Revert "drm: Update fbdev fb_fix_screeninfo"
[deliverable/linux.git] / arch / x86 / xen / mmu.c
CommitLineData
3b827c1b
JF
1/*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
f120f13e 41#include <linux/sched.h>
f4f97b3e 42#include <linux/highmem.h>
994025ca 43#include <linux/debugfs.h>
3b827c1b 44#include <linux/bug.h>
d2cb2145 45#include <linux/vmalloc.h>
44408ad7 46#include <linux/module.h>
5a0e3ad6 47#include <linux/gfp.h>
a9ce6bc1 48#include <linux/memblock.h>
3b827c1b
JF
49
50#include <asm/pgtable.h>
51#include <asm/tlbflush.h>
5deb30d1 52#include <asm/fixmap.h>
3b827c1b 53#include <asm/mmu_context.h>
319f3ba5 54#include <asm/setup.h>
f4f97b3e 55#include <asm/paravirt.h>
7347b408 56#include <asm/e820.h>
cbcd79c2 57#include <asm/linkage.h>
08bbc9da 58#include <asm/page.h>
fef5ba79 59#include <asm/init.h>
41f2e477 60#include <asm/pat.h>
3b827c1b
JF
61
62#include <asm/xen/hypercall.h>
f4f97b3e 63#include <asm/xen/hypervisor.h>
3b827c1b 64
c0011dbf 65#include <xen/xen.h>
3b827c1b
JF
66#include <xen/page.h>
67#include <xen/interface/xen.h>
59151001 68#include <xen/interface/hvm/hvm_op.h>
319f3ba5 69#include <xen/interface/version.h>
c0011dbf 70#include <xen/interface/memory.h>
319f3ba5 71#include <xen/hvc-console.h>
3b827c1b 72
f4f97b3e 73#include "multicalls.h"
3b827c1b 74#include "mmu.h"
994025ca
JF
75#include "debugfs.h"
76
77#define MMU_UPDATE_HISTO 30
78
19001c8c
AN
79/*
80 * Protects atomic reservation decrease/increase against concurrent increases.
81 * Also protects non-atomic updates of current_pages and driver_pages, and
82 * balloon lists.
83 */
84DEFINE_SPINLOCK(xen_reservation_lock);
85
994025ca
JF
86#ifdef CONFIG_XEN_DEBUG_FS
87
88static struct {
89 u32 pgd_update;
90 u32 pgd_update_pinned;
91 u32 pgd_update_batched;
92
93 u32 pud_update;
94 u32 pud_update_pinned;
95 u32 pud_update_batched;
96
97 u32 pmd_update;
98 u32 pmd_update_pinned;
99 u32 pmd_update_batched;
100
101 u32 pte_update;
102 u32 pte_update_pinned;
103 u32 pte_update_batched;
104
105 u32 mmu_update;
106 u32 mmu_update_extended;
107 u32 mmu_update_histo[MMU_UPDATE_HISTO];
108
109 u32 prot_commit;
110 u32 prot_commit_batched;
111
112 u32 set_pte_at;
113 u32 set_pte_at_batched;
114 u32 set_pte_at_pinned;
115 u32 set_pte_at_current;
116 u32 set_pte_at_kernel;
117} mmu_stats;
118
119static u8 zero_stats;
120
121static inline void check_zero(void)
122{
123 if (unlikely(zero_stats)) {
124 memset(&mmu_stats, 0, sizeof(mmu_stats));
125 zero_stats = 0;
126 }
127}
128
129#define ADD_STATS(elem, val) \
130 do { check_zero(); mmu_stats.elem += (val); } while(0)
131
132#else /* !CONFIG_XEN_DEBUG_FS */
133
134#define ADD_STATS(elem, val) do { (void)(val); } while(0)
135
136#endif /* CONFIG_XEN_DEBUG_FS */
3b827c1b 137
319f3ba5
JF
138
139/*
140 * Identity map, in addition to plain kernel map. This needs to be
141 * large enough to allocate page table pages to allocate the rest.
142 * Each page can map 2MB.
143 */
764f0138
JF
144#define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
145static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
319f3ba5
JF
146
147#ifdef CONFIG_X86_64
148/* l3 pud for userspace vsyscall mapping */
149static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
150#endif /* CONFIG_X86_64 */
151
152/*
153 * Note about cr3 (pagetable base) values:
154 *
155 * xen_cr3 contains the current logical cr3 value; it contains the
156 * last set cr3. This may not be the current effective cr3, because
157 * its update may be being lazily deferred. However, a vcpu looking
158 * at its own cr3 can use this value knowing that it everything will
159 * be self-consistent.
160 *
161 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
162 * hypercall to set the vcpu cr3 is complete (so it may be a little
163 * out of date, but it will never be set early). If one vcpu is
164 * looking at another vcpu's cr3 value, it should use this variable.
165 */
166DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
167DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
168
169
d6182fbf
JF
170/*
171 * Just beyond the highest usermode address. STACK_TOP_MAX has a
172 * redzone above it, so round it up to a PGD boundary.
173 */
174#define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
175
9976b39b
JF
176unsigned long arbitrary_virt_to_mfn(void *vaddr)
177{
178 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
179
180 return PFN_DOWN(maddr.maddr);
181}
182
ce803e70 183xmaddr_t arbitrary_virt_to_machine(void *vaddr)
3b827c1b 184{
ce803e70 185 unsigned long address = (unsigned long)vaddr;
da7bfc50 186 unsigned int level;
9f32d21c
CL
187 pte_t *pte;
188 unsigned offset;
3b827c1b 189
9f32d21c
CL
190 /*
191 * if the PFN is in the linear mapped vaddr range, we can just use
192 * the (quick) virt_to_machine() p2m lookup
193 */
194 if (virt_addr_valid(vaddr))
195 return virt_to_machine(vaddr);
196
197 /* otherwise we have to do a (slower) full page-table walk */
3b827c1b 198
9f32d21c
CL
199 pte = lookup_address(address, &level);
200 BUG_ON(pte == NULL);
201 offset = address & ~PAGE_MASK;
ebd879e3 202 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
3b827c1b
JF
203}
204
205void make_lowmem_page_readonly(void *vaddr)
206{
207 pte_t *pte, ptev;
208 unsigned long address = (unsigned long)vaddr;
da7bfc50 209 unsigned int level;
3b827c1b 210
f0646e43 211 pte = lookup_address(address, &level);
fef5ba79
JF
212 if (pte == NULL)
213 return; /* vaddr missing */
3b827c1b
JF
214
215 ptev = pte_wrprotect(*pte);
216
217 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
218 BUG();
219}
220
221void make_lowmem_page_readwrite(void *vaddr)
222{
223 pte_t *pte, ptev;
224 unsigned long address = (unsigned long)vaddr;
da7bfc50 225 unsigned int level;
3b827c1b 226
f0646e43 227 pte = lookup_address(address, &level);
fef5ba79
JF
228 if (pte == NULL)
229 return; /* vaddr missing */
3b827c1b
JF
230
231 ptev = pte_mkwrite(*pte);
232
233 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
234 BUG();
235}
236
237
7708ad64 238static bool xen_page_pinned(void *ptr)
e2426cf8
JF
239{
240 struct page *page = virt_to_page(ptr);
241
242 return PagePinned(page);
243}
244
c0011dbf
JF
245static bool xen_iomap_pte(pte_t pte)
246{
7347b408 247 return pte_flags(pte) & _PAGE_IOMAP;
c0011dbf
JF
248}
249
eba3ff8b 250void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
c0011dbf
JF
251{
252 struct multicall_space mcs;
253 struct mmu_update *u;
254
255 mcs = xen_mc_entry(sizeof(*u));
256 u = mcs.args;
257
258 /* ptep might be kmapped when using 32-bit HIGHPTE */
259 u->ptr = arbitrary_virt_to_machine(ptep).maddr;
260 u->val = pte_val_ma(pteval);
261
eba3ff8b 262 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
c0011dbf
JF
263
264 xen_mc_issue(PARAVIRT_LAZY_MMU);
265}
eba3ff8b
JF
266EXPORT_SYMBOL_GPL(xen_set_domain_pte);
267
268static void xen_set_iomap_pte(pte_t *ptep, pte_t pteval)
269{
270 xen_set_domain_pte(ptep, pteval, DOMID_IO);
271}
c0011dbf 272
7708ad64 273static void xen_extend_mmu_update(const struct mmu_update *update)
3b827c1b 274{
d66bf8fc
JF
275 struct multicall_space mcs;
276 struct mmu_update *u;
3b827c1b 277
400d3494
JF
278 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
279
994025ca
JF
280 if (mcs.mc != NULL) {
281 ADD_STATS(mmu_update_extended, 1);
282 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
283
400d3494 284 mcs.mc->args[1]++;
994025ca
JF
285
286 if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
287 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
288 else
289 ADD_STATS(mmu_update_histo[0], 1);
290 } else {
291 ADD_STATS(mmu_update, 1);
400d3494
JF
292 mcs = __xen_mc_entry(sizeof(*u));
293 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
994025ca 294 ADD_STATS(mmu_update_histo[1], 1);
400d3494 295 }
d66bf8fc 296
d66bf8fc 297 u = mcs.args;
400d3494
JF
298 *u = *update;
299}
300
301void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
302{
303 struct mmu_update u;
304
305 preempt_disable();
306
307 xen_mc_batch();
308
ce803e70
JF
309 /* ptr may be ioremapped for 64-bit pagetable setup */
310 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
400d3494 311 u.val = pmd_val_ma(val);
7708ad64 312 xen_extend_mmu_update(&u);
d66bf8fc 313
994025ca
JF
314 ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
315
d66bf8fc
JF
316 xen_mc_issue(PARAVIRT_LAZY_MMU);
317
318 preempt_enable();
3b827c1b
JF
319}
320
e2426cf8
JF
321void xen_set_pmd(pmd_t *ptr, pmd_t val)
322{
994025ca
JF
323 ADD_STATS(pmd_update, 1);
324
e2426cf8
JF
325 /* If page is not pinned, we can just update the entry
326 directly */
7708ad64 327 if (!xen_page_pinned(ptr)) {
e2426cf8
JF
328 *ptr = val;
329 return;
330 }
331
994025ca
JF
332 ADD_STATS(pmd_update_pinned, 1);
333
e2426cf8
JF
334 xen_set_pmd_hyper(ptr, val);
335}
336
3b827c1b
JF
337/*
338 * Associate a virtual page frame with a given physical page frame
339 * and protection flags for that frame.
340 */
341void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
342{
836fe2f2 343 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
3b827c1b
JF
344}
345
346void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
347 pte_t *ptep, pte_t pteval)
348{
c0011dbf
JF
349 if (xen_iomap_pte(pteval)) {
350 xen_set_iomap_pte(ptep, pteval);
351 goto out;
352 }
353
994025ca
JF
354 ADD_STATS(set_pte_at, 1);
355// ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
356 ADD_STATS(set_pte_at_current, mm == current->mm);
357 ADD_STATS(set_pte_at_kernel, mm == &init_mm);
358
d66bf8fc 359 if (mm == current->mm || mm == &init_mm) {
8965c1c0 360 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
d66bf8fc
JF
361 struct multicall_space mcs;
362 mcs = xen_mc_entry(0);
363
364 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
994025ca 365 ADD_STATS(set_pte_at_batched, 1);
d66bf8fc 366 xen_mc_issue(PARAVIRT_LAZY_MMU);
2bd50036 367 goto out;
d66bf8fc
JF
368 } else
369 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
2bd50036 370 goto out;
d66bf8fc
JF
371 }
372 xen_set_pte(ptep, pteval);
2bd50036 373
2829b449 374out: return;
3b827c1b
JF
375}
376
f63c2f24
T
377pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
378 unsigned long addr, pte_t *ptep)
947a69c9 379{
e57778a1
JF
380 /* Just return the pte as-is. We preserve the bits on commit */
381 return *ptep;
382}
383
384void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
385 pte_t *ptep, pte_t pte)
386{
400d3494 387 struct mmu_update u;
e57778a1 388
400d3494 389 xen_mc_batch();
947a69c9 390
9f32d21c 391 u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
400d3494 392 u.val = pte_val_ma(pte);
7708ad64 393 xen_extend_mmu_update(&u);
947a69c9 394
994025ca
JF
395 ADD_STATS(prot_commit, 1);
396 ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
397
e57778a1 398 xen_mc_issue(PARAVIRT_LAZY_MMU);
947a69c9
JF
399}
400
ebb9cfe2
JF
401/* Assume pteval_t is equivalent to all the other *val_t types. */
402static pteval_t pte_mfn_to_pfn(pteval_t val)
947a69c9 403{
ebb9cfe2 404 if (val & _PAGE_PRESENT) {
59438c9f 405 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
77be1fab 406 pteval_t flags = val & PTE_FLAGS_MASK;
d8355aca 407 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
ebb9cfe2 408 }
947a69c9 409
ebb9cfe2 410 return val;
947a69c9
JF
411}
412
ebb9cfe2 413static pteval_t pte_pfn_to_mfn(pteval_t val)
947a69c9 414{
ebb9cfe2 415 if (val & _PAGE_PRESENT) {
59438c9f 416 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
77be1fab 417 pteval_t flags = val & PTE_FLAGS_MASK;
cfd8951e
JF
418 unsigned long mfn = pfn_to_mfn(pfn);
419
420 /*
421 * If there's no mfn for the pfn, then just create an
422 * empty non-present pte. Unfortunately this loses
423 * information about the original pfn, so
424 * pte_mfn_to_pfn is asymmetric.
425 */
426 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
427 mfn = 0;
428 flags = 0;
429 }
430
431 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
947a69c9
JF
432 }
433
ebb9cfe2 434 return val;
947a69c9
JF
435}
436
c0011dbf
JF
437static pteval_t iomap_pte(pteval_t val)
438{
439 if (val & _PAGE_PRESENT) {
440 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
441 pteval_t flags = val & PTE_FLAGS_MASK;
442
443 /* We assume the pte frame number is a MFN, so
444 just use it as-is. */
445 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
446 }
447
448 return val;
449}
450
ebb9cfe2 451pteval_t xen_pte_val(pte_t pte)
947a69c9 452{
41f2e477 453 pteval_t pteval = pte.pte;
c0011dbf 454
41f2e477
JF
455 /* If this is a WC pte, convert back from Xen WC to Linux WC */
456 if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
457 WARN_ON(!pat_enabled);
458 pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
459 }
c0011dbf 460
41f2e477
JF
461 if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
462 return pteval;
463
464 return pte_mfn_to_pfn(pteval);
947a69c9 465}
da5de7c2 466PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
947a69c9 467
947a69c9
JF
468pgdval_t xen_pgd_val(pgd_t pgd)
469{
ebb9cfe2 470 return pte_mfn_to_pfn(pgd.pgd);
947a69c9 471}
da5de7c2 472PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
947a69c9 473
41f2e477
JF
474/*
475 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
476 * are reserved for now, to correspond to the Intel-reserved PAT
477 * types.
478 *
479 * We expect Linux's PAT set as follows:
480 *
481 * Idx PTE flags Linux Xen Default
482 * 0 WB WB WB
483 * 1 PWT WC WT WT
484 * 2 PCD UC- UC- UC-
485 * 3 PCD PWT UC UC UC
486 * 4 PAT WB WC WB
487 * 5 PAT PWT WC WP WT
488 * 6 PAT PCD UC- UC UC-
489 * 7 PAT PCD PWT UC UC UC
490 */
491
492void xen_set_pat(u64 pat)
493{
494 /* We expect Linux to use a PAT setting of
495 * UC UC- WC WB (ignoring the PAT flag) */
496 WARN_ON(pat != 0x0007010600070106ull);
497}
498
947a69c9
JF
499pte_t xen_make_pte(pteval_t pte)
500{
7347b408
AN
501 phys_addr_t addr = (pte & PTE_PFN_MASK);
502
41f2e477
JF
503 /* If Linux is trying to set a WC pte, then map to the Xen WC.
504 * If _PAGE_PAT is set, then it probably means it is really
505 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
506 * things work out OK...
507 *
508 * (We should never see kernel mappings with _PAGE_PSE set,
509 * but we could see hugetlbfs mappings, I think.).
510 */
511 if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
512 if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
513 pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
514 }
515
7347b408
AN
516 /*
517 * Unprivileged domains are allowed to do IOMAPpings for
518 * PCI passthrough, but not map ISA space. The ISA
519 * mappings are just dummy local mappings to keep other
520 * parts of the kernel happy.
521 */
522 if (unlikely(pte & _PAGE_IOMAP) &&
523 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
c0011dbf 524 pte = iomap_pte(pte);
7347b408
AN
525 } else {
526 pte &= ~_PAGE_IOMAP;
c0011dbf 527 pte = pte_pfn_to_mfn(pte);
7347b408 528 }
c0011dbf 529
ebb9cfe2 530 return native_make_pte(pte);
947a69c9 531}
da5de7c2 532PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
947a69c9
JF
533
534pgd_t xen_make_pgd(pgdval_t pgd)
535{
ebb9cfe2
JF
536 pgd = pte_pfn_to_mfn(pgd);
537 return native_make_pgd(pgd);
947a69c9 538}
da5de7c2 539PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
947a69c9
JF
540
541pmdval_t xen_pmd_val(pmd_t pmd)
542{
ebb9cfe2 543 return pte_mfn_to_pfn(pmd.pmd);
947a69c9 544}
da5de7c2 545PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
28499143 546
e2426cf8 547void xen_set_pud_hyper(pud_t *ptr, pud_t val)
f4f97b3e 548{
400d3494 549 struct mmu_update u;
f4f97b3e 550
d66bf8fc
JF
551 preempt_disable();
552
400d3494
JF
553 xen_mc_batch();
554
ce803e70
JF
555 /* ptr may be ioremapped for 64-bit pagetable setup */
556 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
400d3494 557 u.val = pud_val_ma(val);
7708ad64 558 xen_extend_mmu_update(&u);
d66bf8fc 559
994025ca
JF
560 ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
561
d66bf8fc
JF
562 xen_mc_issue(PARAVIRT_LAZY_MMU);
563
564 preempt_enable();
f4f97b3e
JF
565}
566
e2426cf8
JF
567void xen_set_pud(pud_t *ptr, pud_t val)
568{
994025ca
JF
569 ADD_STATS(pud_update, 1);
570
e2426cf8
JF
571 /* If page is not pinned, we can just update the entry
572 directly */
7708ad64 573 if (!xen_page_pinned(ptr)) {
e2426cf8
JF
574 *ptr = val;
575 return;
576 }
577
994025ca
JF
578 ADD_STATS(pud_update_pinned, 1);
579
e2426cf8
JF
580 xen_set_pud_hyper(ptr, val);
581}
582
f4f97b3e
JF
583void xen_set_pte(pte_t *ptep, pte_t pte)
584{
c0011dbf
JF
585 if (xen_iomap_pte(pte)) {
586 xen_set_iomap_pte(ptep, pte);
587 return;
588 }
589
994025ca
JF
590 ADD_STATS(pte_update, 1);
591// ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
592 ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
593
f6e58732 594#ifdef CONFIG_X86_PAE
f4f97b3e
JF
595 ptep->pte_high = pte.pte_high;
596 smp_wmb();
597 ptep->pte_low = pte.pte_low;
f6e58732
JF
598#else
599 *ptep = pte;
600#endif
f4f97b3e
JF
601}
602
f6e58732 603#ifdef CONFIG_X86_PAE
3b827c1b
JF
604void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
605{
c0011dbf
JF
606 if (xen_iomap_pte(pte)) {
607 xen_set_iomap_pte(ptep, pte);
608 return;
609 }
610
f6e58732 611 set_64bit((u64 *)ptep, native_pte_val(pte));
3b827c1b
JF
612}
613
614void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
615{
616 ptep->pte_low = 0;
617 smp_wmb(); /* make sure low gets written first */
618 ptep->pte_high = 0;
619}
620
621void xen_pmd_clear(pmd_t *pmdp)
622{
e2426cf8 623 set_pmd(pmdp, __pmd(0));
3b827c1b 624}
f6e58732 625#endif /* CONFIG_X86_PAE */
3b827c1b 626
abf33038 627pmd_t xen_make_pmd(pmdval_t pmd)
3b827c1b 628{
ebb9cfe2 629 pmd = pte_pfn_to_mfn(pmd);
947a69c9 630 return native_make_pmd(pmd);
3b827c1b 631}
da5de7c2 632PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
3b827c1b 633
f6e58732
JF
634#if PAGETABLE_LEVELS == 4
635pudval_t xen_pud_val(pud_t pud)
636{
637 return pte_mfn_to_pfn(pud.pud);
638}
da5de7c2 639PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
f6e58732
JF
640
641pud_t xen_make_pud(pudval_t pud)
642{
643 pud = pte_pfn_to_mfn(pud);
644
645 return native_make_pud(pud);
646}
da5de7c2 647PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
f6e58732 648
d6182fbf 649pgd_t *xen_get_user_pgd(pgd_t *pgd)
f6e58732 650{
d6182fbf
JF
651 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
652 unsigned offset = pgd - pgd_page;
653 pgd_t *user_ptr = NULL;
f6e58732 654
d6182fbf
JF
655 if (offset < pgd_index(USER_LIMIT)) {
656 struct page *page = virt_to_page(pgd_page);
657 user_ptr = (pgd_t *)page->private;
658 if (user_ptr)
659 user_ptr += offset;
660 }
f6e58732 661
d6182fbf
JF
662 return user_ptr;
663}
664
665static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
666{
667 struct mmu_update u;
f6e58732
JF
668
669 u.ptr = virt_to_machine(ptr).maddr;
670 u.val = pgd_val_ma(val);
7708ad64 671 xen_extend_mmu_update(&u);
d6182fbf
JF
672}
673
674/*
675 * Raw hypercall-based set_pgd, intended for in early boot before
676 * there's a page structure. This implies:
677 * 1. The only existing pagetable is the kernel's
678 * 2. It is always pinned
679 * 3. It has no user pagetable attached to it
680 */
681void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
682{
683 preempt_disable();
684
685 xen_mc_batch();
686
687 __xen_set_pgd_hyper(ptr, val);
f6e58732
JF
688
689 xen_mc_issue(PARAVIRT_LAZY_MMU);
690
691 preempt_enable();
692}
693
694void xen_set_pgd(pgd_t *ptr, pgd_t val)
695{
d6182fbf
JF
696 pgd_t *user_ptr = xen_get_user_pgd(ptr);
697
994025ca
JF
698 ADD_STATS(pgd_update, 1);
699
f6e58732
JF
700 /* If page is not pinned, we can just update the entry
701 directly */
7708ad64 702 if (!xen_page_pinned(ptr)) {
f6e58732 703 *ptr = val;
d6182fbf 704 if (user_ptr) {
7708ad64 705 WARN_ON(xen_page_pinned(user_ptr));
d6182fbf
JF
706 *user_ptr = val;
707 }
f6e58732
JF
708 return;
709 }
710
994025ca
JF
711 ADD_STATS(pgd_update_pinned, 1);
712 ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
713
d6182fbf
JF
714 /* If it's pinned, then we can at least batch the kernel and
715 user updates together. */
716 xen_mc_batch();
717
718 __xen_set_pgd_hyper(ptr, val);
719 if (user_ptr)
720 __xen_set_pgd_hyper(user_ptr, val);
721
722 xen_mc_issue(PARAVIRT_LAZY_MMU);
f6e58732
JF
723}
724#endif /* PAGETABLE_LEVELS == 4 */
725
f4f97b3e 726/*
5deb30d1
JF
727 * (Yet another) pagetable walker. This one is intended for pinning a
728 * pagetable. This means that it walks a pagetable and calls the
729 * callback function on each page it finds making up the page table,
730 * at every level. It walks the entire pagetable, but it only bothers
731 * pinning pte pages which are below limit. In the normal case this
732 * will be STACK_TOP_MAX, but at boot we need to pin up to
733 * FIXADDR_TOP.
734 *
735 * For 32-bit the important bit is that we don't pin beyond there,
736 * because then we start getting into Xen's ptes.
737 *
738 * For 64-bit, we must skip the Xen hole in the middle of the address
739 * space, just after the big x86-64 virtual hole.
740 */
86bbc2c2
IC
741static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
742 int (*func)(struct mm_struct *mm, struct page *,
743 enum pt_level),
744 unsigned long limit)
3b827c1b 745{
f4f97b3e 746 int flush = 0;
5deb30d1
JF
747 unsigned hole_low, hole_high;
748 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
749 unsigned pgdidx, pudidx, pmdidx;
f4f97b3e 750
5deb30d1
JF
751 /* The limit is the last byte to be touched */
752 limit--;
753 BUG_ON(limit >= FIXADDR_TOP);
3b827c1b
JF
754
755 if (xen_feature(XENFEAT_auto_translated_physmap))
f4f97b3e
JF
756 return 0;
757
5deb30d1
JF
758 /*
759 * 64-bit has a great big hole in the middle of the address
760 * space, which contains the Xen mappings. On 32-bit these
761 * will end up making a zero-sized hole and so is a no-op.
762 */
d6182fbf 763 hole_low = pgd_index(USER_LIMIT);
5deb30d1
JF
764 hole_high = pgd_index(PAGE_OFFSET);
765
766 pgdidx_limit = pgd_index(limit);
767#if PTRS_PER_PUD > 1
768 pudidx_limit = pud_index(limit);
769#else
770 pudidx_limit = 0;
771#endif
772#if PTRS_PER_PMD > 1
773 pmdidx_limit = pmd_index(limit);
774#else
775 pmdidx_limit = 0;
776#endif
777
5deb30d1 778 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
f4f97b3e 779 pud_t *pud;
3b827c1b 780
5deb30d1
JF
781 if (pgdidx >= hole_low && pgdidx < hole_high)
782 continue;
f4f97b3e 783
5deb30d1 784 if (!pgd_val(pgd[pgdidx]))
3b827c1b 785 continue;
f4f97b3e 786
5deb30d1 787 pud = pud_offset(&pgd[pgdidx], 0);
3b827c1b
JF
788
789 if (PTRS_PER_PUD > 1) /* not folded */
eefb47f6 790 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
f4f97b3e 791
5deb30d1 792 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
f4f97b3e 793 pmd_t *pmd;
f4f97b3e 794
5deb30d1
JF
795 if (pgdidx == pgdidx_limit &&
796 pudidx > pudidx_limit)
797 goto out;
3b827c1b 798
5deb30d1 799 if (pud_none(pud[pudidx]))
3b827c1b 800 continue;
f4f97b3e 801
5deb30d1 802 pmd = pmd_offset(&pud[pudidx], 0);
3b827c1b
JF
803
804 if (PTRS_PER_PMD > 1) /* not folded */
eefb47f6 805 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
f4f97b3e 806
5deb30d1
JF
807 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
808 struct page *pte;
809
810 if (pgdidx == pgdidx_limit &&
811 pudidx == pudidx_limit &&
812 pmdidx > pmdidx_limit)
813 goto out;
3b827c1b 814
5deb30d1 815 if (pmd_none(pmd[pmdidx]))
3b827c1b
JF
816 continue;
817
5deb30d1 818 pte = pmd_page(pmd[pmdidx]);
eefb47f6 819 flush |= (*func)(mm, pte, PT_PTE);
3b827c1b
JF
820 }
821 }
822 }
11ad93e5 823
5deb30d1 824out:
11ad93e5
JF
825 /* Do the top level last, so that the callbacks can use it as
826 a cue to do final things like tlb flushes. */
eefb47f6 827 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
f4f97b3e
JF
828
829 return flush;
3b827c1b
JF
830}
831
86bbc2c2
IC
832static int xen_pgd_walk(struct mm_struct *mm,
833 int (*func)(struct mm_struct *mm, struct page *,
834 enum pt_level),
835 unsigned long limit)
836{
837 return __xen_pgd_walk(mm, mm->pgd, func, limit);
838}
839
7708ad64
JF
840/* If we're using split pte locks, then take the page's lock and
841 return a pointer to it. Otherwise return NULL. */
eefb47f6 842static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
74260714
JF
843{
844 spinlock_t *ptl = NULL;
845
f7d0b926 846#if USE_SPLIT_PTLOCKS
74260714 847 ptl = __pte_lockptr(page);
eefb47f6 848 spin_lock_nest_lock(ptl, &mm->page_table_lock);
74260714
JF
849#endif
850
851 return ptl;
852}
853
7708ad64 854static void xen_pte_unlock(void *v)
74260714
JF
855{
856 spinlock_t *ptl = v;
857 spin_unlock(ptl);
858}
859
860static void xen_do_pin(unsigned level, unsigned long pfn)
861{
862 struct mmuext_op *op;
863 struct multicall_space mcs;
864
865 mcs = __xen_mc_entry(sizeof(*op));
866 op = mcs.args;
867 op->cmd = level;
868 op->arg1.mfn = pfn_to_mfn(pfn);
869 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
870}
871
eefb47f6
JF
872static int xen_pin_page(struct mm_struct *mm, struct page *page,
873 enum pt_level level)
f4f97b3e 874{
d60cd46b 875 unsigned pgfl = TestSetPagePinned(page);
f4f97b3e
JF
876 int flush;
877
878 if (pgfl)
879 flush = 0; /* already pinned */
880 else if (PageHighMem(page))
881 /* kmaps need flushing if we found an unpinned
882 highpage */
883 flush = 1;
884 else {
885 void *pt = lowmem_page_address(page);
886 unsigned long pfn = page_to_pfn(page);
887 struct multicall_space mcs = __xen_mc_entry(0);
74260714 888 spinlock_t *ptl;
f4f97b3e
JF
889
890 flush = 0;
891
11ad93e5
JF
892 /*
893 * We need to hold the pagetable lock between the time
894 * we make the pagetable RO and when we actually pin
895 * it. If we don't, then other users may come in and
896 * attempt to update the pagetable by writing it,
897 * which will fail because the memory is RO but not
898 * pinned, so Xen won't do the trap'n'emulate.
899 *
900 * If we're using split pte locks, we can't hold the
901 * entire pagetable's worth of locks during the
902 * traverse, because we may wrap the preempt count (8
903 * bits). The solution is to mark RO and pin each PTE
904 * page while holding the lock. This means the number
905 * of locks we end up holding is never more than a
906 * batch size (~32 entries, at present).
907 *
908 * If we're not using split pte locks, we needn't pin
909 * the PTE pages independently, because we're
910 * protected by the overall pagetable lock.
911 */
74260714
JF
912 ptl = NULL;
913 if (level == PT_PTE)
eefb47f6 914 ptl = xen_pte_lock(page, mm);
74260714 915
f4f97b3e
JF
916 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
917 pfn_pte(pfn, PAGE_KERNEL_RO),
74260714
JF
918 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
919
11ad93e5 920 if (ptl) {
74260714
JF
921 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
922
74260714
JF
923 /* Queue a deferred unlock for when this batch
924 is completed. */
7708ad64 925 xen_mc_callback(xen_pte_unlock, ptl);
74260714 926 }
f4f97b3e
JF
927 }
928
929 return flush;
930}
3b827c1b 931
f4f97b3e
JF
932/* This is called just after a mm has been created, but it has not
933 been used yet. We need to make sure that its pagetable is all
934 read-only, and can be pinned. */
eefb47f6 935static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
3b827c1b 936{
f4f97b3e 937 xen_mc_batch();
3b827c1b 938
86bbc2c2 939 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
d05fdf31 940 /* re-enable interrupts for flushing */
f87e4cac 941 xen_mc_issue(0);
d05fdf31 942
f4f97b3e 943 kmap_flush_unused();
d05fdf31 944
f87e4cac
JF
945 xen_mc_batch();
946 }
f4f97b3e 947
d6182fbf
JF
948#ifdef CONFIG_X86_64
949 {
950 pgd_t *user_pgd = xen_get_user_pgd(pgd);
951
952 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
953
954 if (user_pgd) {
eefb47f6 955 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
f63c2f24
T
956 xen_do_pin(MMUEXT_PIN_L4_TABLE,
957 PFN_DOWN(__pa(user_pgd)));
d6182fbf
JF
958 }
959 }
960#else /* CONFIG_X86_32 */
5deb30d1
JF
961#ifdef CONFIG_X86_PAE
962 /* Need to make sure unshared kernel PMD is pinnable */
47cb2ed9 963 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
eefb47f6 964 PT_PMD);
5deb30d1 965#endif
28499143 966 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
d6182fbf 967#endif /* CONFIG_X86_64 */
f4f97b3e 968 xen_mc_issue(0);
3b827c1b
JF
969}
970
eefb47f6
JF
971static void xen_pgd_pin(struct mm_struct *mm)
972{
973 __xen_pgd_pin(mm, mm->pgd);
974}
975
0e91398f
JF
976/*
977 * On save, we need to pin all pagetables to make sure they get their
978 * mfns turned into pfns. Search the list for any unpinned pgds and pin
979 * them (unpinned pgds are not currently in use, probably because the
980 * process is under construction or destruction).
eefb47f6
JF
981 *
982 * Expected to be called in stop_machine() ("equivalent to taking
983 * every spinlock in the system"), so the locking doesn't really
984 * matter all that much.
0e91398f
JF
985 */
986void xen_mm_pin_all(void)
987{
988 unsigned long flags;
989 struct page *page;
74260714 990
0e91398f 991 spin_lock_irqsave(&pgd_lock, flags);
f4f97b3e 992
0e91398f
JF
993 list_for_each_entry(page, &pgd_list, lru) {
994 if (!PagePinned(page)) {
eefb47f6 995 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
0e91398f
JF
996 SetPageSavePinned(page);
997 }
998 }
999
1000 spin_unlock_irqrestore(&pgd_lock, flags);
3b827c1b
JF
1001}
1002
c1f2f09e
EH
1003/*
1004 * The init_mm pagetable is really pinned as soon as its created, but
1005 * that's before we have page structures to store the bits. So do all
1006 * the book-keeping now.
1007 */
eefb47f6
JF
1008static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
1009 enum pt_level level)
3b827c1b 1010{
f4f97b3e
JF
1011 SetPagePinned(page);
1012 return 0;
1013}
3b827c1b 1014
b96229b5 1015static void __init xen_mark_init_mm_pinned(void)
f4f97b3e 1016{
eefb47f6 1017 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
f4f97b3e 1018}
3b827c1b 1019
eefb47f6
JF
1020static int xen_unpin_page(struct mm_struct *mm, struct page *page,
1021 enum pt_level level)
f4f97b3e 1022{
d60cd46b 1023 unsigned pgfl = TestClearPagePinned(page);
3b827c1b 1024
f4f97b3e
JF
1025 if (pgfl && !PageHighMem(page)) {
1026 void *pt = lowmem_page_address(page);
1027 unsigned long pfn = page_to_pfn(page);
74260714
JF
1028 spinlock_t *ptl = NULL;
1029 struct multicall_space mcs;
1030
11ad93e5
JF
1031 /*
1032 * Do the converse to pin_page. If we're using split
1033 * pte locks, we must be holding the lock for while
1034 * the pte page is unpinned but still RO to prevent
1035 * concurrent updates from seeing it in this
1036 * partially-pinned state.
1037 */
74260714 1038 if (level == PT_PTE) {
eefb47f6 1039 ptl = xen_pte_lock(page, mm);
74260714 1040
11ad93e5
JF
1041 if (ptl)
1042 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
74260714
JF
1043 }
1044
1045 mcs = __xen_mc_entry(0);
f4f97b3e
JF
1046
1047 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1048 pfn_pte(pfn, PAGE_KERNEL),
74260714
JF
1049 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1050
1051 if (ptl) {
1052 /* unlock when batch completed */
7708ad64 1053 xen_mc_callback(xen_pte_unlock, ptl);
74260714 1054 }
f4f97b3e
JF
1055 }
1056
1057 return 0; /* never need to flush on unpin */
3b827c1b
JF
1058}
1059
f4f97b3e 1060/* Release a pagetables pages back as normal RW */
eefb47f6 1061static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
f4f97b3e 1062{
f4f97b3e
JF
1063 xen_mc_batch();
1064
74260714 1065 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
f4f97b3e 1066
d6182fbf
JF
1067#ifdef CONFIG_X86_64
1068 {
1069 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1070
1071 if (user_pgd) {
f63c2f24
T
1072 xen_do_pin(MMUEXT_UNPIN_TABLE,
1073 PFN_DOWN(__pa(user_pgd)));
eefb47f6 1074 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
d6182fbf
JF
1075 }
1076 }
1077#endif
1078
5deb30d1
JF
1079#ifdef CONFIG_X86_PAE
1080 /* Need to make sure unshared kernel PMD is unpinned */
47cb2ed9 1081 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
eefb47f6 1082 PT_PMD);
5deb30d1 1083#endif
d6182fbf 1084
86bbc2c2 1085 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
f4f97b3e
JF
1086
1087 xen_mc_issue(0);
1088}
3b827c1b 1089
eefb47f6
JF
1090static void xen_pgd_unpin(struct mm_struct *mm)
1091{
1092 __xen_pgd_unpin(mm, mm->pgd);
1093}
1094
0e91398f
JF
1095/*
1096 * On resume, undo any pinning done at save, so that the rest of the
1097 * kernel doesn't see any unexpected pinned pagetables.
1098 */
1099void xen_mm_unpin_all(void)
1100{
1101 unsigned long flags;
1102 struct page *page;
1103
1104 spin_lock_irqsave(&pgd_lock, flags);
1105
1106 list_for_each_entry(page, &pgd_list, lru) {
1107 if (PageSavePinned(page)) {
1108 BUG_ON(!PagePinned(page));
eefb47f6 1109 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
0e91398f
JF
1110 ClearPageSavePinned(page);
1111 }
1112 }
1113
1114 spin_unlock_irqrestore(&pgd_lock, flags);
1115}
1116
3b827c1b
JF
1117void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1118{
f4f97b3e 1119 spin_lock(&next->page_table_lock);
eefb47f6 1120 xen_pgd_pin(next);
f4f97b3e 1121 spin_unlock(&next->page_table_lock);
3b827c1b
JF
1122}
1123
1124void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1125{
f4f97b3e 1126 spin_lock(&mm->page_table_lock);
eefb47f6 1127 xen_pgd_pin(mm);
f4f97b3e 1128 spin_unlock(&mm->page_table_lock);
3b827c1b
JF
1129}
1130
3b827c1b 1131
f87e4cac
JF
1132#ifdef CONFIG_SMP
1133/* Another cpu may still have their %cr3 pointing at the pagetable, so
1134 we need to repoint it somewhere else before we can unpin it. */
1135static void drop_other_mm_ref(void *info)
1136{
1137 struct mm_struct *mm = info;
ce87b3d3 1138 struct mm_struct *active_mm;
3b827c1b 1139
9eb912d1 1140 active_mm = percpu_read(cpu_tlbstate.active_mm);
ce87b3d3
JF
1141
1142 if (active_mm == mm)
f87e4cac 1143 leave_mm(smp_processor_id());
9f79991d
JF
1144
1145 /* If this cpu still has a stale cr3 reference, then make sure
1146 it has been flushed. */
7fd7d83d 1147 if (percpu_read(xen_current_cr3) == __pa(mm->pgd))
9f79991d 1148 load_cr3(swapper_pg_dir);
f87e4cac 1149}
3b827c1b 1150
7708ad64 1151static void xen_drop_mm_ref(struct mm_struct *mm)
f87e4cac 1152{
e4d98207 1153 cpumask_var_t mask;
9f79991d
JF
1154 unsigned cpu;
1155
f87e4cac
JF
1156 if (current->active_mm == mm) {
1157 if (current->mm == mm)
1158 load_cr3(swapper_pg_dir);
1159 else
1160 leave_mm(smp_processor_id());
9f79991d
JF
1161 }
1162
1163 /* Get the "official" set of cpus referring to our pagetable. */
e4d98207
MT
1164 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1165 for_each_online_cpu(cpu) {
78f1c4d6 1166 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
e4d98207
MT
1167 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1168 continue;
1169 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1170 }
1171 return;
1172 }
78f1c4d6 1173 cpumask_copy(mask, mm_cpumask(mm));
9f79991d
JF
1174
1175 /* It's possible that a vcpu may have a stale reference to our
1176 cr3, because its in lazy mode, and it hasn't yet flushed
1177 its set of pending hypercalls yet. In this case, we can
1178 look at its actual current cr3 value, and force it to flush
1179 if needed. */
1180 for_each_online_cpu(cpu) {
1181 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
e4d98207 1182 cpumask_set_cpu(cpu, mask);
3b827c1b
JF
1183 }
1184
e4d98207
MT
1185 if (!cpumask_empty(mask))
1186 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1187 free_cpumask_var(mask);
f87e4cac
JF
1188}
1189#else
7708ad64 1190static void xen_drop_mm_ref(struct mm_struct *mm)
f87e4cac
JF
1191{
1192 if (current->active_mm == mm)
1193 load_cr3(swapper_pg_dir);
1194}
1195#endif
1196
1197/*
1198 * While a process runs, Xen pins its pagetables, which means that the
1199 * hypervisor forces it to be read-only, and it controls all updates
1200 * to it. This means that all pagetable updates have to go via the
1201 * hypervisor, which is moderately expensive.
1202 *
1203 * Since we're pulling the pagetable down, we switch to use init_mm,
1204 * unpin old process pagetable and mark it all read-write, which
1205 * allows further operations on it to be simple memory accesses.
1206 *
1207 * The only subtle point is that another CPU may be still using the
1208 * pagetable because of lazy tlb flushing. This means we need need to
1209 * switch all CPUs off this pagetable before we can unpin it.
1210 */
1211void xen_exit_mmap(struct mm_struct *mm)
1212{
1213 get_cpu(); /* make sure we don't move around */
7708ad64 1214 xen_drop_mm_ref(mm);
f87e4cac 1215 put_cpu();
3b827c1b 1216
f120f13e 1217 spin_lock(&mm->page_table_lock);
df912ea4
JF
1218
1219 /* pgd may not be pinned in the error exit path of execve */
7708ad64 1220 if (xen_page_pinned(mm->pgd))
eefb47f6 1221 xen_pgd_unpin(mm);
74260714 1222
f120f13e 1223 spin_unlock(&mm->page_table_lock);
3b827c1b 1224}
994025ca 1225
319f3ba5
JF
1226static __init void xen_pagetable_setup_start(pgd_t *base)
1227{
1228}
1229
f1d7062a
TG
1230static void xen_post_allocator_init(void);
1231
319f3ba5
JF
1232static __init void xen_pagetable_setup_done(pgd_t *base)
1233{
1234 xen_setup_shared_info();
f1d7062a 1235 xen_post_allocator_init();
319f3ba5
JF
1236}
1237
1238static void xen_write_cr2(unsigned long cr2)
1239{
1240 percpu_read(xen_vcpu)->arch.cr2 = cr2;
1241}
1242
1243static unsigned long xen_read_cr2(void)
1244{
1245 return percpu_read(xen_vcpu)->arch.cr2;
1246}
1247
1248unsigned long xen_read_cr2_direct(void)
1249{
1250 return percpu_read(xen_vcpu_info.arch.cr2);
1251}
1252
1253static void xen_flush_tlb(void)
1254{
1255 struct mmuext_op *op;
1256 struct multicall_space mcs;
1257
1258 preempt_disable();
1259
1260 mcs = xen_mc_entry(sizeof(*op));
1261
1262 op = mcs.args;
1263 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1264 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1265
1266 xen_mc_issue(PARAVIRT_LAZY_MMU);
1267
1268 preempt_enable();
1269}
1270
1271static void xen_flush_tlb_single(unsigned long addr)
1272{
1273 struct mmuext_op *op;
1274 struct multicall_space mcs;
1275
1276 preempt_disable();
1277
1278 mcs = xen_mc_entry(sizeof(*op));
1279 op = mcs.args;
1280 op->cmd = MMUEXT_INVLPG_LOCAL;
1281 op->arg1.linear_addr = addr & PAGE_MASK;
1282 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1283
1284 xen_mc_issue(PARAVIRT_LAZY_MMU);
1285
1286 preempt_enable();
1287}
1288
1289static void xen_flush_tlb_others(const struct cpumask *cpus,
1290 struct mm_struct *mm, unsigned long va)
1291{
1292 struct {
1293 struct mmuext_op op;
1294 DECLARE_BITMAP(mask, NR_CPUS);
1295 } *args;
1296 struct multicall_space mcs;
1297
e3f8a74e
JF
1298 if (cpumask_empty(cpus))
1299 return; /* nothing to do */
319f3ba5
JF
1300
1301 mcs = xen_mc_entry(sizeof(*args));
1302 args = mcs.args;
1303 args->op.arg2.vcpumask = to_cpumask(args->mask);
1304
1305 /* Remove us, and any offline CPUS. */
1306 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1307 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
319f3ba5
JF
1308
1309 if (va == TLB_FLUSH_ALL) {
1310 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1311 } else {
1312 args->op.cmd = MMUEXT_INVLPG_MULTI;
1313 args->op.arg1.linear_addr = va;
1314 }
1315
1316 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1317
319f3ba5
JF
1318 xen_mc_issue(PARAVIRT_LAZY_MMU);
1319}
1320
1321static unsigned long xen_read_cr3(void)
1322{
1323 return percpu_read(xen_cr3);
1324}
1325
1326static void set_current_cr3(void *v)
1327{
1328 percpu_write(xen_current_cr3, (unsigned long)v);
1329}
1330
1331static void __xen_write_cr3(bool kernel, unsigned long cr3)
1332{
1333 struct mmuext_op *op;
1334 struct multicall_space mcs;
1335 unsigned long mfn;
1336
1337 if (cr3)
1338 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1339 else
1340 mfn = 0;
1341
1342 WARN_ON(mfn == 0 && kernel);
1343
1344 mcs = __xen_mc_entry(sizeof(*op));
1345
1346 op = mcs.args;
1347 op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1348 op->arg1.mfn = mfn;
1349
1350 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1351
1352 if (kernel) {
1353 percpu_write(xen_cr3, cr3);
1354
1355 /* Update xen_current_cr3 once the batch has actually
1356 been submitted. */
1357 xen_mc_callback(set_current_cr3, (void *)cr3);
1358 }
1359}
1360
1361static void xen_write_cr3(unsigned long cr3)
1362{
1363 BUG_ON(preemptible());
1364
1365 xen_mc_batch(); /* disables interrupts */
1366
1367 /* Update while interrupts are disabled, so its atomic with
1368 respect to ipis */
1369 percpu_write(xen_cr3, cr3);
1370
1371 __xen_write_cr3(true, cr3);
1372
1373#ifdef CONFIG_X86_64
1374 {
1375 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1376 if (user_pgd)
1377 __xen_write_cr3(false, __pa(user_pgd));
1378 else
1379 __xen_write_cr3(false, 0);
1380 }
1381#endif
1382
1383 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1384}
1385
1386static int xen_pgd_alloc(struct mm_struct *mm)
1387{
1388 pgd_t *pgd = mm->pgd;
1389 int ret = 0;
1390
1391 BUG_ON(PagePinned(virt_to_page(pgd)));
1392
1393#ifdef CONFIG_X86_64
1394 {
1395 struct page *page = virt_to_page(pgd);
1396 pgd_t *user_pgd;
1397
1398 BUG_ON(page->private != 0);
1399
1400 ret = -ENOMEM;
1401
1402 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1403 page->private = (unsigned long)user_pgd;
1404
1405 if (user_pgd != NULL) {
1406 user_pgd[pgd_index(VSYSCALL_START)] =
1407 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1408 ret = 0;
1409 }
1410
1411 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1412 }
1413#endif
1414
1415 return ret;
1416}
1417
1418static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1419{
1420#ifdef CONFIG_X86_64
1421 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1422
1423 if (user_pgd)
1424 free_page((unsigned long)user_pgd);
1425#endif
1426}
1427
1f4f9315
JF
1428static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
1429{
fef5ba79
JF
1430 unsigned long pfn = pte_pfn(pte);
1431
1432#ifdef CONFIG_X86_32
1f4f9315
JF
1433 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1434 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1435 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1436 pte_val_ma(pte));
fef5ba79
JF
1437#endif
1438
1439 /*
1440 * If the new pfn is within the range of the newly allocated
1441 * kernel pagetable, and it isn't being mapped into an
1442 * early_ioremap fixmap slot, make sure it is RO.
1443 */
1444 if (!is_early_ioremap_ptep(ptep) &&
1445 pfn >= e820_table_start && pfn < e820_table_end)
1446 pte = pte_wrprotect(pte);
1f4f9315
JF
1447
1448 return pte;
1449}
1450
1451/* Init-time set_pte while constructing initial pagetables, which
1452 doesn't allow RO pagetable pages to be remapped RW */
1453static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
1454{
1455 pte = mask_rw_pte(ptep, pte);
1456
1457 xen_set_pte(ptep, pte);
1458}
319f3ba5 1459
b96229b5
JF
1460static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1461{
1462 struct mmuext_op op;
1463 op.cmd = cmd;
1464 op.arg1.mfn = pfn_to_mfn(pfn);
1465 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1466 BUG();
1467}
1468
319f3ba5
JF
1469/* Early in boot, while setting up the initial pagetable, assume
1470 everything is pinned. */
1471static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1472{
b96229b5
JF
1473#ifdef CONFIG_FLATMEM
1474 BUG_ON(mem_map); /* should only be used early */
1475#endif
1476 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1477 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1478}
1479
1480/* Used for pmd and pud */
1481static __init void xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1482{
319f3ba5
JF
1483#ifdef CONFIG_FLATMEM
1484 BUG_ON(mem_map); /* should only be used early */
1485#endif
1486 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1487}
1488
1489/* Early release_pte assumes that all pts are pinned, since there's
1490 only init_mm and anything attached to that is pinned. */
b96229b5 1491static __init void xen_release_pte_init(unsigned long pfn)
319f3ba5 1492{
b96229b5 1493 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
319f3ba5
JF
1494 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1495}
1496
b96229b5 1497static __init void xen_release_pmd_init(unsigned long pfn)
319f3ba5 1498{
b96229b5 1499 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
319f3ba5
JF
1500}
1501
1502/* This needs to make sure the new pte page is pinned iff its being
1503 attached to a pinned pagetable. */
1504static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
1505{
1506 struct page *page = pfn_to_page(pfn);
1507
1508 if (PagePinned(virt_to_page(mm->pgd))) {
1509 SetPagePinned(page);
1510
319f3ba5
JF
1511 if (!PageHighMem(page)) {
1512 make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
1513 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1514 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1515 } else {
1516 /* make sure there are no stray mappings of
1517 this page */
1518 kmap_flush_unused();
1519 }
1520 }
1521}
1522
1523static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1524{
1525 xen_alloc_ptpage(mm, pfn, PT_PTE);
1526}
1527
1528static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1529{
1530 xen_alloc_ptpage(mm, pfn, PT_PMD);
1531}
1532
1533/* This should never happen until we're OK to use struct page */
1534static void xen_release_ptpage(unsigned long pfn, unsigned level)
1535{
1536 struct page *page = pfn_to_page(pfn);
1537
1538 if (PagePinned(page)) {
1539 if (!PageHighMem(page)) {
1540 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1541 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1542 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1543 }
1544 ClearPagePinned(page);
1545 }
1546}
1547
1548static void xen_release_pte(unsigned long pfn)
1549{
1550 xen_release_ptpage(pfn, PT_PTE);
1551}
1552
1553static void xen_release_pmd(unsigned long pfn)
1554{
1555 xen_release_ptpage(pfn, PT_PMD);
1556}
1557
1558#if PAGETABLE_LEVELS == 4
1559static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1560{
1561 xen_alloc_ptpage(mm, pfn, PT_PUD);
1562}
1563
1564static void xen_release_pud(unsigned long pfn)
1565{
1566 xen_release_ptpage(pfn, PT_PUD);
1567}
1568#endif
1569
1570void __init xen_reserve_top(void)
1571{
1572#ifdef CONFIG_X86_32
1573 unsigned long top = HYPERVISOR_VIRT_START;
1574 struct xen_platform_parameters pp;
1575
1576 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1577 top = pp.virt_start;
1578
1579 reserve_top_address(-top);
1580#endif /* CONFIG_X86_32 */
1581}
1582
1583/*
1584 * Like __va(), but returns address in the kernel mapping (which is
1585 * all we have until the physical memory mapping has been set up.
1586 */
1587static void *__ka(phys_addr_t paddr)
1588{
1589#ifdef CONFIG_X86_64
1590 return (void *)(paddr + __START_KERNEL_map);
1591#else
1592 return __va(paddr);
1593#endif
1594}
1595
1596/* Convert a machine address to physical address */
1597static unsigned long m2p(phys_addr_t maddr)
1598{
1599 phys_addr_t paddr;
1600
1601 maddr &= PTE_PFN_MASK;
1602 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1603
1604 return paddr;
1605}
1606
1607/* Convert a machine address to kernel virtual */
1608static void *m2v(phys_addr_t maddr)
1609{
1610 return __ka(m2p(maddr));
1611}
1612
4ec5387c 1613/* Set the page permissions on an identity-mapped pages */
319f3ba5
JF
1614static void set_page_prot(void *addr, pgprot_t prot)
1615{
1616 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1617 pte_t pte = pfn_pte(pfn, prot);
1618
1619 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1620 BUG();
1621}
1622
1623static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1624{
1625 unsigned pmdidx, pteidx;
1626 unsigned ident_pte;
1627 unsigned long pfn;
1628
764f0138
JF
1629 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1630 PAGE_SIZE);
1631
319f3ba5
JF
1632 ident_pte = 0;
1633 pfn = 0;
1634 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1635 pte_t *pte_page;
1636
1637 /* Reuse or allocate a page of ptes */
1638 if (pmd_present(pmd[pmdidx]))
1639 pte_page = m2v(pmd[pmdidx].pmd);
1640 else {
1641 /* Check for free pte pages */
764f0138 1642 if (ident_pte == LEVEL1_IDENT_ENTRIES)
319f3ba5
JF
1643 break;
1644
1645 pte_page = &level1_ident_pgt[ident_pte];
1646 ident_pte += PTRS_PER_PTE;
1647
1648 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1649 }
1650
1651 /* Install mappings */
1652 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1653 pte_t pte;
1654
1655 if (pfn > max_pfn_mapped)
1656 max_pfn_mapped = pfn;
1657
1658 if (!pte_none(pte_page[pteidx]))
1659 continue;
1660
1661 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1662 pte_page[pteidx] = pte;
1663 }
1664 }
1665
1666 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1667 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1668
1669 set_page_prot(pmd, PAGE_KERNEL_RO);
1670}
1671
7e77506a
IC
1672void __init xen_setup_machphys_mapping(void)
1673{
1674 struct xen_machphys_mapping mapping;
1675 unsigned long machine_to_phys_nr_ents;
1676
1677 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1678 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1679 machine_to_phys_nr_ents = mapping.max_mfn + 1;
1680 } else {
1681 machine_to_phys_nr_ents = MACH2PHYS_NR_ENTRIES;
1682 }
1683 machine_to_phys_order = fls(machine_to_phys_nr_ents - 1);
1684}
1685
319f3ba5
JF
1686#ifdef CONFIG_X86_64
1687static void convert_pfn_mfn(void *v)
1688{
1689 pte_t *pte = v;
1690 int i;
1691
1692 /* All levels are converted the same way, so just treat them
1693 as ptes. */
1694 for (i = 0; i < PTRS_PER_PTE; i++)
1695 pte[i] = xen_make_pte(pte[i].pte);
1696}
1697
1698/*
1699 * Set up the inital kernel pagetable.
1700 *
1701 * We can construct this by grafting the Xen provided pagetable into
1702 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1703 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1704 * means that only the kernel has a physical mapping to start with -
1705 * but that's enough to get __va working. We need to fill in the rest
1706 * of the physical mapping once some sort of allocator has been set
1707 * up.
1708 */
1709__init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1710 unsigned long max_pfn)
1711{
1712 pud_t *l3;
1713 pmd_t *l2;
1714
1715 /* Zap identity mapping */
1716 init_level4_pgt[0] = __pgd(0);
1717
1718 /* Pre-constructed entries are in pfn, so convert to mfn */
1719 convert_pfn_mfn(init_level4_pgt);
1720 convert_pfn_mfn(level3_ident_pgt);
1721 convert_pfn_mfn(level3_kernel_pgt);
1722
1723 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1724 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1725
1726 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1727 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1728
1729 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1730 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1731 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1732
1733 /* Set up identity map */
1734 xen_map_identity_early(level2_ident_pgt, max_pfn);
1735
1736 /* Make pagetable pieces RO */
1737 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1738 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1739 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1740 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1741 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1742 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1743
1744 /* Pin down new L4 */
1745 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1746 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1747
1748 /* Unpin Xen-provided one */
1749 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1750
1751 /* Switch over */
1752 pgd = init_level4_pgt;
1753
1754 /*
1755 * At this stage there can be no user pgd, and no page
1756 * structure to attach it to, so make sure we just set kernel
1757 * pgd.
1758 */
1759 xen_mc_batch();
1760 __xen_write_cr3(true, __pa(pgd));
1761 xen_mc_issue(PARAVIRT_LAZY_CPU);
1762
a9ce6bc1 1763 memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
319f3ba5
JF
1764 __pa(xen_start_info->pt_base +
1765 xen_start_info->nr_pt_frames * PAGE_SIZE),
1766 "XEN PAGETABLES");
1767
1768 return pgd;
1769}
1770#else /* !CONFIG_X86_64 */
5b5c1af1
IC
1771static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1772static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1773
1774static __init void xen_write_cr3_init(unsigned long cr3)
1775{
1776 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1777
1778 BUG_ON(read_cr3() != __pa(initial_page_table));
1779 BUG_ON(cr3 != __pa(swapper_pg_dir));
1780
1781 /*
1782 * We are switching to swapper_pg_dir for the first time (from
1783 * initial_page_table) and therefore need to mark that page
1784 * read-only and then pin it.
1785 *
1786 * Xen disallows sharing of kernel PMDs for PAE
1787 * guests. Therefore we must copy the kernel PMD from
1788 * initial_page_table into a new kernel PMD to be used in
1789 * swapper_pg_dir.
1790 */
1791 swapper_kernel_pmd =
1792 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1793 memcpy(swapper_kernel_pmd, initial_kernel_pmd,
1794 sizeof(pmd_t) * PTRS_PER_PMD);
1795 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1796 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1797 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1798
1799 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1800 xen_write_cr3(cr3);
1801 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1802
1803 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1804 PFN_DOWN(__pa(initial_page_table)));
1805 set_page_prot(initial_page_table, PAGE_KERNEL);
1806 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1807
1808 pv_mmu_ops.write_cr3 = &xen_write_cr3;
1809}
319f3ba5
JF
1810
1811__init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1812 unsigned long max_pfn)
1813{
1814 pmd_t *kernel_pmd;
1815
5b5c1af1
IC
1816 initial_kernel_pmd =
1817 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
f0991802 1818
93dbda7c
JF
1819 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1820 xen_start_info->nr_pt_frames * PAGE_SIZE +
1821 512*1024);
319f3ba5
JF
1822
1823 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
5b5c1af1 1824 memcpy(initial_kernel_pmd, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
319f3ba5 1825
5b5c1af1 1826 xen_map_identity_early(initial_kernel_pmd, max_pfn);
319f3ba5 1827
5b5c1af1
IC
1828 memcpy(initial_page_table, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1829 initial_page_table[KERNEL_PGD_BOUNDARY] =
1830 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
319f3ba5 1831
5b5c1af1
IC
1832 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
1833 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
319f3ba5
JF
1834 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1835
1836 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1837
5b5c1af1
IC
1838 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1839 PFN_DOWN(__pa(initial_page_table)));
1840 xen_write_cr3(__pa(initial_page_table));
319f3ba5 1841
a9ce6bc1 1842 memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
33df4db0
JF
1843 __pa(xen_start_info->pt_base +
1844 xen_start_info->nr_pt_frames * PAGE_SIZE),
1845 "XEN PAGETABLES");
1846
5b5c1af1 1847 return initial_page_table;
319f3ba5
JF
1848}
1849#endif /* CONFIG_X86_64 */
1850
98511f35
JF
1851static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
1852
3b3809ac 1853static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
319f3ba5
JF
1854{
1855 pte_t pte;
1856
1857 phys >>= PAGE_SHIFT;
1858
1859 switch (idx) {
1860 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1861#ifdef CONFIG_X86_F00F_BUG
1862 case FIX_F00F_IDT:
1863#endif
1864#ifdef CONFIG_X86_32
1865 case FIX_WP_TEST:
1866 case FIX_VDSO:
1867# ifdef CONFIG_HIGHMEM
1868 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1869# endif
1870#else
1871 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
319f3ba5 1872#endif
3ecb1b7d
JF
1873 case FIX_TEXT_POKE0:
1874 case FIX_TEXT_POKE1:
1875 /* All local page mappings */
319f3ba5
JF
1876 pte = pfn_pte(phys, prot);
1877 break;
1878
98511f35
JF
1879#ifdef CONFIG_X86_LOCAL_APIC
1880 case FIX_APIC_BASE: /* maps dummy local APIC */
1881 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1882 break;
1883#endif
1884
1885#ifdef CONFIG_X86_IO_APIC
1886 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
1887 /*
1888 * We just don't map the IO APIC - all access is via
1889 * hypercalls. Keep the address in the pte for reference.
1890 */
1891 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1892 break;
1893#endif
1894
c0011dbf
JF
1895 case FIX_PARAVIRT_BOOTMAP:
1896 /* This is an MFN, but it isn't an IO mapping from the
1897 IO domain */
319f3ba5
JF
1898 pte = mfn_pte(phys, prot);
1899 break;
c0011dbf
JF
1900
1901 default:
1902 /* By default, set_fixmap is used for hardware mappings */
1903 pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
1904 break;
319f3ba5
JF
1905 }
1906
1907 __native_set_fixmap(idx, pte);
1908
1909#ifdef CONFIG_X86_64
1910 /* Replicate changes to map the vsyscall page into the user
1911 pagetable vsyscall mapping. */
1912 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1913 unsigned long vaddr = __fix_to_virt(idx);
1914 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1915 }
1916#endif
1917}
1918
4ec5387c
JQ
1919__init void xen_ident_map_ISA(void)
1920{
1921 unsigned long pa;
1922
1923 /*
1924 * If we're dom0, then linear map the ISA machine addresses into
1925 * the kernel's address space.
1926 */
1927 if (!xen_initial_domain())
1928 return;
1929
1930 xen_raw_printk("Xen: setup ISA identity maps\n");
1931
1932 for (pa = ISA_START_ADDRESS; pa < ISA_END_ADDRESS; pa += PAGE_SIZE) {
1933 pte_t pte = mfn_pte(PFN_DOWN(pa), PAGE_KERNEL_IO);
1934
1935 if (HYPERVISOR_update_va_mapping(PAGE_OFFSET + pa, pte, 0))
1936 BUG();
1937 }
1938
1939 xen_flush_tlb();
1940}
1941
f1d7062a 1942static __init void xen_post_allocator_init(void)
319f3ba5
JF
1943{
1944 pv_mmu_ops.set_pte = xen_set_pte;
1945 pv_mmu_ops.set_pmd = xen_set_pmd;
1946 pv_mmu_ops.set_pud = xen_set_pud;
1947#if PAGETABLE_LEVELS == 4
1948 pv_mmu_ops.set_pgd = xen_set_pgd;
1949#endif
1950
1951 /* This will work as long as patching hasn't happened yet
1952 (which it hasn't) */
1953 pv_mmu_ops.alloc_pte = xen_alloc_pte;
1954 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1955 pv_mmu_ops.release_pte = xen_release_pte;
1956 pv_mmu_ops.release_pmd = xen_release_pmd;
1957#if PAGETABLE_LEVELS == 4
1958 pv_mmu_ops.alloc_pud = xen_alloc_pud;
1959 pv_mmu_ops.release_pud = xen_release_pud;
1960#endif
1961
1962#ifdef CONFIG_X86_64
1963 SetPagePinned(virt_to_page(level3_user_vsyscall));
1964#endif
1965 xen_mark_init_mm_pinned();
1966}
1967
b407fc57
JF
1968static void xen_leave_lazy_mmu(void)
1969{
5caecb94 1970 preempt_disable();
b407fc57
JF
1971 xen_mc_flush();
1972 paravirt_leave_lazy_mmu();
5caecb94 1973 preempt_enable();
b407fc57 1974}
319f3ba5 1975
030cb6c0 1976static const struct pv_mmu_ops xen_mmu_ops __initdata = {
319f3ba5
JF
1977 .read_cr2 = xen_read_cr2,
1978 .write_cr2 = xen_write_cr2,
1979
1980 .read_cr3 = xen_read_cr3,
5b5c1af1
IC
1981#ifdef CONFIG_X86_32
1982 .write_cr3 = xen_write_cr3_init,
1983#else
319f3ba5 1984 .write_cr3 = xen_write_cr3,
5b5c1af1 1985#endif
319f3ba5
JF
1986
1987 .flush_tlb_user = xen_flush_tlb,
1988 .flush_tlb_kernel = xen_flush_tlb,
1989 .flush_tlb_single = xen_flush_tlb_single,
1990 .flush_tlb_others = xen_flush_tlb_others,
1991
1992 .pte_update = paravirt_nop,
1993 .pte_update_defer = paravirt_nop,
1994
1995 .pgd_alloc = xen_pgd_alloc,
1996 .pgd_free = xen_pgd_free,
1997
1998 .alloc_pte = xen_alloc_pte_init,
1999 .release_pte = xen_release_pte_init,
b96229b5 2000 .alloc_pmd = xen_alloc_pmd_init,
b96229b5 2001 .release_pmd = xen_release_pmd_init,
319f3ba5 2002
319f3ba5 2003 .set_pte = xen_set_pte_init,
319f3ba5
JF
2004 .set_pte_at = xen_set_pte_at,
2005 .set_pmd = xen_set_pmd_hyper,
2006
2007 .ptep_modify_prot_start = __ptep_modify_prot_start,
2008 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2009
da5de7c2
JF
2010 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2011 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
319f3ba5 2012
da5de7c2
JF
2013 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
2014 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
319f3ba5
JF
2015
2016#ifdef CONFIG_X86_PAE
2017 .set_pte_atomic = xen_set_pte_atomic,
319f3ba5
JF
2018 .pte_clear = xen_pte_clear,
2019 .pmd_clear = xen_pmd_clear,
2020#endif /* CONFIG_X86_PAE */
2021 .set_pud = xen_set_pud_hyper,
2022
da5de7c2
JF
2023 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2024 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
319f3ba5
JF
2025
2026#if PAGETABLE_LEVELS == 4
da5de7c2
JF
2027 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2028 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
319f3ba5
JF
2029 .set_pgd = xen_set_pgd_hyper,
2030
b96229b5
JF
2031 .alloc_pud = xen_alloc_pmd_init,
2032 .release_pud = xen_release_pmd_init,
319f3ba5
JF
2033#endif /* PAGETABLE_LEVELS == 4 */
2034
2035 .activate_mm = xen_activate_mm,
2036 .dup_mmap = xen_dup_mmap,
2037 .exit_mmap = xen_exit_mmap,
2038
2039 .lazy_mode = {
2040 .enter = paravirt_enter_lazy_mmu,
b407fc57 2041 .leave = xen_leave_lazy_mmu,
319f3ba5
JF
2042 },
2043
2044 .set_fixmap = xen_set_fixmap,
2045};
2046
030cb6c0
TG
2047void __init xen_init_mmu_ops(void)
2048{
2049 x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
2050 x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
2051 pv_mmu_ops = xen_mmu_ops;
d2cb2145 2052
98511f35 2053 memset(dummy_mapping, 0xff, PAGE_SIZE);
030cb6c0 2054}
319f3ba5 2055
08bbc9da
AN
2056/* Protected by xen_reservation_lock. */
2057#define MAX_CONTIG_ORDER 9 /* 2MB */
2058static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2059
2060#define VOID_PTE (mfn_pte(0, __pgprot(0)))
2061static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2062 unsigned long *in_frames,
2063 unsigned long *out_frames)
2064{
2065 int i;
2066 struct multicall_space mcs;
2067
2068 xen_mc_batch();
2069 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2070 mcs = __xen_mc_entry(0);
2071
2072 if (in_frames)
2073 in_frames[i] = virt_to_mfn(vaddr);
2074
2075 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2076 set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2077
2078 if (out_frames)
2079 out_frames[i] = virt_to_pfn(vaddr);
2080 }
2081 xen_mc_issue(0);
2082}
2083
2084/*
2085 * Update the pfn-to-mfn mappings for a virtual address range, either to
2086 * point to an array of mfns, or contiguously from a single starting
2087 * mfn.
2088 */
2089static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2090 unsigned long *mfns,
2091 unsigned long first_mfn)
2092{
2093 unsigned i, limit;
2094 unsigned long mfn;
2095
2096 xen_mc_batch();
2097
2098 limit = 1u << order;
2099 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2100 struct multicall_space mcs;
2101 unsigned flags;
2102
2103 mcs = __xen_mc_entry(0);
2104 if (mfns)
2105 mfn = mfns[i];
2106 else
2107 mfn = first_mfn + i;
2108
2109 if (i < (limit - 1))
2110 flags = 0;
2111 else {
2112 if (order == 0)
2113 flags = UVMF_INVLPG | UVMF_ALL;
2114 else
2115 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2116 }
2117
2118 MULTI_update_va_mapping(mcs.mc, vaddr,
2119 mfn_pte(mfn, PAGE_KERNEL), flags);
2120
2121 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2122 }
2123
2124 xen_mc_issue(0);
2125}
2126
2127/*
2128 * Perform the hypercall to exchange a region of our pfns to point to
2129 * memory with the required contiguous alignment. Takes the pfns as
2130 * input, and populates mfns as output.
2131 *
2132 * Returns a success code indicating whether the hypervisor was able to
2133 * satisfy the request or not.
2134 */
2135static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2136 unsigned long *pfns_in,
2137 unsigned long extents_out,
2138 unsigned int order_out,
2139 unsigned long *mfns_out,
2140 unsigned int address_bits)
2141{
2142 long rc;
2143 int success;
2144
2145 struct xen_memory_exchange exchange = {
2146 .in = {
2147 .nr_extents = extents_in,
2148 .extent_order = order_in,
2149 .extent_start = pfns_in,
2150 .domid = DOMID_SELF
2151 },
2152 .out = {
2153 .nr_extents = extents_out,
2154 .extent_order = order_out,
2155 .extent_start = mfns_out,
2156 .address_bits = address_bits,
2157 .domid = DOMID_SELF
2158 }
2159 };
2160
2161 BUG_ON(extents_in << order_in != extents_out << order_out);
2162
2163 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2164 success = (exchange.nr_exchanged == extents_in);
2165
2166 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2167 BUG_ON(success && (rc != 0));
2168
2169 return success;
2170}
2171
2172int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2173 unsigned int address_bits)
2174{
2175 unsigned long *in_frames = discontig_frames, out_frame;
2176 unsigned long flags;
2177 int success;
2178
2179 /*
2180 * Currently an auto-translated guest will not perform I/O, nor will
2181 * it require PAE page directories below 4GB. Therefore any calls to
2182 * this function are redundant and can be ignored.
2183 */
2184
2185 if (xen_feature(XENFEAT_auto_translated_physmap))
2186 return 0;
2187
2188 if (unlikely(order > MAX_CONTIG_ORDER))
2189 return -ENOMEM;
2190
2191 memset((void *) vstart, 0, PAGE_SIZE << order);
2192
08bbc9da
AN
2193 spin_lock_irqsave(&xen_reservation_lock, flags);
2194
2195 /* 1. Zap current PTEs, remembering MFNs. */
2196 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2197
2198 /* 2. Get a new contiguous memory extent. */
2199 out_frame = virt_to_pfn(vstart);
2200 success = xen_exchange_memory(1UL << order, 0, in_frames,
2201 1, order, &out_frame,
2202 address_bits);
2203
2204 /* 3. Map the new extent in place of old pages. */
2205 if (success)
2206 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2207 else
2208 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2209
2210 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2211
2212 return success ? 0 : -ENOMEM;
2213}
2214EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2215
2216void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2217{
2218 unsigned long *out_frames = discontig_frames, in_frame;
2219 unsigned long flags;
2220 int success;
2221
2222 if (xen_feature(XENFEAT_auto_translated_physmap))
2223 return;
2224
2225 if (unlikely(order > MAX_CONTIG_ORDER))
2226 return;
2227
2228 memset((void *) vstart, 0, PAGE_SIZE << order);
2229
08bbc9da
AN
2230 spin_lock_irqsave(&xen_reservation_lock, flags);
2231
2232 /* 1. Find start MFN of contiguous extent. */
2233 in_frame = virt_to_mfn(vstart);
2234
2235 /* 2. Zap current PTEs. */
2236 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2237
2238 /* 3. Do the exchange for non-contiguous MFNs. */
2239 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2240 0, out_frames, 0);
2241
2242 /* 4. Map new pages in place of old pages. */
2243 if (success)
2244 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2245 else
2246 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2247
2248 spin_unlock_irqrestore(&xen_reservation_lock, flags);
030cb6c0 2249}
08bbc9da 2250EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
319f3ba5 2251
ca65f9fc 2252#ifdef CONFIG_XEN_PVHVM
59151001
SS
2253static void xen_hvm_exit_mmap(struct mm_struct *mm)
2254{
2255 struct xen_hvm_pagetable_dying a;
2256 int rc;
2257
2258 a.domid = DOMID_SELF;
2259 a.gpa = __pa(mm->pgd);
2260 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2261 WARN_ON_ONCE(rc < 0);
2262}
2263
2264static int is_pagetable_dying_supported(void)
2265{
2266 struct xen_hvm_pagetable_dying a;
2267 int rc = 0;
2268
2269 a.domid = DOMID_SELF;
2270 a.gpa = 0x00;
2271 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2272 if (rc < 0) {
2273 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2274 return 0;
2275 }
2276 return 1;
2277}
2278
2279void __init xen_hvm_init_mmu_ops(void)
2280{
2281 if (is_pagetable_dying_supported())
2282 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2283}
ca65f9fc 2284#endif
59151001 2285
de1ef206
IC
2286#define REMAP_BATCH_SIZE 16
2287
2288struct remap_data {
2289 unsigned long mfn;
2290 pgprot_t prot;
2291 struct mmu_update *mmu_update;
2292};
2293
2294static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2295 unsigned long addr, void *data)
2296{
2297 struct remap_data *rmd = data;
2298 pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2299
2300 rmd->mmu_update->ptr = arbitrary_virt_to_machine(ptep).maddr;
2301 rmd->mmu_update->val = pte_val_ma(pte);
2302 rmd->mmu_update++;
2303
2304 return 0;
2305}
2306
2307int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2308 unsigned long addr,
2309 unsigned long mfn, int nr,
2310 pgprot_t prot, unsigned domid)
2311{
2312 struct remap_data rmd;
2313 struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2314 int batch;
2315 unsigned long range;
2316 int err = 0;
2317
2318 prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2319
e060e7af
SS
2320 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) ==
2321 (VM_PFNMAP | VM_RESERVED | VM_IO)));
de1ef206
IC
2322
2323 rmd.mfn = mfn;
2324 rmd.prot = prot;
2325
2326 while (nr) {
2327 batch = min(REMAP_BATCH_SIZE, nr);
2328 range = (unsigned long)batch << PAGE_SHIFT;
2329
2330 rmd.mmu_update = mmu_update;
2331 err = apply_to_page_range(vma->vm_mm, addr, range,
2332 remap_area_mfn_pte_fn, &rmd);
2333 if (err)
2334 goto out;
2335
2336 err = -EFAULT;
2337 if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0)
2338 goto out;
2339
2340 nr -= batch;
2341 addr += range;
2342 }
2343
2344 err = 0;
2345out:
2346
2347 flush_tlb_all();
2348
2349 return err;
2350}
2351EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2352
994025ca
JF
2353#ifdef CONFIG_XEN_DEBUG_FS
2354
2355static struct dentry *d_mmu_debug;
2356
2357static int __init xen_mmu_debugfs(void)
2358{
2359 struct dentry *d_xen = xen_init_debugfs();
2360
2361 if (d_xen == NULL)
2362 return -ENOMEM;
2363
2364 d_mmu_debug = debugfs_create_dir("mmu", d_xen);
2365
2366 debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
2367
2368 debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
2369 debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
2370 &mmu_stats.pgd_update_pinned);
2371 debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
2372 &mmu_stats.pgd_update_pinned);
2373
2374 debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
2375 debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
2376 &mmu_stats.pud_update_pinned);
2377 debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
2378 &mmu_stats.pud_update_pinned);
2379
2380 debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
2381 debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
2382 &mmu_stats.pmd_update_pinned);
2383 debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
2384 &mmu_stats.pmd_update_pinned);
2385
2386 debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
2387// debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
2388// &mmu_stats.pte_update_pinned);
2389 debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
2390 &mmu_stats.pte_update_pinned);
2391
2392 debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
2393 debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
2394 &mmu_stats.mmu_update_extended);
2395 xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
2396 mmu_stats.mmu_update_histo, 20);
2397
2398 debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
2399 debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
2400 &mmu_stats.set_pte_at_batched);
2401 debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
2402 &mmu_stats.set_pte_at_current);
2403 debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
2404 &mmu_stats.set_pte_at_kernel);
2405
2406 debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
2407 debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
2408 &mmu_stats.prot_commit_batched);
2409
2410 return 0;
2411}
2412fs_initcall(xen_mmu_debugfs);
2413
2414#endif /* CONFIG_XEN_DEBUG_FS */
This page took 0.436306 seconds and 5 git commands to generate.