x86, hyperv: Mark the Hyper-V clocksource as being continuous
[deliverable/linux.git] / arch / x86 / mm / mpx.c
CommitLineData
57319d80
QR
1/*
2 * mpx.c - Memory Protection eXtensions
3 *
4 * Copyright (c) 2014, Intel Corporation.
5 * Qiaowei Ren <qiaowei.ren@intel.com>
6 * Dave Hansen <dave.hansen@intel.com>
7 */
8#include <linux/kernel.h>
fcc7ffd6 9#include <linux/slab.h>
57319d80
QR
10#include <linux/syscalls.h>
11#include <linux/sched/sysctl.h>
12
fe3d197f
DH
13#include <asm/i387.h>
14#include <asm/insn.h>
57319d80 15#include <asm/mman.h>
1de4fa14 16#include <asm/mmu_context.h>
57319d80 17#include <asm/mpx.h>
fe3d197f
DH
18#include <asm/processor.h>
19#include <asm/fpu-internal.h>
57319d80
QR
20
21static const char *mpx_mapping_name(struct vm_area_struct *vma)
22{
23 return "[mpx]";
24}
25
26static struct vm_operations_struct mpx_vma_ops = {
27 .name = mpx_mapping_name,
28};
29
1de4fa14
DH
30static int is_mpx_vma(struct vm_area_struct *vma)
31{
32 return (vma->vm_ops == &mpx_vma_ops);
33}
34
57319d80
QR
35/*
36 * This is really a simplified "vm_mmap". it only handles MPX
37 * bounds tables (the bounds directory is user-allocated).
38 *
39 * Later on, we use the vma->vm_ops to uniquely identify these
40 * VMAs.
41 */
42static unsigned long mpx_mmap(unsigned long len)
43{
44 unsigned long ret;
45 unsigned long addr, pgoff;
46 struct mm_struct *mm = current->mm;
47 vm_flags_t vm_flags;
48 struct vm_area_struct *vma;
49
50 /* Only bounds table and bounds directory can be allocated here */
51 if (len != MPX_BD_SIZE_BYTES && len != MPX_BT_SIZE_BYTES)
52 return -EINVAL;
53
54 down_write(&mm->mmap_sem);
55
56 /* Too many mappings? */
57 if (mm->map_count > sysctl_max_map_count) {
58 ret = -ENOMEM;
59 goto out;
60 }
61
62 /* Obtain the address to map to. we verify (or select) it and ensure
63 * that it represents a valid section of the address space.
64 */
65 addr = get_unmapped_area(NULL, 0, len, 0, MAP_ANONYMOUS | MAP_PRIVATE);
66 if (addr & ~PAGE_MASK) {
67 ret = addr;
68 goto out;
69 }
70
71 vm_flags = VM_READ | VM_WRITE | VM_MPX |
72 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
73
74 /* Set pgoff according to addr for anon_vma */
75 pgoff = addr >> PAGE_SHIFT;
76
77 ret = mmap_region(NULL, addr, len, vm_flags, pgoff);
78 if (IS_ERR_VALUE(ret))
79 goto out;
80
81 vma = find_vma(mm, ret);
82 if (!vma) {
83 ret = -ENOMEM;
84 goto out;
85 }
86 vma->vm_ops = &mpx_vma_ops;
87
88 if (vm_flags & VM_LOCKED) {
89 up_write(&mm->mmap_sem);
90 mm_populate(ret, len);
91 return ret;
92 }
93
94out:
95 up_write(&mm->mmap_sem);
96 return ret;
97}
fcc7ffd6
DH
98
99enum reg_type {
100 REG_TYPE_RM = 0,
101 REG_TYPE_INDEX,
102 REG_TYPE_BASE,
103};
104
68c009c4
DH
105static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
106 enum reg_type type)
fcc7ffd6
DH
107{
108 int regno = 0;
109
110 static const int regoff[] = {
111 offsetof(struct pt_regs, ax),
112 offsetof(struct pt_regs, cx),
113 offsetof(struct pt_regs, dx),
114 offsetof(struct pt_regs, bx),
115 offsetof(struct pt_regs, sp),
116 offsetof(struct pt_regs, bp),
117 offsetof(struct pt_regs, si),
118 offsetof(struct pt_regs, di),
119#ifdef CONFIG_X86_64
120 offsetof(struct pt_regs, r8),
121 offsetof(struct pt_regs, r9),
122 offsetof(struct pt_regs, r10),
123 offsetof(struct pt_regs, r11),
124 offsetof(struct pt_regs, r12),
125 offsetof(struct pt_regs, r13),
126 offsetof(struct pt_regs, r14),
127 offsetof(struct pt_regs, r15),
128#endif
129 };
130 int nr_registers = ARRAY_SIZE(regoff);
131 /*
132 * Don't possibly decode a 32-bit instructions as
133 * reading a 64-bit-only register.
134 */
135 if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
136 nr_registers -= 8;
137
138 switch (type) {
139 case REG_TYPE_RM:
140 regno = X86_MODRM_RM(insn->modrm.value);
141 if (X86_REX_B(insn->rex_prefix.value) == 1)
142 regno += 8;
143 break;
144
145 case REG_TYPE_INDEX:
146 regno = X86_SIB_INDEX(insn->sib.value);
147 if (X86_REX_X(insn->rex_prefix.value) == 1)
148 regno += 8;
149 break;
150
151 case REG_TYPE_BASE:
152 regno = X86_SIB_BASE(insn->sib.value);
153 if (X86_REX_B(insn->rex_prefix.value) == 1)
154 regno += 8;
155 break;
156
157 default:
158 pr_err("invalid register type");
159 BUG();
160 break;
161 }
162
163 if (regno > nr_registers) {
164 WARN_ONCE(1, "decoded an instruction with an invalid register");
165 return -EINVAL;
166 }
167 return regoff[regno];
168}
169
170/*
171 * return the address being referenced be instruction
172 * for rm=3 returning the content of the rm reg
173 * for rm!=3 calculates the address using SIB and Disp
174 */
175static void __user *mpx_get_addr_ref(struct insn *insn, struct pt_regs *regs)
176{
68c009c4
DH
177 unsigned long addr, base, indx;
178 int addr_offset, base_offset, indx_offset;
fcc7ffd6
DH
179 insn_byte_t sib;
180
181 insn_get_modrm(insn);
182 insn_get_sib(insn);
183 sib = insn->sib.value;
184
185 if (X86_MODRM_MOD(insn->modrm.value) == 3) {
186 addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM);
187 if (addr_offset < 0)
188 goto out_err;
189 addr = regs_get_register(regs, addr_offset);
190 } else {
191 if (insn->sib.nbytes) {
192 base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
193 if (base_offset < 0)
194 goto out_err;
195
196 indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
197 if (indx_offset < 0)
198 goto out_err;
199
200 base = regs_get_register(regs, base_offset);
201 indx = regs_get_register(regs, indx_offset);
202 addr = base + indx * (1 << X86_SIB_SCALE(sib));
203 } else {
204 addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM);
205 if (addr_offset < 0)
206 goto out_err;
207 addr = regs_get_register(regs, addr_offset);
208 }
209 addr += insn->displacement.value;
210 }
211 return (void __user *)addr;
212out_err:
213 return (void __user *)-1;
214}
215
216static int mpx_insn_decode(struct insn *insn,
217 struct pt_regs *regs)
218{
219 unsigned char buf[MAX_INSN_SIZE];
220 int x86_64 = !test_thread_flag(TIF_IA32);
221 int not_copied;
222 int nr_copied;
223
224 not_copied = copy_from_user(buf, (void __user *)regs->ip, sizeof(buf));
225 nr_copied = sizeof(buf) - not_copied;
226 /*
227 * The decoder _should_ fail nicely if we pass it a short buffer.
228 * But, let's not depend on that implementation detail. If we
229 * did not get anything, just error out now.
230 */
231 if (!nr_copied)
232 return -EFAULT;
233 insn_init(insn, buf, nr_copied, x86_64);
234 insn_get_length(insn);
235 /*
236 * copy_from_user() tries to get as many bytes as we could see in
237 * the largest possible instruction. If the instruction we are
238 * after is shorter than that _and_ we attempt to copy from
239 * something unreadable, we might get a short read. This is OK
240 * as long as the read did not stop in the middle of the
241 * instruction. Check to see if we got a partial instruction.
242 */
243 if (nr_copied < insn->length)
244 return -EFAULT;
245
246 insn_get_opcode(insn);
247 /*
248 * We only _really_ need to decode bndcl/bndcn/bndcu
249 * Error out on anything else.
250 */
251 if (insn->opcode.bytes[0] != 0x0f)
252 goto bad_opcode;
253 if ((insn->opcode.bytes[1] != 0x1a) &&
254 (insn->opcode.bytes[1] != 0x1b))
255 goto bad_opcode;
256
257 return 0;
258bad_opcode:
259 return -EINVAL;
260}
261
262/*
263 * If a bounds overflow occurs then a #BR is generated. This
264 * function decodes MPX instructions to get violation address
265 * and set this address into extended struct siginfo.
266 *
267 * Note that this is not a super precise way of doing this.
268 * Userspace could have, by the time we get here, written
269 * anything it wants in to the instructions. We can not
270 * trust anything about it. They might not be valid
271 * instructions or might encode invalid registers, etc...
272 *
273 * The caller is expected to kfree() the returned siginfo_t.
274 */
275siginfo_t *mpx_generate_siginfo(struct pt_regs *regs,
276 struct xsave_struct *xsave_buf)
277{
fe3d197f
DH
278 struct bndreg *bndregs, *bndreg;
279 siginfo_t *info = NULL;
fcc7ffd6
DH
280 struct insn insn;
281 uint8_t bndregno;
282 int err;
fcc7ffd6
DH
283
284 err = mpx_insn_decode(&insn, regs);
285 if (err)
286 goto err_out;
287
288 /*
289 * We know at this point that we are only dealing with
290 * MPX instructions.
291 */
292 insn_get_modrm(&insn);
293 bndregno = X86_MODRM_REG(insn.modrm.value);
294 if (bndregno > 3) {
295 err = -EINVAL;
296 goto err_out;
297 }
fe3d197f
DH
298 /* get the bndregs _area_ of the xsave structure */
299 bndregs = get_xsave_addr(xsave_buf, XSTATE_BNDREGS);
300 if (!bndregs) {
301 err = -EINVAL;
302 goto err_out;
303 }
304 /* now go select the individual register in the set of 4 */
305 bndreg = &bndregs[bndregno];
306
fcc7ffd6
DH
307 info = kzalloc(sizeof(*info), GFP_KERNEL);
308 if (!info) {
309 err = -ENOMEM;
310 goto err_out;
311 }
312 /*
313 * The registers are always 64-bit, but the upper 32
314 * bits are ignored in 32-bit mode. Also, note that the
315 * upper bounds are architecturally represented in 1's
316 * complement form.
317 *
318 * The 'unsigned long' cast is because the compiler
319 * complains when casting from integers to different-size
320 * pointers.
321 */
fe3d197f
DH
322 info->si_lower = (void __user *)(unsigned long)bndreg->lower_bound;
323 info->si_upper = (void __user *)(unsigned long)~bndreg->upper_bound;
fcc7ffd6
DH
324 info->si_addr_lsb = 0;
325 info->si_signo = SIGSEGV;
326 info->si_errno = 0;
327 info->si_code = SEGV_BNDERR;
328 info->si_addr = mpx_get_addr_ref(&insn, regs);
329 /*
330 * We were not able to extract an address from the instruction,
331 * probably because there was something invalid in it.
332 */
333 if (info->si_addr == (void *)-1) {
334 err = -EINVAL;
335 goto err_out;
336 }
337 return info;
338err_out:
fe3d197f
DH
339 /* info might be NULL, but kfree() handles that */
340 kfree(info);
fcc7ffd6
DH
341 return ERR_PTR(err);
342}
fe3d197f
DH
343
344static __user void *task_get_bounds_dir(struct task_struct *tsk)
345{
346 struct bndcsr *bndcsr;
347
348 if (!cpu_feature_enabled(X86_FEATURE_MPX))
349 return MPX_INVALID_BOUNDS_DIR;
350
351 /*
352 * The bounds directory pointer is stored in a register
353 * only accessible if we first do an xsave.
354 */
355 fpu_save_init(&tsk->thread.fpu);
356 bndcsr = get_xsave_addr(&tsk->thread.fpu.state->xsave, XSTATE_BNDCSR);
357 if (!bndcsr)
358 return MPX_INVALID_BOUNDS_DIR;
359
360 /*
361 * Make sure the register looks valid by checking the
362 * enable bit.
363 */
364 if (!(bndcsr->bndcfgu & MPX_BNDCFG_ENABLE_FLAG))
365 return MPX_INVALID_BOUNDS_DIR;
366
367 /*
368 * Lastly, mask off the low bits used for configuration
369 * flags, and return the address of the bounds table.
370 */
371 return (void __user *)(unsigned long)
372 (bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK);
373}
374
375int mpx_enable_management(struct task_struct *tsk)
376{
377 void __user *bd_base = MPX_INVALID_BOUNDS_DIR;
378 struct mm_struct *mm = tsk->mm;
379 int ret = 0;
380
381 /*
382 * runtime in the userspace will be responsible for allocation of
383 * the bounds directory. Then, it will save the base of the bounds
384 * directory into XSAVE/XRSTOR Save Area and enable MPX through
385 * XRSTOR instruction.
386 *
387 * fpu_xsave() is expected to be very expensive. Storing the bounds
388 * directory here means that we do not have to do xsave in the unmap
389 * path; we can just use mm->bd_addr instead.
390 */
391 bd_base = task_get_bounds_dir(tsk);
392 down_write(&mm->mmap_sem);
393 mm->bd_addr = bd_base;
394 if (mm->bd_addr == MPX_INVALID_BOUNDS_DIR)
395 ret = -ENXIO;
396
397 up_write(&mm->mmap_sem);
398 return ret;
399}
400
401int mpx_disable_management(struct task_struct *tsk)
402{
403 struct mm_struct *mm = current->mm;
404
405 if (!cpu_feature_enabled(X86_FEATURE_MPX))
406 return -ENXIO;
407
408 down_write(&mm->mmap_sem);
409 mm->bd_addr = MPX_INVALID_BOUNDS_DIR;
410 up_write(&mm->mmap_sem);
411 return 0;
412}
413
414/*
415 * With 32-bit mode, MPX_BT_SIZE_BYTES is 4MB, and the size of each
416 * bounds table is 16KB. With 64-bit mode, MPX_BT_SIZE_BYTES is 2GB,
417 * and the size of each bounds table is 4MB.
418 */
419static int allocate_bt(long __user *bd_entry)
420{
421 unsigned long expected_old_val = 0;
422 unsigned long actual_old_val = 0;
423 unsigned long bt_addr;
424 int ret = 0;
425
426 /*
427 * Carve the virtual space out of userspace for the new
428 * bounds table:
429 */
430 bt_addr = mpx_mmap(MPX_BT_SIZE_BYTES);
431 if (IS_ERR((void *)bt_addr))
432 return PTR_ERR((void *)bt_addr);
433 /*
434 * Set the valid flag (kinda like _PAGE_PRESENT in a pte)
435 */
436 bt_addr = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
437
438 /*
439 * Go poke the address of the new bounds table in to the
440 * bounds directory entry out in userspace memory. Note:
441 * we may race with another CPU instantiating the same table.
442 * In that case the cmpxchg will see an unexpected
443 * 'actual_old_val'.
444 *
445 * This can fault, but that's OK because we do not hold
446 * mmap_sem at this point, unlike some of the other part
447 * of the MPX code that have to pagefault_disable().
448 */
449 ret = user_atomic_cmpxchg_inatomic(&actual_old_val, bd_entry,
450 expected_old_val, bt_addr);
451 if (ret)
452 goto out_unmap;
453
454 /*
455 * The user_atomic_cmpxchg_inatomic() will only return nonzero
456 * for faults, *not* if the cmpxchg itself fails. Now we must
457 * verify that the cmpxchg itself completed successfully.
458 */
459 /*
460 * We expected an empty 'expected_old_val', but instead found
461 * an apparently valid entry. Assume we raced with another
462 * thread to instantiate this table and desclare succecss.
463 */
464 if (actual_old_val & MPX_BD_ENTRY_VALID_FLAG) {
465 ret = 0;
466 goto out_unmap;
467 }
468 /*
469 * We found a non-empty bd_entry but it did not have the
470 * VALID_FLAG set. Return an error which will result in
471 * a SEGV since this probably means that somebody scribbled
472 * some invalid data in to a bounds table.
473 */
474 if (expected_old_val != actual_old_val) {
475 ret = -EINVAL;
476 goto out_unmap;
477 }
478 return 0;
479out_unmap:
480 vm_munmap(bt_addr & MPX_BT_ADDR_MASK, MPX_BT_SIZE_BYTES);
481 return ret;
482}
483
484/*
485 * When a BNDSTX instruction attempts to save bounds to a bounds
486 * table, it will first attempt to look up the table in the
487 * first-level bounds directory. If it does not find a table in
488 * the directory, a #BR is generated and we get here in order to
489 * allocate a new table.
490 *
491 * With 32-bit mode, the size of BD is 4MB, and the size of each
492 * bound table is 16KB. With 64-bit mode, the size of BD is 2GB,
493 * and the size of each bound table is 4MB.
494 */
495static int do_mpx_bt_fault(struct xsave_struct *xsave_buf)
496{
497 unsigned long bd_entry, bd_base;
498 struct bndcsr *bndcsr;
499
500 bndcsr = get_xsave_addr(xsave_buf, XSTATE_BNDCSR);
501 if (!bndcsr)
502 return -EINVAL;
503 /*
504 * Mask off the preserve and enable bits
505 */
506 bd_base = bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK;
507 /*
508 * The hardware provides the address of the missing or invalid
509 * entry via BNDSTATUS, so we don't have to go look it up.
510 */
511 bd_entry = bndcsr->bndstatus & MPX_BNDSTA_ADDR_MASK;
512 /*
513 * Make sure the directory entry is within where we think
514 * the directory is.
515 */
516 if ((bd_entry < bd_base) ||
517 (bd_entry >= bd_base + MPX_BD_SIZE_BYTES))
518 return -EINVAL;
519
520 return allocate_bt((long __user *)bd_entry);
521}
522
523int mpx_handle_bd_fault(struct xsave_struct *xsave_buf)
524{
525 /*
526 * Userspace never asked us to manage the bounds tables,
527 * so refuse to help.
528 */
529 if (!kernel_managing_mpx_tables(current->mm))
530 return -EINVAL;
531
532 if (do_mpx_bt_fault(xsave_buf)) {
533 force_sig(SIGSEGV, current);
534 /*
535 * The force_sig() is essentially "handling" this
536 * exception, so we do not pass up the error
537 * from do_mpx_bt_fault().
538 */
539 }
540 return 0;
541}
1de4fa14
DH
542
543/*
544 * A thin wrapper around get_user_pages(). Returns 0 if the
545 * fault was resolved or -errno if not.
546 */
547static int mpx_resolve_fault(long __user *addr, int write)
548{
549 long gup_ret;
550 int nr_pages = 1;
551 int force = 0;
552
553 gup_ret = get_user_pages(current, current->mm, (unsigned long)addr,
554 nr_pages, write, force, NULL, NULL);
555 /*
556 * get_user_pages() returns number of pages gotten.
557 * 0 means we failed to fault in and get anything,
558 * probably because 'addr' is bad.
559 */
560 if (!gup_ret)
561 return -EFAULT;
562 /* Other error, return it */
563 if (gup_ret < 0)
564 return gup_ret;
565 /* must have gup'd a page and gup_ret>0, success */
566 return 0;
567}
568
569/*
570 * Get the base of bounds tables pointed by specific bounds
571 * directory entry.
572 */
573static int get_bt_addr(struct mm_struct *mm,
574 long __user *bd_entry, unsigned long *bt_addr)
575{
576 int ret;
577 int valid_bit;
578
579 if (!access_ok(VERIFY_READ, (bd_entry), sizeof(*bd_entry)))
580 return -EFAULT;
581
582 while (1) {
583 int need_write = 0;
584
585 pagefault_disable();
586 ret = get_user(*bt_addr, bd_entry);
587 pagefault_enable();
588 if (!ret)
589 break;
590 if (ret == -EFAULT)
591 ret = mpx_resolve_fault(bd_entry, need_write);
592 /*
593 * If we could not resolve the fault, consider it
594 * userspace's fault and error out.
595 */
596 if (ret)
597 return ret;
598 }
599
600 valid_bit = *bt_addr & MPX_BD_ENTRY_VALID_FLAG;
601 *bt_addr &= MPX_BT_ADDR_MASK;
602
603 /*
604 * When the kernel is managing bounds tables, a bounds directory
605 * entry will either have a valid address (plus the valid bit)
606 * *OR* be completely empty. If we see a !valid entry *and* some
607 * data in the address field, we know something is wrong. This
608 * -EINVAL return will cause a SIGSEGV.
609 */
610 if (!valid_bit && *bt_addr)
611 return -EINVAL;
612 /*
613 * Do we have an completely zeroed bt entry? That is OK. It
614 * just means there was no bounds table for this memory. Make
615 * sure to distinguish this from -EINVAL, which will cause
616 * a SEGV.
617 */
618 if (!valid_bit)
619 return -ENOENT;
620
621 return 0;
622}
623
624/*
625 * Free the backing physical pages of bounds table 'bt_addr'.
626 * Assume start...end is within that bounds table.
627 */
628static int zap_bt_entries(struct mm_struct *mm,
629 unsigned long bt_addr,
630 unsigned long start, unsigned long end)
631{
632 struct vm_area_struct *vma;
633 unsigned long addr, len;
634
635 /*
636 * Find the first overlapping vma. If vma->vm_start > start, there
637 * will be a hole in the bounds table. This -EINVAL return will
638 * cause a SIGSEGV.
639 */
640 vma = find_vma(mm, start);
641 if (!vma || vma->vm_start > start)
642 return -EINVAL;
643
644 /*
645 * A NUMA policy on a VM_MPX VMA could cause this bouds table to
646 * be split. So we need to look across the entire 'start -> end'
647 * range of this bounds table, find all of the VM_MPX VMAs, and
648 * zap only those.
649 */
650 addr = start;
651 while (vma && vma->vm_start < end) {
652 /*
653 * We followed a bounds directory entry down
654 * here. If we find a non-MPX VMA, that's bad,
655 * so stop immediately and return an error. This
656 * probably results in a SIGSEGV.
657 */
658 if (!is_mpx_vma(vma))
659 return -EINVAL;
660
661 len = min(vma->vm_end, end) - addr;
662 zap_page_range(vma, addr, len, NULL);
663
664 vma = vma->vm_next;
665 addr = vma->vm_start;
666 }
667
668 return 0;
669}
670
671static int unmap_single_bt(struct mm_struct *mm,
672 long __user *bd_entry, unsigned long bt_addr)
673{
674 unsigned long expected_old_val = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
675 unsigned long actual_old_val = 0;
676 int ret;
677
678 while (1) {
679 int need_write = 1;
680
681 pagefault_disable();
682 ret = user_atomic_cmpxchg_inatomic(&actual_old_val, bd_entry,
683 expected_old_val, 0);
684 pagefault_enable();
685 if (!ret)
686 break;
687 if (ret == -EFAULT)
688 ret = mpx_resolve_fault(bd_entry, need_write);
689 /*
690 * If we could not resolve the fault, consider it
691 * userspace's fault and error out.
692 */
693 if (ret)
694 return ret;
695 }
696 /*
697 * The cmpxchg was performed, check the results.
698 */
699 if (actual_old_val != expected_old_val) {
700 /*
701 * Someone else raced with us to unmap the table.
702 * There was no bounds table pointed to by the
703 * directory, so declare success. Somebody freed
704 * it.
705 */
706 if (!actual_old_val)
707 return 0;
708 /*
709 * Something messed with the bounds directory
710 * entry. We hold mmap_sem for read or write
711 * here, so it could not be a _new_ bounds table
712 * that someone just allocated. Something is
713 * wrong, so pass up the error and SIGSEGV.
714 */
715 return -EINVAL;
716 }
717
718 /*
719 * Note, we are likely being called under do_munmap() already. To
720 * avoid recursion, do_munmap() will check whether it comes
721 * from one bounds table through VM_MPX flag.
722 */
723 return do_munmap(mm, bt_addr, MPX_BT_SIZE_BYTES);
724}
725
726/*
727 * If the bounds table pointed by bounds directory 'bd_entry' is
728 * not shared, unmap this whole bounds table. Otherwise, only free
729 * those backing physical pages of bounds table entries covered
730 * in this virtual address region start...end.
731 */
732static int unmap_shared_bt(struct mm_struct *mm,
733 long __user *bd_entry, unsigned long start,
734 unsigned long end, bool prev_shared, bool next_shared)
735{
736 unsigned long bt_addr;
737 int ret;
738
739 ret = get_bt_addr(mm, bd_entry, &bt_addr);
740 /*
741 * We could see an "error" ret for not-present bounds
742 * tables (not really an error), or actual errors, but
743 * stop unmapping either way.
744 */
745 if (ret)
746 return ret;
747
748 if (prev_shared && next_shared)
749 ret = zap_bt_entries(mm, bt_addr,
750 bt_addr+MPX_GET_BT_ENTRY_OFFSET(start),
751 bt_addr+MPX_GET_BT_ENTRY_OFFSET(end));
752 else if (prev_shared)
753 ret = zap_bt_entries(mm, bt_addr,
754 bt_addr+MPX_GET_BT_ENTRY_OFFSET(start),
755 bt_addr+MPX_BT_SIZE_BYTES);
756 else if (next_shared)
757 ret = zap_bt_entries(mm, bt_addr, bt_addr,
758 bt_addr+MPX_GET_BT_ENTRY_OFFSET(end));
759 else
760 ret = unmap_single_bt(mm, bd_entry, bt_addr);
761
762 return ret;
763}
764
765/*
766 * A virtual address region being munmap()ed might share bounds table
767 * with adjacent VMAs. We only need to free the backing physical
768 * memory of these shared bounds tables entries covered in this virtual
769 * address region.
770 */
771static int unmap_edge_bts(struct mm_struct *mm,
772 unsigned long start, unsigned long end)
773{
774 int ret;
775 long __user *bde_start, *bde_end;
776 struct vm_area_struct *prev, *next;
777 bool prev_shared = false, next_shared = false;
778
779 bde_start = mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(start);
780 bde_end = mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(end-1);
781
782 /*
783 * Check whether bde_start and bde_end are shared with adjacent
784 * VMAs.
785 *
786 * We already unliked the VMAs from the mm's rbtree so 'start'
787 * is guaranteed to be in a hole. This gets us the first VMA
788 * before the hole in to 'prev' and the next VMA after the hole
789 * in to 'next'.
790 */
791 next = find_vma_prev(mm, start, &prev);
792 if (prev && (mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(prev->vm_end-1))
793 == bde_start)
794 prev_shared = true;
795 if (next && (mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(next->vm_start))
796 == bde_end)
797 next_shared = true;
798
799 /*
800 * This virtual address region being munmap()ed is only
801 * covered by one bounds table.
802 *
803 * In this case, if this table is also shared with adjacent
804 * VMAs, only part of the backing physical memory of the bounds
805 * table need be freeed. Otherwise the whole bounds table need
806 * be unmapped.
807 */
808 if (bde_start == bde_end) {
809 return unmap_shared_bt(mm, bde_start, start, end,
810 prev_shared, next_shared);
811 }
812
813 /*
814 * If more than one bounds tables are covered in this virtual
815 * address region being munmap()ed, we need to separately check
816 * whether bde_start and bde_end are shared with adjacent VMAs.
817 */
818 ret = unmap_shared_bt(mm, bde_start, start, end, prev_shared, false);
819 if (ret)
820 return ret;
821 ret = unmap_shared_bt(mm, bde_end, start, end, false, next_shared);
822 if (ret)
823 return ret;
824
825 return 0;
826}
827
828static int mpx_unmap_tables(struct mm_struct *mm,
829 unsigned long start, unsigned long end)
830{
831 int ret;
832 long __user *bd_entry, *bde_start, *bde_end;
833 unsigned long bt_addr;
834
835 /*
836 * "Edge" bounds tables are those which are being used by the region
837 * (start -> end), but that may be shared with adjacent areas. If they
838 * turn out to be completely unshared, they will be freed. If they are
839 * shared, we will free the backing store (like an MADV_DONTNEED) for
840 * areas used by this region.
841 */
842 ret = unmap_edge_bts(mm, start, end);
843 switch (ret) {
844 /* non-present tables are OK */
845 case 0:
846 case -ENOENT:
847 /* Success, or no tables to unmap */
848 break;
849 case -EINVAL:
850 case -EFAULT:
851 default:
852 return ret;
853 }
854
855 /*
856 * Only unmap the bounds table that are
857 * 1. fully covered
858 * 2. not at the edges of the mapping, even if full aligned
859 */
860 bde_start = mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(start);
861 bde_end = mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(end-1);
862 for (bd_entry = bde_start + 1; bd_entry < bde_end; bd_entry++) {
863 ret = get_bt_addr(mm, bd_entry, &bt_addr);
864 switch (ret) {
865 case 0:
866 break;
867 case -ENOENT:
868 /* No table here, try the next one */
869 continue;
870 case -EINVAL:
871 case -EFAULT:
872 default:
873 /*
874 * Note: we are being strict here.
875 * Any time we run in to an issue
876 * unmapping tables, we stop and
877 * SIGSEGV.
878 */
879 return ret;
880 }
881
882 ret = unmap_single_bt(mm, bd_entry, bt_addr);
883 if (ret)
884 return ret;
885 }
886
887 return 0;
888}
889
890/*
891 * Free unused bounds tables covered in a virtual address region being
892 * munmap()ed. Assume end > start.
893 *
894 * This function will be called by do_munmap(), and the VMAs covering
895 * the virtual address region start...end have already been split if
896 * necessary, and the 'vma' is the first vma in this range (start -> end).
897 */
898void mpx_notify_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
899 unsigned long start, unsigned long end)
900{
901 int ret;
902
903 /*
904 * Refuse to do anything unless userspace has asked
905 * the kernel to help manage the bounds tables,
906 */
907 if (!kernel_managing_mpx_tables(current->mm))
908 return;
909 /*
910 * This will look across the entire 'start -> end' range,
911 * and find all of the non-VM_MPX VMAs.
912 *
913 * To avoid recursion, if a VM_MPX vma is found in the range
914 * (start->end), we will not continue follow-up work. This
915 * recursion represents having bounds tables for bounds tables,
916 * which should not occur normally. Being strict about it here
917 * helps ensure that we do not have an exploitable stack overflow.
918 */
919 do {
920 if (vma->vm_flags & VM_MPX)
921 return;
922 vma = vma->vm_next;
923 } while (vma && vma->vm_start < end);
924
925 ret = mpx_unmap_tables(mm, start, end);
926 if (ret)
927 force_sig(SIGSEGV, current);
928}
This page took 0.068771 seconds and 5 git commands to generate.