mm: introduce wait_on_page_locked_killable()
[deliverable/linux.git] / arch / x86 / mm / fault.c
CommitLineData
1da177e4 1/*
1da177e4 2 * Copyright (C) 1995 Linus Torvalds
2d4a7167 3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
f8eeb2e6 4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
1da177e4 5 */
a2bcd473
IM
6#include <linux/magic.h> /* STACK_END_MAGIC */
7#include <linux/sched.h> /* test_thread_flag(), ... */
8#include <linux/kdebug.h> /* oops_begin/end, ... */
9#include <linux/module.h> /* search_exception_table */
10#include <linux/bootmem.h> /* max_low_pfn */
11#include <linux/kprobes.h> /* __kprobes, ... */
12#include <linux/mmiotrace.h> /* kmmio_handler, ... */
cdd6c482 13#include <linux/perf_event.h> /* perf_sw_event */
f672b49b 14#include <linux/hugetlb.h> /* hstate_index_to_shift */
268bb0ce 15#include <linux/prefetch.h> /* prefetchw */
2d4a7167 16
a2bcd473
IM
17#include <asm/traps.h> /* dotraplinkage, ... */
18#include <asm/pgalloc.h> /* pgd_*(), ... */
f8561296 19#include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
1da177e4 20
33cb5243 21/*
2d4a7167
IM
22 * Page fault error code bits:
23 *
24 * bit 0 == 0: no page found 1: protection fault
25 * bit 1 == 0: read access 1: write access
26 * bit 2 == 0: kernel-mode access 1: user-mode access
27 * bit 3 == 1: use of reserved bit detected
28 * bit 4 == 1: fault was an instruction fetch
33cb5243 29 */
2d4a7167
IM
30enum x86_pf_error_code {
31
32 PF_PROT = 1 << 0,
33 PF_WRITE = 1 << 1,
34 PF_USER = 1 << 2,
35 PF_RSVD = 1 << 3,
36 PF_INSTR = 1 << 4,
37};
66c58156 38
b814d41f 39/*
b319eed0
IM
40 * Returns 0 if mmiotrace is disabled, or if the fault is not
41 * handled by mmiotrace:
b814d41f 42 */
62c9295f
MH
43static inline int __kprobes
44kmmio_fault(struct pt_regs *regs, unsigned long addr)
86069782 45{
0fd0e3da
PP
46 if (unlikely(is_kmmio_active()))
47 if (kmmio_handler(regs, addr) == 1)
48 return -1;
0fd0e3da 49 return 0;
86069782
PP
50}
51
62c9295f 52static inline int __kprobes notify_page_fault(struct pt_regs *regs)
1bd858a5 53{
74a0b576
CH
54 int ret = 0;
55
56 /* kprobe_running() needs smp_processor_id() */
b1801812 57 if (kprobes_built_in() && !user_mode_vm(regs)) {
74a0b576
CH
58 preempt_disable();
59 if (kprobe_running() && kprobe_fault_handler(regs, 14))
60 ret = 1;
61 preempt_enable();
62 }
1bd858a5 63
74a0b576 64 return ret;
33cb5243 65}
1bd858a5 66
1dc85be0 67/*
2d4a7167
IM
68 * Prefetch quirks:
69 *
70 * 32-bit mode:
71 *
72 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
73 * Check that here and ignore it.
1dc85be0 74 *
2d4a7167 75 * 64-bit mode:
1dc85be0 76 *
2d4a7167
IM
77 * Sometimes the CPU reports invalid exceptions on prefetch.
78 * Check that here and ignore it.
79 *
80 * Opcode checker based on code by Richard Brunner.
1dc85be0 81 */
107a0367
IM
82static inline int
83check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
84 unsigned char opcode, int *prefetch)
85{
86 unsigned char instr_hi = opcode & 0xf0;
87 unsigned char instr_lo = opcode & 0x0f;
88
89 switch (instr_hi) {
90 case 0x20:
91 case 0x30:
92 /*
93 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
94 * In X86_64 long mode, the CPU will signal invalid
95 * opcode if some of these prefixes are present so
96 * X86_64 will never get here anyway
97 */
98 return ((instr_lo & 7) == 0x6);
99#ifdef CONFIG_X86_64
100 case 0x40:
101 /*
102 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
103 * Need to figure out under what instruction mode the
104 * instruction was issued. Could check the LDT for lm,
105 * but for now it's good enough to assume that long
106 * mode only uses well known segments or kernel.
107 */
108 return (!user_mode(regs)) || (regs->cs == __USER_CS);
109#endif
110 case 0x60:
111 /* 0x64 thru 0x67 are valid prefixes in all modes. */
112 return (instr_lo & 0xC) == 0x4;
113 case 0xF0:
114 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
115 return !instr_lo || (instr_lo>>1) == 1;
116 case 0x00:
117 /* Prefetch instruction is 0x0F0D or 0x0F18 */
118 if (probe_kernel_address(instr, opcode))
119 return 0;
120
121 *prefetch = (instr_lo == 0xF) &&
122 (opcode == 0x0D || opcode == 0x18);
123 return 0;
124 default:
125 return 0;
126 }
127}
128
2d4a7167
IM
129static int
130is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
33cb5243 131{
2d4a7167 132 unsigned char *max_instr;
ab2bf0c1 133 unsigned char *instr;
33cb5243 134 int prefetch = 0;
1da177e4 135
3085354d
IM
136 /*
137 * If it was a exec (instruction fetch) fault on NX page, then
138 * do not ignore the fault:
139 */
66c58156 140 if (error_code & PF_INSTR)
1da177e4 141 return 0;
1dc85be0 142
107a0367 143 instr = (void *)convert_ip_to_linear(current, regs);
f1290ec9 144 max_instr = instr + 15;
1da177e4 145
76381fee 146 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
1da177e4
LT
147 return 0;
148
107a0367 149 while (instr < max_instr) {
2d4a7167 150 unsigned char opcode;
1da177e4 151
ab2bf0c1 152 if (probe_kernel_address(instr, opcode))
33cb5243 153 break;
1da177e4 154
1da177e4
LT
155 instr++;
156
107a0367 157 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
1da177e4 158 break;
1da177e4
LT
159 }
160 return prefetch;
161}
162
2d4a7167
IM
163static void
164force_sig_info_fault(int si_signo, int si_code, unsigned long address,
f672b49b 165 struct task_struct *tsk, int fault)
c4aba4a8 166{
f672b49b 167 unsigned lsb = 0;
c4aba4a8
HH
168 siginfo_t info;
169
2d4a7167
IM
170 info.si_signo = si_signo;
171 info.si_errno = 0;
172 info.si_code = si_code;
173 info.si_addr = (void __user *)address;
f672b49b
AK
174 if (fault & VM_FAULT_HWPOISON_LARGE)
175 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
176 if (fault & VM_FAULT_HWPOISON)
177 lsb = PAGE_SHIFT;
178 info.si_addr_lsb = lsb;
2d4a7167 179
c4aba4a8
HH
180 force_sig_info(si_signo, &info, tsk);
181}
182
f2f13a85
IM
183DEFINE_SPINLOCK(pgd_lock);
184LIST_HEAD(pgd_list);
185
186#ifdef CONFIG_X86_32
187static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
33cb5243 188{
f2f13a85
IM
189 unsigned index = pgd_index(address);
190 pgd_t *pgd_k;
191 pud_t *pud, *pud_k;
192 pmd_t *pmd, *pmd_k;
2d4a7167 193
f2f13a85
IM
194 pgd += index;
195 pgd_k = init_mm.pgd + index;
196
197 if (!pgd_present(*pgd_k))
198 return NULL;
199
200 /*
201 * set_pgd(pgd, *pgd_k); here would be useless on PAE
202 * and redundant with the set_pmd() on non-PAE. As would
203 * set_pud.
204 */
205 pud = pud_offset(pgd, address);
206 pud_k = pud_offset(pgd_k, address);
207 if (!pud_present(*pud_k))
208 return NULL;
209
210 pmd = pmd_offset(pud, address);
211 pmd_k = pmd_offset(pud_k, address);
212 if (!pmd_present(*pmd_k))
213 return NULL;
214
b8bcfe99 215 if (!pmd_present(*pmd))
f2f13a85 216 set_pmd(pmd, *pmd_k);
b8bcfe99 217 else
f2f13a85 218 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
f2f13a85
IM
219
220 return pmd_k;
221}
222
223void vmalloc_sync_all(void)
224{
225 unsigned long address;
226
227 if (SHARED_KERNEL_PMD)
228 return;
229
230 for (address = VMALLOC_START & PMD_MASK;
231 address >= TASK_SIZE && address < FIXADDR_TOP;
232 address += PMD_SIZE) {
f2f13a85
IM
233 struct page *page;
234
a79e53d8 235 spin_lock(&pgd_lock);
f2f13a85 236 list_for_each_entry(page, &pgd_list, lru) {
617d34d9 237 spinlock_t *pgt_lock;
f01f7c56 238 pmd_t *ret;
617d34d9 239
a79e53d8 240 /* the pgt_lock only for Xen */
617d34d9
JF
241 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
242
243 spin_lock(pgt_lock);
244 ret = vmalloc_sync_one(page_address(page), address);
245 spin_unlock(pgt_lock);
246
247 if (!ret)
f2f13a85
IM
248 break;
249 }
a79e53d8 250 spin_unlock(&pgd_lock);
f2f13a85
IM
251 }
252}
253
254/*
255 * 32-bit:
256 *
257 * Handle a fault on the vmalloc or module mapping area
258 */
62c9295f 259static noinline __kprobes int vmalloc_fault(unsigned long address)
f2f13a85
IM
260{
261 unsigned long pgd_paddr;
262 pmd_t *pmd_k;
263 pte_t *pte_k;
264
265 /* Make sure we are in vmalloc area: */
266 if (!(address >= VMALLOC_START && address < VMALLOC_END))
267 return -1;
268
ebc8827f
FW
269 WARN_ON_ONCE(in_nmi());
270
f2f13a85
IM
271 /*
272 * Synchronize this task's top level page-table
273 * with the 'reference' page table.
274 *
275 * Do _not_ use "current" here. We might be inside
276 * an interrupt in the middle of a task switch..
277 */
278 pgd_paddr = read_cr3();
279 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
280 if (!pmd_k)
281 return -1;
282
283 pte_k = pte_offset_kernel(pmd_k, address);
284 if (!pte_present(*pte_k))
285 return -1;
286
287 return 0;
288}
289
290/*
291 * Did it hit the DOS screen memory VA from vm86 mode?
292 */
293static inline void
294check_v8086_mode(struct pt_regs *regs, unsigned long address,
295 struct task_struct *tsk)
296{
297 unsigned long bit;
298
299 if (!v8086_mode(regs))
300 return;
301
302 bit = (address - 0xA0000) >> PAGE_SHIFT;
303 if (bit < 32)
304 tsk->thread.screen_bitmap |= 1 << bit;
33cb5243 305}
1da177e4 306
087975b0 307static bool low_pfn(unsigned long pfn)
1da177e4 308{
087975b0
AM
309 return pfn < max_low_pfn;
310}
1156e098 311
087975b0
AM
312static void dump_pagetable(unsigned long address)
313{
314 pgd_t *base = __va(read_cr3());
315 pgd_t *pgd = &base[pgd_index(address)];
316 pmd_t *pmd;
317 pte_t *pte;
2d4a7167 318
1156e098 319#ifdef CONFIG_X86_PAE
087975b0
AM
320 printk("*pdpt = %016Lx ", pgd_val(*pgd));
321 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
322 goto out;
1156e098 323#endif
087975b0
AM
324 pmd = pmd_offset(pud_offset(pgd, address), address);
325 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
1156e098
HH
326
327 /*
328 * We must not directly access the pte in the highpte
329 * case if the page table is located in highmem.
330 * And let's rather not kmap-atomic the pte, just in case
2d4a7167 331 * it's allocated already:
1156e098 332 */
087975b0
AM
333 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
334 goto out;
1156e098 335
087975b0
AM
336 pte = pte_offset_kernel(pmd, address);
337 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
338out:
1156e098 339 printk("\n");
f2f13a85
IM
340}
341
342#else /* CONFIG_X86_64: */
343
344void vmalloc_sync_all(void)
345{
6afb5157 346 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
f2f13a85
IM
347}
348
349/*
350 * 64-bit:
351 *
352 * Handle a fault on the vmalloc area
353 *
354 * This assumes no large pages in there.
355 */
62c9295f 356static noinline __kprobes int vmalloc_fault(unsigned long address)
f2f13a85
IM
357{
358 pgd_t *pgd, *pgd_ref;
359 pud_t *pud, *pud_ref;
360 pmd_t *pmd, *pmd_ref;
361 pte_t *pte, *pte_ref;
362
363 /* Make sure we are in vmalloc area: */
364 if (!(address >= VMALLOC_START && address < VMALLOC_END))
365 return -1;
366
ebc8827f
FW
367 WARN_ON_ONCE(in_nmi());
368
f2f13a85
IM
369 /*
370 * Copy kernel mappings over when needed. This can also
371 * happen within a race in page table update. In the later
372 * case just flush:
373 */
374 pgd = pgd_offset(current->active_mm, address);
375 pgd_ref = pgd_offset_k(address);
376 if (pgd_none(*pgd_ref))
377 return -1;
378
379 if (pgd_none(*pgd))
380 set_pgd(pgd, *pgd_ref);
381 else
382 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
383
384 /*
385 * Below here mismatches are bugs because these lower tables
386 * are shared:
387 */
388
389 pud = pud_offset(pgd, address);
390 pud_ref = pud_offset(pgd_ref, address);
391 if (pud_none(*pud_ref))
392 return -1;
393
394 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
395 BUG();
396
397 pmd = pmd_offset(pud, address);
398 pmd_ref = pmd_offset(pud_ref, address);
399 if (pmd_none(*pmd_ref))
400 return -1;
401
402 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
403 BUG();
404
405 pte_ref = pte_offset_kernel(pmd_ref, address);
406 if (!pte_present(*pte_ref))
407 return -1;
408
409 pte = pte_offset_kernel(pmd, address);
410
411 /*
412 * Don't use pte_page here, because the mappings can point
413 * outside mem_map, and the NUMA hash lookup cannot handle
414 * that:
415 */
416 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
417 BUG();
418
419 return 0;
420}
421
422static const char errata93_warning[] =
ad361c98
JP
423KERN_ERR
424"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
425"******* Working around it, but it may cause SEGVs or burn power.\n"
426"******* Please consider a BIOS update.\n"
427"******* Disabling USB legacy in the BIOS may also help.\n";
f2f13a85
IM
428
429/*
430 * No vm86 mode in 64-bit mode:
431 */
432static inline void
433check_v8086_mode(struct pt_regs *regs, unsigned long address,
434 struct task_struct *tsk)
435{
436}
437
438static int bad_address(void *p)
439{
440 unsigned long dummy;
441
442 return probe_kernel_address((unsigned long *)p, dummy);
443}
444
445static void dump_pagetable(unsigned long address)
446{
087975b0
AM
447 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
448 pgd_t *pgd = base + pgd_index(address);
1da177e4
LT
449 pud_t *pud;
450 pmd_t *pmd;
451 pte_t *pte;
452
2d4a7167
IM
453 if (bad_address(pgd))
454 goto bad;
455
d646bce4 456 printk("PGD %lx ", pgd_val(*pgd));
2d4a7167
IM
457
458 if (!pgd_present(*pgd))
459 goto out;
1da177e4 460
d2ae5b5f 461 pud = pud_offset(pgd, address);
2d4a7167
IM
462 if (bad_address(pud))
463 goto bad;
464
1da177e4 465 printk("PUD %lx ", pud_val(*pud));
b5360222 466 if (!pud_present(*pud) || pud_large(*pud))
2d4a7167 467 goto out;
1da177e4
LT
468
469 pmd = pmd_offset(pud, address);
2d4a7167
IM
470 if (bad_address(pmd))
471 goto bad;
472
1da177e4 473 printk("PMD %lx ", pmd_val(*pmd));
2d4a7167
IM
474 if (!pmd_present(*pmd) || pmd_large(*pmd))
475 goto out;
1da177e4
LT
476
477 pte = pte_offset_kernel(pmd, address);
2d4a7167
IM
478 if (bad_address(pte))
479 goto bad;
480
33cb5243 481 printk("PTE %lx", pte_val(*pte));
2d4a7167 482out:
1da177e4
LT
483 printk("\n");
484 return;
485bad:
486 printk("BAD\n");
8c938f9f
IM
487}
488
f2f13a85 489#endif /* CONFIG_X86_64 */
1da177e4 490
2d4a7167
IM
491/*
492 * Workaround for K8 erratum #93 & buggy BIOS.
493 *
494 * BIOS SMM functions are required to use a specific workaround
495 * to avoid corruption of the 64bit RIP register on C stepping K8.
496 *
497 * A lot of BIOS that didn't get tested properly miss this.
498 *
499 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
500 * Try to work around it here.
501 *
502 * Note we only handle faults in kernel here.
503 * Does nothing on 32-bit.
fdfe8aa8 504 */
33cb5243 505static int is_errata93(struct pt_regs *regs, unsigned long address)
1da177e4 506{
fdfe8aa8 507#ifdef CONFIG_X86_64
65ea5b03 508 if (address != regs->ip)
1da177e4 509 return 0;
2d4a7167 510
33cb5243 511 if ((address >> 32) != 0)
1da177e4 512 return 0;
2d4a7167 513
1da177e4 514 address |= 0xffffffffUL << 32;
33cb5243
HH
515 if ((address >= (u64)_stext && address <= (u64)_etext) ||
516 (address >= MODULES_VADDR && address <= MODULES_END)) {
a454ab31 517 printk_once(errata93_warning);
65ea5b03 518 regs->ip = address;
1da177e4
LT
519 return 1;
520 }
fdfe8aa8 521#endif
1da177e4 522 return 0;
33cb5243 523}
1da177e4 524
35f3266f 525/*
2d4a7167
IM
526 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
527 * to illegal addresses >4GB.
528 *
529 * We catch this in the page fault handler because these addresses
530 * are not reachable. Just detect this case and return. Any code
35f3266f
HH
531 * segment in LDT is compatibility mode.
532 */
533static int is_errata100(struct pt_regs *regs, unsigned long address)
534{
535#ifdef CONFIG_X86_64
2d4a7167 536 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
35f3266f
HH
537 return 1;
538#endif
539 return 0;
540}
541
29caf2f9
HH
542static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
543{
544#ifdef CONFIG_X86_F00F_BUG
545 unsigned long nr;
2d4a7167 546
29caf2f9 547 /*
2d4a7167 548 * Pentium F0 0F C7 C8 bug workaround:
29caf2f9
HH
549 */
550 if (boot_cpu_data.f00f_bug) {
551 nr = (address - idt_descr.address) >> 3;
552
553 if (nr == 6) {
554 do_invalid_op(regs, 0);
555 return 1;
556 }
557 }
558#endif
559 return 0;
560}
561
8f766149
IM
562static const char nx_warning[] = KERN_CRIT
563"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
564
2d4a7167
IM
565static void
566show_fault_oops(struct pt_regs *regs, unsigned long error_code,
567 unsigned long address)
b3279c7f 568{
1156e098
HH
569 if (!oops_may_print())
570 return;
571
1156e098 572 if (error_code & PF_INSTR) {
93809be8 573 unsigned int level;
2d4a7167 574
1156e098
HH
575 pte_t *pte = lookup_address(address, &level);
576
8f766149
IM
577 if (pte && pte_present(*pte) && !pte_exec(*pte))
578 printk(nx_warning, current_uid());
1156e098 579 }
1156e098 580
19f0dda9 581 printk(KERN_ALERT "BUG: unable to handle kernel ");
b3279c7f 582 if (address < PAGE_SIZE)
19f0dda9 583 printk(KERN_CONT "NULL pointer dereference");
b3279c7f 584 else
19f0dda9 585 printk(KERN_CONT "paging request");
2d4a7167 586
f294a8ce 587 printk(KERN_CONT " at %p\n", (void *) address);
19f0dda9 588 printk(KERN_ALERT "IP:");
b3279c7f 589 printk_address(regs->ip, 1);
2d4a7167 590
b3279c7f
HH
591 dump_pagetable(address);
592}
593
2d4a7167
IM
594static noinline void
595pgtable_bad(struct pt_regs *regs, unsigned long error_code,
596 unsigned long address)
1da177e4 597{
2d4a7167
IM
598 struct task_struct *tsk;
599 unsigned long flags;
600 int sig;
601
602 flags = oops_begin();
603 tsk = current;
604 sig = SIGKILL;
1209140c 605
1da177e4 606 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
92181f19 607 tsk->comm, address);
1da177e4 608 dump_pagetable(address);
2d4a7167
IM
609
610 tsk->thread.cr2 = address;
611 tsk->thread.trap_no = 14;
612 tsk->thread.error_code = error_code;
613
22f5991c 614 if (__die("Bad pagetable", regs, error_code))
874d93d1 615 sig = 0;
2d4a7167 616
874d93d1 617 oops_end(flags, regs, sig);
1da177e4
LT
618}
619
2d4a7167
IM
620static noinline void
621no_context(struct pt_regs *regs, unsigned long error_code,
622 unsigned long address)
92181f19
NP
623{
624 struct task_struct *tsk = current;
19803078 625 unsigned long *stackend;
92181f19
NP
626 unsigned long flags;
627 int sig;
92181f19 628
2d4a7167 629 /* Are we prepared to handle this kernel fault? */
92181f19
NP
630 if (fixup_exception(regs))
631 return;
632
633 /*
2d4a7167
IM
634 * 32-bit:
635 *
636 * Valid to do another page fault here, because if this fault
637 * had been triggered by is_prefetch fixup_exception would have
638 * handled it.
639 *
640 * 64-bit:
92181f19 641 *
2d4a7167 642 * Hall of shame of CPU/BIOS bugs.
92181f19
NP
643 */
644 if (is_prefetch(regs, error_code, address))
645 return;
646
647 if (is_errata93(regs, address))
648 return;
649
650 /*
651 * Oops. The kernel tried to access some bad page. We'll have to
2d4a7167 652 * terminate things with extreme prejudice:
92181f19 653 */
92181f19 654 flags = oops_begin();
92181f19
NP
655
656 show_fault_oops(regs, error_code, address);
657
2d4a7167 658 stackend = end_of_stack(tsk);
0e7810be 659 if (tsk != &init_task && *stackend != STACK_END_MAGIC)
19803078
IM
660 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
661
1cc99544
IM
662 tsk->thread.cr2 = address;
663 tsk->thread.trap_no = 14;
664 tsk->thread.error_code = error_code;
92181f19 665
92181f19
NP
666 sig = SIGKILL;
667 if (__die("Oops", regs, error_code))
668 sig = 0;
2d4a7167 669
92181f19
NP
670 /* Executive summary in case the body of the oops scrolled away */
671 printk(KERN_EMERG "CR2: %016lx\n", address);
2d4a7167 672
92181f19 673 oops_end(flags, regs, sig);
92181f19
NP
674}
675
2d4a7167
IM
676/*
677 * Print out info about fatal segfaults, if the show_unhandled_signals
678 * sysctl is set:
679 */
680static inline void
681show_signal_msg(struct pt_regs *regs, unsigned long error_code,
682 unsigned long address, struct task_struct *tsk)
683{
684 if (!unhandled_signal(tsk, SIGSEGV))
685 return;
686
687 if (!printk_ratelimit())
688 return;
689
a1a08d1c 690 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
2d4a7167
IM
691 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
692 tsk->comm, task_pid_nr(tsk), address,
693 (void *)regs->ip, (void *)regs->sp, error_code);
694
695 print_vma_addr(KERN_CONT " in ", regs->ip);
696
697 printk(KERN_CONT "\n");
698}
699
700static void
701__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
702 unsigned long address, int si_code)
92181f19
NP
703{
704 struct task_struct *tsk = current;
705
706 /* User mode accesses just cause a SIGSEGV */
707 if (error_code & PF_USER) {
708 /*
2d4a7167 709 * It's possible to have interrupts off here:
92181f19
NP
710 */
711 local_irq_enable();
712
713 /*
714 * Valid to do another page fault here because this one came
2d4a7167 715 * from user space:
92181f19
NP
716 */
717 if (is_prefetch(regs, error_code, address))
718 return;
719
720 if (is_errata100(regs, address))
721 return;
722
2d4a7167
IM
723 if (unlikely(show_unhandled_signals))
724 show_signal_msg(regs, error_code, address, tsk);
725
726 /* Kernel addresses are always protection faults: */
727 tsk->thread.cr2 = address;
728 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
729 tsk->thread.trap_no = 14;
92181f19 730
f672b49b 731 force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
2d4a7167 732
92181f19
NP
733 return;
734 }
735
736 if (is_f00f_bug(regs, address))
737 return;
738
739 no_context(regs, error_code, address);
740}
741
2d4a7167
IM
742static noinline void
743bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
744 unsigned long address)
92181f19
NP
745{
746 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
747}
748
2d4a7167
IM
749static void
750__bad_area(struct pt_regs *regs, unsigned long error_code,
751 unsigned long address, int si_code)
92181f19
NP
752{
753 struct mm_struct *mm = current->mm;
754
755 /*
756 * Something tried to access memory that isn't in our memory map..
757 * Fix it, but check if it's kernel or user first..
758 */
759 up_read(&mm->mmap_sem);
760
761 __bad_area_nosemaphore(regs, error_code, address, si_code);
762}
763
2d4a7167
IM
764static noinline void
765bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
92181f19
NP
766{
767 __bad_area(regs, error_code, address, SEGV_MAPERR);
768}
769
2d4a7167
IM
770static noinline void
771bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
772 unsigned long address)
92181f19
NP
773{
774 __bad_area(regs, error_code, address, SEGV_ACCERR);
775}
776
777/* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
2d4a7167
IM
778static void
779out_of_memory(struct pt_regs *regs, unsigned long error_code,
780 unsigned long address)
92181f19
NP
781{
782 /*
783 * We ran out of memory, call the OOM killer, and return the userspace
2d4a7167 784 * (which will retry the fault, or kill us if we got oom-killed):
92181f19
NP
785 */
786 up_read(&current->mm->mmap_sem);
2d4a7167 787
92181f19
NP
788 pagefault_out_of_memory();
789}
790
2d4a7167 791static void
a6e04aa9
AK
792do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
793 unsigned int fault)
92181f19
NP
794{
795 struct task_struct *tsk = current;
796 struct mm_struct *mm = tsk->mm;
a6e04aa9 797 int code = BUS_ADRERR;
92181f19
NP
798
799 up_read(&mm->mmap_sem);
800
2d4a7167 801 /* Kernel mode? Handle exceptions or die: */
96054569 802 if (!(error_code & PF_USER)) {
92181f19 803 no_context(regs, error_code, address);
96054569
LT
804 return;
805 }
2d4a7167 806
cd1b68f0 807 /* User-space => ok to do another page fault: */
92181f19
NP
808 if (is_prefetch(regs, error_code, address))
809 return;
2d4a7167
IM
810
811 tsk->thread.cr2 = address;
812 tsk->thread.error_code = error_code;
813 tsk->thread.trap_no = 14;
814
a6e04aa9 815#ifdef CONFIG_MEMORY_FAILURE
f672b49b 816 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
a6e04aa9
AK
817 printk(KERN_ERR
818 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
819 tsk->comm, tsk->pid, address);
820 code = BUS_MCEERR_AR;
821 }
822#endif
f672b49b 823 force_sig_info_fault(SIGBUS, code, address, tsk, fault);
92181f19
NP
824}
825
2d4a7167
IM
826static noinline void
827mm_fault_error(struct pt_regs *regs, unsigned long error_code,
828 unsigned long address, unsigned int fault)
92181f19 829{
2d4a7167 830 if (fault & VM_FAULT_OOM) {
f8626854
AV
831 /* Kernel mode? Handle exceptions or die: */
832 if (!(error_code & PF_USER)) {
833 up_read(&current->mm->mmap_sem);
834 no_context(regs, error_code, address);
835 return;
836 }
837
92181f19 838 out_of_memory(regs, error_code, address);
2d4a7167 839 } else {
f672b49b
AK
840 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
841 VM_FAULT_HWPOISON_LARGE))
a6e04aa9 842 do_sigbus(regs, error_code, address, fault);
2d4a7167
IM
843 else
844 BUG();
845 }
92181f19
NP
846}
847
d8b57bb7
TG
848static int spurious_fault_check(unsigned long error_code, pte_t *pte)
849{
850 if ((error_code & PF_WRITE) && !pte_write(*pte))
851 return 0;
2d4a7167 852
d8b57bb7
TG
853 if ((error_code & PF_INSTR) && !pte_exec(*pte))
854 return 0;
855
856 return 1;
857}
858
5b727a3b 859/*
2d4a7167
IM
860 * Handle a spurious fault caused by a stale TLB entry.
861 *
862 * This allows us to lazily refresh the TLB when increasing the
863 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
864 * eagerly is very expensive since that implies doing a full
865 * cross-processor TLB flush, even if no stale TLB entries exist
866 * on other processors.
867 *
5b727a3b
JF
868 * There are no security implications to leaving a stale TLB when
869 * increasing the permissions on a page.
870 */
62c9295f 871static noinline __kprobes int
2d4a7167 872spurious_fault(unsigned long error_code, unsigned long address)
5b727a3b
JF
873{
874 pgd_t *pgd;
875 pud_t *pud;
876 pmd_t *pmd;
877 pte_t *pte;
3c3e5694 878 int ret;
5b727a3b
JF
879
880 /* Reserved-bit violation or user access to kernel space? */
881 if (error_code & (PF_USER | PF_RSVD))
882 return 0;
883
884 pgd = init_mm.pgd + pgd_index(address);
885 if (!pgd_present(*pgd))
886 return 0;
887
888 pud = pud_offset(pgd, address);
889 if (!pud_present(*pud))
890 return 0;
891
d8b57bb7
TG
892 if (pud_large(*pud))
893 return spurious_fault_check(error_code, (pte_t *) pud);
894
5b727a3b
JF
895 pmd = pmd_offset(pud, address);
896 if (!pmd_present(*pmd))
897 return 0;
898
d8b57bb7
TG
899 if (pmd_large(*pmd))
900 return spurious_fault_check(error_code, (pte_t *) pmd);
901
660a293e
SL
902 /*
903 * Note: don't use pte_present() here, since it returns true
904 * if the _PAGE_PROTNONE bit is set. However, this aliases the
905 * _PAGE_GLOBAL bit, which for kernel pages give false positives
906 * when CONFIG_DEBUG_PAGEALLOC is used.
907 */
5b727a3b 908 pte = pte_offset_kernel(pmd, address);
660a293e 909 if (!(pte_flags(*pte) & _PAGE_PRESENT))
5b727a3b
JF
910 return 0;
911
3c3e5694
SR
912 ret = spurious_fault_check(error_code, pte);
913 if (!ret)
914 return 0;
915
916 /*
2d4a7167
IM
917 * Make sure we have permissions in PMD.
918 * If not, then there's a bug in the page tables:
3c3e5694
SR
919 */
920 ret = spurious_fault_check(error_code, (pte_t *) pmd);
921 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
2d4a7167 922
3c3e5694 923 return ret;
5b727a3b
JF
924}
925
abd4f750 926int show_unhandled_signals = 1;
1da177e4 927
2d4a7167 928static inline int
68da336a 929access_error(unsigned long error_code, struct vm_area_struct *vma)
92181f19 930{
68da336a 931 if (error_code & PF_WRITE) {
2d4a7167 932 /* write, present and write, not present: */
92181f19
NP
933 if (unlikely(!(vma->vm_flags & VM_WRITE)))
934 return 1;
2d4a7167 935 return 0;
92181f19
NP
936 }
937
2d4a7167
IM
938 /* read, present: */
939 if (unlikely(error_code & PF_PROT))
940 return 1;
941
942 /* read, not present: */
943 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
944 return 1;
945
92181f19
NP
946 return 0;
947}
948
0973a06c
HS
949static int fault_in_kernel_space(unsigned long address)
950{
d9517346 951 return address >= TASK_SIZE_MAX;
0973a06c
HS
952}
953
1da177e4
LT
954/*
955 * This routine handles page faults. It determines the address,
956 * and the problem, and then passes it off to one of the appropriate
957 * routines.
1da177e4 958 */
c3731c68
IM
959dotraplinkage void __kprobes
960do_page_fault(struct pt_regs *regs, unsigned long error_code)
1da177e4 961{
2d4a7167 962 struct vm_area_struct *vma;
1da177e4 963 struct task_struct *tsk;
2d4a7167 964 unsigned long address;
1da177e4 965 struct mm_struct *mm;
f8c2ee22 966 int fault;
d065bd81
ML
967 int write = error_code & PF_WRITE;
968 unsigned int flags = FAULT_FLAG_ALLOW_RETRY |
969 (write ? FAULT_FLAG_WRITE : 0);
1da177e4 970
a9ba9a3b
AV
971 tsk = current;
972 mm = tsk->mm;
2d4a7167 973
2d4a7167 974 /* Get the faulting address: */
f51c9452 975 address = read_cr2();
1da177e4 976
f8561296
VN
977 /*
978 * Detect and handle instructions that would cause a page fault for
979 * both a tracked kernel page and a userspace page.
980 */
981 if (kmemcheck_active(regs))
982 kmemcheck_hide(regs);
5dfaf90f 983 prefetchw(&mm->mmap_sem);
f8561296 984
0fd0e3da 985 if (unlikely(kmmio_fault(regs, address)))
86069782 986 return;
1da177e4
LT
987
988 /*
989 * We fault-in kernel-space virtual memory on-demand. The
990 * 'reference' page table is init_mm.pgd.
991 *
992 * NOTE! We MUST NOT take any locks for this case. We may
993 * be in an interrupt or a critical region, and should
994 * only copy the information from the master page table,
995 * nothing more.
996 *
997 * This verifies that the fault happens in kernel space
998 * (error_code & 4) == 0, and that the fault was not a
8b1bde93 999 * protection error (error_code & 9) == 0.
1da177e4 1000 */
0973a06c 1001 if (unlikely(fault_in_kernel_space(address))) {
f8561296
VN
1002 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1003 if (vmalloc_fault(address) >= 0)
1004 return;
1005
1006 if (kmemcheck_fault(regs, address, error_code))
1007 return;
1008 }
5b727a3b 1009
2d4a7167 1010 /* Can handle a stale RO->RW TLB: */
92181f19 1011 if (spurious_fault(error_code, address))
5b727a3b
JF
1012 return;
1013
2d4a7167 1014 /* kprobes don't want to hook the spurious faults: */
9be260a6
MH
1015 if (notify_page_fault(regs))
1016 return;
f8c2ee22
HH
1017 /*
1018 * Don't take the mm semaphore here. If we fixup a prefetch
2d4a7167 1019 * fault we could otherwise deadlock:
f8c2ee22 1020 */
92181f19 1021 bad_area_nosemaphore(regs, error_code, address);
2d4a7167 1022
92181f19 1023 return;
f8c2ee22
HH
1024 }
1025
2d4a7167 1026 /* kprobes don't want to hook the spurious faults: */
f8a6b2b9 1027 if (unlikely(notify_page_fault(regs)))
9be260a6 1028 return;
f8c2ee22 1029 /*
891cffbd
LT
1030 * It's safe to allow irq's after cr2 has been saved and the
1031 * vmalloc fault has been handled.
1032 *
1033 * User-mode registers count as a user access even for any
2d4a7167 1034 * potential system fault or CPU buglet:
f8c2ee22 1035 */
891cffbd
LT
1036 if (user_mode_vm(regs)) {
1037 local_irq_enable();
1038 error_code |= PF_USER;
2d4a7167
IM
1039 } else {
1040 if (regs->flags & X86_EFLAGS_IF)
1041 local_irq_enable();
1042 }
8c914cb7 1043
66c58156 1044 if (unlikely(error_code & PF_RSVD))
92181f19 1045 pgtable_bad(regs, error_code, address);
1da177e4 1046
cdd6c482 1047 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);
7dd1fcc2 1048
1da177e4 1049 /*
2d4a7167
IM
1050 * If we're in an interrupt, have no user context or are running
1051 * in an atomic region then we must not take the fault:
1da177e4 1052 */
92181f19
NP
1053 if (unlikely(in_atomic() || !mm)) {
1054 bad_area_nosemaphore(regs, error_code, address);
1055 return;
1056 }
1da177e4 1057
3a1dfe6e
IM
1058 /*
1059 * When running in the kernel we expect faults to occur only to
2d4a7167
IM
1060 * addresses in user space. All other faults represent errors in
1061 * the kernel and should generate an OOPS. Unfortunately, in the
1062 * case of an erroneous fault occurring in a code path which already
1063 * holds mmap_sem we will deadlock attempting to validate the fault
1064 * against the address space. Luckily the kernel only validly
1065 * references user space from well defined areas of code, which are
1066 * listed in the exceptions table.
1da177e4
LT
1067 *
1068 * As the vast majority of faults will be valid we will only perform
2d4a7167
IM
1069 * the source reference check when there is a possibility of a
1070 * deadlock. Attempt to lock the address space, if we cannot we then
1071 * validate the source. If this is invalid we can skip the address
1072 * space check, thus avoiding the deadlock:
1da177e4 1073 */
92181f19 1074 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
66c58156 1075 if ((error_code & PF_USER) == 0 &&
92181f19
NP
1076 !search_exception_tables(regs->ip)) {
1077 bad_area_nosemaphore(regs, error_code, address);
1078 return;
1079 }
d065bd81 1080retry:
1da177e4 1081 down_read(&mm->mmap_sem);
01006074
PZ
1082 } else {
1083 /*
2d4a7167
IM
1084 * The above down_read_trylock() might have succeeded in
1085 * which case we'll have missed the might_sleep() from
1086 * down_read():
01006074
PZ
1087 */
1088 might_sleep();
1da177e4
LT
1089 }
1090
1091 vma = find_vma(mm, address);
92181f19
NP
1092 if (unlikely(!vma)) {
1093 bad_area(regs, error_code, address);
1094 return;
1095 }
1096 if (likely(vma->vm_start <= address))
1da177e4 1097 goto good_area;
92181f19
NP
1098 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1099 bad_area(regs, error_code, address);
1100 return;
1101 }
33cb5243 1102 if (error_code & PF_USER) {
6f4d368e
HH
1103 /*
1104 * Accessing the stack below %sp is always a bug.
1105 * The large cushion allows instructions like enter
2d4a7167 1106 * and pusha to work. ("enter $65535, $31" pushes
6f4d368e 1107 * 32 pointers and then decrements %sp by 65535.)
03fdc2c2 1108 */
92181f19
NP
1109 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1110 bad_area(regs, error_code, address);
1111 return;
1112 }
1da177e4 1113 }
92181f19
NP
1114 if (unlikely(expand_stack(vma, address))) {
1115 bad_area(regs, error_code, address);
1116 return;
1117 }
1118
1119 /*
1120 * Ok, we have a good vm_area for this memory access, so
1121 * we can handle it..
1122 */
1da177e4 1123good_area:
68da336a 1124 if (unlikely(access_error(error_code, vma))) {
92181f19
NP
1125 bad_area_access_error(regs, error_code, address);
1126 return;
1da177e4
LT
1127 }
1128
1129 /*
1130 * If for any reason at all we couldn't handle the fault,
1131 * make sure we exit gracefully rather than endlessly redo
2d4a7167 1132 * the fault:
1da177e4 1133 */
d065bd81 1134 fault = handle_mm_fault(mm, vma, address, flags);
2d4a7167 1135
83c54070 1136 if (unlikely(fault & VM_FAULT_ERROR)) {
92181f19
NP
1137 mm_fault_error(regs, error_code, address, fault);
1138 return;
1da177e4 1139 }
2d4a7167 1140
d065bd81
ML
1141 /*
1142 * Major/minor page fault accounting is only done on the
1143 * initial attempt. If we go through a retry, it is extremely
1144 * likely that the page will be found in page cache at that point.
1145 */
1146 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1147 if (fault & VM_FAULT_MAJOR) {
1148 tsk->maj_flt++;
1149 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0,
1150 regs, address);
1151 } else {
1152 tsk->min_flt++;
1153 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0,
1154 regs, address);
1155 }
1156 if (fault & VM_FAULT_RETRY) {
1157 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
1158 * of starvation. */
1159 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1160 goto retry;
1161 }
ac17dc8e 1162 }
d729ab35 1163
8c938f9f
IM
1164 check_v8086_mode(regs, address, tsk);
1165
1da177e4 1166 up_read(&mm->mmap_sem);
1da177e4 1167}
This page took 0.652812 seconds and 5 git commands to generate.