x86/mm: Add parenthesis for TLB tracepoint size calculation
[deliverable/linux.git] / arch / x86 / mm / mpx.c
CommitLineData
57319d80
QR
1/*
2 * mpx.c - Memory Protection eXtensions
3 *
4 * Copyright (c) 2014, Intel Corporation.
5 * Qiaowei Ren <qiaowei.ren@intel.com>
6 * Dave Hansen <dave.hansen@intel.com>
7 */
8#include <linux/kernel.h>
fcc7ffd6 9#include <linux/slab.h>
57319d80
QR
10#include <linux/syscalls.h>
11#include <linux/sched/sysctl.h>
12
fe3d197f 13#include <asm/insn.h>
57319d80 14#include <asm/mman.h>
1de4fa14 15#include <asm/mmu_context.h>
57319d80 16#include <asm/mpx.h>
fe3d197f 17#include <asm/processor.h>
78f7f1e5 18#include <asm/fpu/internal.h>
57319d80 19
e7126cf5
DH
20#define CREATE_TRACE_POINTS
21#include <asm/trace/mpx.h>
22
57319d80
QR
23static const char *mpx_mapping_name(struct vm_area_struct *vma)
24{
25 return "[mpx]";
26}
27
28static struct vm_operations_struct mpx_vma_ops = {
29 .name = mpx_mapping_name,
30};
31
1de4fa14
DH
32static int is_mpx_vma(struct vm_area_struct *vma)
33{
34 return (vma->vm_ops == &mpx_vma_ops);
35}
36
613fcb7d
DH
37static inline unsigned long mpx_bd_size_bytes(struct mm_struct *mm)
38{
39 if (is_64bit_mm(mm))
40 return MPX_BD_SIZE_BYTES_64;
41 else
42 return MPX_BD_SIZE_BYTES_32;
43}
44
45static inline unsigned long mpx_bt_size_bytes(struct mm_struct *mm)
46{
47 if (is_64bit_mm(mm))
48 return MPX_BT_SIZE_BYTES_64;
49 else
50 return MPX_BT_SIZE_BYTES_32;
51}
52
57319d80
QR
53/*
54 * This is really a simplified "vm_mmap". it only handles MPX
55 * bounds tables (the bounds directory is user-allocated).
56 *
57 * Later on, we use the vma->vm_ops to uniquely identify these
58 * VMAs.
59 */
60static unsigned long mpx_mmap(unsigned long len)
61{
62 unsigned long ret;
63 unsigned long addr, pgoff;
64 struct mm_struct *mm = current->mm;
65 vm_flags_t vm_flags;
66 struct vm_area_struct *vma;
67
eb099e5b 68 /* Only bounds table can be allocated here */
613fcb7d 69 if (len != mpx_bt_size_bytes(mm))
57319d80
QR
70 return -EINVAL;
71
72 down_write(&mm->mmap_sem);
73
74 /* Too many mappings? */
75 if (mm->map_count > sysctl_max_map_count) {
76 ret = -ENOMEM;
77 goto out;
78 }
79
80 /* Obtain the address to map to. we verify (or select) it and ensure
81 * that it represents a valid section of the address space.
82 */
83 addr = get_unmapped_area(NULL, 0, len, 0, MAP_ANONYMOUS | MAP_PRIVATE);
84 if (addr & ~PAGE_MASK) {
85 ret = addr;
86 goto out;
87 }
88
89 vm_flags = VM_READ | VM_WRITE | VM_MPX |
90 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
91
92 /* Set pgoff according to addr for anon_vma */
93 pgoff = addr >> PAGE_SHIFT;
94
95 ret = mmap_region(NULL, addr, len, vm_flags, pgoff);
96 if (IS_ERR_VALUE(ret))
97 goto out;
98
99 vma = find_vma(mm, ret);
100 if (!vma) {
101 ret = -ENOMEM;
102 goto out;
103 }
104 vma->vm_ops = &mpx_vma_ops;
105
106 if (vm_flags & VM_LOCKED) {
107 up_write(&mm->mmap_sem);
108 mm_populate(ret, len);
109 return ret;
110 }
111
112out:
113 up_write(&mm->mmap_sem);
114 return ret;
115}
fcc7ffd6
DH
116
117enum reg_type {
118 REG_TYPE_RM = 0,
119 REG_TYPE_INDEX,
120 REG_TYPE_BASE,
121};
122
68c009c4
DH
123static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
124 enum reg_type type)
fcc7ffd6
DH
125{
126 int regno = 0;
127
128 static const int regoff[] = {
129 offsetof(struct pt_regs, ax),
130 offsetof(struct pt_regs, cx),
131 offsetof(struct pt_regs, dx),
132 offsetof(struct pt_regs, bx),
133 offsetof(struct pt_regs, sp),
134 offsetof(struct pt_regs, bp),
135 offsetof(struct pt_regs, si),
136 offsetof(struct pt_regs, di),
137#ifdef CONFIG_X86_64
138 offsetof(struct pt_regs, r8),
139 offsetof(struct pt_regs, r9),
140 offsetof(struct pt_regs, r10),
141 offsetof(struct pt_regs, r11),
142 offsetof(struct pt_regs, r12),
143 offsetof(struct pt_regs, r13),
144 offsetof(struct pt_regs, r14),
145 offsetof(struct pt_regs, r15),
146#endif
147 };
148 int nr_registers = ARRAY_SIZE(regoff);
149 /*
150 * Don't possibly decode a 32-bit instructions as
151 * reading a 64-bit-only register.
152 */
153 if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
154 nr_registers -= 8;
155
156 switch (type) {
157 case REG_TYPE_RM:
158 regno = X86_MODRM_RM(insn->modrm.value);
159 if (X86_REX_B(insn->rex_prefix.value) == 1)
160 regno += 8;
161 break;
162
163 case REG_TYPE_INDEX:
164 regno = X86_SIB_INDEX(insn->sib.value);
165 if (X86_REX_X(insn->rex_prefix.value) == 1)
166 regno += 8;
167 break;
168
169 case REG_TYPE_BASE:
170 regno = X86_SIB_BASE(insn->sib.value);
171 if (X86_REX_B(insn->rex_prefix.value) == 1)
172 regno += 8;
173 break;
174
175 default:
176 pr_err("invalid register type");
177 BUG();
178 break;
179 }
180
181 if (regno > nr_registers) {
182 WARN_ONCE(1, "decoded an instruction with an invalid register");
183 return -EINVAL;
184 }
185 return regoff[regno];
186}
187
188/*
189 * return the address being referenced be instruction
190 * for rm=3 returning the content of the rm reg
191 * for rm!=3 calculates the address using SIB and Disp
192 */
193static void __user *mpx_get_addr_ref(struct insn *insn, struct pt_regs *regs)
194{
68c009c4
DH
195 unsigned long addr, base, indx;
196 int addr_offset, base_offset, indx_offset;
fcc7ffd6
DH
197 insn_byte_t sib;
198
199 insn_get_modrm(insn);
200 insn_get_sib(insn);
201 sib = insn->sib.value;
202
203 if (X86_MODRM_MOD(insn->modrm.value) == 3) {
204 addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM);
205 if (addr_offset < 0)
206 goto out_err;
207 addr = regs_get_register(regs, addr_offset);
208 } else {
209 if (insn->sib.nbytes) {
210 base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
211 if (base_offset < 0)
212 goto out_err;
213
214 indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
215 if (indx_offset < 0)
216 goto out_err;
217
218 base = regs_get_register(regs, base_offset);
219 indx = regs_get_register(regs, indx_offset);
220 addr = base + indx * (1 << X86_SIB_SCALE(sib));
221 } else {
222 addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM);
223 if (addr_offset < 0)
224 goto out_err;
225 addr = regs_get_register(regs, addr_offset);
226 }
227 addr += insn->displacement.value;
228 }
229 return (void __user *)addr;
230out_err:
231 return (void __user *)-1;
232}
233
234static int mpx_insn_decode(struct insn *insn,
235 struct pt_regs *regs)
236{
237 unsigned char buf[MAX_INSN_SIZE];
238 int x86_64 = !test_thread_flag(TIF_IA32);
239 int not_copied;
240 int nr_copied;
241
242 not_copied = copy_from_user(buf, (void __user *)regs->ip, sizeof(buf));
243 nr_copied = sizeof(buf) - not_copied;
244 /*
245 * The decoder _should_ fail nicely if we pass it a short buffer.
246 * But, let's not depend on that implementation detail. If we
247 * did not get anything, just error out now.
248 */
249 if (!nr_copied)
250 return -EFAULT;
251 insn_init(insn, buf, nr_copied, x86_64);
252 insn_get_length(insn);
253 /*
254 * copy_from_user() tries to get as many bytes as we could see in
255 * the largest possible instruction. If the instruction we are
256 * after is shorter than that _and_ we attempt to copy from
257 * something unreadable, we might get a short read. This is OK
258 * as long as the read did not stop in the middle of the
259 * instruction. Check to see if we got a partial instruction.
260 */
261 if (nr_copied < insn->length)
262 return -EFAULT;
263
264 insn_get_opcode(insn);
265 /*
266 * We only _really_ need to decode bndcl/bndcn/bndcu
267 * Error out on anything else.
268 */
269 if (insn->opcode.bytes[0] != 0x0f)
270 goto bad_opcode;
271 if ((insn->opcode.bytes[1] != 0x1a) &&
272 (insn->opcode.bytes[1] != 0x1b))
273 goto bad_opcode;
274
275 return 0;
276bad_opcode:
277 return -EINVAL;
278}
279
280/*
281 * If a bounds overflow occurs then a #BR is generated. This
282 * function decodes MPX instructions to get violation address
283 * and set this address into extended struct siginfo.
284 *
285 * Note that this is not a super precise way of doing this.
286 * Userspace could have, by the time we get here, written
287 * anything it wants in to the instructions. We can not
288 * trust anything about it. They might not be valid
289 * instructions or might encode invalid registers, etc...
290 *
291 * The caller is expected to kfree() the returned siginfo_t.
292 */
46a6e0cf 293siginfo_t *mpx_generate_siginfo(struct pt_regs *regs)
fcc7ffd6 294{
a84eeaa9 295 const struct bndreg *bndregs, *bndreg;
fe3d197f 296 siginfo_t *info = NULL;
fcc7ffd6
DH
297 struct insn insn;
298 uint8_t bndregno;
299 int err;
fcc7ffd6
DH
300
301 err = mpx_insn_decode(&insn, regs);
302 if (err)
303 goto err_out;
304
305 /*
306 * We know at this point that we are only dealing with
307 * MPX instructions.
308 */
309 insn_get_modrm(&insn);
310 bndregno = X86_MODRM_REG(insn.modrm.value);
311 if (bndregno > 3) {
312 err = -EINVAL;
313 goto err_out;
314 }
a84eeaa9
DH
315 /* get bndregs field from current task's xsave area */
316 bndregs = get_xsave_field_ptr(XSTATE_BNDREGS);
fe3d197f
DH
317 if (!bndregs) {
318 err = -EINVAL;
319 goto err_out;
320 }
321 /* now go select the individual register in the set of 4 */
322 bndreg = &bndregs[bndregno];
323
fcc7ffd6
DH
324 info = kzalloc(sizeof(*info), GFP_KERNEL);
325 if (!info) {
326 err = -ENOMEM;
327 goto err_out;
328 }
329 /*
330 * The registers are always 64-bit, but the upper 32
331 * bits are ignored in 32-bit mode. Also, note that the
332 * upper bounds are architecturally represented in 1's
333 * complement form.
334 *
335 * The 'unsigned long' cast is because the compiler
336 * complains when casting from integers to different-size
337 * pointers.
338 */
fe3d197f
DH
339 info->si_lower = (void __user *)(unsigned long)bndreg->lower_bound;
340 info->si_upper = (void __user *)(unsigned long)~bndreg->upper_bound;
fcc7ffd6
DH
341 info->si_addr_lsb = 0;
342 info->si_signo = SIGSEGV;
343 info->si_errno = 0;
344 info->si_code = SEGV_BNDERR;
345 info->si_addr = mpx_get_addr_ref(&insn, regs);
346 /*
347 * We were not able to extract an address from the instruction,
348 * probably because there was something invalid in it.
349 */
350 if (info->si_addr == (void *)-1) {
351 err = -EINVAL;
352 goto err_out;
353 }
97efebf1 354 trace_mpx_bounds_register_exception(info->si_addr, bndreg);
fcc7ffd6
DH
355 return info;
356err_out:
fe3d197f
DH
357 /* info might be NULL, but kfree() handles that */
358 kfree(info);
fcc7ffd6
DH
359 return ERR_PTR(err);
360}
fe3d197f 361
46a6e0cf 362static __user void *mpx_get_bounds_dir(void)
fe3d197f 363{
a84eeaa9 364 const struct bndcsr *bndcsr;
fe3d197f
DH
365
366 if (!cpu_feature_enabled(X86_FEATURE_MPX))
367 return MPX_INVALID_BOUNDS_DIR;
368
369 /*
370 * The bounds directory pointer is stored in a register
371 * only accessible if we first do an xsave.
372 */
a84eeaa9 373 bndcsr = get_xsave_field_ptr(XSTATE_BNDCSR);
fe3d197f
DH
374 if (!bndcsr)
375 return MPX_INVALID_BOUNDS_DIR;
376
377 /*
378 * Make sure the register looks valid by checking the
379 * enable bit.
380 */
381 if (!(bndcsr->bndcfgu & MPX_BNDCFG_ENABLE_FLAG))
382 return MPX_INVALID_BOUNDS_DIR;
383
384 /*
385 * Lastly, mask off the low bits used for configuration
386 * flags, and return the address of the bounds table.
387 */
388 return (void __user *)(unsigned long)
389 (bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK);
390}
391
46a6e0cf 392int mpx_enable_management(void)
fe3d197f
DH
393{
394 void __user *bd_base = MPX_INVALID_BOUNDS_DIR;
46a6e0cf 395 struct mm_struct *mm = current->mm;
fe3d197f
DH
396 int ret = 0;
397
398 /*
399 * runtime in the userspace will be responsible for allocation of
400 * the bounds directory. Then, it will save the base of the bounds
401 * directory into XSAVE/XRSTOR Save Area and enable MPX through
402 * XRSTOR instruction.
403 *
a84eeaa9
DH
404 * The copy_xregs_to_kernel() beneath get_xsave_field_ptr() is
405 * expected to be relatively expensive. Storing the bounds
406 * directory here means that we do not have to do xsave in the
407 * unmap path; we can just use mm->bd_addr instead.
fe3d197f 408 */
46a6e0cf 409 bd_base = mpx_get_bounds_dir();
fe3d197f
DH
410 down_write(&mm->mmap_sem);
411 mm->bd_addr = bd_base;
412 if (mm->bd_addr == MPX_INVALID_BOUNDS_DIR)
413 ret = -ENXIO;
414
415 up_write(&mm->mmap_sem);
416 return ret;
417}
418
46a6e0cf 419int mpx_disable_management(void)
fe3d197f
DH
420{
421 struct mm_struct *mm = current->mm;
422
423 if (!cpu_feature_enabled(X86_FEATURE_MPX))
424 return -ENXIO;
425
426 down_write(&mm->mmap_sem);
427 mm->bd_addr = MPX_INVALID_BOUNDS_DIR;
428 up_write(&mm->mmap_sem);
429 return 0;
430}
431
6ac52bb4
DH
432static int mpx_cmpxchg_bd_entry(struct mm_struct *mm,
433 unsigned long *curval,
434 unsigned long __user *addr,
435 unsigned long old_val, unsigned long new_val)
436{
437 int ret;
438 /*
439 * user_atomic_cmpxchg_inatomic() actually uses sizeof()
440 * the pointer that we pass to it to figure out how much
441 * data to cmpxchg. We have to be careful here not to
442 * pass a pointer to a 64-bit data type when we only want
443 * a 32-bit copy.
444 */
445 if (is_64bit_mm(mm)) {
446 ret = user_atomic_cmpxchg_inatomic(curval,
447 addr, old_val, new_val);
448 } else {
449 u32 uninitialized_var(curval_32);
450 u32 old_val_32 = old_val;
451 u32 new_val_32 = new_val;
452 u32 __user *addr_32 = (u32 __user *)addr;
453
454 ret = user_atomic_cmpxchg_inatomic(&curval_32,
455 addr_32, old_val_32, new_val_32);
456 *curval = curval_32;
457 }
458 return ret;
459}
460
fe3d197f 461/*
613fcb7d
DH
462 * With 32-bit mode, a bounds directory is 4MB, and the size of each
463 * bounds table is 16KB. With 64-bit mode, a bounds directory is 2GB,
fe3d197f
DH
464 * and the size of each bounds table is 4MB.
465 */
613fcb7d 466static int allocate_bt(struct mm_struct *mm, long __user *bd_entry)
fe3d197f
DH
467{
468 unsigned long expected_old_val = 0;
469 unsigned long actual_old_val = 0;
470 unsigned long bt_addr;
a1149fc8 471 unsigned long bd_new_entry;
fe3d197f
DH
472 int ret = 0;
473
474 /*
475 * Carve the virtual space out of userspace for the new
476 * bounds table:
477 */
613fcb7d 478 bt_addr = mpx_mmap(mpx_bt_size_bytes(mm));
fe3d197f
DH
479 if (IS_ERR((void *)bt_addr))
480 return PTR_ERR((void *)bt_addr);
481 /*
482 * Set the valid flag (kinda like _PAGE_PRESENT in a pte)
483 */
a1149fc8 484 bd_new_entry = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
fe3d197f
DH
485
486 /*
487 * Go poke the address of the new bounds table in to the
488 * bounds directory entry out in userspace memory. Note:
489 * we may race with another CPU instantiating the same table.
490 * In that case the cmpxchg will see an unexpected
491 * 'actual_old_val'.
492 *
493 * This can fault, but that's OK because we do not hold
494 * mmap_sem at this point, unlike some of the other part
495 * of the MPX code that have to pagefault_disable().
496 */
6ac52bb4
DH
497 ret = mpx_cmpxchg_bd_entry(mm, &actual_old_val, bd_entry,
498 expected_old_val, bd_new_entry);
fe3d197f
DH
499 if (ret)
500 goto out_unmap;
501
502 /*
503 * The user_atomic_cmpxchg_inatomic() will only return nonzero
504 * for faults, *not* if the cmpxchg itself fails. Now we must
505 * verify that the cmpxchg itself completed successfully.
506 */
507 /*
508 * We expected an empty 'expected_old_val', but instead found
509 * an apparently valid entry. Assume we raced with another
510 * thread to instantiate this table and desclare succecss.
511 */
512 if (actual_old_val & MPX_BD_ENTRY_VALID_FLAG) {
513 ret = 0;
514 goto out_unmap;
515 }
516 /*
517 * We found a non-empty bd_entry but it did not have the
518 * VALID_FLAG set. Return an error which will result in
519 * a SEGV since this probably means that somebody scribbled
520 * some invalid data in to a bounds table.
521 */
522 if (expected_old_val != actual_old_val) {
523 ret = -EINVAL;
524 goto out_unmap;
525 }
cd4996dc 526 trace_mpx_new_bounds_table(bt_addr);
fe3d197f
DH
527 return 0;
528out_unmap:
613fcb7d 529 vm_munmap(bt_addr, mpx_bt_size_bytes(mm));
fe3d197f
DH
530 return ret;
531}
532
533/*
534 * When a BNDSTX instruction attempts to save bounds to a bounds
535 * table, it will first attempt to look up the table in the
536 * first-level bounds directory. If it does not find a table in
537 * the directory, a #BR is generated and we get here in order to
538 * allocate a new table.
539 *
540 * With 32-bit mode, the size of BD is 4MB, and the size of each
541 * bound table is 16KB. With 64-bit mode, the size of BD is 2GB,
542 * and the size of each bound table is 4MB.
543 */
46a6e0cf 544static int do_mpx_bt_fault(void)
fe3d197f
DH
545{
546 unsigned long bd_entry, bd_base;
a84eeaa9 547 const struct bndcsr *bndcsr;
613fcb7d 548 struct mm_struct *mm = current->mm;
fe3d197f 549
a84eeaa9 550 bndcsr = get_xsave_field_ptr(XSTATE_BNDCSR);
fe3d197f
DH
551 if (!bndcsr)
552 return -EINVAL;
553 /*
554 * Mask off the preserve and enable bits
555 */
556 bd_base = bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK;
557 /*
558 * The hardware provides the address of the missing or invalid
559 * entry via BNDSTATUS, so we don't have to go look it up.
560 */
561 bd_entry = bndcsr->bndstatus & MPX_BNDSTA_ADDR_MASK;
562 /*
563 * Make sure the directory entry is within where we think
564 * the directory is.
565 */
566 if ((bd_entry < bd_base) ||
613fcb7d 567 (bd_entry >= bd_base + mpx_bd_size_bytes(mm)))
fe3d197f
DH
568 return -EINVAL;
569
613fcb7d 570 return allocate_bt(mm, (long __user *)bd_entry);
fe3d197f
DH
571}
572
46a6e0cf 573int mpx_handle_bd_fault(void)
fe3d197f
DH
574{
575 /*
576 * Userspace never asked us to manage the bounds tables,
577 * so refuse to help.
578 */
579 if (!kernel_managing_mpx_tables(current->mm))
580 return -EINVAL;
581
46a6e0cf 582 if (do_mpx_bt_fault()) {
fe3d197f
DH
583 force_sig(SIGSEGV, current);
584 /*
585 * The force_sig() is essentially "handling" this
586 * exception, so we do not pass up the error
587 * from do_mpx_bt_fault().
588 */
589 }
590 return 0;
591}
1de4fa14
DH
592
593/*
594 * A thin wrapper around get_user_pages(). Returns 0 if the
595 * fault was resolved or -errno if not.
596 */
597static int mpx_resolve_fault(long __user *addr, int write)
598{
599 long gup_ret;
600 int nr_pages = 1;
601 int force = 0;
602
603 gup_ret = get_user_pages(current, current->mm, (unsigned long)addr,
604 nr_pages, write, force, NULL, NULL);
605 /*
606 * get_user_pages() returns number of pages gotten.
607 * 0 means we failed to fault in and get anything,
608 * probably because 'addr' is bad.
609 */
610 if (!gup_ret)
611 return -EFAULT;
612 /* Other error, return it */
613 if (gup_ret < 0)
614 return gup_ret;
615 /* must have gup'd a page and gup_ret>0, success */
616 return 0;
617}
618
54587653
DH
619static unsigned long mpx_bd_entry_to_bt_addr(struct mm_struct *mm,
620 unsigned long bd_entry)
621{
622 unsigned long bt_addr = bd_entry;
623 int align_to_bytes;
624 /*
625 * Bit 0 in a bt_entry is always the valid bit.
626 */
627 bt_addr &= ~MPX_BD_ENTRY_VALID_FLAG;
628 /*
629 * Tables are naturally aligned at 8-byte boundaries
630 * on 64-bit and 4-byte boundaries on 32-bit. The
631 * documentation makes it appear that the low bits
632 * are ignored by the hardware, so we do the same.
633 */
634 if (is_64bit_mm(mm))
635 align_to_bytes = 8;
636 else
637 align_to_bytes = 4;
638 bt_addr &= ~(align_to_bytes-1);
639 return bt_addr;
640}
641
1de4fa14
DH
642/*
643 * Get the base of bounds tables pointed by specific bounds
644 * directory entry.
645 */
646static int get_bt_addr(struct mm_struct *mm,
54587653
DH
647 long __user *bd_entry_ptr,
648 unsigned long *bt_addr_result)
1de4fa14
DH
649{
650 int ret;
651 int valid_bit;
54587653
DH
652 unsigned long bd_entry;
653 unsigned long bt_addr;
1de4fa14 654
54587653 655 if (!access_ok(VERIFY_READ, (bd_entry_ptr), sizeof(*bd_entry_ptr)))
1de4fa14
DH
656 return -EFAULT;
657
658 while (1) {
659 int need_write = 0;
660
661 pagefault_disable();
54587653 662 ret = get_user(bd_entry, bd_entry_ptr);
1de4fa14
DH
663 pagefault_enable();
664 if (!ret)
665 break;
666 if (ret == -EFAULT)
54587653 667 ret = mpx_resolve_fault(bd_entry_ptr, need_write);
1de4fa14
DH
668 /*
669 * If we could not resolve the fault, consider it
670 * userspace's fault and error out.
671 */
672 if (ret)
673 return ret;
674 }
675
54587653
DH
676 valid_bit = bd_entry & MPX_BD_ENTRY_VALID_FLAG;
677 bt_addr = mpx_bd_entry_to_bt_addr(mm, bd_entry);
1de4fa14
DH
678
679 /*
680 * When the kernel is managing bounds tables, a bounds directory
681 * entry will either have a valid address (plus the valid bit)
682 * *OR* be completely empty. If we see a !valid entry *and* some
683 * data in the address field, we know something is wrong. This
684 * -EINVAL return will cause a SIGSEGV.
685 */
54587653 686 if (!valid_bit && bt_addr)
1de4fa14
DH
687 return -EINVAL;
688 /*
689 * Do we have an completely zeroed bt entry? That is OK. It
690 * just means there was no bounds table for this memory. Make
691 * sure to distinguish this from -EINVAL, which will cause
692 * a SEGV.
693 */
694 if (!valid_bit)
695 return -ENOENT;
696
54587653 697 *bt_addr_result = bt_addr;
1de4fa14
DH
698 return 0;
699}
700
613fcb7d
DH
701static inline int bt_entry_size_bytes(struct mm_struct *mm)
702{
703 if (is_64bit_mm(mm))
704 return MPX_BT_ENTRY_BYTES_64;
705 else
706 return MPX_BT_ENTRY_BYTES_32;
707}
708
709/*
710 * Take a virtual address and turns it in to the offset in bytes
711 * inside of the bounds table where the bounds table entry
712 * controlling 'addr' can be found.
713 */
714static unsigned long mpx_get_bt_entry_offset_bytes(struct mm_struct *mm,
715 unsigned long addr)
716{
717 unsigned long bt_table_nr_entries;
718 unsigned long offset = addr;
719
720 if (is_64bit_mm(mm)) {
721 /* Bottom 3 bits are ignored on 64-bit */
722 offset >>= 3;
723 bt_table_nr_entries = MPX_BT_NR_ENTRIES_64;
724 } else {
725 /* Bottom 2 bits are ignored on 32-bit */
726 offset >>= 2;
727 bt_table_nr_entries = MPX_BT_NR_ENTRIES_32;
728 }
729 /*
730 * We know the size of the table in to which we are
731 * indexing, and we have eliminated all the low bits
732 * which are ignored for indexing.
733 *
734 * Mask out all the high bits which we do not need
735 * to index in to the table. Note that the tables
736 * are always powers of two so this gives us a proper
737 * mask.
738 */
739 offset &= (bt_table_nr_entries-1);
740 /*
741 * We now have an entry offset in terms of *entries* in
742 * the table. We need to scale it back up to bytes.
743 */
744 offset *= bt_entry_size_bytes(mm);
745 return offset;
746}
747
748/*
749 * How much virtual address space does a single bounds
750 * directory entry cover?
751 *
752 * Note, we need a long long because 4GB doesn't fit in
753 * to a long on 32-bit.
754 */
755static inline unsigned long bd_entry_virt_space(struct mm_struct *mm)
756{
757 unsigned long long virt_space = (1ULL << boot_cpu_data.x86_virt_bits);
758 if (is_64bit_mm(mm))
759 return virt_space / MPX_BD_NR_ENTRIES_64;
760 else
761 return virt_space / MPX_BD_NR_ENTRIES_32;
762}
763
764/*
3ceaccdf
DH
765 * Free the backing physical pages of bounds table 'bt_addr'.
766 * Assume start...end is within that bounds table.
613fcb7d 767 */
3ceaccdf
DH
768static noinline int zap_bt_entries_mapping(struct mm_struct *mm,
769 unsigned long bt_addr,
770 unsigned long start_mapping, unsigned long end_mapping)
771{
772 struct vm_area_struct *vma;
773 unsigned long addr, len;
774 unsigned long start;
775 unsigned long end;
776
777 /*
778 * if we 'end' on a boundary, the offset will be 0 which
779 * is not what we want. Back it up a byte to get the
780 * last bt entry. Then once we have the entry itself,
781 * move 'end' back up by the table entry size.
782 */
783 start = bt_addr + mpx_get_bt_entry_offset_bytes(mm, start_mapping);
784 end = bt_addr + mpx_get_bt_entry_offset_bytes(mm, end_mapping - 1);
785 /*
786 * Move end back up by one entry. Among other things
787 * this ensures that it remains page-aligned and does
788 * not screw up zap_page_range()
789 */
790 end += bt_entry_size_bytes(mm);
791
792 /*
793 * Find the first overlapping vma. If vma->vm_start > start, there
794 * will be a hole in the bounds table. This -EINVAL return will
795 * cause a SIGSEGV.
796 */
797 vma = find_vma(mm, start);
798 if (!vma || vma->vm_start > start)
799 return -EINVAL;
800
801 /*
802 * A NUMA policy on a VM_MPX VMA could cause this bounds table to
803 * be split. So we need to look across the entire 'start -> end'
804 * range of this bounds table, find all of the VM_MPX VMAs, and
805 * zap only those.
806 */
807 addr = start;
808 while (vma && vma->vm_start < end) {
809 /*
810 * We followed a bounds directory entry down
811 * here. If we find a non-MPX VMA, that's bad,
812 * so stop immediately and return an error. This
813 * probably results in a SIGSEGV.
814 */
815 if (!is_mpx_vma(vma))
816 return -EINVAL;
817
818 len = min(vma->vm_end, end) - addr;
819 zap_page_range(vma, addr, len, NULL);
820 trace_mpx_unmap_zap(addr, addr+len);
821
822 vma = vma->vm_next;
823 addr = vma->vm_start;
824 }
825 return 0;
826}
827
613fcb7d
DH
828static unsigned long mpx_get_bd_entry_offset(struct mm_struct *mm,
829 unsigned long addr)
830{
831 /*
832 * There are several ways to derive the bd offsets. We
833 * use the following approach here:
834 * 1. We know the size of the virtual address space
835 * 2. We know the number of entries in a bounds table
836 * 3. We know that each entry covers a fixed amount of
837 * virtual address space.
838 * So, we can just divide the virtual address by the
839 * virtual space used by one entry to determine which
840 * entry "controls" the given virtual address.
841 */
842 if (is_64bit_mm(mm)) {
843 int bd_entry_size = 8; /* 64-bit pointer */
844 /*
845 * Take the 64-bit addressing hole in to account.
846 */
847 addr &= ((1UL << boot_cpu_data.x86_virt_bits) - 1);
848 return (addr / bd_entry_virt_space(mm)) * bd_entry_size;
849 } else {
850 int bd_entry_size = 4; /* 32-bit pointer */
851 /*
852 * 32-bit has no hole so this case needs no mask
853 */
854 return (addr / bd_entry_virt_space(mm)) * bd_entry_size;
855 }
856 /*
857 * The two return calls above are exact copies. If we
858 * pull out a single copy and put it in here, gcc won't
859 * realize that we're doing a power-of-2 divide and use
860 * shifts. It uses a real divide. If we put them up
861 * there, it manages to figure it out (gcc 4.8.3).
862 */
1de4fa14
DH
863}
864
3ceaccdf
DH
865static int unmap_entire_bt(struct mm_struct *mm,
866 long __user *bd_entry, unsigned long bt_addr)
1de4fa14 867{
3ceaccdf
DH
868 unsigned long expected_old_val = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
869 unsigned long uninitialized_var(actual_old_val);
1de4fa14
DH
870 int ret;
871
3ceaccdf
DH
872 while (1) {
873 int need_write = 1;
874 unsigned long cleared_bd_entry = 0;
875
876 pagefault_disable();
877 ret = mpx_cmpxchg_bd_entry(mm, &actual_old_val,
878 bd_entry, expected_old_val, cleared_bd_entry);
879 pagefault_enable();
880 if (!ret)
881 break;
882 if (ret == -EFAULT)
883 ret = mpx_resolve_fault(bd_entry, need_write);
884 /*
885 * If we could not resolve the fault, consider it
886 * userspace's fault and error out.
887 */
888 if (ret)
889 return ret;
890 }
1de4fa14 891 /*
3ceaccdf 892 * The cmpxchg was performed, check the results.
1de4fa14 893 */
3ceaccdf
DH
894 if (actual_old_val != expected_old_val) {
895 /*
896 * Someone else raced with us to unmap the table.
897 * That is OK, since we were both trying to do
898 * the same thing. Declare success.
899 */
900 if (!actual_old_val)
901 return 0;
902 /*
903 * Something messed with the bounds directory
904 * entry. We hold mmap_sem for read or write
905 * here, so it could not be a _new_ bounds table
906 * that someone just allocated. Something is
907 * wrong, so pass up the error and SIGSEGV.
908 */
909 return -EINVAL;
910 }
911 /*
912 * Note, we are likely being called under do_munmap() already. To
913 * avoid recursion, do_munmap() will check whether it comes
914 * from one bounds table through VM_MPX flag.
915 */
916 return do_munmap(mm, bt_addr, mpx_bt_size_bytes(mm));
1de4fa14
DH
917}
918
3ceaccdf
DH
919static int try_unmap_single_bt(struct mm_struct *mm,
920 unsigned long start, unsigned long end)
1de4fa14 921{
3ceaccdf
DH
922 struct vm_area_struct *next;
923 struct vm_area_struct *prev;
924 /*
925 * "bta" == Bounds Table Area: the area controlled by the
926 * bounds table that we are unmapping.
927 */
928 unsigned long bta_start_vaddr = start & ~(bd_entry_virt_space(mm)-1);
929 unsigned long bta_end_vaddr = bta_start_vaddr + bd_entry_virt_space(mm);
930 unsigned long uninitialized_var(bt_addr);
931 void __user *bde_vaddr;
1de4fa14 932 int ret;
bea03c50
DH
933 /*
934 * We already unlinked the VMAs from the mm's rbtree so 'start'
935 * is guaranteed to be in a hole. This gets us the first VMA
936 * before the hole in to 'prev' and the next VMA after the hole
937 * in to 'next'.
938 */
939 next = find_vma_prev(mm, start, &prev);
940 /*
941 * Do not count other MPX bounds table VMAs as neighbors.
942 * Although theoretically possible, we do not allow bounds
943 * tables for bounds tables so our heads do not explode.
944 * If we count them as neighbors here, we may end up with
945 * lots of tables even though we have no actual table
946 * entries in use.
947 */
948 while (next && is_mpx_vma(next))
949 next = next->vm_next;
950 while (prev && is_mpx_vma(prev))
951 prev = prev->vm_prev;
1de4fa14 952 /*
3ceaccdf
DH
953 * We know 'start' and 'end' lie within an area controlled
954 * by a single bounds table. See if there are any other
955 * VMAs controlled by that bounds table. If there are not
956 * then we can "expand" the are we are unmapping to possibly
957 * cover the entire table.
1de4fa14
DH
958 */
959 next = find_vma_prev(mm, start, &prev);
3ceaccdf
DH
960 if ((!prev || prev->vm_end <= bta_start_vaddr) &&
961 (!next || next->vm_start >= bta_end_vaddr)) {
962 /*
963 * No neighbor VMAs controlled by same bounds
964 * table. Try to unmap the whole thing
965 */
966 start = bta_start_vaddr;
967 end = bta_end_vaddr;
1de4fa14
DH
968 }
969
3ceaccdf
DH
970 bde_vaddr = mm->bd_addr + mpx_get_bd_entry_offset(mm, start);
971 ret = get_bt_addr(mm, bde_vaddr, &bt_addr);
1de4fa14 972 /*
3ceaccdf 973 * No bounds table there, so nothing to unmap.
1de4fa14 974 */
3ceaccdf
DH
975 if (ret == -ENOENT) {
976 ret = 0;
977 return 0;
978 }
1de4fa14
DH
979 if (ret)
980 return ret;
3ceaccdf
DH
981 /*
982 * We are unmapping an entire table. Either because the
983 * unmap that started this whole process was large enough
984 * to cover an entire table, or that the unmap was small
985 * but was the area covered by a bounds table.
986 */
987 if ((start == bta_start_vaddr) &&
988 (end == bta_end_vaddr))
989 return unmap_entire_bt(mm, bde_vaddr, bt_addr);
990 return zap_bt_entries_mapping(mm, bt_addr, start, end);
1de4fa14
DH
991}
992
993static int mpx_unmap_tables(struct mm_struct *mm,
994 unsigned long start, unsigned long end)
995{
3ceaccdf 996 unsigned long one_unmap_start;
2a1dcb1f 997 trace_mpx_unmap_search(start, end);
1de4fa14 998
3ceaccdf
DH
999 one_unmap_start = start;
1000 while (one_unmap_start < end) {
1001 int ret;
1002 unsigned long next_unmap_start = ALIGN(one_unmap_start+1,
1003 bd_entry_virt_space(mm));
1004 unsigned long one_unmap_end = end;
1005 /*
1006 * if the end is beyond the current bounds table,
1007 * move it back so we only deal with a single one
1008 * at a time
1009 */
1010 if (one_unmap_end > next_unmap_start)
1011 one_unmap_end = next_unmap_start;
1012 ret = try_unmap_single_bt(mm, one_unmap_start, one_unmap_end);
1de4fa14
DH
1013 if (ret)
1014 return ret;
1de4fa14 1015
3ceaccdf
DH
1016 one_unmap_start = next_unmap_start;
1017 }
1de4fa14
DH
1018 return 0;
1019}
1020
1021/*
1022 * Free unused bounds tables covered in a virtual address region being
1023 * munmap()ed. Assume end > start.
1024 *
1025 * This function will be called by do_munmap(), and the VMAs covering
1026 * the virtual address region start...end have already been split if
1027 * necessary, and the 'vma' is the first vma in this range (start -> end).
1028 */
1029void mpx_notify_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
1030 unsigned long start, unsigned long end)
1031{
1032 int ret;
1033
1034 /*
1035 * Refuse to do anything unless userspace has asked
1036 * the kernel to help manage the bounds tables,
1037 */
1038 if (!kernel_managing_mpx_tables(current->mm))
1039 return;
1040 /*
1041 * This will look across the entire 'start -> end' range,
1042 * and find all of the non-VM_MPX VMAs.
1043 *
1044 * To avoid recursion, if a VM_MPX vma is found in the range
1045 * (start->end), we will not continue follow-up work. This
1046 * recursion represents having bounds tables for bounds tables,
1047 * which should not occur normally. Being strict about it here
1048 * helps ensure that we do not have an exploitable stack overflow.
1049 */
1050 do {
1051 if (vma->vm_flags & VM_MPX)
1052 return;
1053 vma = vma->vm_next;
1054 } while (vma && vma->vm_start < end);
1055
1056 ret = mpx_unmap_tables(mm, start, end);
1057 if (ret)
1058 force_sig(SIGSEGV, current);
1059}
This page took 0.103728 seconds and 5 git commands to generate.