x86/paravirt: remove lazy mode in interrupts
[deliverable/linux.git] / arch / x86 / mm / fault.c
CommitLineData
1da177e4 1/*
1da177e4 2 * Copyright (C) 1995 Linus Torvalds
2d4a7167 3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
f8eeb2e6 4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
1da177e4 5 */
1da177e4 6#include <linux/interrupt.h>
2d4a7167
IM
7#include <linux/mmiotrace.h>
8#include <linux/bootmem.h>
1da177e4 9#include <linux/compiler.h>
c61e211d 10#include <linux/highmem.h>
0f2fbdcb 11#include <linux/kprobes.h>
ab2bf0c1 12#include <linux/uaccess.h>
2d4a7167
IM
13#include <linux/vmalloc.h>
14#include <linux/vt_kern.h>
15#include <linux/signal.h>
16#include <linux/kernel.h>
17#include <linux/ptrace.h>
18#include <linux/string.h>
19#include <linux/module.h>
1eeb66a1 20#include <linux/kdebug.h>
2d4a7167 21#include <linux/errno.h>
7c9f8861 22#include <linux/magic.h>
2d4a7167
IM
23#include <linux/sched.h>
24#include <linux/types.h>
25#include <linux/init.h>
26#include <linux/mman.h>
27#include <linux/tty.h>
28#include <linux/smp.h>
29#include <linux/mm.h>
30
31#include <asm-generic/sections.h>
1da177e4 32
1da177e4 33#include <asm/tlbflush.h>
2d4a7167
IM
34#include <asm/pgalloc.h>
35#include <asm/segment.h>
36#include <asm/system.h>
1da177e4 37#include <asm/proto.h>
70ef5641 38#include <asm/traps.h>
2d4a7167 39#include <asm/desc.h>
1da177e4 40
33cb5243 41/*
2d4a7167
IM
42 * Page fault error code bits:
43 *
44 * bit 0 == 0: no page found 1: protection fault
45 * bit 1 == 0: read access 1: write access
46 * bit 2 == 0: kernel-mode access 1: user-mode access
47 * bit 3 == 1: use of reserved bit detected
48 * bit 4 == 1: fault was an instruction fetch
33cb5243 49 */
2d4a7167
IM
50enum x86_pf_error_code {
51
52 PF_PROT = 1 << 0,
53 PF_WRITE = 1 << 1,
54 PF_USER = 1 << 2,
55 PF_RSVD = 1 << 3,
56 PF_INSTR = 1 << 4,
57};
66c58156 58
b814d41f 59/*
b319eed0
IM
60 * Returns 0 if mmiotrace is disabled, or if the fault is not
61 * handled by mmiotrace:
b814d41f 62 */
0fd0e3da 63static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr)
86069782 64{
0fd0e3da
PP
65 if (unlikely(is_kmmio_active()))
66 if (kmmio_handler(regs, addr) == 1)
67 return -1;
0fd0e3da 68 return 0;
86069782
PP
69}
70
74a0b576 71static inline int notify_page_fault(struct pt_regs *regs)
1bd858a5 72{
74a0b576
CH
73 int ret = 0;
74
75 /* kprobe_running() needs smp_processor_id() */
b1801812 76 if (kprobes_built_in() && !user_mode_vm(regs)) {
74a0b576
CH
77 preempt_disable();
78 if (kprobe_running() && kprobe_fault_handler(regs, 14))
79 ret = 1;
80 preempt_enable();
81 }
1bd858a5 82
74a0b576 83 return ret;
33cb5243 84}
1bd858a5 85
1dc85be0 86/*
2d4a7167
IM
87 * Prefetch quirks:
88 *
89 * 32-bit mode:
90 *
91 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
92 * Check that here and ignore it.
1dc85be0 93 *
2d4a7167 94 * 64-bit mode:
1dc85be0 95 *
2d4a7167
IM
96 * Sometimes the CPU reports invalid exceptions on prefetch.
97 * Check that here and ignore it.
98 *
99 * Opcode checker based on code by Richard Brunner.
1dc85be0 100 */
107a0367
IM
101static inline int
102check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
103 unsigned char opcode, int *prefetch)
104{
105 unsigned char instr_hi = opcode & 0xf0;
106 unsigned char instr_lo = opcode & 0x0f;
107
108 switch (instr_hi) {
109 case 0x20:
110 case 0x30:
111 /*
112 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
113 * In X86_64 long mode, the CPU will signal invalid
114 * opcode if some of these prefixes are present so
115 * X86_64 will never get here anyway
116 */
117 return ((instr_lo & 7) == 0x6);
118#ifdef CONFIG_X86_64
119 case 0x40:
120 /*
121 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
122 * Need to figure out under what instruction mode the
123 * instruction was issued. Could check the LDT for lm,
124 * but for now it's good enough to assume that long
125 * mode only uses well known segments or kernel.
126 */
127 return (!user_mode(regs)) || (regs->cs == __USER_CS);
128#endif
129 case 0x60:
130 /* 0x64 thru 0x67 are valid prefixes in all modes. */
131 return (instr_lo & 0xC) == 0x4;
132 case 0xF0:
133 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
134 return !instr_lo || (instr_lo>>1) == 1;
135 case 0x00:
136 /* Prefetch instruction is 0x0F0D or 0x0F18 */
137 if (probe_kernel_address(instr, opcode))
138 return 0;
139
140 *prefetch = (instr_lo == 0xF) &&
141 (opcode == 0x0D || opcode == 0x18);
142 return 0;
143 default:
144 return 0;
145 }
146}
147
2d4a7167
IM
148static int
149is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
33cb5243 150{
2d4a7167 151 unsigned char *max_instr;
ab2bf0c1 152 unsigned char *instr;
33cb5243 153 int prefetch = 0;
1da177e4 154
3085354d
IM
155 /*
156 * If it was a exec (instruction fetch) fault on NX page, then
157 * do not ignore the fault:
158 */
66c58156 159 if (error_code & PF_INSTR)
1da177e4 160 return 0;
1dc85be0 161
107a0367 162 instr = (void *)convert_ip_to_linear(current, regs);
f1290ec9 163 max_instr = instr + 15;
1da177e4 164
76381fee 165 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
1da177e4
LT
166 return 0;
167
107a0367 168 while (instr < max_instr) {
2d4a7167 169 unsigned char opcode;
1da177e4 170
ab2bf0c1 171 if (probe_kernel_address(instr, opcode))
33cb5243 172 break;
1da177e4 173
1da177e4
LT
174 instr++;
175
107a0367 176 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
1da177e4 177 break;
1da177e4
LT
178 }
179 return prefetch;
180}
181
2d4a7167
IM
182static void
183force_sig_info_fault(int si_signo, int si_code, unsigned long address,
184 struct task_struct *tsk)
c4aba4a8
HH
185{
186 siginfo_t info;
187
2d4a7167
IM
188 info.si_signo = si_signo;
189 info.si_errno = 0;
190 info.si_code = si_code;
191 info.si_addr = (void __user *)address;
192
c4aba4a8
HH
193 force_sig_info(si_signo, &info, tsk);
194}
195
f2f13a85
IM
196DEFINE_SPINLOCK(pgd_lock);
197LIST_HEAD(pgd_list);
198
199#ifdef CONFIG_X86_32
200static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
33cb5243 201{
f2f13a85
IM
202 unsigned index = pgd_index(address);
203 pgd_t *pgd_k;
204 pud_t *pud, *pud_k;
205 pmd_t *pmd, *pmd_k;
2d4a7167 206
f2f13a85
IM
207 pgd += index;
208 pgd_k = init_mm.pgd + index;
209
210 if (!pgd_present(*pgd_k))
211 return NULL;
212
213 /*
214 * set_pgd(pgd, *pgd_k); here would be useless on PAE
215 * and redundant with the set_pmd() on non-PAE. As would
216 * set_pud.
217 */
218 pud = pud_offset(pgd, address);
219 pud_k = pud_offset(pgd_k, address);
220 if (!pud_present(*pud_k))
221 return NULL;
222
223 pmd = pmd_offset(pud, address);
224 pmd_k = pmd_offset(pud_k, address);
225 if (!pmd_present(*pmd_k))
226 return NULL;
227
b8bcfe99 228 if (!pmd_present(*pmd))
f2f13a85 229 set_pmd(pmd, *pmd_k);
b8bcfe99 230 else
f2f13a85 231 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
f2f13a85
IM
232
233 return pmd_k;
234}
235
236void vmalloc_sync_all(void)
237{
238 unsigned long address;
239
240 if (SHARED_KERNEL_PMD)
241 return;
242
243 for (address = VMALLOC_START & PMD_MASK;
244 address >= TASK_SIZE && address < FIXADDR_TOP;
245 address += PMD_SIZE) {
246
247 unsigned long flags;
248 struct page *page;
249
250 spin_lock_irqsave(&pgd_lock, flags);
251 list_for_each_entry(page, &pgd_list, lru) {
252 if (!vmalloc_sync_one(page_address(page), address))
253 break;
254 }
255 spin_unlock_irqrestore(&pgd_lock, flags);
256 }
257}
258
259/*
260 * 32-bit:
261 *
262 * Handle a fault on the vmalloc or module mapping area
263 */
264static noinline int vmalloc_fault(unsigned long address)
265{
266 unsigned long pgd_paddr;
267 pmd_t *pmd_k;
268 pte_t *pte_k;
269
270 /* Make sure we are in vmalloc area: */
271 if (!(address >= VMALLOC_START && address < VMALLOC_END))
272 return -1;
273
274 /*
275 * Synchronize this task's top level page-table
276 * with the 'reference' page table.
277 *
278 * Do _not_ use "current" here. We might be inside
279 * an interrupt in the middle of a task switch..
280 */
281 pgd_paddr = read_cr3();
282 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
283 if (!pmd_k)
284 return -1;
285
286 pte_k = pte_offset_kernel(pmd_k, address);
287 if (!pte_present(*pte_k))
288 return -1;
289
290 return 0;
291}
292
293/*
294 * Did it hit the DOS screen memory VA from vm86 mode?
295 */
296static inline void
297check_v8086_mode(struct pt_regs *regs, unsigned long address,
298 struct task_struct *tsk)
299{
300 unsigned long bit;
301
302 if (!v8086_mode(regs))
303 return;
304
305 bit = (address - 0xA0000) >> PAGE_SHIFT;
306 if (bit < 32)
307 tsk->thread.screen_bitmap |= 1 << bit;
33cb5243 308}
1da177e4 309
cae30f82 310static void dump_pagetable(unsigned long address)
1da177e4 311{
1156e098
HH
312 __typeof__(pte_val(__pte(0))) page;
313
314 page = read_cr3();
315 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
2d4a7167 316
1156e098
HH
317#ifdef CONFIG_X86_PAE
318 printk("*pdpt = %016Lx ", page);
319 if ((page >> PAGE_SHIFT) < max_low_pfn
320 && page & _PAGE_PRESENT) {
321 page &= PAGE_MASK;
322 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
2d4a7167 323 & (PTRS_PER_PMD - 1)];
1156e098
HH
324 printk(KERN_CONT "*pde = %016Lx ", page);
325 page &= ~_PAGE_NX;
326 }
327#else
328 printk("*pde = %08lx ", page);
329#endif
330
331 /*
332 * We must not directly access the pte in the highpte
333 * case if the page table is located in highmem.
334 * And let's rather not kmap-atomic the pte, just in case
2d4a7167 335 * it's allocated already:
1156e098
HH
336 */
337 if ((page >> PAGE_SHIFT) < max_low_pfn
338 && (page & _PAGE_PRESENT)
339 && !(page & _PAGE_PSE)) {
2d4a7167 340
1156e098
HH
341 page &= PAGE_MASK;
342 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
2d4a7167 343 & (PTRS_PER_PTE - 1)];
1156e098
HH
344 printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
345 }
346
347 printk("\n");
f2f13a85
IM
348}
349
350#else /* CONFIG_X86_64: */
351
352void vmalloc_sync_all(void)
353{
354 unsigned long address;
355
356 for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
357 address += PGDIR_SIZE) {
358
359 const pgd_t *pgd_ref = pgd_offset_k(address);
360 unsigned long flags;
361 struct page *page;
362
363 if (pgd_none(*pgd_ref))
364 continue;
365
366 spin_lock_irqsave(&pgd_lock, flags);
367 list_for_each_entry(page, &pgd_list, lru) {
368 pgd_t *pgd;
369 pgd = (pgd_t *)page_address(page) + pgd_index(address);
370 if (pgd_none(*pgd))
371 set_pgd(pgd, *pgd_ref);
372 else
373 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
374 }
375 spin_unlock_irqrestore(&pgd_lock, flags);
376 }
377}
378
379/*
380 * 64-bit:
381 *
382 * Handle a fault on the vmalloc area
383 *
384 * This assumes no large pages in there.
385 */
386static noinline int vmalloc_fault(unsigned long address)
387{
388 pgd_t *pgd, *pgd_ref;
389 pud_t *pud, *pud_ref;
390 pmd_t *pmd, *pmd_ref;
391 pte_t *pte, *pte_ref;
392
393 /* Make sure we are in vmalloc area: */
394 if (!(address >= VMALLOC_START && address < VMALLOC_END))
395 return -1;
396
397 /*
398 * Copy kernel mappings over when needed. This can also
399 * happen within a race in page table update. In the later
400 * case just flush:
401 */
402 pgd = pgd_offset(current->active_mm, address);
403 pgd_ref = pgd_offset_k(address);
404 if (pgd_none(*pgd_ref))
405 return -1;
406
407 if (pgd_none(*pgd))
408 set_pgd(pgd, *pgd_ref);
409 else
410 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
411
412 /*
413 * Below here mismatches are bugs because these lower tables
414 * are shared:
415 */
416
417 pud = pud_offset(pgd, address);
418 pud_ref = pud_offset(pgd_ref, address);
419 if (pud_none(*pud_ref))
420 return -1;
421
422 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
423 BUG();
424
425 pmd = pmd_offset(pud, address);
426 pmd_ref = pmd_offset(pud_ref, address);
427 if (pmd_none(*pmd_ref))
428 return -1;
429
430 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
431 BUG();
432
433 pte_ref = pte_offset_kernel(pmd_ref, address);
434 if (!pte_present(*pte_ref))
435 return -1;
436
437 pte = pte_offset_kernel(pmd, address);
438
439 /*
440 * Don't use pte_page here, because the mappings can point
441 * outside mem_map, and the NUMA hash lookup cannot handle
442 * that:
443 */
444 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
445 BUG();
446
447 return 0;
448}
449
450static const char errata93_warning[] =
451KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
452KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
453KERN_ERR "******* Please consider a BIOS update.\n"
454KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
455
456/*
457 * No vm86 mode in 64-bit mode:
458 */
459static inline void
460check_v8086_mode(struct pt_regs *regs, unsigned long address,
461 struct task_struct *tsk)
462{
463}
464
465static int bad_address(void *p)
466{
467 unsigned long dummy;
468
469 return probe_kernel_address((unsigned long *)p, dummy);
470}
471
472static void dump_pagetable(unsigned long address)
473{
1da177e4
LT
474 pgd_t *pgd;
475 pud_t *pud;
476 pmd_t *pmd;
477 pte_t *pte;
478
f51c9452 479 pgd = (pgd_t *)read_cr3();
1da177e4 480
33cb5243 481 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
2d4a7167 482
1da177e4 483 pgd += pgd_index(address);
2d4a7167
IM
484 if (bad_address(pgd))
485 goto bad;
486
d646bce4 487 printk("PGD %lx ", pgd_val(*pgd));
2d4a7167
IM
488
489 if (!pgd_present(*pgd))
490 goto out;
1da177e4 491
d2ae5b5f 492 pud = pud_offset(pgd, address);
2d4a7167
IM
493 if (bad_address(pud))
494 goto bad;
495
1da177e4 496 printk("PUD %lx ", pud_val(*pud));
b5360222 497 if (!pud_present(*pud) || pud_large(*pud))
2d4a7167 498 goto out;
1da177e4
LT
499
500 pmd = pmd_offset(pud, address);
2d4a7167
IM
501 if (bad_address(pmd))
502 goto bad;
503
1da177e4 504 printk("PMD %lx ", pmd_val(*pmd));
2d4a7167
IM
505 if (!pmd_present(*pmd) || pmd_large(*pmd))
506 goto out;
1da177e4
LT
507
508 pte = pte_offset_kernel(pmd, address);
2d4a7167
IM
509 if (bad_address(pte))
510 goto bad;
511
33cb5243 512 printk("PTE %lx", pte_val(*pte));
2d4a7167 513out:
1da177e4
LT
514 printk("\n");
515 return;
516bad:
517 printk("BAD\n");
8c938f9f
IM
518}
519
f2f13a85 520#endif /* CONFIG_X86_64 */
1da177e4 521
2d4a7167
IM
522/*
523 * Workaround for K8 erratum #93 & buggy BIOS.
524 *
525 * BIOS SMM functions are required to use a specific workaround
526 * to avoid corruption of the 64bit RIP register on C stepping K8.
527 *
528 * A lot of BIOS that didn't get tested properly miss this.
529 *
530 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
531 * Try to work around it here.
532 *
533 * Note we only handle faults in kernel here.
534 * Does nothing on 32-bit.
fdfe8aa8 535 */
33cb5243 536static int is_errata93(struct pt_regs *regs, unsigned long address)
1da177e4 537{
fdfe8aa8 538#ifdef CONFIG_X86_64
2d4a7167
IM
539 static int once;
540
65ea5b03 541 if (address != regs->ip)
1da177e4 542 return 0;
2d4a7167 543
33cb5243 544 if ((address >> 32) != 0)
1da177e4 545 return 0;
2d4a7167 546
1da177e4 547 address |= 0xffffffffUL << 32;
33cb5243
HH
548 if ((address >= (u64)_stext && address <= (u64)_etext) ||
549 (address >= MODULES_VADDR && address <= MODULES_END)) {
2d4a7167 550 if (!once) {
33cb5243 551 printk(errata93_warning);
2d4a7167 552 once = 1;
1da177e4 553 }
65ea5b03 554 regs->ip = address;
1da177e4
LT
555 return 1;
556 }
fdfe8aa8 557#endif
1da177e4 558 return 0;
33cb5243 559}
1da177e4 560
35f3266f 561/*
2d4a7167
IM
562 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
563 * to illegal addresses >4GB.
564 *
565 * We catch this in the page fault handler because these addresses
566 * are not reachable. Just detect this case and return. Any code
35f3266f
HH
567 * segment in LDT is compatibility mode.
568 */
569static int is_errata100(struct pt_regs *regs, unsigned long address)
570{
571#ifdef CONFIG_X86_64
2d4a7167 572 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
35f3266f
HH
573 return 1;
574#endif
575 return 0;
576}
577
29caf2f9
HH
578static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
579{
580#ifdef CONFIG_X86_F00F_BUG
581 unsigned long nr;
2d4a7167 582
29caf2f9 583 /*
2d4a7167 584 * Pentium F0 0F C7 C8 bug workaround:
29caf2f9
HH
585 */
586 if (boot_cpu_data.f00f_bug) {
587 nr = (address - idt_descr.address) >> 3;
588
589 if (nr == 6) {
590 do_invalid_op(regs, 0);
591 return 1;
592 }
593 }
594#endif
595 return 0;
596}
597
8f766149
IM
598static const char nx_warning[] = KERN_CRIT
599"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
600
2d4a7167
IM
601static void
602show_fault_oops(struct pt_regs *regs, unsigned long error_code,
603 unsigned long address)
b3279c7f 604{
1156e098
HH
605 if (!oops_may_print())
606 return;
607
1156e098 608 if (error_code & PF_INSTR) {
93809be8 609 unsigned int level;
2d4a7167 610
1156e098
HH
611 pte_t *pte = lookup_address(address, &level);
612
8f766149
IM
613 if (pte && pte_present(*pte) && !pte_exec(*pte))
614 printk(nx_warning, current_uid());
1156e098 615 }
1156e098 616
19f0dda9 617 printk(KERN_ALERT "BUG: unable to handle kernel ");
b3279c7f 618 if (address < PAGE_SIZE)
19f0dda9 619 printk(KERN_CONT "NULL pointer dereference");
b3279c7f 620 else
19f0dda9 621 printk(KERN_CONT "paging request");
2d4a7167 622
f294a8ce 623 printk(KERN_CONT " at %p\n", (void *) address);
19f0dda9 624 printk(KERN_ALERT "IP:");
b3279c7f 625 printk_address(regs->ip, 1);
2d4a7167 626
b3279c7f
HH
627 dump_pagetable(address);
628}
629
2d4a7167
IM
630static noinline void
631pgtable_bad(struct pt_regs *regs, unsigned long error_code,
632 unsigned long address)
1da177e4 633{
2d4a7167
IM
634 struct task_struct *tsk;
635 unsigned long flags;
636 int sig;
637
638 flags = oops_begin();
639 tsk = current;
640 sig = SIGKILL;
1209140c 641
1da177e4 642 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
92181f19 643 tsk->comm, address);
1da177e4 644 dump_pagetable(address);
2d4a7167
IM
645
646 tsk->thread.cr2 = address;
647 tsk->thread.trap_no = 14;
648 tsk->thread.error_code = error_code;
649
22f5991c 650 if (__die("Bad pagetable", regs, error_code))
874d93d1 651 sig = 0;
2d4a7167 652
874d93d1 653 oops_end(flags, regs, sig);
1da177e4
LT
654}
655
2d4a7167
IM
656static noinline void
657no_context(struct pt_regs *regs, unsigned long error_code,
658 unsigned long address)
92181f19
NP
659{
660 struct task_struct *tsk = current;
19803078 661 unsigned long *stackend;
92181f19
NP
662 unsigned long flags;
663 int sig;
92181f19 664
2d4a7167 665 /* Are we prepared to handle this kernel fault? */
92181f19
NP
666 if (fixup_exception(regs))
667 return;
668
669 /*
2d4a7167
IM
670 * 32-bit:
671 *
672 * Valid to do another page fault here, because if this fault
673 * had been triggered by is_prefetch fixup_exception would have
674 * handled it.
675 *
676 * 64-bit:
92181f19 677 *
2d4a7167 678 * Hall of shame of CPU/BIOS bugs.
92181f19
NP
679 */
680 if (is_prefetch(regs, error_code, address))
681 return;
682
683 if (is_errata93(regs, address))
684 return;
685
686 /*
687 * Oops. The kernel tried to access some bad page. We'll have to
2d4a7167 688 * terminate things with extreme prejudice:
92181f19 689 */
92181f19 690 flags = oops_begin();
92181f19
NP
691
692 show_fault_oops(regs, error_code, address);
693
2d4a7167 694 stackend = end_of_stack(tsk);
19803078
IM
695 if (*stackend != STACK_END_MAGIC)
696 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
697
1cc99544
IM
698 tsk->thread.cr2 = address;
699 tsk->thread.trap_no = 14;
700 tsk->thread.error_code = error_code;
92181f19 701
92181f19
NP
702 sig = SIGKILL;
703 if (__die("Oops", regs, error_code))
704 sig = 0;
2d4a7167 705
92181f19
NP
706 /* Executive summary in case the body of the oops scrolled away */
707 printk(KERN_EMERG "CR2: %016lx\n", address);
2d4a7167 708
92181f19 709 oops_end(flags, regs, sig);
92181f19
NP
710}
711
2d4a7167
IM
712/*
713 * Print out info about fatal segfaults, if the show_unhandled_signals
714 * sysctl is set:
715 */
716static inline void
717show_signal_msg(struct pt_regs *regs, unsigned long error_code,
718 unsigned long address, struct task_struct *tsk)
719{
720 if (!unhandled_signal(tsk, SIGSEGV))
721 return;
722
723 if (!printk_ratelimit())
724 return;
725
726 printk(KERN_CONT "%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
727 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
728 tsk->comm, task_pid_nr(tsk), address,
729 (void *)regs->ip, (void *)regs->sp, error_code);
730
731 print_vma_addr(KERN_CONT " in ", regs->ip);
732
733 printk(KERN_CONT "\n");
734}
735
736static void
737__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
738 unsigned long address, int si_code)
92181f19
NP
739{
740 struct task_struct *tsk = current;
741
742 /* User mode accesses just cause a SIGSEGV */
743 if (error_code & PF_USER) {
744 /*
2d4a7167 745 * It's possible to have interrupts off here:
92181f19
NP
746 */
747 local_irq_enable();
748
749 /*
750 * Valid to do another page fault here because this one came
2d4a7167 751 * from user space:
92181f19
NP
752 */
753 if (is_prefetch(regs, error_code, address))
754 return;
755
756 if (is_errata100(regs, address))
757 return;
758
2d4a7167
IM
759 if (unlikely(show_unhandled_signals))
760 show_signal_msg(regs, error_code, address, tsk);
761
762 /* Kernel addresses are always protection faults: */
763 tsk->thread.cr2 = address;
764 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
765 tsk->thread.trap_no = 14;
92181f19 766
92181f19 767 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
2d4a7167 768
92181f19
NP
769 return;
770 }
771
772 if (is_f00f_bug(regs, address))
773 return;
774
775 no_context(regs, error_code, address);
776}
777
2d4a7167
IM
778static noinline void
779bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
780 unsigned long address)
92181f19
NP
781{
782 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
783}
784
2d4a7167
IM
785static void
786__bad_area(struct pt_regs *regs, unsigned long error_code,
787 unsigned long address, int si_code)
92181f19
NP
788{
789 struct mm_struct *mm = current->mm;
790
791 /*
792 * Something tried to access memory that isn't in our memory map..
793 * Fix it, but check if it's kernel or user first..
794 */
795 up_read(&mm->mmap_sem);
796
797 __bad_area_nosemaphore(regs, error_code, address, si_code);
798}
799
2d4a7167
IM
800static noinline void
801bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
92181f19
NP
802{
803 __bad_area(regs, error_code, address, SEGV_MAPERR);
804}
805
2d4a7167
IM
806static noinline void
807bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
808 unsigned long address)
92181f19
NP
809{
810 __bad_area(regs, error_code, address, SEGV_ACCERR);
811}
812
813/* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
2d4a7167
IM
814static void
815out_of_memory(struct pt_regs *regs, unsigned long error_code,
816 unsigned long address)
92181f19
NP
817{
818 /*
819 * We ran out of memory, call the OOM killer, and return the userspace
2d4a7167 820 * (which will retry the fault, or kill us if we got oom-killed):
92181f19
NP
821 */
822 up_read(&current->mm->mmap_sem);
2d4a7167 823
92181f19
NP
824 pagefault_out_of_memory();
825}
826
2d4a7167
IM
827static void
828do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address)
92181f19
NP
829{
830 struct task_struct *tsk = current;
831 struct mm_struct *mm = tsk->mm;
832
833 up_read(&mm->mmap_sem);
834
2d4a7167 835 /* Kernel mode? Handle exceptions or die: */
92181f19
NP
836 if (!(error_code & PF_USER))
837 no_context(regs, error_code, address);
2d4a7167 838
cd1b68f0 839 /* User-space => ok to do another page fault: */
92181f19
NP
840 if (is_prefetch(regs, error_code, address))
841 return;
2d4a7167
IM
842
843 tsk->thread.cr2 = address;
844 tsk->thread.error_code = error_code;
845 tsk->thread.trap_no = 14;
846
92181f19
NP
847 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
848}
849
2d4a7167
IM
850static noinline void
851mm_fault_error(struct pt_regs *regs, unsigned long error_code,
852 unsigned long address, unsigned int fault)
92181f19 853{
2d4a7167 854 if (fault & VM_FAULT_OOM) {
92181f19 855 out_of_memory(regs, error_code, address);
2d4a7167
IM
856 } else {
857 if (fault & VM_FAULT_SIGBUS)
858 do_sigbus(regs, error_code, address);
859 else
860 BUG();
861 }
92181f19
NP
862}
863
d8b57bb7
TG
864static int spurious_fault_check(unsigned long error_code, pte_t *pte)
865{
866 if ((error_code & PF_WRITE) && !pte_write(*pte))
867 return 0;
2d4a7167 868
d8b57bb7
TG
869 if ((error_code & PF_INSTR) && !pte_exec(*pte))
870 return 0;
871
872 return 1;
873}
874
5b727a3b 875/*
2d4a7167
IM
876 * Handle a spurious fault caused by a stale TLB entry.
877 *
878 * This allows us to lazily refresh the TLB when increasing the
879 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
880 * eagerly is very expensive since that implies doing a full
881 * cross-processor TLB flush, even if no stale TLB entries exist
882 * on other processors.
883 *
5b727a3b
JF
884 * There are no security implications to leaving a stale TLB when
885 * increasing the permissions on a page.
886 */
2d4a7167
IM
887static noinline int
888spurious_fault(unsigned long error_code, unsigned long address)
5b727a3b
JF
889{
890 pgd_t *pgd;
891 pud_t *pud;
892 pmd_t *pmd;
893 pte_t *pte;
3c3e5694 894 int ret;
5b727a3b
JF
895
896 /* Reserved-bit violation or user access to kernel space? */
897 if (error_code & (PF_USER | PF_RSVD))
898 return 0;
899
900 pgd = init_mm.pgd + pgd_index(address);
901 if (!pgd_present(*pgd))
902 return 0;
903
904 pud = pud_offset(pgd, address);
905 if (!pud_present(*pud))
906 return 0;
907
d8b57bb7
TG
908 if (pud_large(*pud))
909 return spurious_fault_check(error_code, (pte_t *) pud);
910
5b727a3b
JF
911 pmd = pmd_offset(pud, address);
912 if (!pmd_present(*pmd))
913 return 0;
914
d8b57bb7
TG
915 if (pmd_large(*pmd))
916 return spurious_fault_check(error_code, (pte_t *) pmd);
917
5b727a3b
JF
918 pte = pte_offset_kernel(pmd, address);
919 if (!pte_present(*pte))
920 return 0;
921
3c3e5694
SR
922 ret = spurious_fault_check(error_code, pte);
923 if (!ret)
924 return 0;
925
926 /*
2d4a7167
IM
927 * Make sure we have permissions in PMD.
928 * If not, then there's a bug in the page tables:
3c3e5694
SR
929 */
930 ret = spurious_fault_check(error_code, (pte_t *) pmd);
931 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
2d4a7167 932
3c3e5694 933 return ret;
5b727a3b
JF
934}
935
abd4f750 936int show_unhandled_signals = 1;
1da177e4 937
2d4a7167
IM
938static inline int
939access_error(unsigned long error_code, int write, struct vm_area_struct *vma)
92181f19
NP
940{
941 if (write) {
2d4a7167 942 /* write, present and write, not present: */
92181f19
NP
943 if (unlikely(!(vma->vm_flags & VM_WRITE)))
944 return 1;
2d4a7167 945 return 0;
92181f19
NP
946 }
947
2d4a7167
IM
948 /* read, present: */
949 if (unlikely(error_code & PF_PROT))
950 return 1;
951
952 /* read, not present: */
953 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
954 return 1;
955
92181f19
NP
956 return 0;
957}
958
0973a06c
HS
959static int fault_in_kernel_space(unsigned long address)
960{
d9517346 961 return address >= TASK_SIZE_MAX;
0973a06c
HS
962}
963
1da177e4
LT
964/*
965 * This routine handles page faults. It determines the address,
966 * and the problem, and then passes it off to one of the appropriate
967 * routines.
1da177e4 968 */
c3731c68
IM
969dotraplinkage void __kprobes
970do_page_fault(struct pt_regs *regs, unsigned long error_code)
1da177e4 971{
2d4a7167 972 struct vm_area_struct *vma;
1da177e4 973 struct task_struct *tsk;
2d4a7167 974 unsigned long address;
1da177e4 975 struct mm_struct *mm;
92181f19 976 int write;
f8c2ee22 977 int fault;
1da177e4 978
a9ba9a3b
AV
979 tsk = current;
980 mm = tsk->mm;
2d4a7167 981
a9ba9a3b
AV
982 prefetchw(&mm->mmap_sem);
983
2d4a7167 984 /* Get the faulting address: */
f51c9452 985 address = read_cr2();
1da177e4 986
0fd0e3da 987 if (unlikely(kmmio_fault(regs, address)))
86069782 988 return;
1da177e4
LT
989
990 /*
991 * We fault-in kernel-space virtual memory on-demand. The
992 * 'reference' page table is init_mm.pgd.
993 *
994 * NOTE! We MUST NOT take any locks for this case. We may
995 * be in an interrupt or a critical region, and should
996 * only copy the information from the master page table,
997 * nothing more.
998 *
999 * This verifies that the fault happens in kernel space
1000 * (error_code & 4) == 0, and that the fault was not a
8b1bde93 1001 * protection error (error_code & 9) == 0.
1da177e4 1002 */
0973a06c 1003 if (unlikely(fault_in_kernel_space(address))) {
f8c2ee22
HH
1004 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
1005 vmalloc_fault(address) >= 0)
1006 return;
5b727a3b 1007
2d4a7167 1008 /* Can handle a stale RO->RW TLB: */
92181f19 1009 if (spurious_fault(error_code, address))
5b727a3b
JF
1010 return;
1011
2d4a7167 1012 /* kprobes don't want to hook the spurious faults: */
9be260a6
MH
1013 if (notify_page_fault(regs))
1014 return;
f8c2ee22
HH
1015 /*
1016 * Don't take the mm semaphore here. If we fixup a prefetch
2d4a7167 1017 * fault we could otherwise deadlock:
f8c2ee22 1018 */
92181f19 1019 bad_area_nosemaphore(regs, error_code, address);
2d4a7167 1020
92181f19 1021 return;
f8c2ee22
HH
1022 }
1023
2d4a7167 1024 /* kprobes don't want to hook the spurious faults: */
f8a6b2b9 1025 if (unlikely(notify_page_fault(regs)))
9be260a6 1026 return;
f8c2ee22 1027 /*
891cffbd
LT
1028 * It's safe to allow irq's after cr2 has been saved and the
1029 * vmalloc fault has been handled.
1030 *
1031 * User-mode registers count as a user access even for any
2d4a7167 1032 * potential system fault or CPU buglet:
f8c2ee22 1033 */
891cffbd
LT
1034 if (user_mode_vm(regs)) {
1035 local_irq_enable();
1036 error_code |= PF_USER;
2d4a7167
IM
1037 } else {
1038 if (regs->flags & X86_EFLAGS_IF)
1039 local_irq_enable();
1040 }
8c914cb7 1041
66c58156 1042 if (unlikely(error_code & PF_RSVD))
92181f19 1043 pgtable_bad(regs, error_code, address);
1da177e4
LT
1044
1045 /*
2d4a7167
IM
1046 * If we're in an interrupt, have no user context or are running
1047 * in an atomic region then we must not take the fault:
1da177e4 1048 */
92181f19
NP
1049 if (unlikely(in_atomic() || !mm)) {
1050 bad_area_nosemaphore(regs, error_code, address);
1051 return;
1052 }
1da177e4 1053
3a1dfe6e
IM
1054 /*
1055 * When running in the kernel we expect faults to occur only to
2d4a7167
IM
1056 * addresses in user space. All other faults represent errors in
1057 * the kernel and should generate an OOPS. Unfortunately, in the
1058 * case of an erroneous fault occurring in a code path which already
1059 * holds mmap_sem we will deadlock attempting to validate the fault
1060 * against the address space. Luckily the kernel only validly
1061 * references user space from well defined areas of code, which are
1062 * listed in the exceptions table.
1da177e4
LT
1063 *
1064 * As the vast majority of faults will be valid we will only perform
2d4a7167
IM
1065 * the source reference check when there is a possibility of a
1066 * deadlock. Attempt to lock the address space, if we cannot we then
1067 * validate the source. If this is invalid we can skip the address
1068 * space check, thus avoiding the deadlock:
1da177e4 1069 */
92181f19 1070 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
66c58156 1071 if ((error_code & PF_USER) == 0 &&
92181f19
NP
1072 !search_exception_tables(regs->ip)) {
1073 bad_area_nosemaphore(regs, error_code, address);
1074 return;
1075 }
1da177e4 1076 down_read(&mm->mmap_sem);
01006074
PZ
1077 } else {
1078 /*
2d4a7167
IM
1079 * The above down_read_trylock() might have succeeded in
1080 * which case we'll have missed the might_sleep() from
1081 * down_read():
01006074
PZ
1082 */
1083 might_sleep();
1da177e4
LT
1084 }
1085
1086 vma = find_vma(mm, address);
92181f19
NP
1087 if (unlikely(!vma)) {
1088 bad_area(regs, error_code, address);
1089 return;
1090 }
1091 if (likely(vma->vm_start <= address))
1da177e4 1092 goto good_area;
92181f19
NP
1093 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1094 bad_area(regs, error_code, address);
1095 return;
1096 }
33cb5243 1097 if (error_code & PF_USER) {
6f4d368e
HH
1098 /*
1099 * Accessing the stack below %sp is always a bug.
1100 * The large cushion allows instructions like enter
2d4a7167 1101 * and pusha to work. ("enter $65535, $31" pushes
6f4d368e 1102 * 32 pointers and then decrements %sp by 65535.)
03fdc2c2 1103 */
92181f19
NP
1104 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1105 bad_area(regs, error_code, address);
1106 return;
1107 }
1da177e4 1108 }
92181f19
NP
1109 if (unlikely(expand_stack(vma, address))) {
1110 bad_area(regs, error_code, address);
1111 return;
1112 }
1113
1114 /*
1115 * Ok, we have a good vm_area for this memory access, so
1116 * we can handle it..
1117 */
1da177e4 1118good_area:
92181f19 1119 write = error_code & PF_WRITE;
2d4a7167 1120
92181f19
NP
1121 if (unlikely(access_error(error_code, write, vma))) {
1122 bad_area_access_error(regs, error_code, address);
1123 return;
1da177e4
LT
1124 }
1125
1126 /*
1127 * If for any reason at all we couldn't handle the fault,
1128 * make sure we exit gracefully rather than endlessly redo
2d4a7167 1129 * the fault:
1da177e4 1130 */
83c54070 1131 fault = handle_mm_fault(mm, vma, address, write);
2d4a7167 1132
83c54070 1133 if (unlikely(fault & VM_FAULT_ERROR)) {
92181f19
NP
1134 mm_fault_error(regs, error_code, address, fault);
1135 return;
1da177e4 1136 }
2d4a7167 1137
83c54070
NP
1138 if (fault & VM_FAULT_MAJOR)
1139 tsk->maj_flt++;
1140 else
1141 tsk->min_flt++;
d729ab35 1142
8c938f9f
IM
1143 check_v8086_mode(regs, address, tsk);
1144
1da177e4 1145 up_read(&mm->mmap_sem);
1da177e4 1146}
This page took 0.49072 seconds and 5 git commands to generate.