x86, apic: fix broken legacy interrupts in the logical apic mode
[deliverable/linux.git] / arch / x86 / mm / pageattr.c
CommitLineData
9f4c815c
IM
1/*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
1da177e4 3 * Thanks to Ben LaHaise for precious feedback.
9f4c815c 4 */
1da177e4 5#include <linux/highmem.h>
8192206d 6#include <linux/bootmem.h>
1da177e4 7#include <linux/module.h>
9f4c815c 8#include <linux/sched.h>
9f4c815c 9#include <linux/mm.h>
76ebd054 10#include <linux/interrupt.h>
ee7ae7a1
TG
11#include <linux/seq_file.h>
12#include <linux/debugfs.h>
e59a1bb2 13#include <linux/pfn.h>
8c4bfc6e 14#include <linux/percpu.h>
5a0e3ad6 15#include <linux/gfp.h>
5bd5a452 16#include <linux/pci.h>
9f4c815c 17
950f9d95 18#include <asm/e820.h>
1da177e4
LT
19#include <asm/processor.h>
20#include <asm/tlbflush.h>
f8af095d 21#include <asm/sections.h>
93dbda7c 22#include <asm/setup.h>
9f4c815c
IM
23#include <asm/uaccess.h>
24#include <asm/pgalloc.h>
c31c7d48 25#include <asm/proto.h>
1219333d 26#include <asm/pat.h>
1da177e4 27
9df84993
IM
28/*
29 * The current flushing context - we pass it instead of 5 arguments:
30 */
72e458df 31struct cpa_data {
d75586ad 32 unsigned long *vaddr;
72e458df
TG
33 pgprot_t mask_set;
34 pgprot_t mask_clr;
65e074df 35 int numpages;
d75586ad 36 int flags;
c31c7d48 37 unsigned long pfn;
c9caa02c 38 unsigned force_split : 1;
d75586ad 39 int curpage;
9ae28475 40 struct page **pages;
72e458df
TG
41};
42
ad5ca55f
SS
43/*
44 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
45 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
46 * entries change the page attribute in parallel to some other cpu
47 * splitting a large page entry along with changing the attribute.
48 */
49static DEFINE_SPINLOCK(cpa_lock);
50
d75586ad
SL
51#define CPA_FLUSHTLB 1
52#define CPA_ARRAY 2
9ae28475 53#define CPA_PAGES_ARRAY 4
d75586ad 54
65280e61 55#ifdef CONFIG_PROC_FS
ce0c0e50
AK
56static unsigned long direct_pages_count[PG_LEVEL_NUM];
57
65280e61 58void update_page_count(int level, unsigned long pages)
ce0c0e50 59{
ce0c0e50 60 /* Protect against CPA */
a79e53d8 61 spin_lock(&pgd_lock);
ce0c0e50 62 direct_pages_count[level] += pages;
a79e53d8 63 spin_unlock(&pgd_lock);
65280e61
TG
64}
65
66static void split_page_count(int level)
67{
68 direct_pages_count[level]--;
69 direct_pages_count[level - 1] += PTRS_PER_PTE;
70}
71
e1759c21 72void arch_report_meminfo(struct seq_file *m)
65280e61 73{
b9c3bfc2 74 seq_printf(m, "DirectMap4k: %8lu kB\n",
a06de630
HD
75 direct_pages_count[PG_LEVEL_4K] << 2);
76#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
b9c3bfc2 77 seq_printf(m, "DirectMap2M: %8lu kB\n",
a06de630
HD
78 direct_pages_count[PG_LEVEL_2M] << 11);
79#else
b9c3bfc2 80 seq_printf(m, "DirectMap4M: %8lu kB\n",
a06de630
HD
81 direct_pages_count[PG_LEVEL_2M] << 12);
82#endif
65280e61 83#ifdef CONFIG_X86_64
a06de630 84 if (direct_gbpages)
b9c3bfc2 85 seq_printf(m, "DirectMap1G: %8lu kB\n",
a06de630 86 direct_pages_count[PG_LEVEL_1G] << 20);
ce0c0e50
AK
87#endif
88}
65280e61
TG
89#else
90static inline void split_page_count(int level) { }
91#endif
ce0c0e50 92
c31c7d48
TG
93#ifdef CONFIG_X86_64
94
95static inline unsigned long highmap_start_pfn(void)
96{
97 return __pa(_text) >> PAGE_SHIFT;
98}
99
100static inline unsigned long highmap_end_pfn(void)
101{
93dbda7c 102 return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
c31c7d48
TG
103}
104
105#endif
106
92cb54a3
IM
107#ifdef CONFIG_DEBUG_PAGEALLOC
108# define debug_pagealloc 1
109#else
110# define debug_pagealloc 0
111#endif
112
ed724be6
AV
113static inline int
114within(unsigned long addr, unsigned long start, unsigned long end)
687c4825 115{
ed724be6
AV
116 return addr >= start && addr < end;
117}
118
d7c8f21a
TG
119/*
120 * Flushing functions
121 */
cd8ddf1a 122
cd8ddf1a
TG
123/**
124 * clflush_cache_range - flush a cache range with clflush
9efc31b8 125 * @vaddr: virtual start address
cd8ddf1a
TG
126 * @size: number of bytes to flush
127 *
128 * clflush is an unordered instruction which needs fencing with mfence
129 * to avoid ordering issues.
130 */
4c61afcd 131void clflush_cache_range(void *vaddr, unsigned int size)
d7c8f21a 132{
4c61afcd 133 void *vend = vaddr + size - 1;
d7c8f21a 134
cd8ddf1a 135 mb();
4c61afcd
IM
136
137 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
138 clflush(vaddr);
139 /*
140 * Flush any possible final partial cacheline:
141 */
142 clflush(vend);
143
cd8ddf1a 144 mb();
d7c8f21a 145}
e517a5e9 146EXPORT_SYMBOL_GPL(clflush_cache_range);
d7c8f21a 147
af1e6844 148static void __cpa_flush_all(void *arg)
d7c8f21a 149{
6bb8383b
AK
150 unsigned long cache = (unsigned long)arg;
151
d7c8f21a
TG
152 /*
153 * Flush all to work around Errata in early athlons regarding
154 * large page flushing.
155 */
156 __flush_tlb_all();
157
0b827537 158 if (cache && boot_cpu_data.x86 >= 4)
d7c8f21a
TG
159 wbinvd();
160}
161
6bb8383b 162static void cpa_flush_all(unsigned long cache)
d7c8f21a
TG
163{
164 BUG_ON(irqs_disabled());
165
15c8b6c1 166 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
d7c8f21a
TG
167}
168
57a6a46a
TG
169static void __cpa_flush_range(void *arg)
170{
57a6a46a
TG
171 /*
172 * We could optimize that further and do individual per page
173 * tlb invalidates for a low number of pages. Caveat: we must
174 * flush the high aliases on 64bit as well.
175 */
176 __flush_tlb_all();
57a6a46a
TG
177}
178
6bb8383b 179static void cpa_flush_range(unsigned long start, int numpages, int cache)
57a6a46a 180{
4c61afcd
IM
181 unsigned int i, level;
182 unsigned long addr;
183
57a6a46a 184 BUG_ON(irqs_disabled());
4c61afcd 185 WARN_ON(PAGE_ALIGN(start) != start);
57a6a46a 186
15c8b6c1 187 on_each_cpu(__cpa_flush_range, NULL, 1);
57a6a46a 188
6bb8383b
AK
189 if (!cache)
190 return;
191
3b233e52
TG
192 /*
193 * We only need to flush on one CPU,
194 * clflush is a MESI-coherent instruction that
195 * will cause all other CPUs to flush the same
196 * cachelines:
197 */
4c61afcd
IM
198 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
199 pte_t *pte = lookup_address(addr, &level);
200
201 /*
202 * Only flush present addresses:
203 */
7bfb72e8 204 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
4c61afcd
IM
205 clflush_cache_range((void *) addr, PAGE_SIZE);
206 }
57a6a46a
TG
207}
208
9ae28475 209static void cpa_flush_array(unsigned long *start, int numpages, int cache,
210 int in_flags, struct page **pages)
d75586ad
SL
211{
212 unsigned int i, level;
2171787b 213 unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
d75586ad
SL
214
215 BUG_ON(irqs_disabled());
216
2171787b 217 on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
d75586ad 218
2171787b 219 if (!cache || do_wbinvd)
d75586ad
SL
220 return;
221
d75586ad
SL
222 /*
223 * We only need to flush on one CPU,
224 * clflush is a MESI-coherent instruction that
225 * will cause all other CPUs to flush the same
226 * cachelines:
227 */
9ae28475 228 for (i = 0; i < numpages; i++) {
229 unsigned long addr;
230 pte_t *pte;
231
232 if (in_flags & CPA_PAGES_ARRAY)
233 addr = (unsigned long)page_address(pages[i]);
234 else
235 addr = start[i];
236
237 pte = lookup_address(addr, &level);
d75586ad
SL
238
239 /*
240 * Only flush present addresses:
241 */
242 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
9ae28475 243 clflush_cache_range((void *)addr, PAGE_SIZE);
d75586ad
SL
244 }
245}
246
ed724be6
AV
247/*
248 * Certain areas of memory on x86 require very specific protection flags,
249 * for example the BIOS area or kernel text. Callers don't always get this
250 * right (again, ioremap() on BIOS memory is not uncommon) so this function
251 * checks and fixes these known static required protection bits.
252 */
c31c7d48
TG
253static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
254 unsigned long pfn)
ed724be6
AV
255{
256 pgprot_t forbidden = __pgprot(0);
257
687c4825 258 /*
ed724be6
AV
259 * The BIOS area between 640k and 1Mb needs to be executable for
260 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
687c4825 261 */
5bd5a452
MC
262#ifdef CONFIG_PCI_BIOS
263 if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
ed724be6 264 pgprot_val(forbidden) |= _PAGE_NX;
5bd5a452 265#endif
ed724be6
AV
266
267 /*
268 * The kernel text needs to be executable for obvious reasons
c31c7d48
TG
269 * Does not cover __inittext since that is gone later on. On
270 * 64bit we do not enforce !NX on the low mapping
ed724be6
AV
271 */
272 if (within(address, (unsigned long)_text, (unsigned long)_etext))
273 pgprot_val(forbidden) |= _PAGE_NX;
cc0f21bb 274
cc0f21bb 275 /*
c31c7d48
TG
276 * The .rodata section needs to be read-only. Using the pfn
277 * catches all aliases.
cc0f21bb 278 */
c31c7d48
TG
279 if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
280 __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
cc0f21bb 281 pgprot_val(forbidden) |= _PAGE_RW;
ed724be6 282
55ca3cc1 283#if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
74e08179 284 /*
502f6604
SS
285 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
286 * kernel text mappings for the large page aligned text, rodata sections
287 * will be always read-only. For the kernel identity mappings covering
288 * the holes caused by this alignment can be anything that user asks.
74e08179
SS
289 *
290 * This will preserve the large page mappings for kernel text/data
291 * at no extra cost.
292 */
502f6604
SS
293 if (kernel_set_to_readonly &&
294 within(address, (unsigned long)_text,
281ff33b
SS
295 (unsigned long)__end_rodata_hpage_align)) {
296 unsigned int level;
297
298 /*
299 * Don't enforce the !RW mapping for the kernel text mapping,
300 * if the current mapping is already using small page mapping.
301 * No need to work hard to preserve large page mappings in this
302 * case.
303 *
304 * This also fixes the Linux Xen paravirt guest boot failure
305 * (because of unexpected read-only mappings for kernel identity
306 * mappings). In this paravirt guest case, the kernel text
307 * mapping and the kernel identity mapping share the same
308 * page-table pages. Thus we can't really use different
309 * protections for the kernel text and identity mappings. Also,
310 * these shared mappings are made of small page mappings.
311 * Thus this don't enforce !RW mapping for small page kernel
312 * text mapping logic will help Linux Xen parvirt guest boot
0d2eb44f 313 * as well.
281ff33b
SS
314 */
315 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
316 pgprot_val(forbidden) |= _PAGE_RW;
317 }
74e08179
SS
318#endif
319
ed724be6 320 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
687c4825
IM
321
322 return prot;
323}
324
9a14aefc
TG
325/*
326 * Lookup the page table entry for a virtual address. Return a pointer
327 * to the entry and the level of the mapping.
328 *
329 * Note: We return pud and pmd either when the entry is marked large
330 * or when the present bit is not set. Otherwise we would return a
331 * pointer to a nonexisting mapping.
332 */
da7bfc50 333pte_t *lookup_address(unsigned long address, unsigned int *level)
9f4c815c 334{
1da177e4
LT
335 pgd_t *pgd = pgd_offset_k(address);
336 pud_t *pud;
337 pmd_t *pmd;
9f4c815c 338
30551bb3
TG
339 *level = PG_LEVEL_NONE;
340
1da177e4
LT
341 if (pgd_none(*pgd))
342 return NULL;
9df84993 343
1da177e4
LT
344 pud = pud_offset(pgd, address);
345 if (pud_none(*pud))
346 return NULL;
c2f71ee2
AK
347
348 *level = PG_LEVEL_1G;
349 if (pud_large(*pud) || !pud_present(*pud))
350 return (pte_t *)pud;
351
1da177e4
LT
352 pmd = pmd_offset(pud, address);
353 if (pmd_none(*pmd))
354 return NULL;
30551bb3
TG
355
356 *level = PG_LEVEL_2M;
9a14aefc 357 if (pmd_large(*pmd) || !pmd_present(*pmd))
1da177e4 358 return (pte_t *)pmd;
1da177e4 359
30551bb3 360 *level = PG_LEVEL_4K;
9df84993 361
9f4c815c
IM
362 return pte_offset_kernel(pmd, address);
363}
75bb8835 364EXPORT_SYMBOL_GPL(lookup_address);
9f4c815c 365
9df84993
IM
366/*
367 * Set the new pmd in all the pgds we know about:
368 */
9a3dc780 369static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
9f4c815c 370{
9f4c815c
IM
371 /* change init_mm */
372 set_pte_atomic(kpte, pte);
44af6c41 373#ifdef CONFIG_X86_32
e4b71dcf 374 if (!SHARED_KERNEL_PMD) {
44af6c41
IM
375 struct page *page;
376
e3ed910d 377 list_for_each_entry(page, &pgd_list, lru) {
44af6c41
IM
378 pgd_t *pgd;
379 pud_t *pud;
380 pmd_t *pmd;
381
382 pgd = (pgd_t *)page_address(page) + pgd_index(address);
383 pud = pud_offset(pgd, address);
384 pmd = pmd_offset(pud, address);
385 set_pte_atomic((pte_t *)pmd, pte);
386 }
1da177e4 387 }
44af6c41 388#endif
1da177e4
LT
389}
390
9df84993
IM
391static int
392try_preserve_large_page(pte_t *kpte, unsigned long address,
393 struct cpa_data *cpa)
65e074df 394{
a79e53d8 395 unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn;
65e074df 396 pte_t new_pte, old_pte, *tmp;
64edc8ed 397 pgprot_t old_prot, new_prot, req_prot;
fac84939 398 int i, do_split = 1;
da7bfc50 399 unsigned int level;
65e074df 400
c9caa02c
AK
401 if (cpa->force_split)
402 return 1;
403
a79e53d8 404 spin_lock(&pgd_lock);
65e074df
TG
405 /*
406 * Check for races, another CPU might have split this page
407 * up already:
408 */
409 tmp = lookup_address(address, &level);
410 if (tmp != kpte)
411 goto out_unlock;
412
413 switch (level) {
414 case PG_LEVEL_2M:
31422c51
AK
415 psize = PMD_PAGE_SIZE;
416 pmask = PMD_PAGE_MASK;
65e074df 417 break;
f07333fd 418#ifdef CONFIG_X86_64
65e074df 419 case PG_LEVEL_1G:
5d3c8b21
AK
420 psize = PUD_PAGE_SIZE;
421 pmask = PUD_PAGE_MASK;
f07333fd
AK
422 break;
423#endif
65e074df 424 default:
beaff633 425 do_split = -EINVAL;
65e074df
TG
426 goto out_unlock;
427 }
428
429 /*
430 * Calculate the number of pages, which fit into this large
431 * page starting at address:
432 */
433 nextpage_addr = (address + psize) & pmask;
434 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
9b5cf48b
RW
435 if (numpages < cpa->numpages)
436 cpa->numpages = numpages;
65e074df
TG
437
438 /*
439 * We are safe now. Check whether the new pgprot is the same:
440 */
441 old_pte = *kpte;
64edc8ed 442 old_prot = new_prot = req_prot = pte_pgprot(old_pte);
65e074df 443
64edc8ed 444 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
445 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
c31c7d48
TG
446
447 /*
448 * old_pte points to the large page base address. So we need
449 * to add the offset of the virtual address:
450 */
451 pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
452 cpa->pfn = pfn;
453
64edc8ed 454 new_prot = static_protections(req_prot, address, pfn);
65e074df 455
fac84939
TG
456 /*
457 * We need to check the full range, whether
458 * static_protection() requires a different pgprot for one of
459 * the pages in the range we try to preserve:
460 */
64edc8ed 461 addr = address & pmask;
462 pfn = pte_pfn(old_pte);
463 for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
464 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
fac84939
TG
465
466 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
467 goto out_unlock;
468 }
469
65e074df
TG
470 /*
471 * If there are no changes, return. maxpages has been updated
472 * above:
473 */
474 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
beaff633 475 do_split = 0;
65e074df
TG
476 goto out_unlock;
477 }
478
479 /*
480 * We need to change the attributes. Check, whether we can
481 * change the large page in one go. We request a split, when
482 * the address is not aligned and the number of pages is
483 * smaller than the number of pages in the large page. Note
484 * that we limited the number of possible pages already to
485 * the number of pages in the large page.
486 */
64edc8ed 487 if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
65e074df
TG
488 /*
489 * The address is aligned and the number of pages
490 * covers the full page.
491 */
492 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
493 __set_pmd_pte(kpte, address, new_pte);
d75586ad 494 cpa->flags |= CPA_FLUSHTLB;
beaff633 495 do_split = 0;
65e074df
TG
496 }
497
498out_unlock:
a79e53d8 499 spin_unlock(&pgd_lock);
9df84993 500
beaff633 501 return do_split;
65e074df
TG
502}
503
7afe15b9 504static int split_large_page(pte_t *kpte, unsigned long address)
bb5c2dbd 505{
a79e53d8 506 unsigned long pfn, pfninc = 1;
9df84993 507 unsigned int i, level;
bb5c2dbd 508 pte_t *pbase, *tmp;
9df84993 509 pgprot_t ref_prot;
ad5ca55f
SS
510 struct page *base;
511
512 if (!debug_pagealloc)
513 spin_unlock(&cpa_lock);
9e730237 514 base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
ad5ca55f
SS
515 if (!debug_pagealloc)
516 spin_lock(&cpa_lock);
8311eb84
SS
517 if (!base)
518 return -ENOMEM;
bb5c2dbd 519
a79e53d8 520 spin_lock(&pgd_lock);
bb5c2dbd
IM
521 /*
522 * Check for races, another CPU might have split this page
523 * up for us already:
524 */
525 tmp = lookup_address(address, &level);
6ce9fc17 526 if (tmp != kpte)
bb5c2dbd
IM
527 goto out_unlock;
528
bb5c2dbd 529 pbase = (pte_t *)page_address(base);
6944a9c8 530 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
07cf89c0 531 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
7a5714e0
IM
532 /*
533 * If we ever want to utilize the PAT bit, we need to
534 * update this function to make sure it's converted from
535 * bit 12 to bit 7 when we cross from the 2MB level to
536 * the 4K level:
537 */
538 WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
bb5c2dbd 539
f07333fd
AK
540#ifdef CONFIG_X86_64
541 if (level == PG_LEVEL_1G) {
542 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
543 pgprot_val(ref_prot) |= _PAGE_PSE;
f07333fd
AK
544 }
545#endif
546
63c1dcf4
TG
547 /*
548 * Get the target pfn from the original entry:
549 */
550 pfn = pte_pfn(*kpte);
f07333fd 551 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
63c1dcf4 552 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
bb5c2dbd 553
ce0c0e50 554 if (address >= (unsigned long)__va(0) &&
f361a450
YL
555 address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
556 split_page_count(level);
557
558#ifdef CONFIG_X86_64
559 if (address >= (unsigned long)__va(1UL<<32) &&
65280e61
TG
560 address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
561 split_page_count(level);
f361a450 562#endif
ce0c0e50 563
bb5c2dbd 564 /*
07a66d7c 565 * Install the new, split up pagetable.
4c881ca1 566 *
07a66d7c
IM
567 * We use the standard kernel pagetable protections for the new
568 * pagetable protections, the actual ptes set above control the
569 * primary protection behavior:
bb5c2dbd 570 */
07a66d7c 571 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
211b3d03
IM
572
573 /*
574 * Intel Atom errata AAH41 workaround.
575 *
576 * The real fix should be in hw or in a microcode update, but
577 * we also probabilistically try to reduce the window of having
578 * a large TLB mixed with 4K TLBs while instruction fetches are
579 * going on.
580 */
581 __flush_tlb_all();
582
bb5c2dbd
IM
583 base = NULL;
584
585out_unlock:
eb5b5f02
TG
586 /*
587 * If we dropped out via the lookup_address check under
588 * pgd_lock then stick the page back into the pool:
589 */
8311eb84
SS
590 if (base)
591 __free_page(base);
a79e53d8 592 spin_unlock(&pgd_lock);
bb5c2dbd 593
bb5c2dbd
IM
594 return 0;
595}
596
a1e46212
SS
597static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
598 int primary)
599{
600 /*
601 * Ignore all non primary paths.
602 */
603 if (!primary)
604 return 0;
605
606 /*
607 * Ignore the NULL PTE for kernel identity mapping, as it is expected
608 * to have holes.
609 * Also set numpages to '1' indicating that we processed cpa req for
610 * one virtual address page and its pfn. TBD: numpages can be set based
611 * on the initial value and the level returned by lookup_address().
612 */
613 if (within(vaddr, PAGE_OFFSET,
614 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
615 cpa->numpages = 1;
616 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
617 return 0;
618 } else {
619 WARN(1, KERN_WARNING "CPA: called for zero pte. "
620 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
621 *cpa->vaddr);
622
623 return -EFAULT;
624 }
625}
626
c31c7d48 627static int __change_page_attr(struct cpa_data *cpa, int primary)
9f4c815c 628{
d75586ad 629 unsigned long address;
da7bfc50
HH
630 int do_split, err;
631 unsigned int level;
c31c7d48 632 pte_t *kpte, old_pte;
1da177e4 633
8523acfe
TH
634 if (cpa->flags & CPA_PAGES_ARRAY) {
635 struct page *page = cpa->pages[cpa->curpage];
636 if (unlikely(PageHighMem(page)))
637 return 0;
638 address = (unsigned long)page_address(page);
639 } else if (cpa->flags & CPA_ARRAY)
d75586ad
SL
640 address = cpa->vaddr[cpa->curpage];
641 else
642 address = *cpa->vaddr;
97f99fed 643repeat:
f0646e43 644 kpte = lookup_address(address, &level);
1da177e4 645 if (!kpte)
a1e46212 646 return __cpa_process_fault(cpa, address, primary);
c31c7d48
TG
647
648 old_pte = *kpte;
a1e46212
SS
649 if (!pte_val(old_pte))
650 return __cpa_process_fault(cpa, address, primary);
9f4c815c 651
30551bb3 652 if (level == PG_LEVEL_4K) {
c31c7d48 653 pte_t new_pte;
626c2c9d 654 pgprot_t new_prot = pte_pgprot(old_pte);
c31c7d48 655 unsigned long pfn = pte_pfn(old_pte);
86f03989 656
72e458df
TG
657 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
658 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
86f03989 659
c31c7d48 660 new_prot = static_protections(new_prot, address, pfn);
86f03989 661
626c2c9d
AV
662 /*
663 * We need to keep the pfn from the existing PTE,
664 * after all we're only going to change it's attributes
665 * not the memory it points to
666 */
c31c7d48
TG
667 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
668 cpa->pfn = pfn;
f4ae5da0
TG
669 /*
670 * Do we really change anything ?
671 */
672 if (pte_val(old_pte) != pte_val(new_pte)) {
673 set_pte_atomic(kpte, new_pte);
d75586ad 674 cpa->flags |= CPA_FLUSHTLB;
f4ae5da0 675 }
9b5cf48b 676 cpa->numpages = 1;
65e074df 677 return 0;
1da177e4 678 }
65e074df
TG
679
680 /*
681 * Check, whether we can keep the large page intact
682 * and just change the pte:
683 */
beaff633 684 do_split = try_preserve_large_page(kpte, address, cpa);
65e074df
TG
685 /*
686 * When the range fits into the existing large page,
9b5cf48b 687 * return. cp->numpages and cpa->tlbflush have been updated in
65e074df
TG
688 * try_large_page:
689 */
87f7f8fe
IM
690 if (do_split <= 0)
691 return do_split;
65e074df
TG
692
693 /*
694 * We have to split the large page:
695 */
87f7f8fe
IM
696 err = split_large_page(kpte, address);
697 if (!err) {
ad5ca55f
SS
698 /*
699 * Do a global flush tlb after splitting the large page
700 * and before we do the actual change page attribute in the PTE.
701 *
702 * With out this, we violate the TLB application note, that says
703 * "The TLBs may contain both ordinary and large-page
704 * translations for a 4-KByte range of linear addresses. This
705 * may occur if software modifies the paging structures so that
706 * the page size used for the address range changes. If the two
707 * translations differ with respect to page frame or attributes
708 * (e.g., permissions), processor behavior is undefined and may
709 * be implementation-specific."
710 *
711 * We do this global tlb flush inside the cpa_lock, so that we
712 * don't allow any other cpu, with stale tlb entries change the
713 * page attribute in parallel, that also falls into the
714 * just split large page entry.
715 */
716 flush_tlb_all();
87f7f8fe
IM
717 goto repeat;
718 }
beaff633 719
87f7f8fe 720 return err;
9f4c815c 721}
1da177e4 722
c31c7d48
TG
723static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
724
725static int cpa_process_alias(struct cpa_data *cpa)
1da177e4 726{
c31c7d48 727 struct cpa_data alias_cpa;
992f4c1c 728 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
e933a73f 729 unsigned long vaddr;
992f4c1c 730 int ret;
44af6c41 731
965194c1 732 if (cpa->pfn >= max_pfn_mapped)
c31c7d48 733 return 0;
626c2c9d 734
f361a450 735#ifdef CONFIG_X86_64
965194c1 736 if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
f361a450
YL
737 return 0;
738#endif
f34b439f
TG
739 /*
740 * No need to redo, when the primary call touched the direct
741 * mapping already:
742 */
8523acfe
TH
743 if (cpa->flags & CPA_PAGES_ARRAY) {
744 struct page *page = cpa->pages[cpa->curpage];
745 if (unlikely(PageHighMem(page)))
746 return 0;
747 vaddr = (unsigned long)page_address(page);
748 } else if (cpa->flags & CPA_ARRAY)
d75586ad
SL
749 vaddr = cpa->vaddr[cpa->curpage];
750 else
751 vaddr = *cpa->vaddr;
752
753 if (!(within(vaddr, PAGE_OFFSET,
a1e46212 754 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
44af6c41 755
f34b439f 756 alias_cpa = *cpa;
992f4c1c 757 alias_cpa.vaddr = &laddr;
9ae28475 758 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
d75586ad 759
f34b439f 760 ret = __change_page_attr_set_clr(&alias_cpa, 0);
992f4c1c
TH
761 if (ret)
762 return ret;
f34b439f 763 }
44af6c41 764
44af6c41 765#ifdef CONFIG_X86_64
488fd995 766 /*
992f4c1c
TH
767 * If the primary call didn't touch the high mapping already
768 * and the physical address is inside the kernel map, we need
0879750f 769 * to touch the high mapped kernel as well:
488fd995 770 */
992f4c1c
TH
771 if (!within(vaddr, (unsigned long)_text, _brk_end) &&
772 within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
773 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
774 __START_KERNEL_map - phys_base;
775 alias_cpa = *cpa;
776 alias_cpa.vaddr = &temp_cpa_vaddr;
777 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
c31c7d48 778
992f4c1c
TH
779 /*
780 * The high mapping range is imprecise, so ignore the
781 * return value.
782 */
783 __change_page_attr_set_clr(&alias_cpa, 0);
784 }
488fd995 785#endif
992f4c1c
TH
786
787 return 0;
1da177e4
LT
788}
789
c31c7d48 790static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
ff31452b 791{
65e074df 792 int ret, numpages = cpa->numpages;
ff31452b 793
65e074df
TG
794 while (numpages) {
795 /*
796 * Store the remaining nr of pages for the large page
797 * preservation check.
798 */
9b5cf48b 799 cpa->numpages = numpages;
d75586ad 800 /* for array changes, we can't use large page */
9ae28475 801 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
d75586ad 802 cpa->numpages = 1;
c31c7d48 803
ad5ca55f
SS
804 if (!debug_pagealloc)
805 spin_lock(&cpa_lock);
c31c7d48 806 ret = __change_page_attr(cpa, checkalias);
ad5ca55f
SS
807 if (!debug_pagealloc)
808 spin_unlock(&cpa_lock);
ff31452b
TG
809 if (ret)
810 return ret;
ff31452b 811
c31c7d48
TG
812 if (checkalias) {
813 ret = cpa_process_alias(cpa);
814 if (ret)
815 return ret;
816 }
817
65e074df
TG
818 /*
819 * Adjust the number of pages with the result of the
820 * CPA operation. Either a large page has been
821 * preserved or a single page update happened.
822 */
9b5cf48b
RW
823 BUG_ON(cpa->numpages > numpages);
824 numpages -= cpa->numpages;
9ae28475 825 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
d75586ad
SL
826 cpa->curpage++;
827 else
828 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
829
65e074df 830 }
ff31452b
TG
831 return 0;
832}
833
6bb8383b
AK
834static inline int cache_attr(pgprot_t attr)
835{
836 return pgprot_val(attr) &
837 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
838}
839
d75586ad 840static int change_page_attr_set_clr(unsigned long *addr, int numpages,
c9caa02c 841 pgprot_t mask_set, pgprot_t mask_clr,
9ae28475 842 int force_split, int in_flag,
843 struct page **pages)
ff31452b 844{
72e458df 845 struct cpa_data cpa;
cacf8906 846 int ret, cache, checkalias;
fa526d0d 847 unsigned long baddr = 0;
331e4065
TG
848
849 /*
850 * Check, if we are requested to change a not supported
851 * feature:
852 */
853 mask_set = canon_pgprot(mask_set);
854 mask_clr = canon_pgprot(mask_clr);
c9caa02c 855 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
331e4065
TG
856 return 0;
857
69b1415e 858 /* Ensure we are PAGE_SIZE aligned */
9ae28475 859 if (in_flag & CPA_ARRAY) {
d75586ad
SL
860 int i;
861 for (i = 0; i < numpages; i++) {
862 if (addr[i] & ~PAGE_MASK) {
863 addr[i] &= PAGE_MASK;
864 WARN_ON_ONCE(1);
865 }
866 }
9ae28475 867 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
868 /*
869 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
870 * No need to cehck in that case
871 */
872 if (*addr & ~PAGE_MASK) {
873 *addr &= PAGE_MASK;
874 /*
875 * People should not be passing in unaligned addresses:
876 */
877 WARN_ON_ONCE(1);
878 }
fa526d0d
JS
879 /*
880 * Save address for cache flush. *addr is modified in the call
881 * to __change_page_attr_set_clr() below.
882 */
883 baddr = *addr;
69b1415e
TG
884 }
885
5843d9a4
NP
886 /* Must avoid aliasing mappings in the highmem code */
887 kmap_flush_unused();
888
db64fe02
NP
889 vm_unmap_aliases();
890
72e458df 891 cpa.vaddr = addr;
9ae28475 892 cpa.pages = pages;
72e458df
TG
893 cpa.numpages = numpages;
894 cpa.mask_set = mask_set;
895 cpa.mask_clr = mask_clr;
d75586ad
SL
896 cpa.flags = 0;
897 cpa.curpage = 0;
c9caa02c 898 cpa.force_split = force_split;
72e458df 899
9ae28475 900 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
901 cpa.flags |= in_flag;
d75586ad 902
af96e443
TG
903 /* No alias checking for _NX bit modifications */
904 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
905
906 ret = __change_page_attr_set_clr(&cpa, checkalias);
ff31452b 907
f4ae5da0
TG
908 /*
909 * Check whether we really changed something:
910 */
d75586ad 911 if (!(cpa.flags & CPA_FLUSHTLB))
1ac2f7d5 912 goto out;
cacf8906 913
6bb8383b
AK
914 /*
915 * No need to flush, when we did not set any of the caching
916 * attributes:
917 */
918 cache = cache_attr(mask_set);
919
57a6a46a
TG
920 /*
921 * On success we use clflush, when the CPU supports it to
bacef661
JB
922 * avoid the wbindv. If the CPU does not support it, in the
923 * error case, and during early boot (for EFI) we fall back
924 * to cpa_flush_all (which uses wbinvd):
57a6a46a 925 */
bacef661
JB
926 if (early_boot_irqs_disabled)
927 __cpa_flush_all((void *)(long)cache);
928 else if (!ret && cpu_has_clflush) {
9ae28475 929 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
930 cpa_flush_array(addr, numpages, cache,
931 cpa.flags, pages);
932 } else
fa526d0d 933 cpa_flush_range(baddr, numpages, cache);
d75586ad 934 } else
6bb8383b 935 cpa_flush_all(cache);
cacf8906 936
76ebd054 937out:
ff31452b
TG
938 return ret;
939}
940
d75586ad
SL
941static inline int change_page_attr_set(unsigned long *addr, int numpages,
942 pgprot_t mask, int array)
75cbade8 943{
d75586ad 944 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
9ae28475 945 (array ? CPA_ARRAY : 0), NULL);
75cbade8
AV
946}
947
d75586ad
SL
948static inline int change_page_attr_clear(unsigned long *addr, int numpages,
949 pgprot_t mask, int array)
72932c7a 950{
d75586ad 951 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
9ae28475 952 (array ? CPA_ARRAY : 0), NULL);
72932c7a
TG
953}
954
0f350755 955static inline int cpa_set_pages_array(struct page **pages, int numpages,
956 pgprot_t mask)
957{
958 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
959 CPA_PAGES_ARRAY, pages);
960}
961
962static inline int cpa_clear_pages_array(struct page **pages, int numpages,
963 pgprot_t mask)
964{
965 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
966 CPA_PAGES_ARRAY, pages);
967}
968
1219333d 969int _set_memory_uc(unsigned long addr, int numpages)
72932c7a 970{
de33c442
SS
971 /*
972 * for now UC MINUS. see comments in ioremap_nocache()
973 */
d75586ad
SL
974 return change_page_attr_set(&addr, numpages,
975 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
75cbade8 976}
1219333d 977
978int set_memory_uc(unsigned long addr, int numpages)
979{
9fa3ab39 980 int ret;
981
de33c442
SS
982 /*
983 * for now UC MINUS. see comments in ioremap_nocache()
984 */
9fa3ab39 985 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
986 _PAGE_CACHE_UC_MINUS, NULL);
987 if (ret)
988 goto out_err;
989
990 ret = _set_memory_uc(addr, numpages);
991 if (ret)
992 goto out_free;
993
994 return 0;
1219333d 995
9fa3ab39 996out_free:
997 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
998out_err:
999 return ret;
1219333d 1000}
75cbade8
AV
1001EXPORT_SYMBOL(set_memory_uc);
1002
2d070eff 1003static int _set_memory_array(unsigned long *addr, int addrinarray,
4f646254 1004 unsigned long new_type)
d75586ad 1005{
9fa3ab39 1006 int i, j;
1007 int ret;
1008
d75586ad
SL
1009 /*
1010 * for now UC MINUS. see comments in ioremap_nocache()
1011 */
1012 for (i = 0; i < addrinarray; i++) {
9fa3ab39 1013 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
4f646254 1014 new_type, NULL);
9fa3ab39 1015 if (ret)
1016 goto out_free;
d75586ad
SL
1017 }
1018
9fa3ab39 1019 ret = change_page_attr_set(addr, addrinarray,
d75586ad 1020 __pgprot(_PAGE_CACHE_UC_MINUS), 1);
4f646254
PN
1021
1022 if (!ret && new_type == _PAGE_CACHE_WC)
1023 ret = change_page_attr_set_clr(addr, addrinarray,
1024 __pgprot(_PAGE_CACHE_WC),
1025 __pgprot(_PAGE_CACHE_MASK),
1026 0, CPA_ARRAY, NULL);
9fa3ab39 1027 if (ret)
1028 goto out_free;
1029
1030 return 0;
1031
1032out_free:
1033 for (j = 0; j < i; j++)
1034 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1035
1036 return ret;
d75586ad 1037}
4f646254
PN
1038
1039int set_memory_array_uc(unsigned long *addr, int addrinarray)
1040{
1041 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_UC_MINUS);
1042}
d75586ad
SL
1043EXPORT_SYMBOL(set_memory_array_uc);
1044
4f646254
PN
1045int set_memory_array_wc(unsigned long *addr, int addrinarray)
1046{
1047 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_WC);
1048}
1049EXPORT_SYMBOL(set_memory_array_wc);
1050
ef354af4 1051int _set_memory_wc(unsigned long addr, int numpages)
1052{
3869c4aa 1053 int ret;
bdc6340f
PV
1054 unsigned long addr_copy = addr;
1055
3869c4aa 1056 ret = change_page_attr_set(&addr, numpages,
1057 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
3869c4aa 1058 if (!ret) {
bdc6340f
PV
1059 ret = change_page_attr_set_clr(&addr_copy, numpages,
1060 __pgprot(_PAGE_CACHE_WC),
1061 __pgprot(_PAGE_CACHE_MASK),
1062 0, 0, NULL);
3869c4aa 1063 }
1064 return ret;
ef354af4 1065}
1066
1067int set_memory_wc(unsigned long addr, int numpages)
1068{
9fa3ab39 1069 int ret;
1070
499f8f84 1071 if (!pat_enabled)
ef354af4 1072 return set_memory_uc(addr, numpages);
1073
9fa3ab39 1074 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1075 _PAGE_CACHE_WC, NULL);
1076 if (ret)
1077 goto out_err;
ef354af4 1078
9fa3ab39 1079 ret = _set_memory_wc(addr, numpages);
1080 if (ret)
1081 goto out_free;
1082
1083 return 0;
1084
1085out_free:
1086 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1087out_err:
1088 return ret;
ef354af4 1089}
1090EXPORT_SYMBOL(set_memory_wc);
1091
1219333d 1092int _set_memory_wb(unsigned long addr, int numpages)
75cbade8 1093{
d75586ad
SL
1094 return change_page_attr_clear(&addr, numpages,
1095 __pgprot(_PAGE_CACHE_MASK), 0);
75cbade8 1096}
1219333d 1097
1098int set_memory_wb(unsigned long addr, int numpages)
1099{
9fa3ab39 1100 int ret;
1101
1102 ret = _set_memory_wb(addr, numpages);
1103 if (ret)
1104 return ret;
1105
c15238df 1106 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
9fa3ab39 1107 return 0;
1219333d 1108}
75cbade8
AV
1109EXPORT_SYMBOL(set_memory_wb);
1110
d75586ad
SL
1111int set_memory_array_wb(unsigned long *addr, int addrinarray)
1112{
1113 int i;
a5593e0b 1114 int ret;
1115
1116 ret = change_page_attr_clear(addr, addrinarray,
1117 __pgprot(_PAGE_CACHE_MASK), 1);
9fa3ab39 1118 if (ret)
1119 return ret;
d75586ad 1120
9fa3ab39 1121 for (i = 0; i < addrinarray; i++)
1122 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
c5e147cf 1123
9fa3ab39 1124 return 0;
d75586ad
SL
1125}
1126EXPORT_SYMBOL(set_memory_array_wb);
1127
75cbade8
AV
1128int set_memory_x(unsigned long addr, int numpages)
1129{
583140af
PA
1130 if (!(__supported_pte_mask & _PAGE_NX))
1131 return 0;
1132
d75586ad 1133 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
75cbade8
AV
1134}
1135EXPORT_SYMBOL(set_memory_x);
1136
1137int set_memory_nx(unsigned long addr, int numpages)
1138{
583140af
PA
1139 if (!(__supported_pte_mask & _PAGE_NX))
1140 return 0;
1141
d75586ad 1142 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
75cbade8
AV
1143}
1144EXPORT_SYMBOL(set_memory_nx);
1145
1146int set_memory_ro(unsigned long addr, int numpages)
1147{
d75586ad 1148 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
75cbade8 1149}
a03352d2 1150EXPORT_SYMBOL_GPL(set_memory_ro);
75cbade8
AV
1151
1152int set_memory_rw(unsigned long addr, int numpages)
1153{
d75586ad 1154 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
75cbade8 1155}
a03352d2 1156EXPORT_SYMBOL_GPL(set_memory_rw);
f62d0f00
IM
1157
1158int set_memory_np(unsigned long addr, int numpages)
1159{
d75586ad 1160 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
f62d0f00 1161}
75cbade8 1162
c9caa02c
AK
1163int set_memory_4k(unsigned long addr, int numpages)
1164{
d75586ad 1165 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
9ae28475 1166 __pgprot(0), 1, 0, NULL);
c9caa02c
AK
1167}
1168
75cbade8
AV
1169int set_pages_uc(struct page *page, int numpages)
1170{
1171 unsigned long addr = (unsigned long)page_address(page);
75cbade8 1172
d7c8f21a 1173 return set_memory_uc(addr, numpages);
75cbade8
AV
1174}
1175EXPORT_SYMBOL(set_pages_uc);
1176
4f646254
PN
1177static int _set_pages_array(struct page **pages, int addrinarray,
1178 unsigned long new_type)
0f350755 1179{
1180 unsigned long start;
1181 unsigned long end;
1182 int i;
1183 int free_idx;
4f646254 1184 int ret;
0f350755 1185
1186 for (i = 0; i < addrinarray; i++) {
8523acfe
TH
1187 if (PageHighMem(pages[i]))
1188 continue;
1189 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
0f350755 1190 end = start + PAGE_SIZE;
4f646254 1191 if (reserve_memtype(start, end, new_type, NULL))
0f350755 1192 goto err_out;
1193 }
1194
4f646254
PN
1195 ret = cpa_set_pages_array(pages, addrinarray,
1196 __pgprot(_PAGE_CACHE_UC_MINUS));
1197 if (!ret && new_type == _PAGE_CACHE_WC)
1198 ret = change_page_attr_set_clr(NULL, addrinarray,
1199 __pgprot(_PAGE_CACHE_WC),
1200 __pgprot(_PAGE_CACHE_MASK),
1201 0, CPA_PAGES_ARRAY, pages);
1202 if (ret)
1203 goto err_out;
1204 return 0; /* Success */
0f350755 1205err_out:
1206 free_idx = i;
1207 for (i = 0; i < free_idx; i++) {
8523acfe
TH
1208 if (PageHighMem(pages[i]))
1209 continue;
1210 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
0f350755 1211 end = start + PAGE_SIZE;
1212 free_memtype(start, end);
1213 }
1214 return -EINVAL;
1215}
4f646254
PN
1216
1217int set_pages_array_uc(struct page **pages, int addrinarray)
1218{
1219 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_UC_MINUS);
1220}
0f350755 1221EXPORT_SYMBOL(set_pages_array_uc);
1222
4f646254
PN
1223int set_pages_array_wc(struct page **pages, int addrinarray)
1224{
1225 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_WC);
1226}
1227EXPORT_SYMBOL(set_pages_array_wc);
1228
75cbade8
AV
1229int set_pages_wb(struct page *page, int numpages)
1230{
1231 unsigned long addr = (unsigned long)page_address(page);
75cbade8 1232
d7c8f21a 1233 return set_memory_wb(addr, numpages);
75cbade8
AV
1234}
1235EXPORT_SYMBOL(set_pages_wb);
1236
0f350755 1237int set_pages_array_wb(struct page **pages, int addrinarray)
1238{
1239 int retval;
1240 unsigned long start;
1241 unsigned long end;
1242 int i;
1243
1244 retval = cpa_clear_pages_array(pages, addrinarray,
1245 __pgprot(_PAGE_CACHE_MASK));
9fa3ab39 1246 if (retval)
1247 return retval;
0f350755 1248
1249 for (i = 0; i < addrinarray; i++) {
8523acfe
TH
1250 if (PageHighMem(pages[i]))
1251 continue;
1252 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
0f350755 1253 end = start + PAGE_SIZE;
1254 free_memtype(start, end);
1255 }
1256
9fa3ab39 1257 return 0;
0f350755 1258}
1259EXPORT_SYMBOL(set_pages_array_wb);
1260
75cbade8
AV
1261int set_pages_x(struct page *page, int numpages)
1262{
1263 unsigned long addr = (unsigned long)page_address(page);
75cbade8 1264
d7c8f21a 1265 return set_memory_x(addr, numpages);
75cbade8
AV
1266}
1267EXPORT_SYMBOL(set_pages_x);
1268
1269int set_pages_nx(struct page *page, int numpages)
1270{
1271 unsigned long addr = (unsigned long)page_address(page);
75cbade8 1272
d7c8f21a 1273 return set_memory_nx(addr, numpages);
75cbade8
AV
1274}
1275EXPORT_SYMBOL(set_pages_nx);
1276
1277int set_pages_ro(struct page *page, int numpages)
1278{
1279 unsigned long addr = (unsigned long)page_address(page);
75cbade8 1280
d7c8f21a 1281 return set_memory_ro(addr, numpages);
75cbade8 1282}
75cbade8
AV
1283
1284int set_pages_rw(struct page *page, int numpages)
1285{
1286 unsigned long addr = (unsigned long)page_address(page);
e81d5dc4 1287
d7c8f21a 1288 return set_memory_rw(addr, numpages);
78c94aba
IM
1289}
1290
1da177e4 1291#ifdef CONFIG_DEBUG_PAGEALLOC
f62d0f00
IM
1292
1293static int __set_pages_p(struct page *page, int numpages)
1294{
d75586ad
SL
1295 unsigned long tempaddr = (unsigned long) page_address(page);
1296 struct cpa_data cpa = { .vaddr = &tempaddr,
72e458df
TG
1297 .numpages = numpages,
1298 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
d75586ad
SL
1299 .mask_clr = __pgprot(0),
1300 .flags = 0};
72932c7a 1301
55121b43
SS
1302 /*
1303 * No alias checking needed for setting present flag. otherwise,
1304 * we may need to break large pages for 64-bit kernel text
1305 * mappings (this adds to complexity if we want to do this from
1306 * atomic context especially). Let's keep it simple!
1307 */
1308 return __change_page_attr_set_clr(&cpa, 0);
f62d0f00
IM
1309}
1310
1311static int __set_pages_np(struct page *page, int numpages)
1312{
d75586ad
SL
1313 unsigned long tempaddr = (unsigned long) page_address(page);
1314 struct cpa_data cpa = { .vaddr = &tempaddr,
72e458df
TG
1315 .numpages = numpages,
1316 .mask_set = __pgprot(0),
d75586ad
SL
1317 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1318 .flags = 0};
72932c7a 1319
55121b43
SS
1320 /*
1321 * No alias checking needed for setting not present flag. otherwise,
1322 * we may need to break large pages for 64-bit kernel text
1323 * mappings (this adds to complexity if we want to do this from
1324 * atomic context especially). Let's keep it simple!
1325 */
1326 return __change_page_attr_set_clr(&cpa, 0);
f62d0f00
IM
1327}
1328
1da177e4
LT
1329void kernel_map_pages(struct page *page, int numpages, int enable)
1330{
1331 if (PageHighMem(page))
1332 return;
9f4c815c 1333 if (!enable) {
f9b8404c
IM
1334 debug_check_no_locks_freed(page_address(page),
1335 numpages * PAGE_SIZE);
9f4c815c 1336 }
de5097c2 1337
9f4c815c 1338 /*
f8d8406b 1339 * The return value is ignored as the calls cannot fail.
55121b43
SS
1340 * Large pages for identity mappings are not used at boot time
1341 * and hence no memory allocations during large page split.
1da177e4 1342 */
f62d0f00
IM
1343 if (enable)
1344 __set_pages_p(page, numpages);
1345 else
1346 __set_pages_np(page, numpages);
9f4c815c
IM
1347
1348 /*
e4b71dcf
IM
1349 * We should perform an IPI and flush all tlbs,
1350 * but that can deadlock->flush only current cpu:
1da177e4
LT
1351 */
1352 __flush_tlb_all();
ee7ae7a1
TG
1353}
1354
8a235efa
RW
1355#ifdef CONFIG_HIBERNATION
1356
1357bool kernel_page_present(struct page *page)
1358{
1359 unsigned int level;
1360 pte_t *pte;
1361
1362 if (PageHighMem(page))
1363 return false;
1364
1365 pte = lookup_address((unsigned long)page_address(page), &level);
1366 return (pte_val(*pte) & _PAGE_PRESENT);
1367}
1368
1369#endif /* CONFIG_HIBERNATION */
1370
1371#endif /* CONFIG_DEBUG_PAGEALLOC */
d1028a15
AV
1372
1373/*
1374 * The testcases use internal knowledge of the implementation that shouldn't
1375 * be exposed to the rest of the kernel. Include these directly here.
1376 */
1377#ifdef CONFIG_CPA_DEBUG
1378#include "pageattr-test.c"
1379#endif
This page took 0.931651 seconds and 5 git commands to generate.