Merge branch 'sched/urgent' into sched/core
[deliverable/linux.git] / arch / x86 / xen / mmu.c
CommitLineData
3b827c1b
JF
1/*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
f120f13e 41#include <linux/sched.h>
f4f97b3e 42#include <linux/highmem.h>
994025ca 43#include <linux/debugfs.h>
3b827c1b 44#include <linux/bug.h>
3b827c1b
JF
45
46#include <asm/pgtable.h>
47#include <asm/tlbflush.h>
5deb30d1 48#include <asm/fixmap.h>
3b827c1b 49#include <asm/mmu_context.h>
f4f97b3e 50#include <asm/paravirt.h>
cbcd79c2 51#include <asm/linkage.h>
3b827c1b
JF
52
53#include <asm/xen/hypercall.h>
f4f97b3e 54#include <asm/xen/hypervisor.h>
3b827c1b
JF
55
56#include <xen/page.h>
57#include <xen/interface/xen.h>
58
f4f97b3e 59#include "multicalls.h"
3b827c1b 60#include "mmu.h"
994025ca
JF
61#include "debugfs.h"
62
63#define MMU_UPDATE_HISTO 30
64
65#ifdef CONFIG_XEN_DEBUG_FS
66
67static struct {
68 u32 pgd_update;
69 u32 pgd_update_pinned;
70 u32 pgd_update_batched;
71
72 u32 pud_update;
73 u32 pud_update_pinned;
74 u32 pud_update_batched;
75
76 u32 pmd_update;
77 u32 pmd_update_pinned;
78 u32 pmd_update_batched;
79
80 u32 pte_update;
81 u32 pte_update_pinned;
82 u32 pte_update_batched;
83
84 u32 mmu_update;
85 u32 mmu_update_extended;
86 u32 mmu_update_histo[MMU_UPDATE_HISTO];
87
88 u32 prot_commit;
89 u32 prot_commit_batched;
90
91 u32 set_pte_at;
92 u32 set_pte_at_batched;
93 u32 set_pte_at_pinned;
94 u32 set_pte_at_current;
95 u32 set_pte_at_kernel;
96} mmu_stats;
97
98static u8 zero_stats;
99
100static inline void check_zero(void)
101{
102 if (unlikely(zero_stats)) {
103 memset(&mmu_stats, 0, sizeof(mmu_stats));
104 zero_stats = 0;
105 }
106}
107
108#define ADD_STATS(elem, val) \
109 do { check_zero(); mmu_stats.elem += (val); } while(0)
110
111#else /* !CONFIG_XEN_DEBUG_FS */
112
113#define ADD_STATS(elem, val) do { (void)(val); } while(0)
114
115#endif /* CONFIG_XEN_DEBUG_FS */
3b827c1b 116
d6182fbf
JF
117/*
118 * Just beyond the highest usermode address. STACK_TOP_MAX has a
119 * redzone above it, so round it up to a PGD boundary.
120 */
121#define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
122
123
d451bb7a 124#define P2M_ENTRIES_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
cf0923ea 125#define TOP_ENTRIES (MAX_DOMAIN_PAGES / P2M_ENTRIES_PER_PAGE)
d451bb7a 126
cf0923ea 127/* Placeholder for holes in the address space */
cbcd79c2 128static unsigned long p2m_missing[P2M_ENTRIES_PER_PAGE] __page_aligned_data =
cf0923ea
JF
129 { [ 0 ... P2M_ENTRIES_PER_PAGE-1 ] = ~0UL };
130
131 /* Array of pointers to pages containing p2m entries */
cbcd79c2 132static unsigned long *p2m_top[TOP_ENTRIES] __page_aligned_data =
cf0923ea 133 { [ 0 ... TOP_ENTRIES - 1] = &p2m_missing[0] };
d451bb7a 134
d5edbc1f 135/* Arrays of p2m arrays expressed in mfns used for save/restore */
cbcd79c2 136static unsigned long p2m_top_mfn[TOP_ENTRIES] __page_aligned_bss;
d5edbc1f 137
cbcd79c2
JF
138static unsigned long p2m_top_mfn_list[TOP_ENTRIES / P2M_ENTRIES_PER_PAGE]
139 __page_aligned_bss;
d5edbc1f 140
d451bb7a
JF
141static inline unsigned p2m_top_index(unsigned long pfn)
142{
8006ec3e 143 BUG_ON(pfn >= MAX_DOMAIN_PAGES);
d451bb7a
JF
144 return pfn / P2M_ENTRIES_PER_PAGE;
145}
146
147static inline unsigned p2m_index(unsigned long pfn)
148{
149 return pfn % P2M_ENTRIES_PER_PAGE;
150}
151
d5edbc1f
JF
152/* Build the parallel p2m_top_mfn structures */
153void xen_setup_mfn_list_list(void)
154{
155 unsigned pfn, idx;
156
157 for(pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn += P2M_ENTRIES_PER_PAGE) {
158 unsigned topidx = p2m_top_index(pfn);
159
160 p2m_top_mfn[topidx] = virt_to_mfn(p2m_top[topidx]);
161 }
162
163 for(idx = 0; idx < ARRAY_SIZE(p2m_top_mfn_list); idx++) {
164 unsigned topidx = idx * P2M_ENTRIES_PER_PAGE;
165 p2m_top_mfn_list[idx] = virt_to_mfn(&p2m_top_mfn[topidx]);
166 }
167
168 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
169
170 HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
171 virt_to_mfn(p2m_top_mfn_list);
172 HYPERVISOR_shared_info->arch.max_pfn = xen_start_info->nr_pages;
173}
174
175/* Set up p2m_top to point to the domain-builder provided p2m pages */
d451bb7a
JF
176void __init xen_build_dynamic_phys_to_machine(void)
177{
d451bb7a 178 unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
8006ec3e 179 unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
d5edbc1f 180 unsigned pfn;
d451bb7a 181
8006ec3e 182 for(pfn = 0; pfn < max_pfn; pfn += P2M_ENTRIES_PER_PAGE) {
d451bb7a
JF
183 unsigned topidx = p2m_top_index(pfn);
184
185 p2m_top[topidx] = &mfn_list[pfn];
186 }
187}
188
189unsigned long get_phys_to_machine(unsigned long pfn)
190{
191 unsigned topidx, idx;
192
8006ec3e
JF
193 if (unlikely(pfn >= MAX_DOMAIN_PAGES))
194 return INVALID_P2M_ENTRY;
195
d451bb7a 196 topidx = p2m_top_index(pfn);
d451bb7a
JF
197 idx = p2m_index(pfn);
198 return p2m_top[topidx][idx];
199}
15ce6005 200EXPORT_SYMBOL_GPL(get_phys_to_machine);
d451bb7a 201
d5edbc1f 202static void alloc_p2m(unsigned long **pp, unsigned long *mfnp)
d451bb7a
JF
203{
204 unsigned long *p;
205 unsigned i;
206
207 p = (void *)__get_free_page(GFP_KERNEL | __GFP_NOFAIL);
208 BUG_ON(p == NULL);
209
210 for(i = 0; i < P2M_ENTRIES_PER_PAGE; i++)
211 p[i] = INVALID_P2M_ENTRY;
212
cf0923ea 213 if (cmpxchg(pp, p2m_missing, p) != p2m_missing)
d451bb7a 214 free_page((unsigned long)p);
d5edbc1f
JF
215 else
216 *mfnp = virt_to_mfn(p);
d451bb7a
JF
217}
218
219void set_phys_to_machine(unsigned long pfn, unsigned long mfn)
220{
221 unsigned topidx, idx;
222
223 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
224 BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
8006ec3e
JF
225 return;
226 }
227
228 if (unlikely(pfn >= MAX_DOMAIN_PAGES)) {
229 BUG_ON(mfn != INVALID_P2M_ENTRY);
d451bb7a
JF
230 return;
231 }
232
233 topidx = p2m_top_index(pfn);
cf0923ea 234 if (p2m_top[topidx] == p2m_missing) {
d451bb7a
JF
235 /* no need to allocate a page to store an invalid entry */
236 if (mfn == INVALID_P2M_ENTRY)
237 return;
d5edbc1f 238 alloc_p2m(&p2m_top[topidx], &p2m_top_mfn[topidx]);
d451bb7a
JF
239 }
240
241 idx = p2m_index(pfn);
242 p2m_top[topidx][idx] = mfn;
243}
244
ce803e70 245xmaddr_t arbitrary_virt_to_machine(void *vaddr)
3b827c1b 246{
ce803e70 247 unsigned long address = (unsigned long)vaddr;
da7bfc50 248 unsigned int level;
9f32d21c
CL
249 pte_t *pte;
250 unsigned offset;
3b827c1b 251
9f32d21c
CL
252 /*
253 * if the PFN is in the linear mapped vaddr range, we can just use
254 * the (quick) virt_to_machine() p2m lookup
255 */
256 if (virt_addr_valid(vaddr))
257 return virt_to_machine(vaddr);
258
259 /* otherwise we have to do a (slower) full page-table walk */
3b827c1b 260
9f32d21c
CL
261 pte = lookup_address(address, &level);
262 BUG_ON(pte == NULL);
263 offset = address & ~PAGE_MASK;
ebd879e3 264 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
3b827c1b
JF
265}
266
267void make_lowmem_page_readonly(void *vaddr)
268{
269 pte_t *pte, ptev;
270 unsigned long address = (unsigned long)vaddr;
da7bfc50 271 unsigned int level;
3b827c1b 272
f0646e43 273 pte = lookup_address(address, &level);
3b827c1b
JF
274 BUG_ON(pte == NULL);
275
276 ptev = pte_wrprotect(*pte);
277
278 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
279 BUG();
280}
281
282void make_lowmem_page_readwrite(void *vaddr)
283{
284 pte_t *pte, ptev;
285 unsigned long address = (unsigned long)vaddr;
da7bfc50 286 unsigned int level;
3b827c1b 287
f0646e43 288 pte = lookup_address(address, &level);
3b827c1b
JF
289 BUG_ON(pte == NULL);
290
291 ptev = pte_mkwrite(*pte);
292
293 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
294 BUG();
295}
296
297
7708ad64 298static bool xen_page_pinned(void *ptr)
e2426cf8
JF
299{
300 struct page *page = virt_to_page(ptr);
301
302 return PagePinned(page);
303}
304
7708ad64 305static void xen_extend_mmu_update(const struct mmu_update *update)
3b827c1b 306{
d66bf8fc
JF
307 struct multicall_space mcs;
308 struct mmu_update *u;
3b827c1b 309
400d3494
JF
310 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
311
994025ca
JF
312 if (mcs.mc != NULL) {
313 ADD_STATS(mmu_update_extended, 1);
314 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
315
400d3494 316 mcs.mc->args[1]++;
994025ca
JF
317
318 if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
319 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
320 else
321 ADD_STATS(mmu_update_histo[0], 1);
322 } else {
323 ADD_STATS(mmu_update, 1);
400d3494
JF
324 mcs = __xen_mc_entry(sizeof(*u));
325 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
994025ca 326 ADD_STATS(mmu_update_histo[1], 1);
400d3494 327 }
d66bf8fc 328
d66bf8fc 329 u = mcs.args;
400d3494
JF
330 *u = *update;
331}
332
333void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
334{
335 struct mmu_update u;
336
337 preempt_disable();
338
339 xen_mc_batch();
340
ce803e70
JF
341 /* ptr may be ioremapped for 64-bit pagetable setup */
342 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
400d3494 343 u.val = pmd_val_ma(val);
7708ad64 344 xen_extend_mmu_update(&u);
d66bf8fc 345
994025ca
JF
346 ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
347
d66bf8fc
JF
348 xen_mc_issue(PARAVIRT_LAZY_MMU);
349
350 preempt_enable();
3b827c1b
JF
351}
352
e2426cf8
JF
353void xen_set_pmd(pmd_t *ptr, pmd_t val)
354{
994025ca
JF
355 ADD_STATS(pmd_update, 1);
356
e2426cf8
JF
357 /* If page is not pinned, we can just update the entry
358 directly */
7708ad64 359 if (!xen_page_pinned(ptr)) {
e2426cf8
JF
360 *ptr = val;
361 return;
362 }
363
994025ca
JF
364 ADD_STATS(pmd_update_pinned, 1);
365
e2426cf8
JF
366 xen_set_pmd_hyper(ptr, val);
367}
368
3b827c1b
JF
369/*
370 * Associate a virtual page frame with a given physical page frame
371 * and protection flags for that frame.
372 */
373void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
374{
836fe2f2 375 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
3b827c1b
JF
376}
377
378void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
379 pte_t *ptep, pte_t pteval)
380{
2bd50036
JF
381 /* updates to init_mm may be done without lock */
382 if (mm == &init_mm)
383 preempt_disable();
384
994025ca
JF
385 ADD_STATS(set_pte_at, 1);
386// ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
387 ADD_STATS(set_pte_at_current, mm == current->mm);
388 ADD_STATS(set_pte_at_kernel, mm == &init_mm);
389
d66bf8fc 390 if (mm == current->mm || mm == &init_mm) {
8965c1c0 391 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
d66bf8fc
JF
392 struct multicall_space mcs;
393 mcs = xen_mc_entry(0);
394
395 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
994025ca 396 ADD_STATS(set_pte_at_batched, 1);
d66bf8fc 397 xen_mc_issue(PARAVIRT_LAZY_MMU);
2bd50036 398 goto out;
d66bf8fc
JF
399 } else
400 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
2bd50036 401 goto out;
d66bf8fc
JF
402 }
403 xen_set_pte(ptep, pteval);
2bd50036
JF
404
405out:
406 if (mm == &init_mm)
407 preempt_enable();
3b827c1b
JF
408}
409
e57778a1 410pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
947a69c9 411{
e57778a1
JF
412 /* Just return the pte as-is. We preserve the bits on commit */
413 return *ptep;
414}
415
416void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
417 pte_t *ptep, pte_t pte)
418{
400d3494 419 struct mmu_update u;
e57778a1 420
400d3494 421 xen_mc_batch();
947a69c9 422
9f32d21c 423 u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
400d3494 424 u.val = pte_val_ma(pte);
7708ad64 425 xen_extend_mmu_update(&u);
947a69c9 426
994025ca
JF
427 ADD_STATS(prot_commit, 1);
428 ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
429
e57778a1 430 xen_mc_issue(PARAVIRT_LAZY_MMU);
947a69c9
JF
431}
432
ebb9cfe2
JF
433/* Assume pteval_t is equivalent to all the other *val_t types. */
434static pteval_t pte_mfn_to_pfn(pteval_t val)
947a69c9 435{
ebb9cfe2 436 if (val & _PAGE_PRESENT) {
59438c9f 437 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
77be1fab 438 pteval_t flags = val & PTE_FLAGS_MASK;
d8355aca 439 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
ebb9cfe2 440 }
947a69c9 441
ebb9cfe2 442 return val;
947a69c9
JF
443}
444
ebb9cfe2 445static pteval_t pte_pfn_to_mfn(pteval_t val)
947a69c9 446{
ebb9cfe2 447 if (val & _PAGE_PRESENT) {
59438c9f 448 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
77be1fab 449 pteval_t flags = val & PTE_FLAGS_MASK;
d8355aca 450 val = ((pteval_t)pfn_to_mfn(pfn) << PAGE_SHIFT) | flags;
947a69c9
JF
451 }
452
ebb9cfe2 453 return val;
947a69c9
JF
454}
455
ebb9cfe2 456pteval_t xen_pte_val(pte_t pte)
947a69c9 457{
ebb9cfe2 458 return pte_mfn_to_pfn(pte.pte);
947a69c9 459}
947a69c9 460
947a69c9
JF
461pgdval_t xen_pgd_val(pgd_t pgd)
462{
ebb9cfe2 463 return pte_mfn_to_pfn(pgd.pgd);
947a69c9
JF
464}
465
466pte_t xen_make_pte(pteval_t pte)
467{
ebb9cfe2
JF
468 pte = pte_pfn_to_mfn(pte);
469 return native_make_pte(pte);
947a69c9
JF
470}
471
472pgd_t xen_make_pgd(pgdval_t pgd)
473{
ebb9cfe2
JF
474 pgd = pte_pfn_to_mfn(pgd);
475 return native_make_pgd(pgd);
947a69c9
JF
476}
477
478pmdval_t xen_pmd_val(pmd_t pmd)
479{
ebb9cfe2 480 return pte_mfn_to_pfn(pmd.pmd);
947a69c9 481}
28499143 482
e2426cf8 483void xen_set_pud_hyper(pud_t *ptr, pud_t val)
f4f97b3e 484{
400d3494 485 struct mmu_update u;
f4f97b3e 486
d66bf8fc
JF
487 preempt_disable();
488
400d3494
JF
489 xen_mc_batch();
490
ce803e70
JF
491 /* ptr may be ioremapped for 64-bit pagetable setup */
492 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
400d3494 493 u.val = pud_val_ma(val);
7708ad64 494 xen_extend_mmu_update(&u);
d66bf8fc 495
994025ca
JF
496 ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
497
d66bf8fc
JF
498 xen_mc_issue(PARAVIRT_LAZY_MMU);
499
500 preempt_enable();
f4f97b3e
JF
501}
502
e2426cf8
JF
503void xen_set_pud(pud_t *ptr, pud_t val)
504{
994025ca
JF
505 ADD_STATS(pud_update, 1);
506
e2426cf8
JF
507 /* If page is not pinned, we can just update the entry
508 directly */
7708ad64 509 if (!xen_page_pinned(ptr)) {
e2426cf8
JF
510 *ptr = val;
511 return;
512 }
513
994025ca
JF
514 ADD_STATS(pud_update_pinned, 1);
515
e2426cf8
JF
516 xen_set_pud_hyper(ptr, val);
517}
518
f4f97b3e
JF
519void xen_set_pte(pte_t *ptep, pte_t pte)
520{
994025ca
JF
521 ADD_STATS(pte_update, 1);
522// ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
523 ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
524
f6e58732 525#ifdef CONFIG_X86_PAE
f4f97b3e
JF
526 ptep->pte_high = pte.pte_high;
527 smp_wmb();
528 ptep->pte_low = pte.pte_low;
f6e58732
JF
529#else
530 *ptep = pte;
531#endif
f4f97b3e
JF
532}
533
f6e58732 534#ifdef CONFIG_X86_PAE
3b827c1b
JF
535void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
536{
f6e58732 537 set_64bit((u64 *)ptep, native_pte_val(pte));
3b827c1b
JF
538}
539
540void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
541{
542 ptep->pte_low = 0;
543 smp_wmb(); /* make sure low gets written first */
544 ptep->pte_high = 0;
545}
546
547void xen_pmd_clear(pmd_t *pmdp)
548{
e2426cf8 549 set_pmd(pmdp, __pmd(0));
3b827c1b 550}
f6e58732 551#endif /* CONFIG_X86_PAE */
3b827c1b 552
abf33038 553pmd_t xen_make_pmd(pmdval_t pmd)
3b827c1b 554{
ebb9cfe2 555 pmd = pte_pfn_to_mfn(pmd);
947a69c9 556 return native_make_pmd(pmd);
3b827c1b 557}
3b827c1b 558
f6e58732
JF
559#if PAGETABLE_LEVELS == 4
560pudval_t xen_pud_val(pud_t pud)
561{
562 return pte_mfn_to_pfn(pud.pud);
563}
564
565pud_t xen_make_pud(pudval_t pud)
566{
567 pud = pte_pfn_to_mfn(pud);
568
569 return native_make_pud(pud);
570}
571
d6182fbf 572pgd_t *xen_get_user_pgd(pgd_t *pgd)
f6e58732 573{
d6182fbf
JF
574 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
575 unsigned offset = pgd - pgd_page;
576 pgd_t *user_ptr = NULL;
f6e58732 577
d6182fbf
JF
578 if (offset < pgd_index(USER_LIMIT)) {
579 struct page *page = virt_to_page(pgd_page);
580 user_ptr = (pgd_t *)page->private;
581 if (user_ptr)
582 user_ptr += offset;
583 }
f6e58732 584
d6182fbf
JF
585 return user_ptr;
586}
587
588static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
589{
590 struct mmu_update u;
f6e58732
JF
591
592 u.ptr = virt_to_machine(ptr).maddr;
593 u.val = pgd_val_ma(val);
7708ad64 594 xen_extend_mmu_update(&u);
d6182fbf
JF
595}
596
597/*
598 * Raw hypercall-based set_pgd, intended for in early boot before
599 * there's a page structure. This implies:
600 * 1. The only existing pagetable is the kernel's
601 * 2. It is always pinned
602 * 3. It has no user pagetable attached to it
603 */
604void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
605{
606 preempt_disable();
607
608 xen_mc_batch();
609
610 __xen_set_pgd_hyper(ptr, val);
f6e58732
JF
611
612 xen_mc_issue(PARAVIRT_LAZY_MMU);
613
614 preempt_enable();
615}
616
617void xen_set_pgd(pgd_t *ptr, pgd_t val)
618{
d6182fbf
JF
619 pgd_t *user_ptr = xen_get_user_pgd(ptr);
620
994025ca
JF
621 ADD_STATS(pgd_update, 1);
622
f6e58732
JF
623 /* If page is not pinned, we can just update the entry
624 directly */
7708ad64 625 if (!xen_page_pinned(ptr)) {
f6e58732 626 *ptr = val;
d6182fbf 627 if (user_ptr) {
7708ad64 628 WARN_ON(xen_page_pinned(user_ptr));
d6182fbf
JF
629 *user_ptr = val;
630 }
f6e58732
JF
631 return;
632 }
633
994025ca
JF
634 ADD_STATS(pgd_update_pinned, 1);
635 ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
636
d6182fbf
JF
637 /* If it's pinned, then we can at least batch the kernel and
638 user updates together. */
639 xen_mc_batch();
640
641 __xen_set_pgd_hyper(ptr, val);
642 if (user_ptr)
643 __xen_set_pgd_hyper(user_ptr, val);
644
645 xen_mc_issue(PARAVIRT_LAZY_MMU);
f6e58732
JF
646}
647#endif /* PAGETABLE_LEVELS == 4 */
648
f4f97b3e 649/*
5deb30d1
JF
650 * (Yet another) pagetable walker. This one is intended for pinning a
651 * pagetable. This means that it walks a pagetable and calls the
652 * callback function on each page it finds making up the page table,
653 * at every level. It walks the entire pagetable, but it only bothers
654 * pinning pte pages which are below limit. In the normal case this
655 * will be STACK_TOP_MAX, but at boot we need to pin up to
656 * FIXADDR_TOP.
657 *
658 * For 32-bit the important bit is that we don't pin beyond there,
659 * because then we start getting into Xen's ptes.
660 *
661 * For 64-bit, we must skip the Xen hole in the middle of the address
662 * space, just after the big x86-64 virtual hole.
663 */
86bbc2c2
IC
664static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
665 int (*func)(struct mm_struct *mm, struct page *,
666 enum pt_level),
667 unsigned long limit)
3b827c1b 668{
f4f97b3e 669 int flush = 0;
5deb30d1
JF
670 unsigned hole_low, hole_high;
671 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
672 unsigned pgdidx, pudidx, pmdidx;
f4f97b3e 673
5deb30d1
JF
674 /* The limit is the last byte to be touched */
675 limit--;
676 BUG_ON(limit >= FIXADDR_TOP);
3b827c1b
JF
677
678 if (xen_feature(XENFEAT_auto_translated_physmap))
f4f97b3e
JF
679 return 0;
680
5deb30d1
JF
681 /*
682 * 64-bit has a great big hole in the middle of the address
683 * space, which contains the Xen mappings. On 32-bit these
684 * will end up making a zero-sized hole and so is a no-op.
685 */
d6182fbf 686 hole_low = pgd_index(USER_LIMIT);
5deb30d1
JF
687 hole_high = pgd_index(PAGE_OFFSET);
688
689 pgdidx_limit = pgd_index(limit);
690#if PTRS_PER_PUD > 1
691 pudidx_limit = pud_index(limit);
692#else
693 pudidx_limit = 0;
694#endif
695#if PTRS_PER_PMD > 1
696 pmdidx_limit = pmd_index(limit);
697#else
698 pmdidx_limit = 0;
699#endif
700
5deb30d1 701 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
f4f97b3e 702 pud_t *pud;
3b827c1b 703
5deb30d1
JF
704 if (pgdidx >= hole_low && pgdidx < hole_high)
705 continue;
f4f97b3e 706
5deb30d1 707 if (!pgd_val(pgd[pgdidx]))
3b827c1b 708 continue;
f4f97b3e 709
5deb30d1 710 pud = pud_offset(&pgd[pgdidx], 0);
3b827c1b
JF
711
712 if (PTRS_PER_PUD > 1) /* not folded */
eefb47f6 713 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
f4f97b3e 714
5deb30d1 715 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
f4f97b3e 716 pmd_t *pmd;
f4f97b3e 717
5deb30d1
JF
718 if (pgdidx == pgdidx_limit &&
719 pudidx > pudidx_limit)
720 goto out;
3b827c1b 721
5deb30d1 722 if (pud_none(pud[pudidx]))
3b827c1b 723 continue;
f4f97b3e 724
5deb30d1 725 pmd = pmd_offset(&pud[pudidx], 0);
3b827c1b
JF
726
727 if (PTRS_PER_PMD > 1) /* not folded */
eefb47f6 728 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
f4f97b3e 729
5deb30d1
JF
730 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
731 struct page *pte;
732
733 if (pgdidx == pgdidx_limit &&
734 pudidx == pudidx_limit &&
735 pmdidx > pmdidx_limit)
736 goto out;
3b827c1b 737
5deb30d1 738 if (pmd_none(pmd[pmdidx]))
3b827c1b
JF
739 continue;
740
5deb30d1 741 pte = pmd_page(pmd[pmdidx]);
eefb47f6 742 flush |= (*func)(mm, pte, PT_PTE);
3b827c1b
JF
743 }
744 }
745 }
11ad93e5 746
5deb30d1 747out:
11ad93e5
JF
748 /* Do the top level last, so that the callbacks can use it as
749 a cue to do final things like tlb flushes. */
eefb47f6 750 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
f4f97b3e
JF
751
752 return flush;
3b827c1b
JF
753}
754
86bbc2c2
IC
755static int xen_pgd_walk(struct mm_struct *mm,
756 int (*func)(struct mm_struct *mm, struct page *,
757 enum pt_level),
758 unsigned long limit)
759{
760 return __xen_pgd_walk(mm, mm->pgd, func, limit);
761}
762
7708ad64
JF
763/* If we're using split pte locks, then take the page's lock and
764 return a pointer to it. Otherwise return NULL. */
eefb47f6 765static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
74260714
JF
766{
767 spinlock_t *ptl = NULL;
768
f7d0b926 769#if USE_SPLIT_PTLOCKS
74260714 770 ptl = __pte_lockptr(page);
eefb47f6 771 spin_lock_nest_lock(ptl, &mm->page_table_lock);
74260714
JF
772#endif
773
774 return ptl;
775}
776
7708ad64 777static void xen_pte_unlock(void *v)
74260714
JF
778{
779 spinlock_t *ptl = v;
780 spin_unlock(ptl);
781}
782
783static void xen_do_pin(unsigned level, unsigned long pfn)
784{
785 struct mmuext_op *op;
786 struct multicall_space mcs;
787
788 mcs = __xen_mc_entry(sizeof(*op));
789 op = mcs.args;
790 op->cmd = level;
791 op->arg1.mfn = pfn_to_mfn(pfn);
792 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
793}
794
eefb47f6
JF
795static int xen_pin_page(struct mm_struct *mm, struct page *page,
796 enum pt_level level)
f4f97b3e 797{
d60cd46b 798 unsigned pgfl = TestSetPagePinned(page);
f4f97b3e
JF
799 int flush;
800
801 if (pgfl)
802 flush = 0; /* already pinned */
803 else if (PageHighMem(page))
804 /* kmaps need flushing if we found an unpinned
805 highpage */
806 flush = 1;
807 else {
808 void *pt = lowmem_page_address(page);
809 unsigned long pfn = page_to_pfn(page);
810 struct multicall_space mcs = __xen_mc_entry(0);
74260714 811 spinlock_t *ptl;
f4f97b3e
JF
812
813 flush = 0;
814
11ad93e5
JF
815 /*
816 * We need to hold the pagetable lock between the time
817 * we make the pagetable RO and when we actually pin
818 * it. If we don't, then other users may come in and
819 * attempt to update the pagetable by writing it,
820 * which will fail because the memory is RO but not
821 * pinned, so Xen won't do the trap'n'emulate.
822 *
823 * If we're using split pte locks, we can't hold the
824 * entire pagetable's worth of locks during the
825 * traverse, because we may wrap the preempt count (8
826 * bits). The solution is to mark RO and pin each PTE
827 * page while holding the lock. This means the number
828 * of locks we end up holding is never more than a
829 * batch size (~32 entries, at present).
830 *
831 * If we're not using split pte locks, we needn't pin
832 * the PTE pages independently, because we're
833 * protected by the overall pagetable lock.
834 */
74260714
JF
835 ptl = NULL;
836 if (level == PT_PTE)
eefb47f6 837 ptl = xen_pte_lock(page, mm);
74260714 838
f4f97b3e
JF
839 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
840 pfn_pte(pfn, PAGE_KERNEL_RO),
74260714
JF
841 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
842
11ad93e5 843 if (ptl) {
74260714
JF
844 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
845
74260714
JF
846 /* Queue a deferred unlock for when this batch
847 is completed. */
7708ad64 848 xen_mc_callback(xen_pte_unlock, ptl);
74260714 849 }
f4f97b3e
JF
850 }
851
852 return flush;
853}
3b827c1b 854
f4f97b3e
JF
855/* This is called just after a mm has been created, but it has not
856 been used yet. We need to make sure that its pagetable is all
857 read-only, and can be pinned. */
eefb47f6 858static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
3b827c1b 859{
d05fdf31
JF
860 vm_unmap_aliases();
861
f4f97b3e 862 xen_mc_batch();
3b827c1b 863
86bbc2c2 864 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
d05fdf31 865 /* re-enable interrupts for flushing */
f87e4cac 866 xen_mc_issue(0);
d05fdf31 867
f4f97b3e 868 kmap_flush_unused();
d05fdf31 869
f87e4cac
JF
870 xen_mc_batch();
871 }
f4f97b3e 872
d6182fbf
JF
873#ifdef CONFIG_X86_64
874 {
875 pgd_t *user_pgd = xen_get_user_pgd(pgd);
876
877 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
878
879 if (user_pgd) {
eefb47f6 880 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
d6182fbf
JF
881 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(user_pgd)));
882 }
883 }
884#else /* CONFIG_X86_32 */
5deb30d1
JF
885#ifdef CONFIG_X86_PAE
886 /* Need to make sure unshared kernel PMD is pinnable */
47cb2ed9 887 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
eefb47f6 888 PT_PMD);
5deb30d1 889#endif
28499143 890 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
d6182fbf 891#endif /* CONFIG_X86_64 */
f4f97b3e 892 xen_mc_issue(0);
3b827c1b
JF
893}
894
eefb47f6
JF
895static void xen_pgd_pin(struct mm_struct *mm)
896{
897 __xen_pgd_pin(mm, mm->pgd);
898}
899
0e91398f
JF
900/*
901 * On save, we need to pin all pagetables to make sure they get their
902 * mfns turned into pfns. Search the list for any unpinned pgds and pin
903 * them (unpinned pgds are not currently in use, probably because the
904 * process is under construction or destruction).
eefb47f6
JF
905 *
906 * Expected to be called in stop_machine() ("equivalent to taking
907 * every spinlock in the system"), so the locking doesn't really
908 * matter all that much.
0e91398f
JF
909 */
910void xen_mm_pin_all(void)
911{
912 unsigned long flags;
913 struct page *page;
74260714 914
0e91398f 915 spin_lock_irqsave(&pgd_lock, flags);
f4f97b3e 916
0e91398f
JF
917 list_for_each_entry(page, &pgd_list, lru) {
918 if (!PagePinned(page)) {
eefb47f6 919 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
0e91398f
JF
920 SetPageSavePinned(page);
921 }
922 }
923
924 spin_unlock_irqrestore(&pgd_lock, flags);
3b827c1b
JF
925}
926
c1f2f09e
EH
927/*
928 * The init_mm pagetable is really pinned as soon as its created, but
929 * that's before we have page structures to store the bits. So do all
930 * the book-keeping now.
931 */
eefb47f6
JF
932static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
933 enum pt_level level)
3b827c1b 934{
f4f97b3e
JF
935 SetPagePinned(page);
936 return 0;
937}
3b827c1b 938
f4f97b3e
JF
939void __init xen_mark_init_mm_pinned(void)
940{
eefb47f6 941 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
f4f97b3e 942}
3b827c1b 943
eefb47f6
JF
944static int xen_unpin_page(struct mm_struct *mm, struct page *page,
945 enum pt_level level)
f4f97b3e 946{
d60cd46b 947 unsigned pgfl = TestClearPagePinned(page);
3b827c1b 948
f4f97b3e
JF
949 if (pgfl && !PageHighMem(page)) {
950 void *pt = lowmem_page_address(page);
951 unsigned long pfn = page_to_pfn(page);
74260714
JF
952 spinlock_t *ptl = NULL;
953 struct multicall_space mcs;
954
11ad93e5
JF
955 /*
956 * Do the converse to pin_page. If we're using split
957 * pte locks, we must be holding the lock for while
958 * the pte page is unpinned but still RO to prevent
959 * concurrent updates from seeing it in this
960 * partially-pinned state.
961 */
74260714 962 if (level == PT_PTE) {
eefb47f6 963 ptl = xen_pte_lock(page, mm);
74260714 964
11ad93e5
JF
965 if (ptl)
966 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
74260714
JF
967 }
968
969 mcs = __xen_mc_entry(0);
f4f97b3e
JF
970
971 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
972 pfn_pte(pfn, PAGE_KERNEL),
74260714
JF
973 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
974
975 if (ptl) {
976 /* unlock when batch completed */
7708ad64 977 xen_mc_callback(xen_pte_unlock, ptl);
74260714 978 }
f4f97b3e
JF
979 }
980
981 return 0; /* never need to flush on unpin */
3b827c1b
JF
982}
983
f4f97b3e 984/* Release a pagetables pages back as normal RW */
eefb47f6 985static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
f4f97b3e 986{
f4f97b3e
JF
987 xen_mc_batch();
988
74260714 989 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
f4f97b3e 990
d6182fbf
JF
991#ifdef CONFIG_X86_64
992 {
993 pgd_t *user_pgd = xen_get_user_pgd(pgd);
994
995 if (user_pgd) {
996 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(user_pgd)));
eefb47f6 997 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
d6182fbf
JF
998 }
999 }
1000#endif
1001
5deb30d1
JF
1002#ifdef CONFIG_X86_PAE
1003 /* Need to make sure unshared kernel PMD is unpinned */
47cb2ed9 1004 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
eefb47f6 1005 PT_PMD);
5deb30d1 1006#endif
d6182fbf 1007
86bbc2c2 1008 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
f4f97b3e
JF
1009
1010 xen_mc_issue(0);
1011}
3b827c1b 1012
eefb47f6
JF
1013static void xen_pgd_unpin(struct mm_struct *mm)
1014{
1015 __xen_pgd_unpin(mm, mm->pgd);
1016}
1017
0e91398f
JF
1018/*
1019 * On resume, undo any pinning done at save, so that the rest of the
1020 * kernel doesn't see any unexpected pinned pagetables.
1021 */
1022void xen_mm_unpin_all(void)
1023{
1024 unsigned long flags;
1025 struct page *page;
1026
1027 spin_lock_irqsave(&pgd_lock, flags);
1028
1029 list_for_each_entry(page, &pgd_list, lru) {
1030 if (PageSavePinned(page)) {
1031 BUG_ON(!PagePinned(page));
eefb47f6 1032 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
0e91398f
JF
1033 ClearPageSavePinned(page);
1034 }
1035 }
1036
1037 spin_unlock_irqrestore(&pgd_lock, flags);
1038}
1039
3b827c1b
JF
1040void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1041{
f4f97b3e 1042 spin_lock(&next->page_table_lock);
eefb47f6 1043 xen_pgd_pin(next);
f4f97b3e 1044 spin_unlock(&next->page_table_lock);
3b827c1b
JF
1045}
1046
1047void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1048{
f4f97b3e 1049 spin_lock(&mm->page_table_lock);
eefb47f6 1050 xen_pgd_pin(mm);
f4f97b3e 1051 spin_unlock(&mm->page_table_lock);
3b827c1b
JF
1052}
1053
3b827c1b 1054
f87e4cac
JF
1055#ifdef CONFIG_SMP
1056/* Another cpu may still have their %cr3 pointing at the pagetable, so
1057 we need to repoint it somewhere else before we can unpin it. */
1058static void drop_other_mm_ref(void *info)
1059{
1060 struct mm_struct *mm = info;
ce87b3d3 1061 struct mm_struct *active_mm;
3b827c1b 1062
ce87b3d3
JF
1063#ifdef CONFIG_X86_64
1064 active_mm = read_pda(active_mm);
1065#else
1066 active_mm = __get_cpu_var(cpu_tlbstate).active_mm;
1067#endif
1068
1069 if (active_mm == mm)
f87e4cac 1070 leave_mm(smp_processor_id());
9f79991d
JF
1071
1072 /* If this cpu still has a stale cr3 reference, then make sure
1073 it has been flushed. */
1074 if (x86_read_percpu(xen_current_cr3) == __pa(mm->pgd)) {
1075 load_cr3(swapper_pg_dir);
1076 arch_flush_lazy_cpu_mode();
1077 }
f87e4cac 1078}
3b827c1b 1079
7708ad64 1080static void xen_drop_mm_ref(struct mm_struct *mm)
f87e4cac 1081{
9f79991d
JF
1082 cpumask_t mask;
1083 unsigned cpu;
1084
f87e4cac
JF
1085 if (current->active_mm == mm) {
1086 if (current->mm == mm)
1087 load_cr3(swapper_pg_dir);
1088 else
1089 leave_mm(smp_processor_id());
9f79991d
JF
1090 arch_flush_lazy_cpu_mode();
1091 }
1092
1093 /* Get the "official" set of cpus referring to our pagetable. */
1094 mask = mm->cpu_vm_mask;
1095
1096 /* It's possible that a vcpu may have a stale reference to our
1097 cr3, because its in lazy mode, and it hasn't yet flushed
1098 its set of pending hypercalls yet. In this case, we can
1099 look at its actual current cr3 value, and force it to flush
1100 if needed. */
1101 for_each_online_cpu(cpu) {
1102 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1103 cpu_set(cpu, mask);
3b827c1b
JF
1104 }
1105
9f79991d 1106 if (!cpus_empty(mask))
3b16cf87 1107 smp_call_function_mask(mask, drop_other_mm_ref, mm, 1);
f87e4cac
JF
1108}
1109#else
7708ad64 1110static void xen_drop_mm_ref(struct mm_struct *mm)
f87e4cac
JF
1111{
1112 if (current->active_mm == mm)
1113 load_cr3(swapper_pg_dir);
1114}
1115#endif
1116
1117/*
1118 * While a process runs, Xen pins its pagetables, which means that the
1119 * hypervisor forces it to be read-only, and it controls all updates
1120 * to it. This means that all pagetable updates have to go via the
1121 * hypervisor, which is moderately expensive.
1122 *
1123 * Since we're pulling the pagetable down, we switch to use init_mm,
1124 * unpin old process pagetable and mark it all read-write, which
1125 * allows further operations on it to be simple memory accesses.
1126 *
1127 * The only subtle point is that another CPU may be still using the
1128 * pagetable because of lazy tlb flushing. This means we need need to
1129 * switch all CPUs off this pagetable before we can unpin it.
1130 */
1131void xen_exit_mmap(struct mm_struct *mm)
1132{
1133 get_cpu(); /* make sure we don't move around */
7708ad64 1134 xen_drop_mm_ref(mm);
f87e4cac 1135 put_cpu();
3b827c1b 1136
f120f13e 1137 spin_lock(&mm->page_table_lock);
df912ea4
JF
1138
1139 /* pgd may not be pinned in the error exit path of execve */
7708ad64 1140 if (xen_page_pinned(mm->pgd))
eefb47f6 1141 xen_pgd_unpin(mm);
74260714 1142
f120f13e 1143 spin_unlock(&mm->page_table_lock);
3b827c1b 1144}
994025ca
JF
1145
1146#ifdef CONFIG_XEN_DEBUG_FS
1147
1148static struct dentry *d_mmu_debug;
1149
1150static int __init xen_mmu_debugfs(void)
1151{
1152 struct dentry *d_xen = xen_init_debugfs();
1153
1154 if (d_xen == NULL)
1155 return -ENOMEM;
1156
1157 d_mmu_debug = debugfs_create_dir("mmu", d_xen);
1158
1159 debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
1160
1161 debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
1162 debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
1163 &mmu_stats.pgd_update_pinned);
1164 debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
1165 &mmu_stats.pgd_update_pinned);
1166
1167 debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
1168 debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
1169 &mmu_stats.pud_update_pinned);
1170 debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
1171 &mmu_stats.pud_update_pinned);
1172
1173 debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
1174 debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
1175 &mmu_stats.pmd_update_pinned);
1176 debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
1177 &mmu_stats.pmd_update_pinned);
1178
1179 debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
1180// debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
1181// &mmu_stats.pte_update_pinned);
1182 debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
1183 &mmu_stats.pte_update_pinned);
1184
1185 debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
1186 debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
1187 &mmu_stats.mmu_update_extended);
1188 xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
1189 mmu_stats.mmu_update_histo, 20);
1190
1191 debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
1192 debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
1193 &mmu_stats.set_pte_at_batched);
1194 debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
1195 &mmu_stats.set_pte_at_current);
1196 debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
1197 &mmu_stats.set_pte_at_kernel);
1198
1199 debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
1200 debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
1201 &mmu_stats.prot_commit_batched);
1202
1203 return 0;
1204}
1205fs_initcall(xen_mmu_debugfs);
1206
1207#endif /* CONFIG_XEN_DEBUG_FS */
This page took 0.260579 seconds and 5 git commands to generate.