
DV
952 /*
953 * Only writes to RO or instruction fetches from NX may cause
954 * spurious faults.
955 *
956 * These could be from user or supervisor accesses but the TLB
957 * is only lazily flushed after a kernel mapping protection
958 * change, so user accesses are not expected to cause spurious
959 * faults.
960 */
961 if (error_code != (PF_WRITE | PF_PROT)
962 && error_code != (PF_INSTR | PF_PROT))
5b727a3b
JF
963 return 0;
964
965 pgd = init_mm.pgd + pgd_index(address);
966 if (!pgd_present(*pgd))
967 return 0;
968
969 pud = pud_offset(pgd, address);
970 if (!pud_present(*pud))
971 return 0;
972
d8b57bb7
TG
973 if (pud_large(*pud))
974 return spurious_fault_check(error_code, (pte_t *) pud);
975
5b727a3b
JF
976 pmd = pmd_offset(pud, address);
977 if (!pmd_present(*pmd))
978 return 0;
979
d8b57bb7
TG
980 if (pmd_large(*pmd))
981 return spurious_fault_check(error_code, (pte_t *) pmd);
982
5b727a3b 983 pte = pte_offset_kernel(pmd, address);
954f8571 984 if (!pte_present(*pte))
5b727a3b
JF
985 return 0;
986
3c3e5694
SR
987 ret = spurious_fault_check(error_code, pte);
988 if (!ret)
989 return 0;
990
991 /*
2d4a7167
IM
992 * Make sure we have permissions in PMD.
993 * If not, then there's a bug in the page tables:
3c3e5694
SR
994 */
995 ret = spurious_fault_check(error_code, (pte_t *) pmd);
996 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
2d4a7167 997
3c3e5694 998 return ret;
5b727a3b 999}
9326638c 1000NOKPROBE_SYMBOL(spurious_fault);
5b727a3b 1001
abd4f750 1002int show_unhandled_signals = 1;
1da177e4 1003
2d4a7167 1004static inline int
68da336a 1005access_error(unsigned long error_code, struct vm_area_struct *vma)
92181f19 1006{
68da336a 1007 if (error_code & PF_WRITE) {
2d4a7167 1008 /* write, present and write, not present: */
92181f19
NP
1009 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1010 return 1;
2d4a7167 1011 return 0;
92181f19
NP
1012 }
1013
2d4a7167
IM
1014 /* read, present: */
1015 if (unlikely(error_code & PF_PROT))
1016 return 1;
1017
1018 /* read, not present: */
1019 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1020 return 1;
1021
92181f19
NP
1022 return 0;
1023}
1024
0973a06c
HS
1025static int fault_in_kernel_space(unsigned long address)
1026{
d9517346 1027 return address >= TASK_SIZE_MAX;
0973a06c
HS
1028}
1029
40d3cd66
PA
1030static inline bool smap_violation(int error_code, struct pt_regs *regs)
1031{
4640c7ee
PA
1032 if (!IS_ENABLED(CONFIG_X86_SMAP))
1033 return false;
1034
1035 if (!static_cpu_has(X86_FEATURE_SMAP))
1036 return false;
1037
40d3cd66
PA
1038 if (error_code & PF_USER)
1039 return false;
1040
f39b6f0e 1041 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
40d3cd66
PA
1042 return false;
1043
1044 return true;
1045}
1046
1da177e4
LT
1047/*
1048 * This routine handles page faults. It determines the address,
1049 * and the problem, and then passes it off to one of the appropriate
1050 * routines.
d4078e23
PZ
1051 *
1052 * This function must have noinline because both callers
1053 * {,trace_}do_page_fault() have notrace on. Having this an actual function
1054 * guarantees there's a function trace entry.
1da177e4 1055 */
9326638c 1056static noinline void
0ac09f9f
JO
1057__do_page_fault(struct pt_regs *regs, unsigned long error_code,
1058 unsigned long address)
1da177e4 1059{
2d4a7167 1060 struct vm_area_struct *vma;
1da177e4
LT
1061 struct task_struct *tsk;
1062 struct mm_struct *mm;
26178ec1 1063 int fault, major = 0;
759496ba 1064 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1da177e4 1065
a9ba9a3b
AV
1066 tsk = current;
1067 mm = tsk->mm;
2d4a7167 1068
f8561296
VN
1069 /*
1070 * Detect and handle instructions that would cause a page fault for
1071 * both a tracked kernel page and a userspace page.
1072 */
1073 if (kmemcheck_active(regs))
1074 kmemcheck_hide(regs);
5dfaf90f 1075 prefetchw(&mm->mmap_sem);
f8561296 1076
0fd0e3da 1077 if (unlikely(kmmio_fault(regs, address)))
86069782 1078 return;
1da177e4
LT
1079
1080 /*
1081 * We fault-in kernel-space virtual memory on-demand. The
1082 * 'reference' page table is init_mm.pgd.
1083 *
1084 * NOTE! We MUST NOT take any locks for this case. We may
1085 * be in an interrupt or a critical region, and should
1086 * only copy the information from the master page table,
1087 * nothing more.
1088 *
1089 * This verifies that the fault happens in kernel space
1090 * (error_code & 4) == 0, and that the fault was not a
8b1bde93 1091 * protection error (error_code & 9) == 0.
1da177e4 1092 */
0973a06c 1093 if (unlikely(fault_in_kernel_space(address))) {
f8561296
VN
1094 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1095 if (vmalloc_fault(address) >= 0)
1096 return;
1097
1098 if (kmemcheck_fault(regs, address, error_code))
1099 return;
1100 }
5b727a3b 1101
2d4a7167 1102 /* Can handle a stale RO->RW TLB: */
92181f19 1103 if (spurious_fault(error_code, address))
5b727a3b
JF
1104 return;
1105
2d4a7167 1106 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1107 if (kprobes_fault(regs))
9be260a6 1108 return;
f8c2ee22
HH
1109 /*
1110 * Don't take the mm semaphore here. If we fixup a prefetch
2d4a7167 1111 * fault we could otherwise deadlock:
f8c2ee22 1112 */
92181f19 1113 bad_area_nosemaphore(regs, error_code, address);
2d4a7167 1114
92181f19 1115 return;
f8c2ee22
HH
1116 }
1117
2d4a7167 1118 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1119 if (unlikely(kprobes_fault(regs)))
9be260a6 1120 return;
8c914cb7 1121
66c58156 1122 if (unlikely(error_code & PF_RSVD))
92181f19 1123 pgtable_bad(regs, error_code, address);
1da177e4 1124
4640c7ee
PA
1125 if (unlikely(smap_violation(error_code, regs))) {
1126 bad_area_nosemaphore(regs, error_code, address);
1127 return;
40d3cd66
PA
1128 }
1129
1da177e4 1130 /*
2d4a7167 1131 * If we're in an interrupt, have no user context or are running
70ffdb93 1132 * in a region with pagefaults disabled then we must not take the fault
1da177e4 1133 */
70ffdb93 1134 if (unlikely(faulthandler_disabled() || !mm)) {
92181f19
NP
1135 bad_area_nosemaphore(regs, error_code, address);
1136 return;
1137 }
1da177e4 1138
e00b12e6
PZ
1139 /*
1140 * It's safe to allow irq's after cr2 has been saved and the
1141 * vmalloc fault has been handled.
1142 *
1143 * User-mode registers count as a user access even for any
1144 * potential system fault or CPU buglet:
1145 */
f39b6f0e 1146 if (user_mode(regs)) {
e00b12e6
PZ
1147 local_irq_enable();
1148 error_code |= PF_USER;
1149 flags |= FAULT_FLAG_USER;
1150 } else {
1151 if (regs->flags & X86_EFLAGS_IF)
1152 local_irq_enable();
1153 }
1154
1155 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1156
759496ba
JW
1157 if (error_code & PF_WRITE)
1158 flags |= FAULT_FLAG_WRITE;
1159
3a1dfe6e
IM
1160 /*
1161 * When running in the kernel we expect faults to occur only to
2d4a7167
IM
1162 * addresses in user space. All other faults represent errors in
1163 * the kernel and should generate an OOPS. Unfortunately, in the
1164 * case of an erroneous fault occurring in a code path which already
1165 * holds mmap_sem we will deadlock attempting to validate the fault
1166 * against the address space. Luckily the kernel only validly
1167 * references user space from well defined areas of code, which are
1168 * listed in the exceptions table.
1da177e4
LT
1169 *
1170 * As the vast majority of faults will be valid we will only perform
2d4a7167
IM
1171 * the source reference check when there is a possibility of a
1172 * deadlock. Attempt to lock the address space, if we cannot we then
1173 * validate the source. If this is invalid we can skip the address
1174 * space check, thus avoiding the deadlock:
1da177e4 1175 */
92181f19 1176 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
66c58156 1177 if ((error_code & PF_USER) == 0 &&
92181f19
NP
1178 !search_exception_tables(regs->ip)) {
1179 bad_area_nosemaphore(regs, error_code, address);
1180 return;
1181 }
d065bd81 1182retry:
1da177e4 1183 down_read(&mm->mmap_sem);
01006074
PZ
1184 } else {
1185 /*
2d4a7167
IM
1186 * The above down_read_trylock() might have succeeded in
1187 * which case we'll have missed the might_sleep() from
1188 * down_read():
01006074
PZ
1189 */
1190 might_sleep();
1da177e4
LT
1191 }
1192
1193 vma = find_vma(mm, address);
92181f19
NP
1194 if (unlikely(!vma)) {
1195 bad_area(regs, error_code, address);
1196 return;
1197 }
1198 if (likely(vma->vm_start <= address))
1da177e4 1199 goto good_area;
92181f19
NP
1200 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1201 bad_area(regs, error_code, address);
1202 return;
1203 }
33cb5243 1204 if (error_code & PF_USER) {
6f4d368e
HH
1205 /*
1206 * Accessing the stack below %sp is always a bug.
1207 * The large cushion allows instructions like enter
2d4a7167 1208 * and pusha to work. ("enter $65535, $31" pushes
6f4d368e 1209 * 32 pointers and then decrements %sp by 65535.)
03fdc2c2 1210 */
92181f19
NP
1211 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1212 bad_area(regs, error_code, address);
1213 return;
1214 }
1da177e4 1215 }
92181f19
NP
1216 if (unlikely(expand_stack(vma, address))) {
1217 bad_area(regs, error_code, address);
1218 return;
1219 }
1220
1221 /*
1222 * Ok, we have a good vm_area for this memory access, so
1223 * we can handle it..
1224 */
1da177e4 1225good_area:
68da336a 1226 if (unlikely(access_error(error_code, vma))) {
92181f19
NP
1227 bad_area_access_error(regs, error_code, address);
1228 return;
1da177e4
LT
1229 }
1230
1231 /*
1232 * If for any reason at all we couldn't handle the fault,
1233 * make sure we exit gracefully rather than endlessly redo
9a95f3cf
PC
1234 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1235 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1da177e4 1236 */
d065bd81 1237 fault = handle_mm_fault(mm, vma, address, flags);
26178ec1 1238 major |= fault & VM_FAULT_MAJOR;
2d4a7167 1239
3a13c4d7 1240 /*
26178ec1
LT
1241 * If we need to retry the mmap_sem has already been released,
1242 * and if there is a fatal signal pending there is no guarantee
1243 * that we made any progress. Handle this case first.
3a13c4d7 1244 */
26178ec1
LT
1245 if (unlikely(fault & VM_FAULT_RETRY)) {
1246 /* Retry at most once */
1247 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1248 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1249 flags |= FAULT_FLAG_TRIED;
1250 if (!fatal_signal_pending(tsk))
1251 goto retry;
1252 }
1253
1254 /* User mode? Just return to handle the fatal exception */
cf3c0a15 1255 if (flags & FAULT_FLAG_USER)
26178ec1
LT
1256 return;
1257
1258 /* Not returning to user mode? Handle exceptions or die: */
1259 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
3a13c4d7 1260 return;
26178ec1 1261 }
3a13c4d7 1262
26178ec1 1263 up_read(&mm->mmap_sem);
3a13c4d7
JW
1264 if (unlikely(fault & VM_FAULT_ERROR)) {
1265 mm_fault_error(regs, error_code, address, fault);
1266 return;
37b23e05
KM
1267 }
1268
d065bd81 1269 /*
26178ec1
LT
1270 * Major/minor page fault accounting. If any of the events
1271 * returned VM_FAULT_MAJOR, we account it as a major fault.
d065bd81 1272 */
26178ec1
LT
1273 if (major) {
1274 tsk->maj_flt++;
1275 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1276 } else {
1277 tsk->min_flt++;
1278 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
ac17dc8e 1279 }
d729ab35 1280
8c938f9f 1281 check_v8086_mode(regs, address, tsk);
1da177e4 1282}
9326638c 1283NOKPROBE_SYMBOL(__do_page_fault);
6ba3c97a 1284
9326638c 1285dotraplinkage void notrace
6ba3c97a
FW
1286do_page_fault(struct pt_regs *regs, unsigned long error_code)
1287{
d4078e23 1288 unsigned long address = read_cr2(); /* Get the faulting address */
6c1e0256 1289 enum ctx_state prev_state;
d4078e23
PZ
1290
1291 /*
1292 * We must have this function tagged with __kprobes, notrace and call
1293 * read_cr2() before calling anything else. To avoid calling any kind
1294 * of tracing machinery before we've observed the CR2 value.
1295 *
1296 * exception_{enter,exit}() contain all sorts of tracepoints.
1297 */
6c1e0256
FW
1298
1299 prev_state = exception_enter();
0ac09f9f 1300 __do_page_fault(regs, error_code, address);
6c1e0256 1301 exception_exit(prev_state);
6ba3c97a 1302}
9326638c 1303NOKPROBE_SYMBOL(do_page_fault);
25c74b10 1304
d4078e23 1305#ifdef CONFIG_TRACING
9326638c
MH
1306static nokprobe_inline void
1307trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1308 unsigned long error_code)
d34603b0
SA
1309{
1310 if (user_mode(regs))
d4078e23 1311 trace_page_fault_user(address, regs, error_code);
d34603b0 1312 else
d4078e23 1313 trace_page_fault_kernel(address, regs, error_code);
d34603b0
SA
1314}
1315
9326638c 1316dotraplinkage void notrace
25c74b10
SA
1317trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1318{
0ac09f9f
JO
1319 /*
1320 * The exception_enter and tracepoint processing could
1321 * trigger another page faults (user space callchain
1322 * reading) and destroy the original cr2 value, so read
1323 * the faulting address now.
1324 */
1325 unsigned long address = read_cr2();
d4078e23 1326 enum ctx_state prev_state;
25c74b10
SA
1327
1328 prev_state = exception_enter();
d4078e23 1329 trace_page_fault_entries(address, regs, error_code);
0ac09f9f 1330 __do_page_fault(regs, error_code, address);
25c74b10
SA
1331 exception_exit(prev_state);
1332}
9326638c 1333NOKPROBE_SYMBOL(trace_do_page_fault);
d4078e23 1334#endif /* CONFIG_TRACING */
This page took 0.95046 seconds and 5 git commands to generate.