x86/mm: Flush lazy MMU when DEBUG_PAGEALLOC is set
[deliverable/linux.git] / arch / x86 / mm / pageattr.c
CommitLineData
9f4c815c
IM
1/*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
1da177e4 3 * Thanks to Ben LaHaise for precious feedback.
9f4c815c 4 */
1da177e4 5#include <linux/highmem.h>
8192206d 6#include <linux/bootmem.h>
1da177e4 7#include <linux/module.h>
9f4c815c 8#include <linux/sched.h>
9f4c815c 9#include <linux/mm.h>
76ebd054 10#include <linux/interrupt.h>
ee7ae7a1
TG
11#include <linux/seq_file.h>
12#include <linux/debugfs.h>
e59a1bb2 13#include <linux/pfn.h>
8c4bfc6e 14#include <linux/percpu.h>
5a0e3ad6 15#include <linux/gfp.h>
5bd5a452 16#include <linux/pci.h>
9f4c815c 17
950f9d95 18#include <asm/e820.h>
1da177e4
LT
19#include <asm/processor.h>
20#include <asm/tlbflush.h>
f8af095d 21#include <asm/sections.h>
93dbda7c 22#include <asm/setup.h>
9f4c815c
IM
23#include <asm/uaccess.h>
24#include <asm/pgalloc.h>
c31c7d48 25#include <asm/proto.h>
1219333d 26#include <asm/pat.h>
1da177e4 27
9df84993
IM
28/*
29 * The current flushing context - we pass it instead of 5 arguments:
30 */
72e458df 31struct cpa_data {
d75586ad 32 unsigned long *vaddr;
72e458df
TG
33 pgprot_t mask_set;
34 pgprot_t mask_clr;
65e074df 35 int numpages;
d75586ad 36 int flags;
c31c7d48 37 unsigned long pfn;
c9caa02c 38 unsigned force_split : 1;
d75586ad 39 int curpage;
9ae28475 40 struct page **pages;
72e458df
TG
41};
42
ad5ca55f
SS
43/*
44 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
45 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
46 * entries change the page attribute in parallel to some other cpu
47 * splitting a large page entry along with changing the attribute.
48 */
49static DEFINE_SPINLOCK(cpa_lock);
50
d75586ad
SL
51#define CPA_FLUSHTLB 1
52#define CPA_ARRAY 2
9ae28475 53#define CPA_PAGES_ARRAY 4
d75586ad 54
65280e61 55#ifdef CONFIG_PROC_FS
ce0c0e50
AK
56static unsigned long direct_pages_count[PG_LEVEL_NUM];
57
65280e61 58void update_page_count(int level, unsigned long pages)
ce0c0e50 59{
ce0c0e50 60 /* Protect against CPA */
a79e53d8 61 spin_lock(&pgd_lock);
ce0c0e50 62 direct_pages_count[level] += pages;
a79e53d8 63 spin_unlock(&pgd_lock);
65280e61
TG
64}
65
66static void split_page_count(int level)
67{
68 direct_pages_count[level]--;
69 direct_pages_count[level - 1] += PTRS_PER_PTE;
70}
71
e1759c21 72void arch_report_meminfo(struct seq_file *m)
65280e61 73{
b9c3bfc2 74 seq_printf(m, "DirectMap4k: %8lu kB\n",
a06de630
HD
75 direct_pages_count[PG_LEVEL_4K] << 2);
76#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
b9c3bfc2 77 seq_printf(m, "DirectMap2M: %8lu kB\n",
a06de630
HD
78 direct_pages_count[PG_LEVEL_2M] << 11);
79#else
b9c3bfc2 80 seq_printf(m, "DirectMap4M: %8lu kB\n",
a06de630
HD
81 direct_pages_count[PG_LEVEL_2M] << 12);
82#endif
65280e61 83#ifdef CONFIG_X86_64
a06de630 84 if (direct_gbpages)
b9c3bfc2 85 seq_printf(m, "DirectMap1G: %8lu kB\n",
a06de630 86 direct_pages_count[PG_LEVEL_1G] << 20);
ce0c0e50
AK
87#endif
88}
65280e61
TG
89#else
90static inline void split_page_count(int level) { }
91#endif
ce0c0e50 92
c31c7d48
TG
93#ifdef CONFIG_X86_64
94
95static inline unsigned long highmap_start_pfn(void)
96{
fc8d7826 97 return __pa_symbol(_text) >> PAGE_SHIFT;
c31c7d48
TG
98}
99
100static inline unsigned long highmap_end_pfn(void)
101{
fc8d7826 102 return __pa_symbol(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
c31c7d48
TG
103}
104
105#endif
106
92cb54a3
IM
107#ifdef CONFIG_DEBUG_PAGEALLOC
108# define debug_pagealloc 1
109#else
110# define debug_pagealloc 0
111#endif
112
ed724be6
AV
113static inline int
114within(unsigned long addr, unsigned long start, unsigned long end)
687c4825 115{
ed724be6
AV
116 return addr >= start && addr < end;
117}
118
d7c8f21a
TG
119/*
120 * Flushing functions
121 */
cd8ddf1a 122
cd8ddf1a
TG
123/**
124 * clflush_cache_range - flush a cache range with clflush
9efc31b8 125 * @vaddr: virtual start address
cd8ddf1a
TG
126 * @size: number of bytes to flush
127 *
128 * clflush is an unordered instruction which needs fencing with mfence
129 * to avoid ordering issues.
130 */
4c61afcd 131void clflush_cache_range(void *vaddr, unsigned int size)
d7c8f21a 132{
4c61afcd 133 void *vend = vaddr + size - 1;
d7c8f21a 134
cd8ddf1a 135 mb();
4c61afcd
IM
136
137 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
138 clflush(vaddr);
139 /*
140 * Flush any possible final partial cacheline:
141 */
142 clflush(vend);
143
cd8ddf1a 144 mb();
d7c8f21a 145}
e517a5e9 146EXPORT_SYMBOL_GPL(clflush_cache_range);
d7c8f21a 147
af1e6844 148static void __cpa_flush_all(void *arg)
d7c8f21a 149{
6bb8383b
AK
150 unsigned long cache = (unsigned long)arg;
151
d7c8f21a
TG
152 /*
153 * Flush all to work around Errata in early athlons regarding
154 * large page flushing.
155 */
156 __flush_tlb_all();
157
0b827537 158 if (cache && boot_cpu_data.x86 >= 4)
d7c8f21a
TG
159 wbinvd();
160}
161
6bb8383b 162static void cpa_flush_all(unsigned long cache)
d7c8f21a
TG
163{
164 BUG_ON(irqs_disabled());
165
15c8b6c1 166 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
d7c8f21a
TG
167}
168
57a6a46a
TG
169static void __cpa_flush_range(void *arg)
170{
57a6a46a
TG
171 /*
172 * We could optimize that further and do individual per page
173 * tlb invalidates for a low number of pages. Caveat: we must
174 * flush the high aliases on 64bit as well.
175 */
176 __flush_tlb_all();
57a6a46a
TG
177}
178
6bb8383b 179static void cpa_flush_range(unsigned long start, int numpages, int cache)
57a6a46a 180{
4c61afcd
IM
181 unsigned int i, level;
182 unsigned long addr;
183
57a6a46a 184 BUG_ON(irqs_disabled());
4c61afcd 185 WARN_ON(PAGE_ALIGN(start) != start);
57a6a46a 186
15c8b6c1 187 on_each_cpu(__cpa_flush_range, NULL, 1);
57a6a46a 188
6bb8383b
AK
189 if (!cache)
190 return;
191
3b233e52
TG
192 /*
193 * We only need to flush on one CPU,
194 * clflush is a MESI-coherent instruction that
195 * will cause all other CPUs to flush the same
196 * cachelines:
197 */
4c61afcd
IM
198 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
199 pte_t *pte = lookup_address(addr, &level);
200
201 /*
202 * Only flush present addresses:
203 */
7bfb72e8 204 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
4c61afcd
IM
205 clflush_cache_range((void *) addr, PAGE_SIZE);
206 }
57a6a46a
TG
207}
208
9ae28475 209static void cpa_flush_array(unsigned long *start, int numpages, int cache,
210 int in_flags, struct page **pages)
d75586ad
SL
211{
212 unsigned int i, level;
2171787b 213 unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
d75586ad
SL
214
215 BUG_ON(irqs_disabled());
216
2171787b 217 on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
d75586ad 218
2171787b 219 if (!cache || do_wbinvd)
d75586ad
SL
220 return;
221
d75586ad
SL
222 /*
223 * We only need to flush on one CPU,
224 * clflush is a MESI-coherent instruction that
225 * will cause all other CPUs to flush the same
226 * cachelines:
227 */
9ae28475 228 for (i = 0; i < numpages; i++) {
229 unsigned long addr;
230 pte_t *pte;
231
232 if (in_flags & CPA_PAGES_ARRAY)
233 addr = (unsigned long)page_address(pages[i]);
234 else
235 addr = start[i];
236
237 pte = lookup_address(addr, &level);
d75586ad
SL
238
239 /*
240 * Only flush present addresses:
241 */
242 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
9ae28475 243 clflush_cache_range((void *)addr, PAGE_SIZE);
d75586ad
SL
244 }
245}
246
ed724be6
AV
247/*
248 * Certain areas of memory on x86 require very specific protection flags,
249 * for example the BIOS area or kernel text. Callers don't always get this
250 * right (again, ioremap() on BIOS memory is not uncommon) so this function
251 * checks and fixes these known static required protection bits.
252 */
c31c7d48
TG
253static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
254 unsigned long pfn)
ed724be6
AV
255{
256 pgprot_t forbidden = __pgprot(0);
257
687c4825 258 /*
ed724be6
AV
259 * The BIOS area between 640k and 1Mb needs to be executable for
260 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
687c4825 261 */
5bd5a452
MC
262#ifdef CONFIG_PCI_BIOS
263 if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
ed724be6 264 pgprot_val(forbidden) |= _PAGE_NX;
5bd5a452 265#endif
ed724be6
AV
266
267 /*
268 * The kernel text needs to be executable for obvious reasons
c31c7d48
TG
269 * Does not cover __inittext since that is gone later on. On
270 * 64bit we do not enforce !NX on the low mapping
ed724be6
AV
271 */
272 if (within(address, (unsigned long)_text, (unsigned long)_etext))
273 pgprot_val(forbidden) |= _PAGE_NX;
cc0f21bb 274
cc0f21bb 275 /*
c31c7d48
TG
276 * The .rodata section needs to be read-only. Using the pfn
277 * catches all aliases.
cc0f21bb 278 */
fc8d7826
AD
279 if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
280 __pa_symbol(__end_rodata) >> PAGE_SHIFT))
cc0f21bb 281 pgprot_val(forbidden) |= _PAGE_RW;
ed724be6 282
55ca3cc1 283#if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
74e08179 284 /*
502f6604
SS
285 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
286 * kernel text mappings for the large page aligned text, rodata sections
287 * will be always read-only. For the kernel identity mappings covering
288 * the holes caused by this alignment can be anything that user asks.
74e08179
SS
289 *
290 * This will preserve the large page mappings for kernel text/data
291 * at no extra cost.
292 */
502f6604
SS
293 if (kernel_set_to_readonly &&
294 within(address, (unsigned long)_text,
281ff33b
SS
295 (unsigned long)__end_rodata_hpage_align)) {
296 unsigned int level;
297
298 /*
299 * Don't enforce the !RW mapping for the kernel text mapping,
300 * if the current mapping is already using small page mapping.
301 * No need to work hard to preserve large page mappings in this
302 * case.
303 *
304 * This also fixes the Linux Xen paravirt guest boot failure
305 * (because of unexpected read-only mappings for kernel identity
306 * mappings). In this paravirt guest case, the kernel text
307 * mapping and the kernel identity mapping share the same
308 * page-table pages. Thus we can't really use different
309 * protections for the kernel text and identity mappings. Also,
310 * these shared mappings are made of small page mappings.
311 * Thus this don't enforce !RW mapping for small page kernel
312 * text mapping logic will help Linux Xen parvirt guest boot
0d2eb44f 313 * as well.
281ff33b
SS
314 */
315 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
316 pgprot_val(forbidden) |= _PAGE_RW;
317 }
74e08179
SS
318#endif
319
ed724be6 320 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
687c4825
IM
321
322 return prot;
323}
324
9a14aefc
TG
325/*
326 * Lookup the page table entry for a virtual address. Return a pointer
327 * to the entry and the level of the mapping.
328 *
329 * Note: We return pud and pmd either when the entry is marked large
330 * or when the present bit is not set. Otherwise we would return a
331 * pointer to a nonexisting mapping.
332 */
da7bfc50 333pte_t *lookup_address(unsigned long address, unsigned int *level)
9f4c815c 334{
1da177e4
LT
335 pgd_t *pgd = pgd_offset_k(address);
336 pud_t *pud;
337 pmd_t *pmd;
9f4c815c 338
30551bb3
TG
339 *level = PG_LEVEL_NONE;
340
1da177e4
LT
341 if (pgd_none(*pgd))
342 return NULL;
9df84993 343
1da177e4
LT
344 pud = pud_offset(pgd, address);
345 if (pud_none(*pud))
346 return NULL;
c2f71ee2
AK
347
348 *level = PG_LEVEL_1G;
349 if (pud_large(*pud) || !pud_present(*pud))
350 return (pte_t *)pud;
351
1da177e4
LT
352 pmd = pmd_offset(pud, address);
353 if (pmd_none(*pmd))
354 return NULL;
30551bb3
TG
355
356 *level = PG_LEVEL_2M;
9a14aefc 357 if (pmd_large(*pmd) || !pmd_present(*pmd))
1da177e4 358 return (pte_t *)pmd;
1da177e4 359
30551bb3 360 *level = PG_LEVEL_4K;
9df84993 361
9f4c815c
IM
362 return pte_offset_kernel(pmd, address);
363}
75bb8835 364EXPORT_SYMBOL_GPL(lookup_address);
9f4c815c 365
d7656534
DH
366/*
367 * This is necessary because __pa() does not work on some
368 * kinds of memory, like vmalloc() or the alloc_remap()
369 * areas on 32-bit NUMA systems. The percpu areas can
370 * end up in this kind of memory, for instance.
371 *
372 * This could be optimized, but it is only intended to be
373 * used at inititalization time, and keeping it
374 * unoptimized should increase the testing coverage for
375 * the more obscure platforms.
376 */
377phys_addr_t slow_virt_to_phys(void *__virt_addr)
378{
379 unsigned long virt_addr = (unsigned long)__virt_addr;
380 phys_addr_t phys_addr;
381 unsigned long offset;
382 enum pg_level level;
383 unsigned long psize;
384 unsigned long pmask;
385 pte_t *pte;
386
387 pte = lookup_address(virt_addr, &level);
388 BUG_ON(!pte);
389 psize = page_level_size(level);
390 pmask = page_level_mask(level);
391 offset = virt_addr & ~pmask;
392 phys_addr = pte_pfn(*pte) << PAGE_SHIFT;
393 return (phys_addr | offset);
394}
395EXPORT_SYMBOL_GPL(slow_virt_to_phys);
396
9df84993
IM
397/*
398 * Set the new pmd in all the pgds we know about:
399 */
9a3dc780 400static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
9f4c815c 401{
9f4c815c
IM
402 /* change init_mm */
403 set_pte_atomic(kpte, pte);
44af6c41 404#ifdef CONFIG_X86_32
e4b71dcf 405 if (!SHARED_KERNEL_PMD) {
44af6c41
IM
406 struct page *page;
407
e3ed910d 408 list_for_each_entry(page, &pgd_list, lru) {
44af6c41
IM
409 pgd_t *pgd;
410 pud_t *pud;
411 pmd_t *pmd;
412
413 pgd = (pgd_t *)page_address(page) + pgd_index(address);
414 pud = pud_offset(pgd, address);
415 pmd = pmd_offset(pud, address);
416 set_pte_atomic((pte_t *)pmd, pte);
417 }
1da177e4 418 }
44af6c41 419#endif
1da177e4
LT
420}
421
9df84993
IM
422static int
423try_preserve_large_page(pte_t *kpte, unsigned long address,
424 struct cpa_data *cpa)
65e074df 425{
a79e53d8 426 unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn;
65e074df 427 pte_t new_pte, old_pte, *tmp;
64edc8ed 428 pgprot_t old_prot, new_prot, req_prot;
fac84939 429 int i, do_split = 1;
f3c4fbb6 430 enum pg_level level;
65e074df 431
c9caa02c
AK
432 if (cpa->force_split)
433 return 1;
434
a79e53d8 435 spin_lock(&pgd_lock);
65e074df
TG
436 /*
437 * Check for races, another CPU might have split this page
438 * up already:
439 */
440 tmp = lookup_address(address, &level);
441 if (tmp != kpte)
442 goto out_unlock;
443
444 switch (level) {
445 case PG_LEVEL_2M:
f07333fd 446#ifdef CONFIG_X86_64
65e074df 447 case PG_LEVEL_1G:
f07333fd 448#endif
f3c4fbb6
DH
449 psize = page_level_size(level);
450 pmask = page_level_mask(level);
451 break;
65e074df 452 default:
beaff633 453 do_split = -EINVAL;
65e074df
TG
454 goto out_unlock;
455 }
456
457 /*
458 * Calculate the number of pages, which fit into this large
459 * page starting at address:
460 */
461 nextpage_addr = (address + psize) & pmask;
462 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
9b5cf48b
RW
463 if (numpages < cpa->numpages)
464 cpa->numpages = numpages;
65e074df
TG
465
466 /*
467 * We are safe now. Check whether the new pgprot is the same:
468 */
469 old_pte = *kpte;
f76cfa3c 470 old_prot = req_prot = pte_pgprot(old_pte);
65e074df 471
64edc8ed 472 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
473 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
c31c7d48 474
a8aed3e0
AA
475 /*
476 * Set the PSE and GLOBAL flags only if the PRESENT flag is
477 * set otherwise pmd_present/pmd_huge will return true even on
478 * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
479 * for the ancient hardware that doesn't support it.
480 */
f76cfa3c
AA
481 if (pgprot_val(req_prot) & _PAGE_PRESENT)
482 pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
a8aed3e0 483 else
f76cfa3c 484 pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
a8aed3e0 485
f76cfa3c 486 req_prot = canon_pgprot(req_prot);
a8aed3e0 487
c31c7d48
TG
488 /*
489 * old_pte points to the large page base address. So we need
490 * to add the offset of the virtual address:
491 */
492 pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
493 cpa->pfn = pfn;
494
64edc8ed 495 new_prot = static_protections(req_prot, address, pfn);
65e074df 496
fac84939
TG
497 /*
498 * We need to check the full range, whether
499 * static_protection() requires a different pgprot for one of
500 * the pages in the range we try to preserve:
501 */
64edc8ed 502 addr = address & pmask;
503 pfn = pte_pfn(old_pte);
504 for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
505 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
fac84939
TG
506
507 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
508 goto out_unlock;
509 }
510
65e074df
TG
511 /*
512 * If there are no changes, return. maxpages has been updated
513 * above:
514 */
515 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
beaff633 516 do_split = 0;
65e074df
TG
517 goto out_unlock;
518 }
519
520 /*
521 * We need to change the attributes. Check, whether we can
522 * change the large page in one go. We request a split, when
523 * the address is not aligned and the number of pages is
524 * smaller than the number of pages in the large page. Note
525 * that we limited the number of possible pages already to
526 * the number of pages in the large page.
527 */
64edc8ed 528 if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
65e074df
TG
529 /*
530 * The address is aligned and the number of pages
531 * covers the full page.
532 */
a8aed3e0 533 new_pte = pfn_pte(pte_pfn(old_pte), new_prot);
65e074df 534 __set_pmd_pte(kpte, address, new_pte);
d75586ad 535 cpa->flags |= CPA_FLUSHTLB;
beaff633 536 do_split = 0;
65e074df
TG
537 }
538
539out_unlock:
a79e53d8 540 spin_unlock(&pgd_lock);
9df84993 541
beaff633 542 return do_split;
65e074df
TG
543}
544
ae9aae9e 545int __split_large_page(pte_t *kpte, unsigned long address, pte_t *pbase)
bb5c2dbd 546{
a79e53d8 547 unsigned long pfn, pfninc = 1;
9df84993 548 unsigned int i, level;
ae9aae9e 549 pte_t *tmp;
9df84993 550 pgprot_t ref_prot;
ae9aae9e 551 struct page *base = virt_to_page(pbase);
bb5c2dbd 552
a79e53d8 553 spin_lock(&pgd_lock);
bb5c2dbd
IM
554 /*
555 * Check for races, another CPU might have split this page
556 * up for us already:
557 */
558 tmp = lookup_address(address, &level);
ae9aae9e
WC
559 if (tmp != kpte) {
560 spin_unlock(&pgd_lock);
561 return 1;
562 }
bb5c2dbd 563
6944a9c8 564 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
07cf89c0 565 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
7a5714e0
IM
566 /*
567 * If we ever want to utilize the PAT bit, we need to
568 * update this function to make sure it's converted from
569 * bit 12 to bit 7 when we cross from the 2MB level to
570 * the 4K level:
571 */
572 WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
bb5c2dbd 573
f07333fd
AK
574#ifdef CONFIG_X86_64
575 if (level == PG_LEVEL_1G) {
576 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
a8aed3e0
AA
577 /*
578 * Set the PSE flags only if the PRESENT flag is set
579 * otherwise pmd_present/pmd_huge will return true
580 * even on a non present pmd.
581 */
582 if (pgprot_val(ref_prot) & _PAGE_PRESENT)
583 pgprot_val(ref_prot) |= _PAGE_PSE;
584 else
585 pgprot_val(ref_prot) &= ~_PAGE_PSE;
f07333fd
AK
586 }
587#endif
588
a8aed3e0
AA
589 /*
590 * Set the GLOBAL flags only if the PRESENT flag is set
591 * otherwise pmd/pte_present will return true even on a non
592 * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
593 * for the ancient hardware that doesn't support it.
594 */
595 if (pgprot_val(ref_prot) & _PAGE_PRESENT)
596 pgprot_val(ref_prot) |= _PAGE_GLOBAL;
597 else
598 pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
599
63c1dcf4
TG
600 /*
601 * Get the target pfn from the original entry:
602 */
603 pfn = pte_pfn(*kpte);
f07333fd 604 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
a8aed3e0 605 set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
bb5c2dbd 606
8eb5779f
YL
607 if (pfn_range_is_mapped(PFN_DOWN(__pa(address)),
608 PFN_DOWN(__pa(address)) + 1))
f361a450
YL
609 split_page_count(level);
610
bb5c2dbd 611 /*
07a66d7c 612 * Install the new, split up pagetable.
4c881ca1 613 *
07a66d7c
IM
614 * We use the standard kernel pagetable protections for the new
615 * pagetable protections, the actual ptes set above control the
616 * primary protection behavior:
bb5c2dbd 617 */
07a66d7c 618 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
211b3d03
IM
619
620 /*
621 * Intel Atom errata AAH41 workaround.
622 *
623 * The real fix should be in hw or in a microcode update, but
624 * we also probabilistically try to reduce the window of having
625 * a large TLB mixed with 4K TLBs while instruction fetches are
626 * going on.
627 */
628 __flush_tlb_all();
ae9aae9e 629 spin_unlock(&pgd_lock);
211b3d03 630
ae9aae9e
WC
631 return 0;
632}
bb5c2dbd 633
ae9aae9e
WC
634static int split_large_page(pte_t *kpte, unsigned long address)
635{
636 pte_t *pbase;
637 struct page *base;
638
639 if (!debug_pagealloc)
640 spin_unlock(&cpa_lock);
641 base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
642 if (!debug_pagealloc)
643 spin_lock(&cpa_lock);
644 if (!base)
645 return -ENOMEM;
646
647 pbase = (pte_t *)page_address(base);
648 if (__split_large_page(kpte, address, pbase))
8311eb84 649 __free_page(base);
bb5c2dbd 650
bb5c2dbd
IM
651 return 0;
652}
653
a1e46212
SS
654static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
655 int primary)
656{
657 /*
658 * Ignore all non primary paths.
659 */
660 if (!primary)
661 return 0;
662
663 /*
664 * Ignore the NULL PTE for kernel identity mapping, as it is expected
665 * to have holes.
666 * Also set numpages to '1' indicating that we processed cpa req for
667 * one virtual address page and its pfn. TBD: numpages can be set based
668 * on the initial value and the level returned by lookup_address().
669 */
670 if (within(vaddr, PAGE_OFFSET,
671 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
672 cpa->numpages = 1;
673 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
674 return 0;
675 } else {
676 WARN(1, KERN_WARNING "CPA: called for zero pte. "
677 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
678 *cpa->vaddr);
679
680 return -EFAULT;
681 }
682}
683
c31c7d48 684static int __change_page_attr(struct cpa_data *cpa, int primary)
9f4c815c 685{
d75586ad 686 unsigned long address;
da7bfc50
HH
687 int do_split, err;
688 unsigned int level;
c31c7d48 689 pte_t *kpte, old_pte;
1da177e4 690
8523acfe
TH
691 if (cpa->flags & CPA_PAGES_ARRAY) {
692 struct page *page = cpa->pages[cpa->curpage];
693 if (unlikely(PageHighMem(page)))
694 return 0;
695 address = (unsigned long)page_address(page);
696 } else if (cpa->flags & CPA_ARRAY)
d75586ad
SL
697 address = cpa->vaddr[cpa->curpage];
698 else
699 address = *cpa->vaddr;
97f99fed 700repeat:
f0646e43 701 kpte = lookup_address(address, &level);
1da177e4 702 if (!kpte)
a1e46212 703 return __cpa_process_fault(cpa, address, primary);
c31c7d48
TG
704
705 old_pte = *kpte;
a1e46212
SS
706 if (!pte_val(old_pte))
707 return __cpa_process_fault(cpa, address, primary);
9f4c815c 708
30551bb3 709 if (level == PG_LEVEL_4K) {
c31c7d48 710 pte_t new_pte;
626c2c9d 711 pgprot_t new_prot = pte_pgprot(old_pte);
c31c7d48 712 unsigned long pfn = pte_pfn(old_pte);
86f03989 713
72e458df
TG
714 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
715 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
86f03989 716
c31c7d48 717 new_prot = static_protections(new_prot, address, pfn);
86f03989 718
a8aed3e0
AA
719 /*
720 * Set the GLOBAL flags only if the PRESENT flag is
721 * set otherwise pte_present will return true even on
722 * a non present pte. The canon_pgprot will clear
723 * _PAGE_GLOBAL for the ancient hardware that doesn't
724 * support it.
725 */
726 if (pgprot_val(new_prot) & _PAGE_PRESENT)
727 pgprot_val(new_prot) |= _PAGE_GLOBAL;
728 else
729 pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
730
626c2c9d
AV
731 /*
732 * We need to keep the pfn from the existing PTE,
733 * after all we're only going to change it's attributes
734 * not the memory it points to
735 */
c31c7d48
TG
736 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
737 cpa->pfn = pfn;
f4ae5da0
TG
738 /*
739 * Do we really change anything ?
740 */
741 if (pte_val(old_pte) != pte_val(new_pte)) {
742 set_pte_atomic(kpte, new_pte);
d75586ad 743 cpa->flags |= CPA_FLUSHTLB;
f4ae5da0 744 }
9b5cf48b 745 cpa->numpages = 1;
65e074df 746 return 0;
1da177e4 747 }
65e074df
TG
748
749 /*
750 * Check, whether we can keep the large page intact
751 * and just change the pte:
752 */
beaff633 753 do_split = try_preserve_large_page(kpte, address, cpa);
65e074df
TG
754 /*
755 * When the range fits into the existing large page,
9b5cf48b 756 * return. cp->numpages and cpa->tlbflush have been updated in
65e074df
TG
757 * try_large_page:
758 */
87f7f8fe
IM
759 if (do_split <= 0)
760 return do_split;
65e074df
TG
761
762 /*
763 * We have to split the large page:
764 */
87f7f8fe
IM
765 err = split_large_page(kpte, address);
766 if (!err) {
ad5ca55f
SS
767 /*
768 * Do a global flush tlb after splitting the large page
769 * and before we do the actual change page attribute in the PTE.
770 *
771 * With out this, we violate the TLB application note, that says
772 * "The TLBs may contain both ordinary and large-page
773 * translations for a 4-KByte range of linear addresses. This
774 * may occur if software modifies the paging structures so that
775 * the page size used for the address range changes. If the two
776 * translations differ with respect to page frame or attributes
777 * (e.g., permissions), processor behavior is undefined and may
778 * be implementation-specific."
779 *
780 * We do this global tlb flush inside the cpa_lock, so that we
781 * don't allow any other cpu, with stale tlb entries change the
782 * page attribute in parallel, that also falls into the
783 * just split large page entry.
784 */
785 flush_tlb_all();
87f7f8fe
IM
786 goto repeat;
787 }
beaff633 788
87f7f8fe 789 return err;
9f4c815c 790}
1da177e4 791
c31c7d48
TG
792static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
793
794static int cpa_process_alias(struct cpa_data *cpa)
1da177e4 795{
c31c7d48 796 struct cpa_data alias_cpa;
992f4c1c 797 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
e933a73f 798 unsigned long vaddr;
992f4c1c 799 int ret;
44af6c41 800
8eb5779f 801 if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
c31c7d48 802 return 0;
626c2c9d 803
f34b439f
TG
804 /*
805 * No need to redo, when the primary call touched the direct
806 * mapping already:
807 */
8523acfe
TH
808 if (cpa->flags & CPA_PAGES_ARRAY) {
809 struct page *page = cpa->pages[cpa->curpage];
810 if (unlikely(PageHighMem(page)))
811 return 0;
812 vaddr = (unsigned long)page_address(page);
813 } else if (cpa->flags & CPA_ARRAY)
d75586ad
SL
814 vaddr = cpa->vaddr[cpa->curpage];
815 else
816 vaddr = *cpa->vaddr;
817
818 if (!(within(vaddr, PAGE_OFFSET,
a1e46212 819 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
44af6c41 820
f34b439f 821 alias_cpa = *cpa;
992f4c1c 822 alias_cpa.vaddr = &laddr;
9ae28475 823 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
d75586ad 824
f34b439f 825 ret = __change_page_attr_set_clr(&alias_cpa, 0);
992f4c1c
TH
826 if (ret)
827 return ret;
f34b439f 828 }
44af6c41 829
44af6c41 830#ifdef CONFIG_X86_64
488fd995 831 /*
992f4c1c
TH
832 * If the primary call didn't touch the high mapping already
833 * and the physical address is inside the kernel map, we need
0879750f 834 * to touch the high mapped kernel as well:
488fd995 835 */
992f4c1c
TH
836 if (!within(vaddr, (unsigned long)_text, _brk_end) &&
837 within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
838 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
839 __START_KERNEL_map - phys_base;
840 alias_cpa = *cpa;
841 alias_cpa.vaddr = &temp_cpa_vaddr;
842 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
c31c7d48 843
992f4c1c
TH
844 /*
845 * The high mapping range is imprecise, so ignore the
846 * return value.
847 */
848 __change_page_attr_set_clr(&alias_cpa, 0);
849 }
488fd995 850#endif
992f4c1c
TH
851
852 return 0;
1da177e4
LT
853}
854
c31c7d48 855static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
ff31452b 856{
65e074df 857 int ret, numpages = cpa->numpages;
ff31452b 858
65e074df
TG
859 while (numpages) {
860 /*
861 * Store the remaining nr of pages for the large page
862 * preservation check.
863 */
9b5cf48b 864 cpa->numpages = numpages;
d75586ad 865 /* for array changes, we can't use large page */
9ae28475 866 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
d75586ad 867 cpa->numpages = 1;
c31c7d48 868
ad5ca55f
SS
869 if (!debug_pagealloc)
870 spin_lock(&cpa_lock);
c31c7d48 871 ret = __change_page_attr(cpa, checkalias);
ad5ca55f
SS
872 if (!debug_pagealloc)
873 spin_unlock(&cpa_lock);
ff31452b
TG
874 if (ret)
875 return ret;
ff31452b 876
c31c7d48
TG
877 if (checkalias) {
878 ret = cpa_process_alias(cpa);
879 if (ret)
880 return ret;
881 }
882
65e074df
TG
883 /*
884 * Adjust the number of pages with the result of the
885 * CPA operation. Either a large page has been
886 * preserved or a single page update happened.
887 */
9b5cf48b
RW
888 BUG_ON(cpa->numpages > numpages);
889 numpages -= cpa->numpages;
9ae28475 890 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
d75586ad
SL
891 cpa->curpage++;
892 else
893 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
894
65e074df 895 }
ff31452b
TG
896 return 0;
897}
898
6bb8383b
AK
899static inline int cache_attr(pgprot_t attr)
900{
901 return pgprot_val(attr) &
902 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
903}
904
d75586ad 905static int change_page_attr_set_clr(unsigned long *addr, int numpages,
c9caa02c 906 pgprot_t mask_set, pgprot_t mask_clr,
9ae28475 907 int force_split, int in_flag,
908 struct page **pages)
ff31452b 909{
72e458df 910 struct cpa_data cpa;
cacf8906 911 int ret, cache, checkalias;
fa526d0d 912 unsigned long baddr = 0;
331e4065
TG
913
914 /*
915 * Check, if we are requested to change a not supported
916 * feature:
917 */
918 mask_set = canon_pgprot(mask_set);
919 mask_clr = canon_pgprot(mask_clr);
c9caa02c 920 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
331e4065
TG
921 return 0;
922
69b1415e 923 /* Ensure we are PAGE_SIZE aligned */
9ae28475 924 if (in_flag & CPA_ARRAY) {
d75586ad
SL
925 int i;
926 for (i = 0; i < numpages; i++) {
927 if (addr[i] & ~PAGE_MASK) {
928 addr[i] &= PAGE_MASK;
929 WARN_ON_ONCE(1);
930 }
931 }
9ae28475 932 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
933 /*
934 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
935 * No need to cehck in that case
936 */
937 if (*addr & ~PAGE_MASK) {
938 *addr &= PAGE_MASK;
939 /*
940 * People should not be passing in unaligned addresses:
941 */
942 WARN_ON_ONCE(1);
943 }
fa526d0d
JS
944 /*
945 * Save address for cache flush. *addr is modified in the call
946 * to __change_page_attr_set_clr() below.
947 */
948 baddr = *addr;
69b1415e
TG
949 }
950
5843d9a4
NP
951 /* Must avoid aliasing mappings in the highmem code */
952 kmap_flush_unused();
953
db64fe02
NP
954 vm_unmap_aliases();
955
72e458df 956 cpa.vaddr = addr;
9ae28475 957 cpa.pages = pages;
72e458df
TG
958 cpa.numpages = numpages;
959 cpa.mask_set = mask_set;
960 cpa.mask_clr = mask_clr;
d75586ad
SL
961 cpa.flags = 0;
962 cpa.curpage = 0;
c9caa02c 963 cpa.force_split = force_split;
72e458df 964
9ae28475 965 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
966 cpa.flags |= in_flag;
d75586ad 967
af96e443
TG
968 /* No alias checking for _NX bit modifications */
969 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
970
971 ret = __change_page_attr_set_clr(&cpa, checkalias);
ff31452b 972
f4ae5da0
TG
973 /*
974 * Check whether we really changed something:
975 */
d75586ad 976 if (!(cpa.flags & CPA_FLUSHTLB))
1ac2f7d5 977 goto out;
cacf8906 978
6bb8383b
AK
979 /*
980 * No need to flush, when we did not set any of the caching
981 * attributes:
982 */
983 cache = cache_attr(mask_set);
984
57a6a46a
TG
985 /*
986 * On success we use clflush, when the CPU supports it to
f026cfa8
PA
987 * avoid the wbindv. If the CPU does not support it and in the
988 * error case we fall back to cpa_flush_all (which uses
989 * wbindv):
57a6a46a 990 */
f026cfa8 991 if (!ret && cpu_has_clflush) {
9ae28475 992 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
993 cpa_flush_array(addr, numpages, cache,
994 cpa.flags, pages);
995 } else
fa526d0d 996 cpa_flush_range(baddr, numpages, cache);
d75586ad 997 } else
6bb8383b 998 cpa_flush_all(cache);
cacf8906 999
76ebd054 1000out:
ff31452b
TG
1001 return ret;
1002}
1003
d75586ad
SL
1004static inline int change_page_attr_set(unsigned long *addr, int numpages,
1005 pgprot_t mask, int array)
75cbade8 1006{
d75586ad 1007 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
9ae28475 1008 (array ? CPA_ARRAY : 0), NULL);
75cbade8
AV
1009}
1010
d75586ad
SL
1011static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1012 pgprot_t mask, int array)
72932c7a 1013{
d75586ad 1014 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
9ae28475 1015 (array ? CPA_ARRAY : 0), NULL);
72932c7a
TG
1016}
1017
0f350755 1018static inline int cpa_set_pages_array(struct page **pages, int numpages,
1019 pgprot_t mask)
1020{
1021 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1022 CPA_PAGES_ARRAY, pages);
1023}
1024
1025static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1026 pgprot_t mask)
1027{
1028 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1029 CPA_PAGES_ARRAY, pages);
1030}
1031
1219333d 1032int _set_memory_uc(unsigned long addr, int numpages)
72932c7a 1033{
de33c442
SS
1034 /*
1035 * for now UC MINUS. see comments in ioremap_nocache()
1036 */
d75586ad
SL
1037 return change_page_attr_set(&addr, numpages,
1038 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
75cbade8 1039}
1219333d 1040
1041int set_memory_uc(unsigned long addr, int numpages)
1042{
9fa3ab39 1043 int ret;
1044
de33c442
SS
1045 /*
1046 * for now UC MINUS. see comments in ioremap_nocache()
1047 */
9fa3ab39 1048 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1049 _PAGE_CACHE_UC_MINUS, NULL);
1050 if (ret)
1051 goto out_err;
1052
1053 ret = _set_memory_uc(addr, numpages);
1054 if (ret)
1055 goto out_free;
1056
1057 return 0;
1219333d 1058
9fa3ab39 1059out_free:
1060 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1061out_err:
1062 return ret;
1219333d 1063}
75cbade8
AV
1064EXPORT_SYMBOL(set_memory_uc);
1065
2d070eff 1066static int _set_memory_array(unsigned long *addr, int addrinarray,
4f646254 1067 unsigned long new_type)
d75586ad 1068{
9fa3ab39 1069 int i, j;
1070 int ret;
1071
d75586ad
SL
1072 /*
1073 * for now UC MINUS. see comments in ioremap_nocache()
1074 */
1075 for (i = 0; i < addrinarray; i++) {
9fa3ab39 1076 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
4f646254 1077 new_type, NULL);
9fa3ab39 1078 if (ret)
1079 goto out_free;
d75586ad
SL
1080 }
1081
9fa3ab39 1082 ret = change_page_attr_set(addr, addrinarray,
d75586ad 1083 __pgprot(_PAGE_CACHE_UC_MINUS), 1);
4f646254
PN
1084
1085 if (!ret && new_type == _PAGE_CACHE_WC)
1086 ret = change_page_attr_set_clr(addr, addrinarray,
1087 __pgprot(_PAGE_CACHE_WC),
1088 __pgprot(_PAGE_CACHE_MASK),
1089 0, CPA_ARRAY, NULL);
9fa3ab39 1090 if (ret)
1091 goto out_free;
1092
1093 return 0;
1094
1095out_free:
1096 for (j = 0; j < i; j++)
1097 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1098
1099 return ret;
d75586ad 1100}
4f646254
PN
1101
1102int set_memory_array_uc(unsigned long *addr, int addrinarray)
1103{
1104 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_UC_MINUS);
1105}
d75586ad
SL
1106EXPORT_SYMBOL(set_memory_array_uc);
1107
4f646254
PN
1108int set_memory_array_wc(unsigned long *addr, int addrinarray)
1109{
1110 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_WC);
1111}
1112EXPORT_SYMBOL(set_memory_array_wc);
1113
ef354af4 1114int _set_memory_wc(unsigned long addr, int numpages)
1115{
3869c4aa 1116 int ret;
bdc6340f
PV
1117 unsigned long addr_copy = addr;
1118
3869c4aa 1119 ret = change_page_attr_set(&addr, numpages,
1120 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
3869c4aa 1121 if (!ret) {
bdc6340f
PV
1122 ret = change_page_attr_set_clr(&addr_copy, numpages,
1123 __pgprot(_PAGE_CACHE_WC),
1124 __pgprot(_PAGE_CACHE_MASK),
1125 0, 0, NULL);
3869c4aa 1126 }
1127 return ret;
ef354af4 1128}
1129
1130int set_memory_wc(unsigned long addr, int numpages)
1131{
9fa3ab39 1132 int ret;
1133
499f8f84 1134 if (!pat_enabled)
ef354af4 1135 return set_memory_uc(addr, numpages);
1136
9fa3ab39 1137 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1138 _PAGE_CACHE_WC, NULL);
1139 if (ret)
1140 goto out_err;
ef354af4 1141
9fa3ab39 1142 ret = _set_memory_wc(addr, numpages);
1143 if (ret)
1144 goto out_free;
1145
1146 return 0;
1147
1148out_free:
1149 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1150out_err:
1151 return ret;
ef354af4 1152}
1153EXPORT_SYMBOL(set_memory_wc);
1154
1219333d 1155int _set_memory_wb(unsigned long addr, int numpages)
75cbade8 1156{
d75586ad
SL
1157 return change_page_attr_clear(&addr, numpages,
1158 __pgprot(_PAGE_CACHE_MASK), 0);
75cbade8 1159}
1219333d 1160
1161int set_memory_wb(unsigned long addr, int numpages)
1162{
9fa3ab39 1163 int ret;
1164
1165 ret = _set_memory_wb(addr, numpages);
1166 if (ret)
1167 return ret;
1168
c15238df 1169 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
9fa3ab39 1170 return 0;
1219333d 1171}
75cbade8
AV
1172EXPORT_SYMBOL(set_memory_wb);
1173
d75586ad
SL
1174int set_memory_array_wb(unsigned long *addr, int addrinarray)
1175{
1176 int i;
a5593e0b 1177 int ret;
1178
1179 ret = change_page_attr_clear(addr, addrinarray,
1180 __pgprot(_PAGE_CACHE_MASK), 1);
9fa3ab39 1181 if (ret)
1182 return ret;
d75586ad 1183
9fa3ab39 1184 for (i = 0; i < addrinarray; i++)
1185 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
c5e147cf 1186
9fa3ab39 1187 return 0;
d75586ad
SL
1188}
1189EXPORT_SYMBOL(set_memory_array_wb);
1190
75cbade8
AV
1191int set_memory_x(unsigned long addr, int numpages)
1192{
583140af
PA
1193 if (!(__supported_pte_mask & _PAGE_NX))
1194 return 0;
1195
d75586ad 1196 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
75cbade8
AV
1197}
1198EXPORT_SYMBOL(set_memory_x);
1199
1200int set_memory_nx(unsigned long addr, int numpages)
1201{
583140af
PA
1202 if (!(__supported_pte_mask & _PAGE_NX))
1203 return 0;
1204
d75586ad 1205 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
75cbade8
AV
1206}
1207EXPORT_SYMBOL(set_memory_nx);
1208
1209int set_memory_ro(unsigned long addr, int numpages)
1210{
d75586ad 1211 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
75cbade8 1212}
a03352d2 1213EXPORT_SYMBOL_GPL(set_memory_ro);
75cbade8
AV
1214
1215int set_memory_rw(unsigned long addr, int numpages)
1216{
d75586ad 1217 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
75cbade8 1218}
a03352d2 1219EXPORT_SYMBOL_GPL(set_memory_rw);
f62d0f00
IM
1220
1221int set_memory_np(unsigned long addr, int numpages)
1222{
d75586ad 1223 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
f62d0f00 1224}
75cbade8 1225
c9caa02c
AK
1226int set_memory_4k(unsigned long addr, int numpages)
1227{
d75586ad 1228 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
9ae28475 1229 __pgprot(0), 1, 0, NULL);
c9caa02c
AK
1230}
1231
75cbade8
AV
1232int set_pages_uc(struct page *page, int numpages)
1233{
1234 unsigned long addr = (unsigned long)page_address(page);
75cbade8 1235
d7c8f21a 1236 return set_memory_uc(addr, numpages);
75cbade8
AV
1237}
1238EXPORT_SYMBOL(set_pages_uc);
1239
4f646254
PN
1240static int _set_pages_array(struct page **pages, int addrinarray,
1241 unsigned long new_type)
0f350755 1242{
1243 unsigned long start;
1244 unsigned long end;
1245 int i;
1246 int free_idx;
4f646254 1247 int ret;
0f350755 1248
1249 for (i = 0; i < addrinarray; i++) {
8523acfe
TH
1250 if (PageHighMem(pages[i]))
1251 continue;
1252 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
0f350755 1253 end = start + PAGE_SIZE;
4f646254 1254 if (reserve_memtype(start, end, new_type, NULL))
0f350755 1255 goto err_out;
1256 }
1257
4f646254
PN
1258 ret = cpa_set_pages_array(pages, addrinarray,
1259 __pgprot(_PAGE_CACHE_UC_MINUS));
1260 if (!ret && new_type == _PAGE_CACHE_WC)
1261 ret = change_page_attr_set_clr(NULL, addrinarray,
1262 __pgprot(_PAGE_CACHE_WC),
1263 __pgprot(_PAGE_CACHE_MASK),
1264 0, CPA_PAGES_ARRAY, pages);
1265 if (ret)
1266 goto err_out;
1267 return 0; /* Success */
0f350755 1268err_out:
1269 free_idx = i;
1270 for (i = 0; i < free_idx; i++) {
8523acfe
TH
1271 if (PageHighMem(pages[i]))
1272 continue;
1273 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
0f350755 1274 end = start + PAGE_SIZE;
1275 free_memtype(start, end);
1276 }
1277 return -EINVAL;
1278}
4f646254
PN
1279
1280int set_pages_array_uc(struct page **pages, int addrinarray)
1281{
1282 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_UC_MINUS);
1283}
0f350755 1284EXPORT_SYMBOL(set_pages_array_uc);
1285
4f646254
PN
1286int set_pages_array_wc(struct page **pages, int addrinarray)
1287{
1288 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_WC);
1289}
1290EXPORT_SYMBOL(set_pages_array_wc);
1291
75cbade8
AV
1292int set_pages_wb(struct page *page, int numpages)
1293{
1294 unsigned long addr = (unsigned long)page_address(page);
75cbade8 1295
d7c8f21a 1296 return set_memory_wb(addr, numpages);
75cbade8
AV
1297}
1298EXPORT_SYMBOL(set_pages_wb);
1299
0f350755 1300int set_pages_array_wb(struct page **pages, int addrinarray)
1301{
1302 int retval;
1303 unsigned long start;
1304 unsigned long end;
1305 int i;
1306
1307 retval = cpa_clear_pages_array(pages, addrinarray,
1308 __pgprot(_PAGE_CACHE_MASK));
9fa3ab39 1309 if (retval)
1310 return retval;
0f350755 1311
1312 for (i = 0; i < addrinarray; i++) {
8523acfe
TH
1313 if (PageHighMem(pages[i]))
1314 continue;
1315 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
0f350755 1316 end = start + PAGE_SIZE;
1317 free_memtype(start, end);
1318 }
1319
9fa3ab39 1320 return 0;
0f350755 1321}
1322EXPORT_SYMBOL(set_pages_array_wb);
1323
75cbade8
AV
1324int set_pages_x(struct page *page, int numpages)
1325{
1326 unsigned long addr = (unsigned long)page_address(page);
75cbade8 1327
d7c8f21a 1328 return set_memory_x(addr, numpages);
75cbade8
AV
1329}
1330EXPORT_SYMBOL(set_pages_x);
1331
1332int set_pages_nx(struct page *page, int numpages)
1333{
1334 unsigned long addr = (unsigned long)page_address(page);
75cbade8 1335
d7c8f21a 1336 return set_memory_nx(addr, numpages);
75cbade8
AV
1337}
1338EXPORT_SYMBOL(set_pages_nx);
1339
1340int set_pages_ro(struct page *page, int numpages)
1341{
1342 unsigned long addr = (unsigned long)page_address(page);
75cbade8 1343
d7c8f21a 1344 return set_memory_ro(addr, numpages);
75cbade8 1345}
75cbade8
AV
1346
1347int set_pages_rw(struct page *page, int numpages)
1348{
1349 unsigned long addr = (unsigned long)page_address(page);
e81d5dc4 1350
d7c8f21a 1351 return set_memory_rw(addr, numpages);
78c94aba
IM
1352}
1353
1da177e4 1354#ifdef CONFIG_DEBUG_PAGEALLOC
f62d0f00
IM
1355
1356static int __set_pages_p(struct page *page, int numpages)
1357{
d75586ad
SL
1358 unsigned long tempaddr = (unsigned long) page_address(page);
1359 struct cpa_data cpa = { .vaddr = &tempaddr,
72e458df
TG
1360 .numpages = numpages,
1361 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
d75586ad
SL
1362 .mask_clr = __pgprot(0),
1363 .flags = 0};
72932c7a 1364
55121b43
SS
1365 /*
1366 * No alias checking needed for setting present flag. otherwise,
1367 * we may need to break large pages for 64-bit kernel text
1368 * mappings (this adds to complexity if we want to do this from
1369 * atomic context especially). Let's keep it simple!
1370 */
1371 return __change_page_attr_set_clr(&cpa, 0);
f62d0f00
IM
1372}
1373
1374static int __set_pages_np(struct page *page, int numpages)
1375{
d75586ad
SL
1376 unsigned long tempaddr = (unsigned long) page_address(page);
1377 struct cpa_data cpa = { .vaddr = &tempaddr,
72e458df
TG
1378 .numpages = numpages,
1379 .mask_set = __pgprot(0),
d75586ad
SL
1380 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1381 .flags = 0};
72932c7a 1382
55121b43
SS
1383 /*
1384 * No alias checking needed for setting not present flag. otherwise,
1385 * we may need to break large pages for 64-bit kernel text
1386 * mappings (this adds to complexity if we want to do this from
1387 * atomic context especially). Let's keep it simple!
1388 */
1389 return __change_page_attr_set_clr(&cpa, 0);
f62d0f00
IM
1390}
1391
1da177e4
LT
1392void kernel_map_pages(struct page *page, int numpages, int enable)
1393{
1394 if (PageHighMem(page))
1395 return;
9f4c815c 1396 if (!enable) {
f9b8404c
IM
1397 debug_check_no_locks_freed(page_address(page),
1398 numpages * PAGE_SIZE);
9f4c815c 1399 }
de5097c2 1400
9f4c815c 1401 /*
f8d8406b 1402 * The return value is ignored as the calls cannot fail.
55121b43
SS
1403 * Large pages for identity mappings are not used at boot time
1404 * and hence no memory allocations during large page split.
1da177e4 1405 */
f62d0f00
IM
1406 if (enable)
1407 __set_pages_p(page, numpages);
1408 else
1409 __set_pages_np(page, numpages);
9f4c815c
IM
1410
1411 /*
e4b71dcf
IM
1412 * We should perform an IPI and flush all tlbs,
1413 * but that can deadlock->flush only current cpu:
1da177e4
LT
1414 */
1415 __flush_tlb_all();
26564600
BO
1416
1417 arch_flush_lazy_mmu_mode();
ee7ae7a1
TG
1418}
1419
8a235efa
RW
1420#ifdef CONFIG_HIBERNATION
1421
1422bool kernel_page_present(struct page *page)
1423{
1424 unsigned int level;
1425 pte_t *pte;
1426
1427 if (PageHighMem(page))
1428 return false;
1429
1430 pte = lookup_address((unsigned long)page_address(page), &level);
1431 return (pte_val(*pte) & _PAGE_PRESENT);
1432}
1433
1434#endif /* CONFIG_HIBERNATION */
1435
1436#endif /* CONFIG_DEBUG_PAGEALLOC */
d1028a15
AV
1437
1438/*
1439 * The testcases use internal knowledge of the implementation that shouldn't
1440 * be exposed to the rest of the kernel. Include these directly here.
1441 */
1442#ifdef CONFIG_CPA_DEBUG
1443#include "pageattr-test.c"
1444#endif
This page took 1.330953 seconds and 5 git commands to generate.