x86-32: Fix possible incomplete TLB invalidate with PAE pagetables
[deliverable/linux.git] / arch / x86 / mm / pgtable.c
CommitLineData
4f76cd38 1#include <linux/mm.h>
5a0e3ad6 2#include <linux/gfp.h>
4f76cd38 3#include <asm/pgalloc.h>
ee5aa8d3 4#include <asm/pgtable.h>
4f76cd38 5#include <asm/tlb.h>
a1d5a869 6#include <asm/fixmap.h>
4f76cd38 7
9e730237
VN
8#define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
9
14315592
IC
10#ifdef CONFIG_HIGHPTE
11#define PGALLOC_USER_GFP __GFP_HIGHMEM
12#else
13#define PGALLOC_USER_GFP 0
14#endif
15
16gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
17
4f76cd38
JF
18pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
19{
9e730237 20 return (pte_t *)__get_free_page(PGALLOC_GFP);
4f76cd38
JF
21}
22
23pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
24{
25 struct page *pte;
26
14315592 27 pte = alloc_pages(__userpte_alloc_gfp, 0);
4f76cd38
JF
28 if (pte)
29 pgtable_page_ctor(pte);
30 return pte;
31}
32
14315592
IC
33static int __init setup_userpte(char *arg)
34{
35 if (!arg)
36 return -EINVAL;
37
38 /*
39 * "userpte=nohigh" disables allocation of user pagetables in
40 * high memory.
41 */
42 if (strcmp(arg, "nohigh") == 0)
43 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
44 else
45 return -EINVAL;
46 return 0;
47}
48early_param("userpte", setup_userpte);
49
9e1b32ca 50void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
397f687a
JF
51{
52 pgtable_page_dtor(pte);
6944a9c8 53 paravirt_release_pte(page_to_pfn(pte));
397f687a
JF
54 tlb_remove_page(tlb, pte);
55}
56
170fdff7 57#if PAGETABLE_LEVELS > 2
9e1b32ca 58void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
170fdff7 59{
6944a9c8 60 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
1de14c3c
DH
61 /*
62 * NOTE! For PAE, any changes to the top page-directory-pointer-table
63 * entries need a full cr3 reload to flush.
64 */
65#ifdef CONFIG_X86_PAE
66 tlb->need_flush_all = 1;
67#endif
170fdff7
JF
68 tlb_remove_page(tlb, virt_to_page(pmd));
69}
5a5f8f42
JF
70
71#if PAGETABLE_LEVELS > 3
9e1b32ca 72void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
5a5f8f42 73{
2761fa09 74 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
5a5f8f42
JF
75 tlb_remove_page(tlb, virt_to_page(pud));
76}
77#endif /* PAGETABLE_LEVELS > 3 */
170fdff7
JF
78#endif /* PAGETABLE_LEVELS > 2 */
79
4f76cd38
JF
80static inline void pgd_list_add(pgd_t *pgd)
81{
82 struct page *page = virt_to_page(pgd);
4f76cd38 83
4f76cd38 84 list_add(&page->lru, &pgd_list);
4f76cd38
JF
85}
86
87static inline void pgd_list_del(pgd_t *pgd)
88{
89 struct page *page = virt_to_page(pgd);
4f76cd38 90
4f76cd38 91 list_del(&page->lru);
4f76cd38
JF
92}
93
4f76cd38 94#define UNSHARED_PTRS_PER_PGD \
68db065c 95 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
4f76cd38 96
617d34d9
JF
97
98static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
99{
100 BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
101 virt_to_page(pgd)->index = (pgoff_t)mm;
102}
103
104struct mm_struct *pgd_page_get_mm(struct page *page)
105{
106 return (struct mm_struct *)page->index;
107}
108
109static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
4f76cd38 110{
4f76cd38
JF
111 /* If the pgd points to a shared pagetable level (either the
112 ptes in non-PAE, or shared PMD in PAE), then just copy the
113 references from swapper_pg_dir. */
114 if (PAGETABLE_LEVELS == 2 ||
85958b46
JF
115 (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
116 PAGETABLE_LEVELS == 4) {
68db065c
JF
117 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
118 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
4f76cd38 119 KERNEL_PGD_PTRS);
4f76cd38
JF
120 }
121
122 /* list required to sync kernel mapping updates */
617d34d9
JF
123 if (!SHARED_KERNEL_PMD) {
124 pgd_set_mm(pgd, mm);
4f76cd38 125 pgd_list_add(pgd);
617d34d9 126 }
4f76cd38
JF
127}
128
17b74627 129static void pgd_dtor(pgd_t *pgd)
4f76cd38 130{
4f76cd38
JF
131 if (SHARED_KERNEL_PMD)
132 return;
133
a79e53d8 134 spin_lock(&pgd_lock);
4f76cd38 135 pgd_list_del(pgd);
a79e53d8 136 spin_unlock(&pgd_lock);
4f76cd38
JF
137}
138
85958b46
JF
139/*
140 * List of all pgd's needed for non-PAE so it can invalidate entries
141 * in both cached and uncached pgd's; not needed for PAE since the
142 * kernel pmd is shared. If PAE were not to share the pmd a similar
143 * tactic would be needed. This is essentially codepath-based locking
144 * against pageattr.c; it is the unique case in which a valid change
145 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
146 * vmalloc faults work because attached pagetables are never freed.
6d49e352 147 * -- nyc
85958b46
JF
148 */
149
4f76cd38 150#ifdef CONFIG_X86_PAE
d8d5900e
JF
151/*
152 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
153 * updating the top-level pagetable entries to guarantee the
154 * processor notices the update. Since this is expensive, and
155 * all 4 top-level entries are used almost immediately in a
156 * new process's life, we just pre-populate them here.
157 *
158 * Also, if we're in a paravirt environment where the kernel pmd is
159 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
160 * and initialize the kernel pmds here.
161 */
162#define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
163
164void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
165{
166 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
167
168 /* Note: almost everything apart from _PAGE_PRESENT is
169 reserved at the pmd (PDPT) level. */
170 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
171
172 /*
173 * According to Intel App note "TLBs, Paging-Structure Caches,
174 * and Their Invalidation", April 2007, document 317080-001,
175 * section 8.1: in PAE mode we explicitly have to flush the
176 * TLB via cr3 if the top-level pgd is changed...
177 */
4981d01e 178 flush_tlb_mm(mm);
d8d5900e
JF
179}
180#else /* !CONFIG_X86_PAE */
181
182/* No need to prepopulate any pagetable entries in non-PAE modes. */
183#define PREALLOCATED_PMDS 0
184
185#endif /* CONFIG_X86_PAE */
186
187static void free_pmds(pmd_t *pmds[])
188{
189 int i;
190
191 for(i = 0; i < PREALLOCATED_PMDS; i++)
192 if (pmds[i])
193 free_page((unsigned long)pmds[i]);
194}
195
196static int preallocate_pmds(pmd_t *pmds[])
197{
198 int i;
199 bool failed = false;
200
201 for(i = 0; i < PREALLOCATED_PMDS; i++) {
9e730237 202 pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
d8d5900e
JF
203 if (pmd == NULL)
204 failed = true;
205 pmds[i] = pmd;
206 }
207
208 if (failed) {
209 free_pmds(pmds);
210 return -ENOMEM;
211 }
212
213 return 0;
214}
215
4f76cd38
JF
216/*
217 * Mop up any pmd pages which may still be attached to the pgd.
218 * Normally they will be freed by munmap/exit_mmap, but any pmd we
219 * preallocate which never got a corresponding vma will need to be
220 * freed manually.
221 */
222static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
223{
224 int i;
225
d8d5900e 226 for(i = 0; i < PREALLOCATED_PMDS; i++) {
4f76cd38
JF
227 pgd_t pgd = pgdp[i];
228
229 if (pgd_val(pgd) != 0) {
230 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
231
232 pgdp[i] = native_make_pgd(0);
233
6944a9c8 234 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
4f76cd38
JF
235 pmd_free(mm, pmd);
236 }
237 }
238}
239
d8d5900e 240static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
4f76cd38
JF
241{
242 pud_t *pud;
243 unsigned long addr;
244 int i;
245
cf3e5050
JF
246 if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
247 return;
248
4f76cd38 249 pud = pud_offset(pgd, 0);
4f76cd38 250
d8d5900e
JF
251 for (addr = i = 0; i < PREALLOCATED_PMDS;
252 i++, pud++, addr += PUD_SIZE) {
253 pmd_t *pmd = pmds[i];
4f76cd38 254
68db065c 255 if (i >= KERNEL_PGD_BOUNDARY)
4f76cd38
JF
256 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
257 sizeof(pmd_t) * PTRS_PER_PMD);
258
259 pud_populate(mm, pud, pmd);
260 }
4f76cd38 261}
1ec1fe73 262
d8d5900e 263pgd_t *pgd_alloc(struct mm_struct *mm)
1ec1fe73 264{
d8d5900e
JF
265 pgd_t *pgd;
266 pmd_t *pmds[PREALLOCATED_PMDS];
1ec1fe73 267
9e730237 268 pgd = (pgd_t *)__get_free_page(PGALLOC_GFP);
d8d5900e
JF
269
270 if (pgd == NULL)
271 goto out;
272
273 mm->pgd = pgd;
274
275 if (preallocate_pmds(pmds) != 0)
276 goto out_free_pgd;
277
278 if (paravirt_pgd_alloc(mm) != 0)
279 goto out_free_pmds;
1ec1fe73
IM
280
281 /*
d8d5900e
JF
282 * Make sure that pre-populating the pmds is atomic with
283 * respect to anything walking the pgd_list, so that they
284 * never see a partially populated pgd.
1ec1fe73 285 */
a79e53d8 286 spin_lock(&pgd_lock);
4f76cd38 287
617d34d9 288 pgd_ctor(mm, pgd);
d8d5900e 289 pgd_prepopulate_pmd(mm, pgd, pmds);
4f76cd38 290
a79e53d8 291 spin_unlock(&pgd_lock);
4f76cd38
JF
292
293 return pgd;
d8d5900e
JF
294
295out_free_pmds:
296 free_pmds(pmds);
297out_free_pgd:
298 free_page((unsigned long)pgd);
299out:
300 return NULL;
4f76cd38
JF
301}
302
303void pgd_free(struct mm_struct *mm, pgd_t *pgd)
304{
305 pgd_mop_up_pmds(mm, pgd);
306 pgd_dtor(pgd);
eba0045f 307 paravirt_pgd_free(mm, pgd);
4f76cd38
JF
308 free_page((unsigned long)pgd);
309}
ee5aa8d3 310
0f9a921c
RR
311/*
312 * Used to set accessed or dirty bits in the page table entries
313 * on other architectures. On x86, the accessed and dirty bits
314 * are tracked by hardware. However, do_wp_page calls this function
315 * to also make the pte writeable at the same time the dirty bit is
316 * set. In that case we do actually need to write the PTE.
317 */
ee5aa8d3
JF
318int ptep_set_access_flags(struct vm_area_struct *vma,
319 unsigned long address, pte_t *ptep,
320 pte_t entry, int dirty)
321{
322 int changed = !pte_same(*ptep, entry);
323
324 if (changed && dirty) {
325 *ptep = entry;
326 pte_update_defer(vma->vm_mm, address, ptep);
ee5aa8d3
JF
327 }
328
329 return changed;
330}
f9fbf1a3 331
db3eb96f
AA
332#ifdef CONFIG_TRANSPARENT_HUGEPAGE
333int pmdp_set_access_flags(struct vm_area_struct *vma,
334 unsigned long address, pmd_t *pmdp,
335 pmd_t entry, int dirty)
336{
337 int changed = !pmd_same(*pmdp, entry);
338
339 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
340
341 if (changed && dirty) {
342 *pmdp = entry;
343 pmd_update_defer(vma->vm_mm, address, pmdp);
5e4bf1a5
IM
344 /*
345 * We had a write-protection fault here and changed the pmd
346 * to to more permissive. No need to flush the TLB for that,
347 * #PF is architecturally guaranteed to do that and in the
348 * worst-case we'll generate a spurious fault.
349 */
db3eb96f
AA
350 }
351
352 return changed;
353}
354#endif
355
f9fbf1a3
JF
356int ptep_test_and_clear_young(struct vm_area_struct *vma,
357 unsigned long addr, pte_t *ptep)
358{
359 int ret = 0;
360
361 if (pte_young(*ptep))
362 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
48e23957 363 (unsigned long *) &ptep->pte);
f9fbf1a3
JF
364
365 if (ret)
366 pte_update(vma->vm_mm, addr, ptep);
367
368 return ret;
369}
c20311e1 370
db3eb96f
AA
371#ifdef CONFIG_TRANSPARENT_HUGEPAGE
372int pmdp_test_and_clear_young(struct vm_area_struct *vma,
373 unsigned long addr, pmd_t *pmdp)
374{
375 int ret = 0;
376
377 if (pmd_young(*pmdp))
378 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
f2d6bfe9 379 (unsigned long *)pmdp);
db3eb96f
AA
380
381 if (ret)
382 pmd_update(vma->vm_mm, addr, pmdp);
383
384 return ret;
385}
386#endif
387
c20311e1
JF
388int ptep_clear_flush_young(struct vm_area_struct *vma,
389 unsigned long address, pte_t *ptep)
390{
391 int young;
392
393 young = ptep_test_and_clear_young(vma, address, ptep);
394 if (young)
395 flush_tlb_page(vma, address);
396
397 return young;
398}
7c7e6e07 399
db3eb96f
AA
400#ifdef CONFIG_TRANSPARENT_HUGEPAGE
401int pmdp_clear_flush_young(struct vm_area_struct *vma,
402 unsigned long address, pmd_t *pmdp)
403{
404 int young;
405
406 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
407
408 young = pmdp_test_and_clear_young(vma, address, pmdp);
409 if (young)
410 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
411
412 return young;
413}
414
415void pmdp_splitting_flush(struct vm_area_struct *vma,
416 unsigned long address, pmd_t *pmdp)
417{
418 int set;
419 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
420 set = !test_and_set_bit(_PAGE_BIT_SPLITTING,
f2d6bfe9 421 (unsigned long *)pmdp);
db3eb96f
AA
422 if (set) {
423 pmd_update(vma->vm_mm, address, pmdp);
424 /* need tlb flush only to serialize against gup-fast */
425 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
426 }
427}
428#endif
429
fd862dde
GP
430/**
431 * reserve_top_address - reserves a hole in the top of kernel address space
432 * @reserve - size of hole to reserve
433 *
434 * Can be used to relocate the fixmap area and poke a hole in the top
435 * of kernel address space to make room for a hypervisor.
436 */
437void __init reserve_top_address(unsigned long reserve)
438{
439#ifdef CONFIG_X86_32
440 BUG_ON(fixmaps_set > 0);
441 printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
442 (int)-reserve);
443 __FIXADDR_TOP = -reserve - PAGE_SIZE;
fd862dde
GP
444#endif
445}
446
7c7e6e07
JF
447int fixmaps_set;
448
aeaaa59c 449void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
7c7e6e07
JF
450{
451 unsigned long address = __fix_to_virt(idx);
452
453 if (idx >= __end_of_fixed_addresses) {
454 BUG();
455 return;
456 }
aeaaa59c 457 set_pte_vaddr(address, pte);
7c7e6e07
JF
458 fixmaps_set++;
459}
aeaaa59c 460
3b3809ac
MH
461void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
462 pgprot_t flags)
aeaaa59c
JF
463{
464 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
465}
This page took 0.592677 seconds and 5 git commands to generate.